

SCHOOL OF ENGINEERING AND TECHNOLOGY Master of Technology- Computer Science and Engineering

Programme Code: SET0130 Duration- 2 Years Full Time

PROGRAM STRUCTURE AND CURRICULUM & SCHEME OF EXAMINATION 2021

M.Tech CSE with specialization in Software Engineering

M.Tech CSE with specialization in Data Science & Analytics

M.Tech CSE with specialization in Networking and Cyber Security

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- **3.** Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

Note: Detailed Mission Statements of University can be used for developing Mission Statements of Schools/ Departments.

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship

Mission of the School

- 1. To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conductive and enriching learning environment.
- 2. To product technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities and uphold ethical values.
- **3.** To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- 4. To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

Core Values

- Industry & Academic Connectivity
- Experiential learning
- Interdisciplinary research
- Global

1.2 Vision and Mission of the Department

Vision of the Department

To be recognized as the fountainhead of excellence in technical knowledge and research in computer science and engineering to attract students and scholars across the globe

Mission of the Department

- 1. To strengthen core competency of students to be successful, ethical, effective problem solver in Computer Science & Engineering through analytical learning.
- 2. To promote interdisciplinary research & innovation-based activities in emerging areas of technology globally
- **3.** To facilitate and foster the industry-academia collaboration to enhance entrepreneurship skills and acquaintance with corporate culture.
- 4. To inculcate in them a higher degree of social consciousness and moral values towards solving interdisciplinary societal problems using industry-academia collaboration

Core Values

- Competency
- Global
- Entrepreneurship Skills
- Interdisciplinary research

1.3 Programme Educational Objectives (PEO)

1.3.1 Writing Programme Educational Objectives (PEO)

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

The Program Educational Objectives (PEOs) of PG Program in Computer Science & Engineering are:

PEO-1 The graduates will establish themselves as professionals by solving real-life problems using exploratory and analytical skills acquired in the field of Computer Science and Engineering.

PEO-2 The graduates will provide sustainable solutions to ever changing interdisciplinary global problems through their Research & Innovation capabilities.

PEO-3 The graduates will become employable, successful entrepreneur as an outcome of Industry-Academia collaboration.

PEO-4 The graduates will embrace professional code of ethics while providing solution to multidisciplinary social problems in industrial, entrepreneurial and research environment to demonstrate leadership qualities

Methods of Forming PEO's

- STEP 1 : The needs of the Nation and society are identified through scientific publications, industry interaction and media.
- STEP 2. Taking the above into consideration, the PEOs are established by the Coordination Committee of the department.
- STEP 3. The PEOs are communicated to the alumni and their suggestions are obtained.
- STEP 4. The PEOs are communicated to all the faculty members of the department and their feedback is obtained.
- STEP 5. The PEOs are then put to the Board of Studies of the department for final approval.

1.3.2 Map PEOs with Mission Statements:

N	1 771 1 (111			4 751 1 4 111	-
DEPARTMENT PEOs DEPT OF CSE MISSION	1. The graduates will establish themselves as professionals by solving real-life problems using exploratory and analytical skills acquired in the field of Computer Science and Engineering.	2. The graduates will be able to provide sustainable solutions to ever changing interdisciplinary global problems through their Research & Innovation capabilities.	3. The graduates will become employable, successful entrepreneur and innovator as an outcome of Industry- Academia collaboration.	4. The graduates will be able to embrace professional code of ethics while providing solution to multidisciplinary social problems in industrial, entrepreneurial and research environment to demonstrate leadership qualities.	
STATEMENTS 1. To strengthen core competency of students to be successful, ethical, effective problem solver in Computer Science & Engineering through analytical learning.	3	3	2	2	10/12
2. To promote interdisciplinary research & innovation based activities in emerging areas of technology globally.	2	3	2	2	9/12
3. To facilitate and foster the industry- academia collaboration to enhance entrepreneurship skills and acquaintance with corporate culture.	2	2	3	3	10/12
4: To inculcate in them a higher degree of social consciousness and moral values towards solving interdisciplinary societal problems using industry-academia collaboration	2	2	2	3	9/12
	9/12	10/12	9/12	10/12	83%

Enter correlation levels 1, 2, or 3 as defined below:

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

1.3.3 Program Outcomes (PO's)

	[
	Advanced	Ability to apply advanced knowledge of mathematical, scientific
PO1:	Technical	and computing to carry out independent research and investigate
	Knowledge	complex problems of global benchmark.
PO2:	Research and	Achieve and understand research-based solutions for problems in
102.	Development	industry and academia using contemporary research methods.
		Enables academic adherence by practice of method and
		environment for teaching which is incorporated within the
PO3:	Pedagogy	curriculum enabling life-long learning and professional
		development through self-study, continuing education,
		professional and doctoral level studies.
		Inculcate innovative approaches to develop solutions towards
PO4:	Innovation and	existing real-world problem(s) to create value and wealth for the
	Entrepreneurial	betterment of the individual and society at large.
		Inculcating the human, social and business context while
PO5:	Societal Values	knowledge discovery by providing exposure to global view and
1 000		diversity in the world and will utilize their engineering skills.
	Personal and	Recognize the need of ethical, legal and societal implications to
PO6:	Professional	engage in self-governing and life-long learning by making use of
100.	Ethics	professional principles.
	Ethics	
DOF	Communication	Ability to develop communication skills so that they are able to
PO7:	Skills	express ideas clearly and persuasively, in written and oral forms
		in a substantial technical manner.
	Life-long	Ability to engage in independent and life-long learning in the
PO8:	learning	broadest context of research and technological change with the
	lourning	aim to educate the society and peers.
	Software	To apply the software engineering principles and practices to
PSO1:		provide high quality software solutions using state of art
	Engineering	technologies.
		To develop research solutions in the field of data engineering by
PSO2:	Data Science &	using modern tools to provide innovative solutions for complex
	Analytics	data science problems.
	Networking and	To apply networking principles to understand cyber security
PSO3:	Cyber Security	issues and provides solutions to real world security problems.
	- <i>j</i> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	provides solutions to rour world becartly problems.

1.3.4 Mapping of Program	Outcome Vs Program	Educational Objectives
--------------------------	---------------------------	-------------------------------

Mapping	PEO1	PEO2	PEO3	PEO4
PO1:	3	3	2	1
PO2:	3	3	3	1
PO3:	2	2	3	3
PO4:	2	2	3	2
PO5:	1	2	2	3
PO6:	1	1	2	3
PO7:	1	1	3	2
PO8:	2	3	1	1
PSO1:	2	3	1	3
PSO2:	3	3	2	2
PSO3:	3	3	2	2

1. Slight (Low)

2. Moderate (Medium)

3. Substantial (High)

1.3.5 Program Outcome Vs Courses Mapping Table¹:

			PO1:	PO2:	PO3:	PO4:	PO5:	PO6:	PO7:	PO8:	PSO1:	PSO2:	PSO3:
Course Code	Course Name		Advanced Technical Knowledge	Research and Development	Pedagogy	Innovation and Entrepreneurial	Societal Values	Personal and Professional Ethics	Communication Skills	Life-long learning	Software Engineering	Data Science & Analytics	Networking and Cyber Security
		CO1	2	3		1				1		2	
		CO2	3	2		2				1		1	
CSE611	Analysis and Design of	CO3		1								3	
CSE011	Algorithms	CO4		3	2	3						1	
	rugonumis	CO5	2	3		2						1	
		CO6		2	2					2	1	3	
		CO1	3	2	1	1	-	-	-	2	-	3	1
	Mathematical and Statistical	CO2	3	3	1	1	-	-	-	2	-	2	1
CSE613	Techniques in	CO3	3	3	1	2	-	-	-	2	-	3	1
CSE015	Computer	CO4	3	2	1	2	-	-	-	2	-	3	1
	Science	CO5	3	2	1	2	-	-	-	3	-	3	1
	~	CO6	3	2	1	2	-	-	-	3	-	3	1
		CO1	3	-	3	-	-	-	-	3	3	-	-
	Data	CO2	3	1	2	-	-	2	3	3	3	-	-
CSE604	Data Acquisition and	CO3	3	1	2	1	1	2	2	3	3	-	-
CSLUU4	Production	CO4	3	1	2	-	1	-	3	3	3	-	-
	riouction	CO5	3	-	2	1	-	2	3	3	3	-	-
		CO6	3	2	2	2	2	2	2	3	3	-	-

¹ Cel value will contain the correlation value of respective course with PO.

												-	💦 🌽 Ве
		CO1	3	3	1	2	3	1	-	1			
		CO2	3	3	3	2	1	1	-	1			
0	Massive Graph	CO3	1	1	3	3	2	1	-	1			
0	Analysis	CO4	1	1	3	2	1	2	1	1			
		CO5	1	2	3	2	2	1	1	1			
		CO6	1	2	3	2	1	2	1	3			
		CO1	3	2	3	-	-	-	-	2	-	-	2
		CO2	3	2	3	-	-	-	-	2	-	-	2
CSE630	Advanced	CO3	3	2	3	1	-	-	-	2	-	-	2
CSE030	Computer Network	CO4	3	2	3	1	2	2	-	2	-	-	2
	INCLWOIK	CO5	3	2	3	2	2	2	-	2	-	-	3
		CO6	3	2	3	2	2	2	-	2	-	-	3
		CO1	2	-	-	-	-	2	1	2	3	-	-
		CO2	3	-	2	-	-	3	3	3	3	-	-
	Object Oriented	CO3	3	3	2	2	-	3	2	3	3	-	-
CSE640NN	Software Engineering	CO4	3	3	2	-	-	3	2	2	3	-	-
	Engineering	CO5	3	-	2	-	2	3	2	3	3	-	-
		CO6	3	3	3	3	3	3	3	3	3	-	-
		CO1	2	1	2	-	-	-	1	1	3	-	-
	Software	CO2	2	2	2	-	-	-	2	1	3	-	-
0	Architecture	CO3	2	2	2	-	-	-	2	1	3	-	-
0	and Design	CO4	2	2	2	-	-	-	2	1	3	-	-
	Pattern.	CO5	3	3	3	-	1	1	2	1	3	-	-
		CO6	2	3	3	-	1	-	2	1	3	-	-
		CO1	1	3	2	2	2	3	2	3	3	2	
		CO2	2	3	2	2	3	2	3	3	3	2	
CSE642	Soft Computing	CO3	1	2	3	3	3	2	2	3	3	3	
	Techniques	CO4	1	2	2	3	3	3	2	2	3	3	
		CO5	1	2	3	3	3	3	2	2	3	3	

													S U	HARDA NIVERSITY
		CO6	2	2	3	3	3	3	2	3	3	3		
		CO1	3	-	-	-	-	-	-	-	-	-	-	
		CO2	3	2	-	-	-	-	-	-	-	-	-	
CSE622	Advanced Data Mining	CO3	3	-	-	-	-	-	-	-	-	-	-	
CSE022	Techniques	CO4	3	2	2	-	-	-	-	2	-	3	-	
	reeninques	CO5	3	2	2	-	-	-	-	2	-	-	-	
		CO6	3	2	3	3	2	3	3	3	-	3	-	
		CO1	3	2		3	2							
		CO2	1	1	2		1							
CEE C24	Advanced	CO3	2	1		2								
CSE634	Mobile computing	CO4	2	2	3	1								
	computing	CO5	1			2						3		
		CO6	1		2		3					3		
		CO1	2			2					2			
		CO2	2	2	2	-	-	-	-	-	2			
COL (22	Advanced	CO3	-	2	2	-	-	-	-	-	2			
CSE632	Network Security	CO4		2		2		2			2			
	Security	CO5	2	-	-	-	2	2	2	-	2			
		CO6	-	-	-	2	2	-	-	2	2			
		CO1	3	-	2	-	-	2	3	2	3	-	-	
		CO2	3	2	2	2	-	2	2	2	3	-	-	
000042	Software	CO3	3	3	2	2	2	2	3	3	3	-	-	
CSE643	Requirement and Estimation	CO4	3	2	2	2	-	2	3	3	3	-	-	
	and Esumation	CO5	3	3	2	2	-	2	2	3	3	-	-	
		CO6	3	3	2	-	2	2	3	3	3	-	-	
		CO1	3	-	3	-	-	-	-	3	3	-	-	
	Software	CO2	3	1	2	-	-	2	3	3	3	-	-	
0		CO3	3	1	2	1	1	2	2	3	3	-	_	
	and Testing	CO4	3	1	2	-	1	-	3	3	3	-	-	

														HARDA NIVERSITY
		CO5	3	-	2	1	-	2	3	3	3	-	-	
		CO6	3	2	2	2	2	2	2	3	3	-	-	
		CO1	3	3	1	3				2		3		
	A 1 · 1	CO2	2	3	3	2				2		2		
CSP611	Analysis and	CO3	1	2	2	-				1	2	1	1	
CSP011	Design of Algorithms Lab	CO4	2	3	3	3				3		3		
	Algorithms Lab	CO5	3	1	2	3		-	-	2	2	3		
		CO6	2	3	3	1		-	-	1	3	2		
		CO1	3	3	1	2	1	1	-	1	1			-
		CO2	3	3	3	2	-	1	-	1	1			-
0	Massive Graph	CO3	1	1	3	3	2	1	-	1	2			-
0	Analysis Lab	CO4	1	1	3	2	1	2	1	1	3			-
		CO5	1	2	3	2	2	1	1	1	3			-
		CO6	1	2	3	2	1	2	1	3	3			-
		CO1	3	2	3	-	-	-	-	2	-	-	2	
		CO2	3	2	3	-	-	-	-	2	-	-	2	-
CGDC20	Advanced	CO3	3	2	3	1	-	-	-	2	-	-	2	-
CSP630	Computer Network Lab	CO4	3	2	3	1	2	2	-	2	-	-	2	-
	Network Lab	CO5	3	2	3	2	2	2	-	2	-	-	3	-
		CO6	3	2	3	2	2	2	-	2	-	-	3	-
		CO1	2	1	2	-	-	-	2	2	3	-	-	-
	Object Oriented	CO2	2	1	2	1	-	2	3	2	3	-	-	-
CGDC40	Software	CO3	2	1	3	1	1	2	3	2	3	-	-	-
CSP640	Engineering	CO4	3	1	2	1	1	3	3	2	3	-	-	
	Lab	CO5	2	1	2	1	-	2	3	2	3	-	-]
		CO6	3	1	3	1	1	3	3	2	3	-	-]
	Software	CO1	3	2	2	-	-	1	3	1	3	-	-]
0	Architecture	CO2	3	3	2	1	-	1	3	2	3	-	-	1
	and Design	CO3	3	3	2	1	-	1	3	2	3	-	-]

													S U	HARDA NIVERSITY
	Pattern Lab	CO4	3	3	2	1	-	1	3	2	3	-	-	
		CO5	3	3	2	1	-	1	3	2	3	-	-	
		CO6	3	3	2	1	-	1	3	2	3	-	-	
		CO1	3	1	3	3	1	1	3	1	2	2		
		CO2	2	2	3	3	2	2	3	2	2	2		
CSE650	Pattern	CO3	3	3	2	2	3	2	3	3	2	3		
CSE050	Recognition	CO4	1	3	2	2	3	2	3	3	2	3		
		CO5	1	2	3	3	1	3	3	2	2	2		
		CO6												
		CO1	3	1	1	2	3	2	3	2	1	1		
CSE605	Machine	CO2	1	3	1	2	3	1	3	3	1	2		
CSE005	Learning	CO3	1	3	3	2	1	1	2	3	1	3		
		CO4	1	3	3	2	1	1	1	3	2	3		
		CO1	3	-	3	-	-	-	-	1	-	-	2	
	**** 1	CO2	3	2	3	-	-	-	-	1	-	-	2	
CSE646	Wireless	CO3	3	2	3	-	-	-	-	1	-	-	2	
CSE040	Sensor Network	CO4	3	2	3	-	-	-	-	1	-	-	2	
	Network	CO5	3	2	3	2	2	-	-	1	-	-	3	
		CO6	3	2	3	2	2	-	-	1	-	-	3	
		CO1	3	3	3	2	2	2	3	3	3			
		CO2	1	2	-	1	1	-	-	-	1			
OSE (1)	Intrusion	CO3	1	2	-	1	1	-	-	-	1			
CSE616	Detection & Prevention	CO4	2	3	3	1	2	2	1	2	3	Ī	1	
	Fievention	CO5	1	1	-	1	1	-	-	-	1			
		CO6	2	2	2	1	1	2	1	2	2	Ī	1	
		CO1	2		1	1	3					Ī	1	
COLOG	Cloud Services	CO2	3		2	3	1					2		
CSE606	in Mobile	CO3	2	2	3		3						1	1
		CO4	3	2		2	1				2]

													S U
		CO5	3	2	3		3						
		CO6	2		3	2	3						
		CO1	3	2	3	-	-	-	-	2	-	-	2
		CO2	3	2	3	-	-	-	3	2	-	-	2
0	Applications	CO3	3	2	3	1	-	-	3	2	-	-	2
0	Programming	CO4	3	2	3	1	2	2	2	2	-	-	2
		CO5	3	2	3	2	2	2	-	2	-	-	3
		CO6	3	2	3	2	2	2	-	2	-	-	3
		CO1	3	2	2	-	1	-	3	2	3	-	-
		CO2	3	3	2	-	2	-	3	3	3	-	-
CSE644	Agile Based Software	CO3	3	-	3	3	2	3	3	3	3	-	-
CSE044	Engineering	CO4	2	3	2	-	-	-	3	2	3	-	-
	Lingineering	CO5	3	2	2	2	2	3	3	3	3	-	-
		CO6	3	3	3	2	2	3	3	3	3	-	-
		CO1	1	3	2	-	-	-	2	2	3	-	-
	G	CO2	3	2	2	1	1	I	3	3	3	-	-
CSE649	Secure Software	CO3	2	2	2	1	1	2	2	3	3	-	-
C3E049	Engineering	CO4	3	3	2	1	2	2	2	2	3	-	-
	Engineering	CO5	3	3	2	1	2	2	2	2	3	-	-
		CO6	3	3	2	2	3	2	2	3	3	-	-
		CO1	2	1	2					1		1	
		CO2	2	1	1							2	
CSE610NN	Advance Web	CO3	2	1								2	
COLUIUININ	Analytics	CO4	2									3	
		CO5	2							2		3	
		CO6	3	2	2	1				2	1	3	
	Performance	CO1	3	-	3	-	-	-	-	1	-	-	2
CSE629	Modeling of	CO2	3	2	3	-	-	-	-	1	-	-	2
	Computer	CO3	3	2	3	-	-	-	-	1	-	-	2

													SU U	HARDA NIVERSITY
	Communication	CO4	3	2	3	-	-	-	-	1	-	-	2	
	network	CO5	3	2	3	2	2	-	-	1	-	-	3	
		CO6	3	2	3	2	2	-	-	1	-	-	3	
		CO1	2	1	1	-	-	1	2	2	3	-	-	
	Recent	CO2	3	1	1	-	-	1	-	2	3	-	-	-
CSE648	Advances in	CO3	3	2	1	-	-	-	-	2	3	-	-	-
CSE648	Software	CO4	3	2	1	-	-	1	-	2	3	-	-	
	Engineering.	CO5	3	1	1	-	-	-	-	2	3	-	-	
		CO6	3	2	1	1	-	1	3	3	3	-	-	
		CO1	3	-	3	-	-	-	-	1	-	-	2	
		CO2	3	2	3	-	-	-	-	1	-	-	2	-
CSE (07	Grid	CO3	3	2	3	-	-	-	-	1	-	-	2	-
CSE607	Computing	CO4	3	2	3	-	-	-	-	1	-	-	2	-
		CO5	3	2	3	2	2	-	-	1	-	-	3	-
		CO6	3	2	3	2	2	-	-	1	-	-	3	-
		CO1	3	-	3	-	-	-	-	1	-	-	2	-
		CO2	3	2	3	-	-	-	-	1	-	-	2	-
	Ad Hoc	CO3	3	2	3	-	-	-	-	1	-	-	2	-
CSE628	Wireless Networks	CO4	3	2	3	-	-	-	-	1	-	-	2	
	INCLWOIKS	CO5	3	2	3	2	2	-	-	1	-	-	3	
		CO6	3	2	3	2	2	-	-	1	-	-	3	-
		CO1	3	3	3	2	-	-	-	-	-	2	3	
		CO2	3	3	2	3	-	-	-	-	-	2	3]
CREC22	Advanced	CO3	2	3	3	3	-	-	-	-	-	2	3]
CSE633	Wireless Communication	CO4	3	3	3	3	-	-	-	-	-	2	3]
	Communication	CO5	3	3	2	3	-	-	-	-	-	2	3]
		CO6	3	2	3	3	-	-	-	-	-	2	3]
095(25	Software	CO1	2	1	2	-	-	1	1	1	3	-	-	
CSE635	Reliability	CO2	2	1	2	-	-	1	2	2	3	-	-]

													S U	HARDA
	Engineering	CO3	1	1	1	-	-	1	1	1	3	-	-	
		CO4	1	1	2	-	-	1	1	-	3	-	-	
		CO5	2	1	2	-	-	1	1	2	3	-	-	
		CO6	3	-	-	2	2	1	2	2	3	-	-	
		CO1			1					2	2			
		CO2		1						2	2			
CSE621NN	Web	CO3		1						2	2			
CSE02111	Engineering	CO4				1				2				
		CO5		1	1					2				
		CO6	1	2	1	2	1			3	1	2		
		CO1	3	1	1	2	3	2	3	2	1	2		
		CO2	3	3	3	3	3	2	3	3	1	3		
CSE608	Natural	CO3	3	2	3	3	2	2	2	3	1	3		
CSE008	Language Computing	CO4	3	2	3	3	2	2	2	3	1	3		
	computing	CO5	1	1	2	3	3	2	2	3	3	2		
		CO6	3	2	2	3	3	3	2	2	3	2		
		CO1	-	1	1	-	-	2	2	-	1			
	Malware	CO2	2	2	2	-	2	1	-	-	2			
CSE641	Analysis,	CO3	2	2	2	-	2	1	-	-	2			
CSE041	Detection &	CO4	-	1	1	-	1	-	1	-	1			
	Prevention	CO5	2	2	2	2	2	-	-	2	2			
		CO6	3	3	3	2	-	-	3	2	3			
		CO1	-	2	1	-	-	2	2	-	2			
		CO2	2	2	2	-	2	1	-	-	2			
CSE617	Advanced	CO3	2	2	2	-	2	1	-	-	2			
CSEU1/	Cryptography	CO4	-	2	1	-	-	-	1	-	1			
		CO5	-	2	2	2	2	-	-	2	2			
		CO6	2	3	3	2	-	-	3	2	3			
CSE647	Component	C01	2	-	1	-	-	1	2	1	3	-	-]

														HARDA NIVERSITY
	Based Software	CO2	1	-	1	1	1	1	2	2	3	-	-	
	Engineering	CO3	2	1	2	1	1	2	2	2	3	-	-	
		CO4	2	1	2	1	2	2	2	2	3	-	-	
		CO5	3	1	2	1	-	-	2	2	3	-	-	
		CO6	3	3	2	3	2	3	2	3	3	-	-	
		CO1	2	2	-	-	-	-	-	2	-	-	3	
	**** 1	CO2	3	3	2	-	-	2	2	3	-	-	3	
CSP646	Wireless Sensor	CO3	2	2	2	-	-	2	2	2	-	-	3	
CSP040	Network Lab	CO4	1	2	-	2	-	-	2	3	-	-	3	
	Network Lab	CO5	2	2	1	-	3	-	-	2	-	-	3	
		CO6	1	3	-	2	-	2	-	2	-	-	3	
		CO1	3	3	3	2	2	2	3	3	3			
	T . •	CO2	1	2	-	1	1	-	-	-	1			
CSP616	Intrusion Detection &	CO3	1	2	-	1	1	-	-	-	1			
CSP010	Prevention Lab	CO4	2	3	3	1	2	2	1	2	3			
	Trevention Lab	CO5	1	1	-	1	1	-	-	-	1			
		CO6	2	2	2	1	1	2	1	2	2			
		2	1	2	2	-	-	3	3	3	-	-	2	
		2	1	2	2	-	-	3	3	3	-	-	2	
CSP606	Cloud service	2	1	2	2	-	-	3	3	3	-	-	2	
CSP000	and mobile application	2	1	2	2	-	-	3	3	3	-	-	2	
	application	2	1	2	2	-	-	3	3	3	-	-	2	
		3	3	2	2	2	-	3	3	3	-	-	3	
		CO1	2	1	2	2	-	-	3	3	3	-	-	
	Agile Based	CO2	2	1	2	2	-	-	3	3	3	-	-	
CSP644	Software	CO3	2	1	2	2	-	-	3	3	3	-	-	
CSP044	Engineering	CO4	2	1	2	2	-	-	3	3	3	-	-	
	Lab	CO5	2	1	2	2	-	-	3	3	3	-	-	
		CO6	3	3	2	2	2	-	3	3	3	-	-]

													S U	HARDA NIVERSITY
		CO1	1	3	2	1	-	1	2	3	3	-	-	
	Secure	CO2	1	-	2	-	-	-	-	1	3	-	-	
CSP649	Software	CO3	3	3	2	1	-	1	1	2	3	-	-	
CSF049	Engineering	CO4	3	-	1	2	-	2	3	2	3	-	-	
	Lab	CO5	2	-	2	1	-	1	2	2	3	-	-	
		CO6	1	2	2	2	-	2	2	2	3	-	-	
		CO1	2	1	2					1		1		
		CO2	2	1	1							2		
CSE610	Advance Web	CO3	2	1								2		
CSE010	Analytics Lab	CO4	2									3		
		CO5	2							2		3		
		CO6	3	2	2	1				2	1	3		
	D C	CO1	3	-	3	-	-	-	-	1	-	-	2	
	Performance	CO2	3	2	3	-	-	-	-	1	-	-	2	
CSE629	Modeling of Computer	CO3	3	2	3	-	-	-	-	1	-	-	2	
CSL02	Communication	CO4	3	2	3	-	-	-	-	1	-	-	2	
	network Lab	CO5	3	2	3	2	2	-	-	1	-	-	3	-
		CO6	3	2	3	2	2	-	-	1	-	-	3	
	D	CO1	2	1	1	-	-	1	2	2	3	-	-	_
	Recent Advances in	CO2	3	1	1	-	-	1	-	2	3	-	-	-
CSP648	Software	CO3	3	2	1	-	-	-	-	2	3	-	-	
C51 0+0	Engineering	CO4	3	2	1	-	-	1	-	2	3	-	-	_
	Lab	CO5	3	1	1	-	-	-	-	2	3	-	-	4
		CO6	3	2	1	1	-	1	3	3	3	-	-	-
		CO1	2	2	2	2	-	-	-	3	-	-	-	
		CO2	1	2	2	-	-	-	-	2	3	3	3	
CSP681	Seminar	CO3	2	2	2	3	-	-	-	2	2	2	2	4
		CO4	-	-	3	-	2	3	3	1	-	-	-	
		CO5	1	-	1	-	-	-	3	1	-	-	-]

													S U	HARDA NIVERSITY
		CO6	1	-	1	-	-	2	3	1	-	-	-	
		CO1	3	3	1	2	1	1	3	2	2	2	2	
		CO2	3	3	1	2	1	1	3	2	2	2	2	
CSD(01	Discontation 1	CO3	3	3	1	3	2	2	3	3	2	2	2	
CSP691	Dissertation 1	CO4	3	3	1	3	2	2	3	3	2	2	2	
		CO5	3	2	1	2	2	2	3	3	2	2	2	
		CO6	1	-	3	1	1	2	3	2	-	-	-	
		CO1	3	2	2	-	-	-	-	-	2	2	2	
		CO2	2	2	2	-	-	2	-	2	-	-	-	
CCDC02		CO3	3	2	2	-	-	2	-	2	2	2	2	
CSP682	Project	CO4	2	3	-	3	2	2	-	2	2	2	2	
		CO5	-	-	-	-	-	-	3	3	-	-	-	
		CO6	-	-	-	-	-	2	3	-	2	2	2	
		CO1	3	3	1	2	1	1	3	2	2	2	2	
		CO2	3	3	1	2	1	1	3	2	2	2	2	
0		CO3	3	3	1	3	2	2	3	3	2	2	2	
0	Bioinformatics	CO4	3	3	1	3	2	2	3	3	2	2	2	
		CO5	3	2	1	2	2	2	3	3	2	2	2	
		CO6	1	-	3	1	1	2	3	2	-	-	-	
		CO1	3	3	1	2	1	1	3	2	2	2	2	
		CO2	3	3	1	2	1	1	3	2	2	2	2	
0	Internet of	CO3	3	3	1	3	2	2	3	3	2	2	2	
0	Things and its applications	CO4	3	3	1	3	2	2	3	3	2	2	2	
	applications	CO5	3	2	1	2	2	2	3	3	2	2	2	
		CO6	1	-	3	1	1	2	3	2	-	-	-	
		CO1	1	2	3	2	3	1	1	1	2	1	3	
	Vehicular	CO2	1	1	2	1	2	3	1	2	1	2	1	
0	Communication Network	CO3	1	2	3	2	3	1	1	1	2	1	3	
	INCLWOIK	CO4	1	1	2	1	2	3	1	2	1	2	1]

														HARDA NIVERSITY
		CO5	1	2	3	2	3	1	1	1	2	1	3	
		CO6	1	1	2	1	2	3	1	2	1	2	1	
		CO1	1	2	3	2	3	1	1	1	2	1	3	
		CO2	1	1	2	1	2	3	1	2	1	2	1	
0	Data	CO3	1	2	3	2	3	1	1	1	2	1	3	
0	Acquisition and Production	CO4	1	1	2	1	2	3	1	2	1	2	1	
	Troduction	CO5	1	2	3	2	3	1	1	1	2	1	3	
		CO6	1	1	2	1	2	3	1	2	1	2	1	
		CO1	-	1	1	-	-	2	2	-	1	3	1	
		CO2	2	2	2	-	2	1	-	-	2	1	2	
0	Den Lerrine	CO3	2	2	2	-	2	1	-	-	2	3	1	
0	Deep Learning	CO4	-	1	1	-	1	-	1	-	1	1	2	1
		CO5	2	2	2	2	2	-	-	2	2	3	1	1
		CO6	3	3	3	2	-	-	3	2	3	1	2]

1. Slight (Low)

2. Moderate (Medium)

3. Substantial (High)

1.3.5.2 COURSE ARTICULATION MATRIX²

		PO1:	PO2:	PO3:	PO4:	PO5:	PO6:	PO7:	PO8:	PSO1:	PSO2:	PSO3:
Course Code	Course Name	Advanced Technical	Research and Development	Pedagogy	Innovation and Entrepreneurial	Societal Values	Personal and Professional Ethics	Communication Skills	Life-long learning	Software Engineering	Data Science & Analytics	Networking and Cyber Security
CSE611	Analysis and Design of Algorithms	2.33	2.33	2.00	2.00				1.33	1.00	1.83	
CSE613	Mathematical and Statistical Techniques in Computer Science	3.00	2.33	1.00	1.67				2.33		2.83	1.00
CSE604	Data Acquisition and Production	3.00	1.25	2.17	1.33	1.33	2.00	2.60	3.00	3.00		
0	Massive Graph Analysis	1.67	2.00	2.67	2.17	1.67	1.33	1.00	1.33			
CSE630	Advanced Computer Network	3.00	2.00	3.00	1.50	2.00	2.00		2.00			2.33
CSE640NN	Object Oriented Software Engineering	2.83	3.00	2.20	2.50	2.50	2.83	2.17	2.67	3.00		
0	Software Architecture and Design Pattern.	2.17	2.17	2.33		1.00	1.00	1.83	1.00	3.00		
CSE642	Soft Computing Techniques	1.33	2.33	2.50	2.67	2.83	2.67	2.17	2.67	3.00	2.67	
CSE622	Advanced Data Mining Techniques	3.00	2.00	2.33	3.00	2.00	3.00	3.00	2.33		3.00	
CSE634	Advanced Mobile computing	1.67	1.50	2.33	2.00	2.00					3.00	
CSE632	Advanced Network Security	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
CSE643	Software Requirement and Estimation	3.00	2.60	2.00	2.00	2.00	2.00	2.67	2.67	3.00		
0	Software Quality Metrics and Testing	3.00	1.25	2.17	1.33	1.33	2.00	2.60	3.00	3.00		
CSP611	Analysis and Design of Algorithms Lab	2.17	2.50	2.33	2.40				1.83	2.33	2.33	1.00
0	Massive Graph Analysis Lab	1.67	2.00	2.67	2.17	1.40	1.33	1.00	1.33	2.17		
CSP630	Advanced Computer Network Lab	3.00	2.00	3.00	1.50	2.00	2.00		2.00			2.33

² Each course outcome (Based on Blooms Taxanomy-CO1, CO2, CO3, CO4, CO5, and CO6) of the course needs to map with PO. This table evolves once faculty has mapped each course outcomes of their respective course with PO's.

*	SHARDA
	UNIVERSITY Beyond Boundaries

										- 🥆 🥟 B (eyond Bou	ndaries
CSP640	Object Oriented Software Engineering Lab	2.33	1.00	2.33	1.00	1.00	2.40	2.83	2.00	3.00		
0	Software Architecture and Design Pattern Lab	3.00	2.83	2.00	1.00		1.00	3.00	1.83	3.00		
CSE650	Pattern Recognition	2.00	2.20	2.60	2.60	2.00	2.00	3.00	2.20	2.00	2.40	
CSE605	Machine Learning	1.50	2.50	2.00	2.00	2.00	1.25	2.25	2.75	1.25	2.25	
CSE646	Wireless Sensor Network	3.00	2.00	3.00	2.00	2.00			1.00			2.33
CSE616	Intrusion Detection & Prevention	1.67	2.17	2.67	1.17	1.33	2.00	1.67	2.33	1.83		
CSE606	Cloud Services in Mobile	2.50	2.00	2.40	2.00	2.33				2.00	2.00	
0	Applications Programming	3.00	2.00	3.00	1.50	2.00	2.00	2.67	2.00			2.33
CSE644	Agile Based Software Engineering	2.83	2.60	2.33	2.33	1.80	3.00	3.00	2.67	3.00		
CSE649	Secure Software Engineering	2.50	2.67	2.00	1.20	1.80	2.00	2.17	2.50	3.00		
CSE610NN	Advance Web Analytics	2.17	1.25	1.67	1.00				1.67	1.00	2.33	
CSE629	Performance Modeling of Computer Communication network	3.00	2.00	3.00	2.00	2.00			1.00			2.33
CSE648	Recent Advances in Software Engineering.	2.83	1.50	1.00	1.00		1.00	2.50	2.17	3.00		
CSE607	Grid Computing	3.00	2.00	3.00	2.00	2.00			1.00			2.33
CSE628	Ad Hoc Wireless Networks	3.00	2.00	3.00	2.00	2.00			1.00			2.33
CSE633	Advanced Wireless Communication	2.83	2.83	2.67	2.83						2.00	3.00
CSE635	Software Reliability Engineering	1.83	1.00	1.80	2.00	2.00	1.00	1.33	1.60	3.00		
CSE621NN	Web Engineering	1.00	1.25	1.00	1.50	1.00			2.17	1.75	2.00	
CSE608	Natural Language Computing	2.67	1.83	2.33	2.83	2.67	2.17	2.33	2.67	1.67	2.50	
CSE641	Malware Analysis, Detection & Prevention	2.25	1.83	1.83	2.00	1.75	1.33	2.00	2.00	1.83		
CSE617	Advanced Cryptography	2.00	2.17	1.83	2.00	2.00	1.33	2.00	2.00	2.00		
CSE647	Component Based Software Engineering	2.17	1.50	1.67	1.40	1.50	1.80	2.00	2.00	3.00		
CSP646	Wireless Sensor Network Lab	1.83	2.33	1.67	2.00	3.00	2.00	2.00	2.33			3.00
CSP616	Intrusion Detection & Prevention Lab	1.67	2.17	2.67	1.17	1.33	2.00	1.67	2.33	1.83		
CSP606	Cloud service and mobile application	2.1	1.3	2	2	2	-	3	3	3	-	-
CSP644	Agile Based Software Engineering Lab	2.17	1.33	2.00	2.00	2.00		3.00	3.00	3.00		
CSP649	Secure Software Engineering Lab	1.83	2.67	1.83	1.40		1.40	2.00	2.00	3.00		
CSE610	Advance Web Analytics Lab	2.17	1.25	1.67	1.00				1.67	1.00	2.33	

											SHAF	RSITY Underfies
CSE629	Performance Modeling of Computer Communication network Lab	3.00	2.00	3.00	2.00	2.00			1.00			2.33
CSP648	Recent Advances in Software Engineering Lab	2.83	1.50	1.00	1.00		1.00	2.50	2.17	3.00		
CSP681	Seminar	1.40	2.00	1.83	2.50	2.00	2.50	3.00	1.67	2.50	2.50	2.50
CSP691	Dissertation 1	2.67	2.80	1.33	2.17	1.50	1.67	3.00	2.50	2.00	2.00	2.00
CSP682	Project	2.50	2.25	2.00	3.00	2.00	2.00	3.00	2.25	2.00	2.00	2.00
0	Bioinformatics	2.7	2.8	1.3	2.1	1.5	1.67	3	2.5	2	2	2
0	Internet of Things and its applications	2.25	1.83	1.83	2	1.75	1.33	2	2	1.83		
0	Vehicular Communication Network	2.2	1.3	1.5	1	0	0	0	1.5	1	2.3	0
0	Data Acquisition and Production	2.6	2.6	1.3	2	-	1.16	3	2.6	3	-	-
0	Deep learning and web	2.25	1.83	1.83	2	1.75	1.33	2	2	1.83		

1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Course Outcome

- **Course Outcomes**–What is it?
 - Course outcomes (COs) are clear statements of what a student should be able to demonstrate on completion of a course.
 - COs should be assessable and measurable knowledge, skills, abilities and attitudes that student attains by the end of the course.
 - It is generally good idea to identify between 4 and 7 outcomes.
 - All courses in a particular programme shall have their own PO.
 - Each CO is mapped to relevant PO.
 - The teaching learning process and assessment process are to be designed in a way to achieve the COs.

Beginning words for Course Outcome:

Knowledge	Understand	Apply	Analyze	Evaluate	Create
define identify describe label list name state match recognize select examine locate memorize quote recall reproduce tabulate tell copy discover duplicate enumerate	explain describe interpret paraphrase summarize classify compare differentiate discuss distinguish extend predict associate contrast convert demonstrate estimate express Identify indicate Infer relate	solve apply illustrate modify use calculate change choose demonstrate discover experiment relate show sketch complete construct dramatize interpret Manipulate Paint Prepare produce	analyze compare classify contrast distinguish infer separate explain select categorize connect differentiate discriminate divide order point out prioritize subdivide survey advertise appraise Break down	reframe criticize evaluate order appraise judge support compare decide discriminate recommend summarize assess choose convince defend estimate find errors grade measure predict rank	design compose create plan combine formulate invent hypothesize substitute write construct develop generalize integrate modify organize prepare produce rearrange rewrite role-play

Active verbs developed based on Bloom's Taxonomy

(Reference: Retrieved from <u>http://www.teachthought.com/learning/249-blooms-taxonomy-verbs-for-critical-thinking/</u>)

							SHARDA UNIVERSITY
		School of Engineering and Techn	ology				
		Department Of Computer Science & F	Ingine	ering			
		M.Tech CSE with specialization in Softwa	re Eng	gineer	ring	-	
		Batch: 2019 Onwards				,	TERM: I (Spring-II)
S. No.	Course Code	Course		eachi Load		Credits	Pre-Requisite/Co Requisite
			L	Т	P		
THE	ORY SUBJE		- [r	1		T
1	CSE611	Analysis and Design of Algorithms	3	1	0	4	
2	CSE613	Mathematical and Statistical Techniques in Computer Science	3	1	0	4	
		Departmental Elective-1					
3	CSE640	Object Oriented Software Engineering	3	0	0	3	
	CSE651	Software Architecture and Design Pattern.					
4		Departmental Elective-2					
4	CSE642	Soft Computing Techniques	3	0	0	3	
		Departmental Elective-3					
5	CSE643	Software Requirement and Estimation	3	0	0	3	
	CSE652	Software Quality Metrics and Testing					
Pract	cical/Viva-Vo	ce/Jury					
1	CSP611	Analysis and Design of Algorithms Lab	0	0	2	1	
		Departmental Elective-1					
2	CSP640	Object Oriented Software Engineering Lab	0	0	2	1	
	CSP651	Software Architecture and Design Pattern Lab					
TOT	AL CREDIT	S	·			19	

							SHARDA UNIVERSITY
		School of Engineering and Techn	ology				
		Department Of Computer Science & F	Engine	ering			
		M.Tech CSE with specialization in Data Scie	ence &	z Ana	lytics		
	1	Batch: 2019 Onwards				1	TERM: I (Spring-II)
S. No.	Course Code	Course	T L	eachi Load T	0	Credits	Pre-Requisite/Co Requisite
THE	L ORY SUBJE				Γ		
1	CSE611	Analysis and Design of Algorithms	3	1	0	4	
2	CSE613	Mathematical and Statistical Techniques in Computer Science	3	1	0	4	Lab Based
		Departmental Elective-1					
3	CSE604	Data Acquisition and Production	3	0	0	3	
		Massive Graph Analysis					
4		Departmental Elective-2					
4	CSE642	Soft Computing Techniques	3	0	0	3	
		Departmental Elective-3					
5	CSE622	Advanced Data Mining Techniques	3	0	0	3	
		Image and Video Analysis					DIP
Pract	tical/Viva-Vo	ce/Jury					
1	CSP611	Analysis and Design of Algorithms Lab	0	0	2	1	
		Departmental Elective-1					
2	CSP604	Data Acquisition and Production	0	0	2	1	
		Massive Graph Analysis					
TOT	AL CREDIT	S				19	

*	SHARDA
	UNIVERSITY

		School of Engineering and Techn	ology				S" 28 eyond Boundaries
		Department Of Computer Science & E	Ingine	ering			
		M.Tech CSE with specialization in Networking	and C	yber	Secu	rity	
		Batch: 2019 Onwards					TERM: I (Spring-II)
S.	Course		Т	eachi	0	~	
No.	Code	Course	L	Load T	P	Credits	Pre-Requisite/Co Requisite
THE	DRY SUBJE	CTS	L	-	-		
1	CSE611	Analysis and Design of Algorithms	3	1	0	4	
2	CSE613	Mathematical and Statistical Techniques in Computer Science	3	1	0	4	
		Departmental Elective-1					
3	CSE630	Advanced Computer Network	3	0	0	3	
		Vehicular Communication Network					
4		Departmental Elective-2					
4	CSE642	Soft Computing Techniques	3	0	0	3	
		Departmental Elective-3					
5	CSE634	Advanced Mobile computing	3	0	0	3	
	CSE632	Advanced Network Security					
Pract	ical/Viva-Vo	ce/Jury					-
1	CSP611	Analysis and Design of Algorithms Lab	0	0	2	1	
		Departmental Elective-1					
2	CSP630	Advanced Computer Network	0	0	2	1	
		Vehicular Communication Network					
TOT	AL CREDIT	S				19	

*	SHARDA
	UNIVERSITY

School of Engineering and Technology								
	Department Of Computer Science & Engineering							
		M.Tech CSE with specialization in S	oftware]	Engin	eerir	ıg		
		Batch: 2019 Onwards					TERM: II (Spring-I)	
S.			Т	eachii	ng			
No.	Course Code	Course		Load T	Р	Credits	Pre-Requisite/Co Requisite	
THEO	RY SUBJECTS	<u> </u>	L	L	P			
1	CSE650	Pattern Recognition	3	1	0	4		
2	CSE605	Machine Learning	3	0	0	3		
-		Departmental Elective-4						
3	CSE644	Agile Based Software Engineering	3	0	0	3		
	CSE649	49 Secure Software Engineering						
4		Departmental Elective-5	0	0	2			
4	CSE648	Recent Advances in Software Engineering.	Z	· U		Z		
		Departmental Elective-6						
5	CSE635	Software Reliability Engineering	3	0	0	0	3	
		Web Engineering						
6		Departmental Elective-7	3	0	0	3		
	CSE647	Component Based Software Engineering		0	0			
7	MRM001	Research Methodology	2	0	0	2		
Practi	cal/Viva-Voce/J	<i>v</i>			-			
1	CSP650	Pattern Recognition Lab	0	0	2	1		
		Departmental Elective-4				-		
2	CSP644	Agile Based Software Engineering Lab	0	0	2	1		
	CSP649	Secure Software Engineering Lab						
3		Departmental Elective-5	0	0	2	1		
5	CSP648	Recent Advances in Software Engineering Lab	0	U	2	1		
4	CCU101	Community Connect	-	-	-	2		
TOTA	L CREDITS					25		

*	SE	[A]	RDA
	UN Beyo	IVEI	RSITY undaries

		School of Engineering a	and Technolo	gy			🥆 🌽 Beyond Boundaries		
		Department Of Computer Sc	cience & Eng	ineeri	ng				
		M.Tech CSE with specialization in	n Data Scienc	e & A	nalyt	tics			
		Batch: 2019 Onwards					TERM: II (Spring-I)		
S. No.	Course Code	Course	ŗ	Teaching Load		Teaching Load		Credits	Pre-Requisite/Co Requisite
			L	Т	Р				
THEOR	RY SUBJECTS								
1	CSE650	Pattern Recognition	3	1	0	4			
2	CSE605	Machine Learning	3	0	0	3			
		Departmental Elective-4							
3		Bioinformatics	3	0	0	3			
	CSE618	Big Data Analytics							
		Departmental Elective-5							
4	CSE610	Advance Web Analytics	2	0	0	2			
		Internet of Things and its applications.							
		Departmental Elective-6							
5	CSE620	Deep Learning and web	3	0	0	3			
		Health Care and Analytics							
6		Departmental Elective-7	3	0	0	3 -			
0	CSE608	Natural Language Computing	3	0	0	5			
7	MRM001	Research Methodology	2	0	0	2			
Practica	ul/Viva-Voce/Jur	y							
1	CSP601	Pattern Recognition	0	0	2	1			
		Departmental Elective-4							
2		Bioinformatics	0	0	2	1			
	CSP618	Big Data Analytics							
		Departmental Elective-5							
3	CSP610	Advance Web Analytics	0	0	2	1			
		Internet of Things and its applications.							
4	CCU101	Community Connect	-	-	-	2			
TOTAL	CREDITS					25			

	School of Engineering and Technology						
	Department Of Computer Science & Engineering						
		M.Tech CSE with specialization in Network	ing an	d Cyt	oer So	ecurity	
	1	Batch: 2019 Onwards					TERM: II (Spring-I)
S.				eachi	~		
No.	Course Code	Course		Load		Credits	Pre-Requisite/Co Requisite
THEC	DRY SUBJECTS	,	L	Т	P		
	CSE650		3	1	0	4	
1		Pattern Recognition Machine Learning	3	0	0	4 3	
2	CSE605	6	3	0	0	3	
	CSE646	Departmental Elective-4 Wireless Sensor Network					
3	CSE646 CSE616	Intrusion Detection & Prevention	3	0	0	3	
3		Cloud Services in Mobile	3	0	0	3	
	CSE606						
		Applications Programming					
4	005(20	Departmental Elective-5	2	0	2	2	
4	CSE629	Performance Modeling of Computer Communication network	2	0	0	3	
	CSE607	Grid Computing	3	0	0		
_		Departmental Elective-6	_	0	0		
5	CSE628	Ad Hoc Wireless Networks	3	0	0	3	
	CSE633	Advanced Wireless Communication					
		Departmental Elective-7	_				
6	CSE641	Malware Analysis, Detection & Prevention	3	0	0	3	
	CSE617	Advanced Cryptography					
7	MRM001	Research Methodology	2	0	0	2	
Practi	cal/Viva-Voce/J	a/		1	1	1 1	
1	CSP650	Pattern Recognition	0	0	2	1	
		Departmental Elective-4	_				
2	CSP646	Wireless Sensor Network	0	0	2	1	
	CSP616	Intrusion Detection & Prevention					

	CSP606	Cloud Services in Mobile					Seyond Boundaries
		Applications Programming					
2		Departmental Elective-5	0	0	2		
5	CSP629	Performance Modeling of Computer Communication network	0	0	2		
4	CCU101	Community Connect	-	-	-	2	
TOTA	AL CREDITS					25	

	School of Engineering and Technology							
		Department Of Computer Sc	ience &	& Eng	ginee	ring		
		Master of Technology- Computer	Sciend	e and	l Eng	gineering		
	E	atch: 2019 Onwards					TERM: III	
		Teaching		5				
S. No.	Course Code	Course		Load		Credits	Pre-Requisite/Co Requisite	
			L	Т	P			
Practica	l/Viva-Voce/Jury							
1	CSP681	Seminar	-	-	-	2		
2	CSP691	Dissertation 1			-	10		
Т	TOTAL CREDITS 12							

	School of Engineering and Technology						
		Department Of Computer Scien	ice & l	E <mark>ngi</mark> n	eerin	g	
	Master of Technology- Computer Science and Engineering						
		Batch: 2019 Onwards					TERM: IV
S. No.	Course Code	Course	Teac L	hing l T	Load P	Credits	Pre-Requisite/Co Requisite
Practica	l/Viva-Voce/Jury						
1. CSP692 Dissertation-II - - 16							
ТО	TOTAL CREDITS 16						

C. Course Syllabuses

TERM-I

Analysis and Design of Algorithm

Scho	ool: SET	Batch : 2019						
Prog	gram: M.Tech	Current Academic Year: 2019-2021						
)	ich: Data Science	Semester: I						
1	Course Code	CSE 611 Course Name: Analysis and Design of	Algorithm					
2	Course Title	Analysis and Design of Algorithm	0					
3	Credits	5						
4	Contact Hours	3-1-2						
	(L-T-P)							
	Course Status	PG						
5	Course Objective	The objective of the course is to teach techniques for ef- problem solving in computing. The use of different par problem solving will be used to illustrate efficient ways given problem. In each case emphasis will be placed or proving correctness of the algorithm. In addition, the an algorithm will be used to show the efficiency of the alg the naive techniques.	adigms of s to solve a n rigorously nalysis of the					
6	Course Outcome	 Analyze the performance of algorithms. Apply the Concept of Divide and Conquer method to world problems. Demonstrate the Dynamic programming techniques Describe the Concept of Greedy method to solve the problems of backtracking Explain the various mathematical concepts and impli- pattern matching algorithms. Propose algorithms to real life problems 	real world					
7	Course							
	Description							
8	Outline syllabus		CO Mapping					
	Unit 1	Introduction						
	A	Algorithm Design Paradigms- Motivation, Concept of algorithmic efficiency, Run time analysis of algorithms, Growth of Functions, Asymptotic Notations	CO1					
	В	Growth of Functions, Asymptotic Notations Time Complexity for Iterative function	CO1					
	С	Time Complexity of Recursive Function: Master's Method, Iteration Method & Recursion Tree Method.	CO1					
	Unit 2	Analysis of Divide and conquer Methodology						
	A	Structure & Analysis of divide-and-conquer algorithms: examples-Binary search	CO2					
	В	Quick sort, Merge sort, Medians and Order Statistics	CO2,CO6					
	C	i th order statistics, Randomized Algorithms – CO Randomized Quick Sort						
	Unit 3	Analysis of Dynamic Programming Methodology						

					Beyond Boundari
	programming and div	vide and co	onquer		
В	Applications and	analysi	s: Matrix	Chain	CO3,CO6
	Multiplication, 0/1 K	napsack Pi	roblem		
С	All-pairs Shortest pa	CO3,CO6			
	Sub-sequence, Optim	al Binary	Search Tree.		
Unit 4	Analysis of Greedy	Method			
А	Overview of the	Greedy	paradigm, Fr	actional	CO4,CO6
	Knapsack problem, N	Ainimum s	panning Trees		
В	Single source sho	rtest path	s, Task Scł	neduling	CO4,CO6
	Problem, Huffman C	oding Algo	orithm	-	
С	Backtracking: Conce	pts and N-	Queens Proble	em,	CO4,CO6
	Branch and Bound: O	Concepts ar	nd Sum of Sub	sets	
	Problem				
Unit 5	String Matching an				
А	Pattern Matching Alg	CO5,CO6			
	Knuth Morris Pratt A				
	Finite Automata				
В	Approximation Algo				CO5,CO6
	Travelling Salesperso	on Problem	n, Turing's Hal	lting	
	Problem				
C	Theory of NP-Comp				CO5,CO6
	NP, NP- Hard & NP-	Complete	with examples	5.	
Mode of	Theory				
examination		1			
Weightage	Veightage CA MTE ETE				
Distribution 30% 20% 50%					
Text book/s*	1. Cormen et al, "Introduction of Computer Algorithm", Prentice Hall India.				
Other References	1. Sahni et al,				
	Algorithms", Galgoti				
	2. Internet as a Resou	arce for Re	ference.		

CO and PO Mapping

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)
1	Analyze the performance of algorithms	PO1,PO2,PO4 ,PO8,PSO2
2	Apply the Concept of Divide and Conquer method to solve real world problems.	PO1,PO2,PO4,PO8,PSO2
3	Demonstrate the Dynamic programming techniques.	PO2 ,PSO2
4	Describe the Concept of Greedy method to solve the real world problems of backtracking	PO2,PO3,PO4 ,PSO2
5	Explain the various mathematical concepts and implement the pattern matching algorithms.	PO1,PO2,PO4,PSO2
6	Propose solutions to real life world problems	PO2,PO3 ,PO6,PO8,PSO1,PSO2

PO and PSO mapping with level of strength for Course Name "Analysis and Design of Algorithm" (Course Code CSE 611)

Course Code_ Course Name	COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3
CSE61	CO1	2	3		1				1		2	
1_	CO2	3	2		2				1		1	
Analysi s and	CO3		1								3	
Design of	CO4		3	2	3						1	
Algorit	CO5	2	3		2						1	
hm	CO6		2	2					2	1	3	

Average of non-zeros entry in following table (should be auto calculated).

Cours	Course	РО	PO	PO	PO	РО	PO	РО	PO	PSO	PSO	PSO
e Code	Name	1	2	3	4	5	6	7	8	1	2	3
CSE61 1	Analysis and Design of Algorith m	2.3 3	2	2	1.5	1.3			1.3	1	1.7	

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

Mathematical and Statistical Techniques in Computer Scien	ice
manematical and Statistical Teeningues in Computer Sele	icc

Scho	ol: SET	Batch : 2019							
Prog	ram: M.Tech	Current Academic Year: 2019-2021							
0	ch: Data	Semester: I							
Scien	ice								
1	Course Code	CSE613							
2	Course Title	Mathematical and Statistical techniques in computer s	science						
3	Credits	4							
4	Contact	3-1-0							
	Hours								
	(L-T-P)								
	Course	PG							
	Status								
5	Course	The objective of the course is to teach students the mat	hematical &						
-	Objective	statistical techniques that provide sound basis for re-							
		application development in Computer Science.							
6	Course	CO1: Identify errors from different dimensions and defin	ning roots of						
0	Outcome	equations for the use in computational problems	ing roots of						
	outcome	CO2: Apply Differential and Numerical Integration for interpolation							
		and error analysis							
		CO3: Discover linearly independent components using eigenvectors							
		and standard value decomposition.							
		CO4: Formulate Exploratory data analysis using spectral methods like							
		Fourier and wavelet analysis.							
		CO5: Illustration of best Curve fitting for given data							
		CO6: Apply mathematical and statistical methods in th	neir research						
		and application development							
7	Course	In this subject, the fundamental concepts and principles of							
	Description	Mathematical & Statistical Techniques together with the	challenging						
	_	issues in Computer will be introduced.							
8	Outline syllab	us	CO						
			Mapping						
	Unit 1	Introduction, Computational Errors and their							
		Analysis							
	А	Accuracy of numbers, Errors and a general error	CO1, CO6						
		formula, Errors in Numerical Computations and Inverse							
		Problems							
	В	Floating Point Representations of Numbers and	CO1, CO6						
		operations, Errors in a Series Approximation							
	С	Algebraic & Transcendental Equations: Order of	CO1, CO6						
		convergence of iterative and bisection methods,							
		Convergence of a Sequence, Iterative methods for							
		system of non-linear equations, Regular Falsi method							
	Unit 2	Algorithmic Optimization							
	А	Assumptions for interpolation, errors in polynomial	CO2, CO6						
		interpolation, finite differences, difference operators							
		and their relationship, Newton's interpolation formula							

		🧏 🌽 Bey	ond Boundaries
В	Introduction to numerical differentiation, Introduction	roduction	CO2, CO6
	to numerical integration, Trapezoidal and Sir		
	rules,		
С	Introduction to numerical solution of ordina	ry	CO2, CO6
	differential equations, Euler's method.		
Unit 3	Vector Calculus		
А	Scalar functions of several variables, Partial and differentiability, gradient vector, vector	CO3, CO6	
В		nvalues &	CO3, CO6
С	QR & Singular value decomposition		CO3, CO6
Unit 4	Spectral Methods		
А	Time Series Analysis (Introduction to methods),	o classical	CO4, CO6
В	Fourier Analysis: Introduction to Fourier applications in knowledge discovery & exploanalysis.	CO4, CO6	
С	Wavelet Analysis: wavelet transform and the applications in knowledge discovery & exploanalysis.	CO4, CO6	
Unit 5	Regression analysis, Techniques for quality control, Testing of hypothesis.		
А	Curve fitting: Principle of least squares $y=aebx$, $y=ax^b$, $y=ab^x$.	CO5, CO6	
В	Techniques for statistical quality control,		CO5, CO6
С	Testing of hypothesis.		CO5, CO6
Mode of examination	Theory		
Weightage	CA MTE ETE		
Distribution	30% 20% 50%		
Text book/s*	 MatheusGrasselli and Dimitry "Numerical Mathematics", Jones an Publishers, USA. M. Goyal, "Computer Based Numerical & Techniques", Infinity Science Press, LLC, M 		
Other	1.Lars Elden, "Mattrix Methods in Data Min	ing and	
References	Pattern Recognition", SIAM (Society for Ind Applied Mathematics), USA.	-	
	2. Internet as a resource for references		

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)

		🥿 🥟 Beyond Boundaries
1.	CO1: Identify errors from different dimensions and defining roots of equations for the use in computational	PO1, PO2, PO3, PO4, PO8, PSO2, PSO3
	problems	100,1002,1000
2.	CO2: Apply Differential and Numerical Integration for	PO1, PO2, PO3, PO4,
	interpolation and error analysis	PO8, PSO2, PSO3
3.	CO3: Discover linearly independent components using	PO1, PO2, PO3, PO4,
	eigenvectors and standard value decomposition.	PO8, PSO2, PSO3
4.	CO4: Formulate Exploratory data analysis using spectral	PO1, PO2, PO3, PO4,
	methods like Fourier and wavelet analysis.	PO8, PSO2, PSO3
5.	CO5: Illustration of best Curve fitting for given data	PO1, PO2, PO3, PO4,
		PO8, PSO2, PSO3
6.	CO6: Apply mathematical and statistical methods in their	PO1, PO2, PO3, PO4,
	research and application development	PO8, PSO2, PSO3

PO and PSO mapping with level of strength for Course Name Mathematical and Statistical techniques in Computer Science (Course Code CSE613)

Course	Cos	PO	PS	PSO	PSO							
		1	2	3	4	5	6	7	8	O 1	2	3
Mathema	CO1	3	2	1	1	-	-	-	2	-	3	1
tical and Statistical	CO2	3	3	1	1	-	-	-	2	-	2	1
technique s	CO3	3	3	1	2	-	-	-	2	-	3	1
(Course	CO4	3	2	1	2	-	-	-	2	-	3	1
Code CSE613)	CO5	3	2	1	2	-	-	-	3	-	3	1
	CO6	3	2	1	2	-	-	-	3	-	3	1

Average of non-zeros entry in following table (should be auto calculated).

Cour		Р		Р	Р	Р	Р	Р	Р	PS	PS	PS
se	Course Name	0	Р	0	0	0	0	0	0	0	0	0
Code		1	02	3	4	5	6	7	8	1	2	3
CSE	Mathematical and	2	22	1	1.	Δ	Δ	Δ	2.	Δ	20	1
613	Statistical techniques	3	2.3	L	4	0	0	U	3	U	2.8	1

Strength of Correlation

Addressed to Slight (Low=1) extent
 Addressed to Substantial (High=3) extent

2. Addressed to Moderate (Medium=2) extent

Sc	hool: SET	Batch :	
Pr	ogram:	Current Academic Year:	
M	Tech		
Br	anch:CS/IT	Semester:	
1	Course Code	Course Name: Massive Graph Ana	alysis
2	Course Title	Massive Graph Analysis	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status		
5	Course	The objective of the course is to teach student	ts the advanced graph
	Objective	theory concepts and their applications in compute	r science.
6	Course	After successful completion of the course students	will be able to
	Outcomes	CO1: demonstrate some of the most important not	ions and types of graph
		theory and develop their skill in solving basic appl	ications understanding
		societal needs.	
		CO2: interpret the fundamentals of graph and tree	es and to apply these as
		computer science applications and case studies.	
		CO3: Discover the advanced applications of gra	aph patterns, subgraph
		analysis.	
		CO4: Discovering various algorithms to under	-
		applications in areas like coloring problem, transpo	
		CO5: Examine graph pattern analysis in data scien	ice and other real world
		applications. CO6: Relating the concepts to prepare grounds	for project work and
		research interests.	for project work and
7	Course	This course is to teach students the basic graph the	ory concepts and their
'	Description	applications in computer science.	ory concepts and then
8	Outline syllabus		CO Mapping
0	Unit 1	Introduction	comapping
-	A	Basic terminologies and concepts of Graph	CO1
	Α	Theory, Fundamental types of graphs. Properties	COI
		of graphs, theorems based on different types of	
		graph and various operations on graphs	
-	В	Special types of graphs (Hamiltonian, Euler), K-	CO1, CO3
	D	partite graphs, its theorems, Isomorphism and its	01,005
		properties, applications of isomorphism.	
-	C		CO2 COC
	C	Fundamentals of trees and their types,	CO2, CO6
		fundamental circuits, spanning trees, algorithms	
		to find minimum spanning trees in a weighted	
\vdash	Unit 2	graph (Kruskal& Prim).	
	Unit 2	Advanced graphs	<u> </u>
	А	Fundamental circuit, Properties of circuits &	CO3
		cut–sets, Concept of connectivity and	
	D	separability	
	В	Introduction to Planar graphs, Kuratowski's non-	CO3
1		planar graphs, Proof of Euler's formula using	

				🥿 🥟 Beyond Boundaries			
	induction.						
С	thickness & C	blanarity, geometric Crossings of planar, wski's graphs.		CO3, CO6			
Unit 3	Directed gray	phs					
А	Definition, ty connectednes directed graph	CO1, CO6, CO3					
В		s and separability rected edges, Funda	01	CO1, CO6, CO3			
С	Acyclic digra	ph and decyclization	CO1, CO6				
Unit 4	Coloring and	l covering in grap	hs				
A	AConcept of proper coloring of vertices of a graph, chromatic number, Chromatic partitioningBChromatic polynomial, finding chromatic polynomial of a given graph						
В							
С	Matching, Co proof	CO4, CO6					
Unit 5	Advanced gr	aph pattern analy					
А	Disease patter	of graphs in areas o m analysis, defence n data science.		CO5			
В	P- NP problem	ns in graph pattern	analysis.	CO5			
С	Introduction t pattern analys	o latest tools used	in graph-based	CO5, CO6			
Mode of examination	Theory						
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	-	• • • • •	cations to Engined	ering and Computer			
Other References	1. Wilso2. Harary	 Science, Prentice Hall India. 1. Wilson R J, Introduction to Graph Theory, PearsonEducation 2. Harary, F, Graph Theory, Narosa Bondy& Murthy, Graph tand application. Addison Wesley 					

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: demonstrate some of the most important notions and	PO1, PO2, PO4, PO5,
	types of graph theory and develop their skill in solving	PO8
	basic applications understanding societal needs.	
2.	CO2: interpret the fundamentals of graphs and trees and	PO1, PO2, PO3, PO4
	to apply these as computer science applications and case	
	studies.	
3.	CO3: Discover the advanced applications of graph	PO3, PO4
	patterns, subgraph analysis.	

		🥆 🥟 Beyond Boundaries
4.	CO4 Discovering various algorithms to understand	PO3, PSO
	analysis and its applications in areas like coloring	
	problem, transportation problems etc.	
5.	CO5: Examine graph pattern analysis in data science and	PO2, PO3,PO8
	other real world applications.	
6	CO6: Relating the concepts to prepare grounds for project	PO2, PO3
	work and research interests.	

PO and PSO mapping with level of strength for Course Name: Massive Graph Analysis

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO(DSA)
CO1	3	3	1	2	3	1	-	1	1
CO2	3	3	3	2	1	1	-	1	1
CO3	1	1	3	3	2	1	-	1	2
CO4	1	1	3	2	1	2	1	1	3
CO5	1	2	3	2	2	1	1	1	3
Соб	1	2	3	2	1	2	1	3	3

Average of non-zeros entry in following table (should be auto calculated).

Cours e Code	Course Name	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	P 0 7	PO 8	PSO (DSA)
	Massive Graph Analysis	1.6 7	2	2.6 7	2.1 7	1.6 7	1.3 3	0.5	1.3 3	2.17

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

Advanced Computer Network

School	l: SET	Batch : 2019 onwards									
	am: M.Tech		Current Academic Year: 2020-2021								
U	h: CSE (Semester: I								
	orking and Cyl										
Securi	•										
1	Course Code	CSE630 Course Name: Advanced Compu	ter Network								
2	Course Title	Advanced Computer Network									
3	Credits	3									
4	Contact Hour										
	(L-T-P)										
	Course Status	B PG									
5	Course Objec	tive Course will examine the design and implement va protocols with the concept of layered approach of O model.	SI and TCP/IP								
6	Course Outco Course Description	 classifying the function(s) of each layer and under 802.11 AND IEEE 802.3 CO2: Develop and build the skills of IP Addressing with Internet Routing Protocols and summarizing Mo CO3: Explain the protocols of computer networks TCP. CO4: Illustrate the issues related to the congestion control and QoS parameters. CO5: Demonstrate the traffic management and its is CO6:Interpreting and attributing security issues a schemes. This course is to provide students the advanced cor communication and computer networks by exposing 	standing IEEE g and Routing bility Issues. like UDP and control, flow sues. nd encryption cepts of data students to the								
		concepts of Transport Layer protocol suite and network									
8	Outline evilat	programming, Traffic Management & Security measu	CO								
0	Outline syllab	Jus	Mapping								
	Unit 1	Overview of Wired and Wireless Data Networks	mapping								
	A	Review of Layered Network Architecture, ISO-OSI and TCP/IP Network Model Datagram Networks and Virtua Circuit Networks, Point to Point and Point to Multipoin Networks Layer 2 Switches									
	В	IEEE 802.3U(Fast Ethernet) and IEEE 802.3Z(Gigabi Ethernet)Virtual LAN	CO1								
	С	Wireless LAN: IEEE 802.11, Bluetooth Broadband Wireless LAN : 802.16, WIMAX	CO1								
	Unit 2	Internetworking									
	А	CO2									

	Plane			Beyond Boundarie				
В	Internet Routing Protocols	: OSPF. B	GP	CO2				
	Broadcast and Multicast							
	Path Forwarding, Pruning,							
С	Mobility Issues and Mobil	CO2						
Unit 3	Transport Layer Protoco							
A	Process to Process Deliver	CO3						
B	SCTP Protocol: Service	CO3						
-	Association, Error Control	,		000				
С	Real Time Application: Vo			CO3				
Unit 4	Traffic Control and Qua							
A	Flow Control: Flow Mo	*		CO4,CO5				
	LBAP, Closed Loop: Wi			001,000				
	Flow Control							
В	Congestion Control: C	ongestion	Control in packet	CO4,CO5				
	networks, ECN and RE	-	-					
	Congestion Control	8	,					
С	Quality of Service: IP	CO4,CO5						
	Subclasses, Scheduling: C							
	VC.							
Unit 5	Traffic Management & S							
А	Traffic Management	Framev	work: Scheduling,	CO5				
	Renegotiation, Signaling,	Admissio	on Control, Capacity					
	Planning							
В	Security Issues, Symmetri	c Encrypti	on: DES, TripleDES	CO5, CO6				
	,Modes, AES							
С	Public Key Encryption:	RSA, Dif	ffie Hellman, Elliptic	CO5,CO6				
	Curve, Hashing :MDS, SI	HA-1, DSA	4					
	Protocols: Kerberos,SSL/7	TLS, IPSec						
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text 1. Srinivasan Keshav" An Engineering Approach To								
book/s*								
	2. A. Tanenenbaum, "Cor							
Other	1. W. Richard Stevens "TO							
References	2. W. Stallings, "Wireless	Communi	cation and Networks"	Pearson				
	3. Internet as source of Re	ference						

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: Enumerate the layers of the OSI model and	PO1,PO2, PO3,PO8,PSO3
	TCP/IP and classifying the function(s) of each layer	
	and understanding IEEE 802.11 AND IEEE 802.3	
2.	CO2: Develop and build the skills of IP Addressing	PO1,PO2,PO3,PO8,PSO3

	and Routing with Internet Routing Protocols and	
	summarizing Mobility Issues.	
3.	CO3: Explain the protocols of computer networks	PO1,PO2,PO3,PO4,PO8,PSO3
	like UDP and TCP.	
4.	CO4: Illustrate the issues related to the congestion	PO1,PO2,PO3, PO4,
	control, flow control and QoS parameters.	PO5,PO6,PO8,PSO3
5.	CO5: Demonstrate the traffic management and its	PO1,PO2,PO3,PO4,PO5, PO6,
	issues.	PO8,PSO3
6.	CO6: Interpreting and attributing security issues and	PO1,PO2,PO3,PO4,PO5, PO6,
	encryption schemes.	PO8, PSO3

PO and PSO mapping with level of strength for Course Name Advanced Computer Network (Course Code CSE630)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	-	-	2	-	-	2
CO2	3	2	3	-	-	-	-	2	-	-	2
CO3	3	2	3	1	-	-	-	2	-	-	2
CO4	3	2	3	1	2	2	-	2	-	-	2
CO5	3	2	3	2	2	2	-	2	-	-	3
CO6	3	2	3	2	2	2	-	2	-	-	3
Avg.	3	1.6	3	1	1	1	-	2	-	-	2.3

CSE6: Object Oriented Software Engineering

Sch	ool:	School of Engineering and technology									
	oartment	Department of Computer Science and Engineering									
		M.Tech									
	gram:										
	inch:	Software Engineering									
1	Course Code	CSE6									
2	Course Title	Object Oriented Software Engineering									
3	Credits	3									
4	Contact	3-0-0									
	Hours										
	(L-T-P)										
	Course Status	Core /Elective/Open Elective									
5	Course	This objective of this course is to give students an unders	tanding of the								
	Objective	object-oriented programming paradigm in the context of									
		software that is well specified, designed and tested. Stude									
		exposed to a variety of notations at different stages of the	development								
process.											
6	Course	Students will be able to:									
	Outcomes	CO1. Identify and define the principles of object oriented	d paradigm.								
		CO2. Describe how to produce detailed object models an	nd designs								
		from system requirements									
		CO3. Apply the system design principles for development of an object									
		riented software									
		CO4. Examine the modeling techniques to model different	nt perspectives								
		of object-oriented software design (UML).									
		CO5. Analyze the testing techniques using various test ca									
		CO6: Discuss the software development life cycle for Ob	ject-Oriented								
		solutions for Real-World Problems									
7	Course	This module aims to give students an understanding of the object-									
	Description	oriented programming paradigm in the context of develop	-								
		that is well specified, designed and tested. Students will b	-								
		variety of notations at different stages of the developmen									
8	Outline syllabu	18	CO								
			Mapping								
	Unit 1	Introduction									
	A	Software Engineering Concepts, Software Engineering	CO1, CO6								
		Development Activities, Software Life Cycle Models:									
		Build and Fix, Waterfall Model, Prototyping, V-Shape									
		Incremental Enhancement, Spiral, RAD									
	В	An Overview of UML, Modeling Concepts, Basic	CO1, CO6								
		Building Blocks of UML, View into UML, A									
		Conceptual Model of UML, Basic Structural Modeling,									
		UML Diagrams.									
	С	Requirement Elicitation Concepts and Activities,	CO1, CO6								
		Documenting Requirement Elicitation									
	Unit 2	Analysis									
	А	An overview of Analysis: Analysis Model, Analysis	CO2, CO6								
		Concepts: Analysis Object Models and Dynamic									

				eyond Boundaries			
			nd Control Objects,				
		n and Specializ					
В			se Case to Objects:	CO2, CO6			
			Boundary Objects, Control				
	Objects, Asso	ociations, Aggr	egates, Attributes				
С			uirements Analysis	CO2, CO6			
	Document Te						
Unit 3	System Desig						
A			ign, System Design	CO3, CO6			
		chitectural Sty		000,000			
В			From Objects to Subsystems	CO3, CO6			
C			s, System Design Activities:	CO3, CO6			
C	v	Design Goals: C		005,000			
	0	•	•				
			g, Persistent Data				
	0		rce Handling and Access				
			Boundary Conditions,				
	-	System Desig	n				
Unit 4	Object Desig						
A			epts: Application objects	CO4			
	versus solution	on objects, Spe	cification inheritance and				
	implementati						
	Principle, De						
	design pattern						
В	Object Design	CO4					
	visibility information, Add type signature information,						
	Add contracts						
С	Documenting	Reuse & Obje	ect Design: Structure	CO4			
Unit 5		ect Oriented S					
A	Goals of Test	CO5, CO6					
		0 0	ases, Test Stubs and Drivers	000,000			
В			ent Inspection, Usability	CO5, CO6			
D	-	-	ration Testing, System	005,000			
			ite-box Testing				
С				CO5 CO6			
			test management	CO5, CO6			
Mode of	Theory/Jury/J	Practical/Viva					
examination			5705				
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*		00	n H. Dutoit, "Object oriented				
	Software H						
	Pearson (2nd Edition).						
	2. George Wilkie, "Object oriented Software						
	Engineerir	ng", Addison-V	Vesley.				
Other			bject Oriented Software				
References		ng: A Use	5				
	Addison-V		- <u>r</u> <u>r</u>				
		•	iented Analysis and Design				
		-	n-Wesley Professional.				

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1: Identify and define the principles of object oriented paradigm.	PO1,PO6,PO7,PO8,PSO1
2.	CO2: Describe how to produce detailed object models and designs from system requirements	PO1,PO3,PO6,PO7,PO8,PSO1
3.	CO3: Apply the system design principles for development of an object oriented software	PO1,PO2,PO3,PO4,PO6,PO7,PO8,PSO1
4.	CO4: Examine the modeling techniques to model different perspectives of object- oriented software design (UML).	PO1,PO2,PO3, PO6,PO7,PO8,PSO1
5.	CO5:Analyze the testing techniques using various test cases.	PO1,PO3,PO5,PO6, PO7,PO8,PSO1
6.	CO6: Discuss the software development life cycle for Object-Oriented solutions for Real-World Problems	PO1,PO2,PO3,PO4,PO5,PO6, PO7,PO8,PSO1

PO and PSO mapping with level of strength for Course Name Object Oriented Software Engineering (Course Code CSE6)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	Р О4	P O 5	P 0 6	P O 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	2	-	-	-	-	2	1	2	3	-	-
	CO2	3	-	2	-	•	3	3	3	3	-	-
	CO3	3	3	2	2	-	3	2	3	3	-	-
CSE6_ Object	CO4	3	3	2	-	-	3	2	2	3	-	-
Oriented Software	CO5	3	-	2	-	2	3	2	3	3	-	-
Engineering	CO6	3	3	3	3	3	3	3	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cour se Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P O 5	P O 6	P 0 7	P O 8	PS 0 1	PS O 2	PS 0 3
CSE 6	Object Oriented Software Engineering	2. 8	3	2. 2	2. 5	2. 5	2. 8	2. 1	2. 6	3	-	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent

2. Addressed to Moderate (Medium=2) extent 3. Addressed to Substantial (High=3) extent

Software Architecture and Design Pattern

Sch	ool:	School of Engineering and technology						
	bartment	Department of Computer Science and Engineering						
-	gram:	M.Tech						
	nch:	Software engineering						
1	Course Code							
2	Course Title	Software Architecture and Design Pattern						
3	Credits	3						
4	Contact	3-0-0						
-	Hours	3-0-0						
	(L-T-P)							
	Course Status	Core /Elective/Open Elective						
5	Course	The main objective is to introduce the student to architect	ture of					
U	Objective	software and design Patterns.						
6	Course	CO1: Summarize the architecture, creating it and moving	from one to					
-	Outcomes	any, different structural patterns.	,					
		CO2: Analyze the architecture and build the system from	the					
		components						
		CO3: Design creational and structural patterns						
		CO4: Analyze the behavioral patterns.						
		CO5: Solve case study in utilizing architectural structures	5.					
		CO6: Propose an architecture for given application.						
7	Course	This course introduces basic concepts and principles						
	Description	design and software architecture. It starts with discuss						
		issues, followed by coverage on design patterns. It						
		overview of architectural structures and styles. Practical						
		methods for creating and analyzing software architecture						
		The emphasis is on the interaction between quality software architecture. Students will also gain exp						
		examples in design pattern application and case studi						
		architecture.	es in sortware					
8	Outline syllabu		СО					
U			Mapping					
	Unit 1	Envisioning and creating Architecture						
	A	The Architecture Business Cycle, What is Software	CO1					
		Architecture, Architectural patterns						
	В	reference models, reference architectures, architectural	CO1					
		structures and views						
	С	Quality Attributes, Achieving qualities, Architectural	CO1					
		styles and patterns, designing the Architecture,						
		Documenting software architectures, Reconstructing						
		Software Architecture.						
	Unit 2	Analyzing Architectures						
	А	Architecture Evaluation, Architecture design decision	CO2,CO6					
		making, ATAM, CBAM.						
	В	Moving from one system to many Software Product	CO2,CO6					
		Lines						
	С	Building systems from off the shelf components,	CO2,CO6					

	Software arch	nitecture in futu		eyond Boundaries		
Unit 3	Patterns					
Α		iption, organiz ms, Selection a	ing catalogs, role in solving and usage.	CO3		
В	Creational an builder, factor	CO3				
С	prototype, sin flyweight	igleton, adapte	r, bridge, composite, façade,	CO3		
Unit 4	Behavioral p	atterns				
А	Chain of resp	onsibility, com	nmand, Interpreter,	CO4		
В	iterator, medi	ator, memento	, observer	CO4		
С		template meth		CO4		
Unit 5	Case Studies					
А		•	zing architectural structures, ase study in interoperability	CO5,CO6		
В			study in designing for high	CO5,CO6		
С		– a case study	in product line development	CO5,CO6		
Mode of examination		Practical/Viva	•			
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	Architecture	 Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice, 2nd ed, Addison-Wesley, 2003. Design Patterns, Erich Gamma, Pearson Education, 				
Other References	to Archite 2. Software	 Eric Braude, Software Design: From Programming to Architecture, Wiley, 2004. Software architecture, David M. Dikel, David Kane and James R. Wilson, Prentice Hall 				

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1: Summarize the architecture, creating	PO1,PO2,PO3,PO7,PO8,PSO1
	it and moving from one to any, different	
	structural patterns.	
2.	CO2: Analyze the architecture and build	PO1,PO2,PO3,PO7,PO8,PSO1
	the system from the components	
3.	CO3: Design creational and structural	PO1,PO2,PO3,PO7,PO8,PSO1
	patterns	
4.	CO4: Analyze the behavioral patterns.	PO1,PO2,PO3,PO7,PO8,PSO1
5.	CO5: Solve case study in utilizing	PO1,PO2,PO3,PO5,PO6,PO7,PO8,PSO1
	architectural structures.	
6.	CO6: Propose an architecture for given	PO1,PO2,PO3,PO5,PO7,PO8,PSO1
	application.	

P Р P Р Р Р Р PS Course Code_ Course CO's 0 0 0 Р 0 0 0 0 PS PS 0 Name 2 3 04 5 7 8 02 03 1 6 1 2 2 1 1 1 3 **CO1** -----CO2 2 2 2 1 3 2 --_ _ -**CO3** 2 2 2 2 1 3 -----**CO4** 2 2 2 2 1 3 -----3 3 -1 2 1 3 **CO5** 3 1 -software architecture and design pattern **CO6** 2 3 3 -1 -2 1 3 --

PO and PSO mapping with level of strength for Course Name Software Architecture and Design pattern and

Average of non-zeros entry in following table (should be auto calculated).

Cou rse Cod e	Course Name	P 0 1	P O2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	PS O 1	PS O 2	PS O 3
	Software architecture and	2.	2.1	2.	-	1	1	1.	1	3	-	-
	design pattern			3				8				

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

CSE642: Soft Computing Techniques

1	Course Code	CSE642 Course Name: Soft Computing Tech	niques						
2	Course Title	Soft Computing Techniques							
3	Credits	3							
4	Contact Hours (L-T-P)	3-0-0							
	Course Status	PG							
5	Course Objective	Students will try to learn:	Students will try to learn:						
		 To conceptualize the working of human b To become familiar with neural networks available examples and generalize to form for inference systems. To introduce the ideas of fuzzy sets, fuzzy heuristics based on human experience. To provide the mathematical background optimization and familiarizing genetic alg global optimum in self-learning situation. 	that can learn from appropriate rules logic and use of for carrying out the						
6	Course Outcome	After Successful completion of this course the sto:	student will be able						
7	Course Description	 <i>Identify</i> basic mathematical/statistical metropyting. <i>Formulate</i> learning techniques used in difference with emphasis of design of intelligent or humanistic systems. <i>Analyze</i> problems involving ambiguity vagueness and inexactness <i>Integrate</i> optimization techniques in problemand Technology using genetic algorithm. <i>Justify</i> use of soft computing theories to the control system. 	rent cases. on their use in the ies, uncertainties, ems of Engineering es in Decision and						
7	Course Description	This course introduces soft computing theories, te Those are frequently required for understanding exploratory data analysis techniques, and knowl intelligent systems.	and developing the						
8	Outline syllabus		CO Mapping						
	Unit 1	Neural Network							
	A	History, overview of biological Neuro-system,Mathematical Models of Neurons, architecture,Learning rules, Training rules, Delta, BackPropagation Algorithm.							
	В	Learning Paradigms-Supervised, Unsupervised and reinforcement Learning, ANN training Algorithms-perceptions							
	С	Multilayer Perceptron Model, Hopfield Networks, Associative Memories, Applications of Artificial Neural Networks.							

Unit 2		Fuzzy Logic					
A	Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets,	CO3					
В	Membership Function, Fuzzy rule generation, Operations on Fuzzy Sets: Compliment, Intersections, Unions,	CO1,CO3					
С	Combinations of Operations, Aggregation Operations	CO3					
Unit 3	Fuzzy Arithmetic						
A	Fuzzy Numbers, Linguistic Variables, Arithmetic Operations on Intervals & Numbers, Lattice of Fuzzy Numbers, Fuzzy Equations.	CO1, CO3					
В	Fuzzy Logic: Classical Logic, Multi-valued Logics, Fuzzy Propositions	CO1, CO3					
С	Fuzzy Qualifiers, Linguistic Hedges.	CO1, CO3					
Unit 4	Uncertainty Based Information						
Α	Information & Uncertainty, Non-specificity of Fuzzy & Crisp Sets,	CO3, CO4					
В	Fuzziness of Fuzzy Sets.	CO3, CO4					
С	Introduction of Neuro-Fuzzy Systems	CO3, CO4					
Unit 5	Architecture of Neuro fuzzy Networks						
Α	Application of Fuzzy Logic: Medicine, Economics etc.	CO3, CO6					
В	Genetic Algorithm: An Overview.	CO5, CO6					
С	GA in problem solving, Implementation of GA.	CO5, CO6					
Mode of examination	Theory						
Weightage Distribution	CA MTE ETE 30% 20% 50%						
Text book/s*	 S.N.Sivanandam, "Principles of Soft Compu India edition. Timothy J. Ross, "Fuzzy Logic with Enginee PHI. 						
Other References	 Anderson J.A., "An Introduction to Neural N G.J. Klir and B. Yuan "Fuzzy Sets & Fuzzy Internet as a resource for references 	-					

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	<i>Identify</i> basic mathematical/statistical methods used in	PO1, PO6, PSO2, PSO3
	soft computing.	
2.	<i>Formulate</i> learning techniques used in different cases.	PO2, PO5, PSO1, PSO2,
		PSO3
3.	Use fuzzy logic inference with emphasis on their use	PO3, PO4, PO5, PSO2,
	in the design of intelligent or humanistic systems.	PSO3, PSO4
4.	Analyze problems involving ambiguities,	PO4, PO5, PO6, PSO3,
	uncertainties, vagueness and inexactness	PSO4

		i i i i i i i i i i i i i i i i i i i
5.	Integrate optimization techniques in problems of	PO3, PO4, PO5, PO6,
	Engineering and Technology using genetic algorithm.	PSO3, PSO4
6.	Justify use of soft computing terminologies in	PO4, PO5, PO6, PSO2,
	Decision and control system.	PSO3, PSO4

PO and PSO mapping with level of strength for Course Name: Soft Computing Techniques (Course Code CSE642)

Cos	PO1:	PO2:	PO3:	PO4:	PO5:	PO6:	PO7:	PO8:	PSO1:	PSO2:	PSO3:
CO1	1	3	2	2	2	3	2	3	3	2	
CO2	2	3	2	2	3	2	3	3	3	2	
CO3	1	2	3	3	3	2	2	3	3	3	
CO4	1	2	2	3	3	3	2	2	3	3	
CO5	1	2	3	3	3	3	2	2	3	3	
CO6	2	2	3	3	3	3	2	3	3	3	

Syllabus: CSE622 Advance Data Mining Techniques

1	Course Code	CSE622 Program:M.Tech.				
2	Course Title	Advance Data Mining Techniques				
3	Credits	3 Contact Hour	s: 3hr			
4	Term	XXXX L T P : 3-0-0				
5	Course	Learn about the most advance data mining methods to so	lve real			
	Objective	world problems.				
6	Course Outcomes (CO)	 On successful completion of this module students will be CO1: Understand the practical and theoretical concept of mining and its applications. CO2: Extend classification techniques. CO3: Illustrate the clustering Techniques & enhancemen CO4: Explain the concepts of Web and Text Mining. CO5: Make use of concept of Big Data analysis. CO6: Apply & develop Advance Data Mining concepts 	of data t.			
7	Course	This course introduces advanced aspects of data mining,	·			
-	Description	encompassing the principles, to analyze the data, identify problems, and choose the relevant models and algorithms				
8		Course Contents	CO			
-			Mapping			
8.01	Unit 1	Data mining Overview and Advanced Pattern Mining				
8.02	Α	Data mining tasks – mining frequent patterns, associations and correlations, classification and regression for predictive analysis, cluster analysis, outlier analysis	CO1			
8.03	В	Advanced pattern mining in multilevel, multidimensional space – mining multilevel associations, mining multidimensional associations	-			
8.04	С	Mining quantitative association rules, mining rare patterns and negative patterns.				
8.05	Unit 2	Advance Classification				
8.06	Α	Classification by back propagation, support vector machines,	CO2 ,CO6			
8.07	В	Classification using frequent patterns	-			
8.08	С	Other classification methods – genetic algorithms roughest approach, fuzzy set approach;				
8.09	Unit 3	Advance Clustering				
8.10	Α	Density - based methods –DBSCAN, OPTICS, DENCLUE;	CO3 ,CO6			
8.11	В	Grid-Based methods – STING, CLIQUE;Exception – maximization algorithm				
8.12	С	Clustering High- Dimensional Data; Clustering Graph and Network Data.				
8.13	Unit 4	Web and Text Mining				
8.14	Α	Introduction to web mining, web content mining, web structure mining, web usage mining	CO4 ,CO6			
	В	Text mining –unstructured text, episode rule discovery	1			

				🚺 С	NIVEKSII yond Boundarie				
		for texts			Í				
8.16	С	Hierarchy of categories, tex	Hierarchy of categories, text clustering.						
8.17	Unit 5	Big Data							
8.18	Α	Introduction to Big Data, c	hallenges of co	onventional	CO5,CO6				
		systems, Overview of Had	oop, Hadoop D	istributed					
		File System (HDFS)							
8.19	В	Hadoop Map reduce Frame	ework, HBAS	E					
8.20	С	Interacting HDFS using HI	VE, sample pro	ograms in					
		HIVE-PIG		-					
9									
			Mid-Term	End-Term					
			Examination	Examination					
9.1	Attendance	Mandatory	Mandatory Mandatory 75%						
9.2	Assignment	Yes							
9.3	Quizzes	Yes							
9.4	Projects	Yes							
9.5	Presentations	Yes							
9.6	Exam		Yes	Yes					
9.7	Total Marks	30	30	40					
10		Reading Conte	nt						
10.1	Text book*	1. Data Mining Concepts an	nd Techniques,	Jiawei Hang					
		Micheline Kamber, Jian pe	i, Morgan Kaut	fmannn.					
		2. Bill Franks, "Taming the	big data tidal y	wave: finding					
		opportunities in huge data s	streams with ad	vanced					
		analytics", John Wiley & S							
10.2	other	1. Introduction to Data Min		ng Tan,					
	references	Vipinkumar, Michael Stein							
		0 1	2. Data Mining Principles & Applications – T.V						
		Sveresh Kumar, B.Esware	Reddy, Jagadis	h S Kalimani,					
		Elsevier.							
		3. Internet as source of refe	erence						

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	Understand the practical and theoretical	PO1
	concept of data mining and its applications	
2.	Extend classification techniques	PO1,PO2
3.	Illustrate the clustering Techniques &	PO1
	enhancement.	
4.	Explain the concepts of Web and Text	PO1,PO2,PO3,PO8
	Mining	
5	Make use of concept of Big Data analysis	PO1,PO2,PO3,PO8,PSO2
6	Apply & develop Advance Data Mining	PO1,PO2,PO3,PO4,PO5,PO6,PO7,PO8,
	concepts	PSO2

PO and PSO mapping with level of strength for Course Name :

Advance Data Mining Techniques (Course Code CSE622)

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CSE622/		Advanced Technical Knowledoe	Research and Development	Pedagogy	Innovation and Entrepreneurial	Societal Values	Personal and Professional Ethics	Communication Skills	Life-long learning	Software Engineering	Data Science & Analytics	Networking and Cyber Security
ADMT	CO1	3	_	-	_	-	-	-	-	_	_	-
	CO2	3	2	-	-	-	-	-	-	-	-	-
	CO3	3	-	1	-	1	-	1	-	-	-	-
	CO4	3	2	2	_	-	_	-	2	_	3	-
	CO5	3	2	2	-	1	_	1	2	-	-	-
	CO6	3	2	3	3	2	3	3	3	-	3	-

Averag	ge of noi	n-zeros e	entry in _.	jouowin	g table (snouta l	be auto	caiculat	ea).		
Course Code/ Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO 3
CSE622/ ADMT	3	2	2.3	3	2	3	3	2.3	-	3	-

Strength of Correlation:

1. Addressed to Slight (Low=1) extent

2. Addressed to Moderate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

Department Elective 1: Advanced Mobile Computing

Sc	hool: SET	2019 Onwards								
Pr	ogram: M.Tech	Current Academic Year: 2019-2021								
Br	anch:	Semester: I								
Co	omputer									
Ne	etwork									
1	Course Code Course Name: Advanced Mobile Computing									
2	Course Title	Advanced Mobile Computing								
3	Credits	3								
4	Contact Hours (L-T-P)	3-0-0								
	Course Status	PG								
5	Course	This course will teach the advanced concepts of mobile concepts of mobile concepts and the second se	omputing and							
	Objective	its applications.								
6 7 8	Course Outcomes Course Description Outline syllabus Unit 1	 At the end of the course, students will have achieved learning objectives. CO1. Define the basic concept of cellular network at to mobile agents . CO2. Classify and describe the architecture of Routinetwork. CO3. Describe the role of channel allocation . CO4. Categorize the concept of static and dynamic rout CO5. Evaluate the importance of databases in mobile of CO6. Elaborate the concept of wireless computing and the concept of wireless c	nd introduction ng and Mobile atting computing .							
	A	Basic Concepts, Principle of Cellular Communication	CO1							
	В	Overview of 1G, 2G, 2.3G, 3G and 4G, GSM and CDMA	CO1							
	C Architecture, Mobile Agent: Mobile Objects and Agents, Mobile program, Mobile Agent issues.									
	Unit 2	Routing in Base Station Subsystem								
	A	Directory lookup, mail box, routing data to mobile, CO1,CO2 routing table update, permanent and temporary address schemes.								
	В	Home domain directory, location directory, Routing: TCP/IP and other protocols, Ad-hoc networking protocols, Mobile Ipv4 and Ipv6.	CO1,CO2							
	С	Mobile Internetworking Architecture, Internet Mobility issues, Route optimization, Wireless TCP, GPRS	CO1,CO2							

	Carvicas ID over CDM	A Subnot	Association to Network	eyond Boundaries					
11		A.Subliet	Association to Network						
Unit 3	Channel Allocation	Basic Strategies, congestion control.Congestion Control							
A		CO1,CO3,C							
	Algorithms: Leaky Buc	O4							
В	Static Routing, Dynam	-		CO1,CO3,C					
	and Dynamic Routing,	Routing T	able configuration for	O4					
	Dynamic routing.								
C	-	orrowing.V	Wireless ATM: Channel	CO1,CO3,C					
	borrowing.			O4					
Unit 4	Mobile Computing								
А			ing within a building,	CO1,CO4					
	within a city and outsic	le city.							
В	Mobility:Mobility M	CO1,CO4							
	wireless hardware in M								
С	Mobile Devices:	C01,C04							
-	Configuration in andro								
Unit 5									
A	Wireless Internet, remo	C01,C05							
	Positioning, Document	Tracing, I	Health Care.						
В	Warehouse, Automated			C01,C05					
	mobile networks								
С	A survey of recent wor	C01,C05							
	some case studies on A	1	e	,					
Mode of	Theory								
examination									
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	1. Richard Wheeler,	"Mobility	: processes, computers	and Agents					
	Pearson	5	1	U					
	2. Charles Perkins, "M	obile IP: D	Design principle and prac	tices", Pearso					
Other			Handbook of Wireless						
References	Mobile Computing", W	-							
	2. Internet as a resource for references								

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	Define the basic concept of cellular network and	PO1,PO2,PO4,PO5
	introduction to mobile agents.	
2.	Classify and describe the architecture of Routing and	PO1,PO2,PO3,PO5
	Mobile network.	

		🥿 🥟 Beyond Boundarie
3.	Describe the role of channel allocation .	PO1,PO2,PO4,PO5
4.	Categorize the concept of static and dynamic routing	PO1,PO2,PO3,PO4
5.	Evaluate the importance of databases in mobile computing.	PO1,PO2,PO4,PSO2
6.	Elaborate the concept of wireless computing and warehousing	PO1,PO3,PO5,PSO2

PO and PSO mapping with level of strength for Advanced Mobile Computing (Course Code)

C os	Р О 1	P O 2		0	0	P D 5	P O 6	P O 7	P O 8	Р О 9	P O 1 0	F C 1 1)	P O 1 2	P S O 1	P S O 2	P S O 3
C O 1	3	2			3	2											
C O 2	1	1		2		1											
C O 3	2	1			2	3											
C O 4	2	2		3	1												
C O 5	1	1			2											3	
C 0 6	1			2	-	3										3	
Cou	Co	ou										Р	Р	Р	Р	Р	Р
rse Cod e	rs N m	a	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P O 9	0 1 0	0 1 1	0 1 2	S 0 1	S 0 2	S O 3
			1. 5	1. 16	1. 16	1. 5										1	

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

Sch	nool:	School of Engineering and technology							
De	partment	Department of Computer Science and Engineering							
Pro	ogram:	M. Tech							
Bra	anch:	M. Tech. (CSE) Networking and Cyber Security							
1	Course Code	CSE632							
2	Course Title	Advanced Network Security							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Elective							
5	Course Objective	The objective of this course is to provide an apprehension to the threats and issues of Network Security and cryptography and about key security requirements of networks, symmetric and asymmetric ciphers and application through Algorithms.							
6Course OutcomesOn successful completion of this module students will be able to: CO1: Identify the key security requirements of confidentia integrity, and availability, security architecture for OSI, categorie computer and network assets, fundamental security design princip and cryptography standards CO2: Interpret knowledge of symmetric and asymmetric cipl classical encryption techniques, block ciphers and data encryp standard, and public key cryptography. CO3: Categorize cryptographic data integrity algorith cryptographic, hash function, message authentication codes, di signatures and user authentication. CO4: Extend network access control and cloud security, trans 									
7	Course	applicationsThis course will provide a systematic approach of both the principles							
	Description	and practice of Advanced concepts in network security. It covers the basic issues to be addressed by a network security capability, and explored by providing a tutorial and survey of cryptography and network security technology.							
8	Outline syllabus	CO Mapping							
-	Unit 1	Basic Concept of Network Security							

	1	Beyond Boundaries
A	Network Security Model, OSI	CO1,CO6
	Security Architecture, Goals of	
	network security and standards.	
В	Basic concepts of cryptography	CO1, CO2, CO4
С	Introduction to IT-Security in	CO1, CO2,CO6
	Open system, threats to security,	
	security requirements and how it	
	works.	
Unit 2	Network Security Threats and	
	Issues	
А	Protocol Vulnerabilities: DoS and	CO1, CO2,CO6
	DDoS, SYN Flooding, Session	
	Hijacking, ARP Spoofing, Attack	
	on DNS.	
В	Wireless LAN: Frame spoofing,	CO2,CO4
	Violating MAC; Software	
	Vulnerabilities: Phishing Attack,	
	Buffer Overflow, Cross-site	
	Scripting	
С	SQL Injection; Virus, Worm,	CO2,CO4
	Malware, Botnets;	
	Eavesdropping, Password	
	Snooping and IP Masquerade	
Unit 3	Security at Network Level	
А	Authentication: password-based,	CO2,CO3,CO6
	certificate-based, Centralized;	
	Kerbos, Biometrics., SSL.	
В	IP Security, IKE, Virtual Private	CO1,CO2,CO6
	Network.	
С	Open SSL, Wireless LAN	CO4,CO2,CO5
	Security: WEP, TKIP, CCMP.	
Unit 4	Firewall Introduction to ACL	
А	Introduction to Firewall, Firewall	CO1,CO2,CO3
	Functionalities, Types of	
	Firewalls.	
В	Packet Filtering, Reverse Proxy,	C01,C02,C03,C06
	Stateful Firewalls, limitation of	
	Stateful FireWalls.	
С	Application Firewalls, Circuit	C01,C02,C03
	Firewalls, CHECK Point, CISCO	
	PIX, CISCO firewalls case study.	
Unit 5	Security and Network	
	Applications	

				🡟 🎾 Beyond Boundaries
А	Electronic	Payment:	Payment	CO2,CO3,CO4
	types, SET	, Chip Ca	rd	
	Transactio	n.		
В	Mobile Pa	yments; El	ectronic Mail	C01,C03,C04,C05
	Security, V	Veb Securi	ity: SSL and	
	TLS			
С	Web Servi	ce Security	y: Token	CO2,CO3,CO4,CO6
	Type, XM	L Encrypti	on, XML	
	Signatures	, SAML; I	ntrusion	
	detection a	nd preven	tion systems;	
	honey pots	5.		
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1. Bernard	Menezes,	"Network Sec	urity and
	Cryptograp	phy",Ceng	age Learning.	
Other References	1. Raymo	ond R. F	anko,"Corpora	ate Computer and Network
	Security",	Pearson E	ducation.	
	2. Willam	phy and Network Security",		
	Pearson Ec	ducation.		
	3. Internet	as a resou	rce for reference	ces

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Identify the key security requirements of	PO1,PO4 PSO
	confidentiality, integrity, and availability, security	
	architecture for OSI, categories of computer and network	
	assets, fundamental security design principles, and	
	cryptography standards	
2.	CO2: Interpret knowledge of symmetric and asymmetric	PO1, PO2,PO3,PSO
	ciphers, classical encryption techniques, block ciphers	
	and data encryption standard, and public key	
	cryptography.	
3.	CO3: Categorize cryptographic data integrity algorithms,	PO2, PO3,PSO
	cryptographic, hash function, message authentication	
	codes, digital signatures and user authentication.	
4.	CO4: Extend network access control and cloud security,	PO2, PO4,PO6,PSO
	transport level security, wireless network security,	
	electronic mail security and IP security.	
5.	CO5: Organize the security measures of a network in	PO1, PO5, PO6,PO7,
	Informational resources.	PSO

Course Code_ Course Name	CO's	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
	CO1	2	-		2	-	_	_	-	2
	CO2	2	2	2	-	-	-	-	-	2
CSE632_Advanced	CO3	-	2	2	-	-	-	-	-	2
Network Security	CO4	-	2	-	2	-	2	-	-	2
	CO5	2	-	-	-	2	2	2	-	2
	CO6	_	-	-	2	2	_	-	2	2

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	PO 1	PO2	PO 3	РО 4	PO5	PO 6	P O 7	PO8	PSO
CSE632	Advanced Network Security	2	2	2	2	2	2	2	2	2

Strength of Correlation

6

- 1. Addressed toSlight (Low=1) extent 2. Addressed toModerate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

CSE643:Software requirement and Estimation

Sch	ool:	School of Engineering and technology										
	bartment	Department of Computer Science and Engineering										
	gram:	M.Tech										
	nch:	Software Engineering										
1 1	Course Code	CSE										
		643										
2	Course Title	Software requirement and Estimation										
3	Credits	3										
4	Contact	3-0-0										
	Hours (L-T-P)											
	Course Status	re /Elective/Open Elective										
5	Course	The objective of the course is to introduce the concept										
	Objective	uirement management. This Course covers methods and thodologies for Software Size estimation, Software development orts and schedule management etc.										
6 Course CO1: Explain the various software requirements and assess their nature CO2: Apply the principles and practices of software requirement management.												
		CO3: Examine the cost of software development by understanding various methods.										
		CO4: Assess effort, schedule and cost estimation for software										
		CO5: Survey tools for requirements management, software estimation Tools										
		CO6: Discuss the formal methods and techniques for Sof	tware									
		requirements and estimation.	tware									
7	Course	The course addresses elicitation, specification, and n	nanagement of									
,	Description	software system requirements. It also discusses tools for										
	Desemption	and estimation management.	Requirements									
8	Outline syllabu		CO Mapping									
	Unit 1	Software Requirement Engineering	C									
	А	Software requirement, Good practices for requirements	C01,C06									
	В	engineering and risk management. Requirement Elicitation, requirements analysis,	CO1,CO6									
	D	documentation, review, elicitation techniques, analysis models	01,000									
	С	Software quality attributes, setting requirement priorities, verifying requirement quality	CO1,CO6									
	Unit 2	Software Requirement management and modelling										
	A A	Requirement Management, principles and practices,	CO2,CO6									
		Requirements attributes, change management process										
	В	Requirements traceability matrix, links in requirement chain	CO2,CO6									
	С	Use case modelling, analysis models, class diagrams,	CO2,CO6									
	Unit 2	object analysis, problem frames										
	Unit 3	Software and size Estimation										

				🥆 🌽 B	eyond Boundaries						
А	Components	of Software Es	stimatio	ns, Estimation	CO3,CO6						
	methods, Pro	blems associat	ed with	estimation							
В	Key project fa	actors that infl	uence e	stimation. Two views	CO3,CO6						
	of sizing, Fun	f sizing, Function Point Analysis									
С	Full function	point, LOC Es	stimatio	n, Conversion	CO3,CO6						
	between size	measures.									
Unit 4	Effort, Sched	lule and Cost	Estima	tion							
А	Productivity,	Estimation Fa	ctors		CO4,CO6						
В	Approaches t	o Effort and So	chedule	Estimation,	CO4,CO6						
	COCOMO II	OCOMO II									
С	C Putnam Estimation Model,										
	Algorithmic	mode	els,	Cost Estimation.							
Unit 5	Tools for Re	quirements aı	nd Estii	mation Management							
А	Benefits of us	CO5,CO6									
В	Requirements	s management	tool, Ra	ational Requisite pro,	CO5,CO6						
	Caliber – RM.										
С	Desirable feat	tures in softwa	re estin	nation tools, IFPUG,	CO5,CO6						
	USC's COCC	OMO II, SLIM	(Softw	are Life Cycle							
	Management) Tools									
Mode of	Theory/Jury/I	Practical/Viva									
examination		1									
Weightage	CA	MTE	ETE								
Distribution	30%	20%	50%								
Text book/s*	Software Req	uirements and	Estima	tion by Rajesh Naik							
	and Swapna I	Kishore, Tata N	Ac Grav	w Hill							
Other	Software Req	uirements by I	Karl E.	Weigers, Microsoft							
References	Press.										

S.	Course Outcome	Program Outcomes (PO) & Program Specific
No.		Outcomes (PSO)
1.	CO1: Explain the various software	PO1,PO3,PO6,PO7,PO8,PSO1
	requirements and asses their nature.	
2.	CO2: Apply the principles and	PO1,PO2,PO3,PO4,PO6,PO7,PO8,PSO1
	practices of software requirement	
	management.	
3.	CO3: Examine the cost of software	PO1,PO2,PO3,PO4,PO5,PO6,PO7,PO8,PSO1
	development by understanding various	
	methods.	
4.	CO4: Assess effort, schedule and cost	PO1,PO2,PO3,PO4,PO6,PO7,PO8,PSO1
	estimation for software	
5.	CO5: Survey tools for requirements	PO1, PO2, PO3, PO4, PO6, PO7, PO8, PSO1
	management, software estimation	
6.	CO6: Discuss the formal methods and	PO1,PO2,PO3,PO5,PO6,PO7,PO8,PSO1
	techniques for Software requirements	
	and estimation.	

PO and PSO mapping with level of strength for Course Name Software requirement and Estimation (**Course Code CSE643**)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P O 6	P O 7	P O 8	PS 0 1	PS O2	PS O3
	CO1	3	-	2	-	-	2	3	2	3	-	-
	CO2	3	2	2	2	-	2	2	2	3	-	-
	CO3	3	3	2	2	2	2	3	3	3	-	-
CSE643_Software	CO4	3	2	2	2	-	2	3	3	3	-	-
requirement and	CO5	3	3	2	2	-	2	2	3	3	-	-
Estimation	CO6	3	3	2	-	2	2	3	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	P 0 1	P O2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	PS O 1	PS O 2	PS 0 3
CSE643	Software requirement and Estimation	3	2.6	2	2	2	2	2. 6	2. 6	3	-	-

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

CSE6:Software Quality metrics and Testing

Sch	ool:	School of Engineering and technology				
	oartment	Department of Computer Science and Engineering				
		M.Tech				
	gram: nch:					
		Software Engineering				
1	Course Code	CSE6				
2	Course Title	Software Quality metrics and Testing				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course Status	Core /Elective/Open Elective				
5	Course	This course covers the important aspects of software qual				
	Objective	with an overview of what is quality assurance, including of	lefinitions for			
		the internal and external views of quality.				
6	Course	Student will be able to:				
	Outcomes	CO1: Define the concepts of quality and its models				
		CO2: Summarize static analysis of code	1			
		CO3: Identify and apply various software metrics, which	determines the			
		quality level of software	10			
		CO4: Apply and evaluate appropriate processes and tools	10			
		troubleshoot issues related to quality assurance. CO5: Value the role of testing in quality assurance and ap	nly several			
		appropriate testing techniques to software development pr				
		CO6: Choose Software quality measurements and metrics	0			
		quality	ies to improve			
7	Course	This course discusses the knowledge required and	techniques of			
,	Description	professional practices in software quality processes and				
	Desemption	covers concepts of how high-quality software that can				
		using proven techniques and established standards in so				
		management. Metrics are then introduced as a mechanism				
		the quality of software products. Lastly, the concept of so	-			
		tools is introduced.	1 5			
8	Outline syllabu	18	СО			
			Mapping			
	Unit 1	Introduction				
	А	Popular Views. Quality: Professional Views, Software	CO1,CO6			
		Quality, Total Quality Management, Object-Oriented				
		Development Process				
	В	The Clean room Methodology, The Defect Prevention	CO1,CO6			
		Process, Process Maturity Framework				
	С	Quality Standards, SEI Process Quality Capability	CO1,CO6			
		Maturity Model, The SPR Assessment, Malcolm				
		Baldrige Assessment				
	Unit 2	Fundamentals in Measurement Theory				
	А	Definition, Operational Definition, and Measurement,	CO2,CO6			
		Level of Measurement, Some Basic Measures				
	В	Reliability and Validity, Measurement Errors, Assessing	CO2,CO6			

	-			eyond Boundarie				
	Reliability, C	orrection for A	Attenuation					
С	Complexity N	Aetrics and Mo	odels, Lines of Code,	CO2,CO6				
Unit 3								
	-			CO3,CO6				
	-	•	•					
		,						
В		ality Metrics	Defect Density During	CO3,CO6				
D								
		U	ē					
С				CO3,CO6				
C		003,000						
TT . •4 A								
Unit 4								
А			ls, Checklist, Pareto	CO4,CO6				
				,				
	-							
В			Relations Diagram, Defect	CO4,CO6				
С		CO4,CO6						
-								
	,							
Unit 5								
	0	d issues of tes	ting Testing activities and	CO5,CO6				
			R Dok Testing, Test					
B			ing functional testing	CO5,CO6				
D				005,000				
C				CO5,CO6				
C	-		-	005,000				
	-							
Mode of	, U							
	Theory/Jury/I							
examination		MTE	ETE					
Weightage	CA	MTE	ETE					
Weightage Distribution	30%	20%	50%					
Weightage	30% 1. Stephen H.	20% Kan, "Metrics	50% s and Models in Software					
Weightage Distribution Text book/s*	30% 1. Stephen H. Quality Engir	20% Kan, "Metrics neering", Addi	50% s and Models in Software son Wesley					
Weightage Distribution Text book/s* Other	30% 1. Stephen H. Quality Engir 1. SagarNaik	20% Kan, "Metrics neering", Addi andPiyuTripat	50% s and Models in Software son Wesley hy, "Software Testing and					
Weightage Distribution Text book/s*	30% 1. Stephen H. Quality Engir 1. SagarNaik Quality Assur	20% Kan, "Metrics neering", Addi andPiyuTripat rance: Theory	50% s and Models in Software son Wesley hy, "Software Testing and and Practice", Wiley.					
Weightage Distribution Text book/s* Other	30% 1. Stephen H. Quality Engir 1. SagarNaik Quality Assur	20% Kan, "Metrics neering", Addi andPiyuTripat rance: Theory gensen, "Softw	50% s and Models in Software son Wesley hy, "Software Testing and					
	Unit 3 A B C Unit 4 A B C Unit 5 A B C Unit 5 A S A	C C Complexity M Cyclomatic C Unit 3 Software Qu A Product Qualit Customer Pro Metrics B In-Process Qu Machine, Tes Machine Test Defect Remov C Metrics for So Backlog Man Fix Responsiv Quality. Unit 4 Applying the Development A Ishikawa's Se Diagram, His Control Chart B Cause-and-Eff Removal Effectiveness Unit 5 Testing A Objectives an levels, White- Planning and B Unit Testing, system testing C Testing Defect Backlog Over Management, Mode of Theory/Jury/I	CComplexity Metrics and Mac Cyclomatic Complexity, SyUnit 3Software Quality MetricsAProduct Quality Metrics, Detect Customer Problems Metric, MetricsBIn-Process Quality Metrics, Machine, Testing, Defect A Machine Testing, Phase-Ba Defect Removal EffectivendCMetrics for Software Mainte Backlog Management Index Fix Responsiveness, Percen Quality.Unit 4Applying the Basic Quality DevelopmentAIshikawa's Seven Basic Tool Diagram, Histogram, Run C Control ChartBCause-and-Effect Diagram, Removal Effectiveness and CCPhase-Based Defect Removal, I Effectiveness and Process NUnit 5TestingAObjectives and issues of tes levels, White-Box and Blac Planning and DesignBUnit Testing, Data flow test system testing, In-Process I Gaklog Over Time. In-Proc Management, Case Studies.Mode ofTheory/Jury/Practical/Viva	Reliability, Correction for AttenuationCComplexity Metrics and Models, Lines of Code, Cyclomatic Complexity, Syntactic Constructs.Unit 3Software Quality Metrics OverviewAProduct Quality Metrics, Defect Density Metric, Customer Problems Metric, Customer Satisfaction MetricsBIn-Process Quality Metrics, Defect Density During Machine, Testing, Defect Arrival Pattern During Machine Testing, Phase-Based Defect Removal Pattern, Defect Removal EffectivenessCMetrics for Software Maintenance, Fix Backlog and Backlog Management Index, Fix Response Time and Fix Responsiveness, Percent Delinquent Fixes, Fix Quality.Unit 4Applying the Basic Quality Tools in Software DevelopmentAIshikawa's Seven Basic Tools, Checklist, Pareto Diagram, Histogram, Run Charts, Scatter Diagram, Control ChartBCause-and-Effect Diagram, Relations Diagram, Defect Removal Effectiveness and Quality PlanningCPhase Defect Removal, Defect Removal Effectiveness and Process Maturity LevelUnit 5TestingAObjectives and issues of testing, Testing activities and levels, White-Box and Black-Box Testing, Test Planning and DesignBUnit Testing, Data flow testing, functional testing, system testing, In-Process Metrics for Software TestingCTesting Defect Arrivals Over Time, Testing Defect Backlog Over Time, In-Process Metrics and Quality Management, Case Studies.Mode ofTheory/Jury/Practical/Viva				

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes (PSO)
1.	CO1: Define the concepts of quality and its models	PO1,PO3,PO8,PSO1
2.	CO2: Summarize static analysis of code	PO1,PO2,PO3,PO6,PO7,PO8,PSO1
3.	CO3: Identify and apply various software	PO1,PO2,PO3,PO4,PO5,PO6,
	metrics, which determines the quality level of	PO7,PO8,PSO1
	software	
4.	CO4: Apply and evaluate appropriate processes	PO1,PO2,PO3,PO5,
	and tools to troubleshoot issues related to	PO7,PO8,PSO1
	quality assurance.	
5.	CO5: Value the role of testing in quality	PO1,PO3,PO4,PO6,
	assurance and apply several appropriate testing	PO7,PO8,PSO1
	techniques to software development projects.	
6.	CO6: Choose Software quality measurements	PO1,PO2,PO3,PO4,PO5,PO6,
	and metrics to improve quality	PO7,PO8,PSO1

PO and PSO mapping with level of strength for Course Name Software quality metrics and testing (Course Code CSE604)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	P O4	P 0 5	P O 6	P O 7	P O 8	PS 0 1	PS O2	PS O3
	CO1	3	-	3	-	-	-	-	3	3	-	-
	CO2	3	1	2	-	-	2	3	3	3	-	-
	CO3	3	1	2	1	1	2	2	3	3	-	-
	CO4	3	1	2	-	1	-	3	3	3	-	-
CSE6_software quality	CO5	3	-	2	1	-	2	3	3	3	-	-
metrics and testing	CO6	3	2	2	2	2	2	2	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cour se Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P O 5	P O 6	P 0 7	P O 8	PS O 1	PS O 2	PS 0 3
CSE 6	Software quality metrics and testing	3	1.2 5	2. 1	1. 3	1. 3	2	2. 6	3	3	-	-

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

	School:	Batch:	Beyond Boundaries					
Program:		Current Academic Year:						
Branch:		Semester:						
1	Course Code	CSP611						
2	Course Title	Analysis and design of algorithms lab						
3	Credits	1						
4	Contact Hours (L-T-P)	0-0-2						
	Course Status	CompulsoryPG						
5	Course Objective	The objective of the course is to teach techniques for effective problem solving in computing. The use of different paradigms problem solving will be used to illustrate clever and efficient ways to solve a given problem. In each case emphasis will be placed on rigorously proving correctness of the algorithm.						
	Course Outcomes	Students will be able to:						
	CO1: calculate time complexity of searching algo							
	(same as theory course)	CO2: Write program based on dynamic programming.CO3: apply greedy algorithm to any problem						
6								
		CO4: develop program based on advanced data st	ructure					
		CO5: design a program based on different string matching algorithm						
		CO6: implement real world problem based on greedy and dynamic algorithm						
7	Course Description	Algorithms are the soul of computing This course introduces basic methods for the design and analysis of efficient algorithms emphasizing methods useful in practice. Different algorithms for a given computational task are presented and their relative merits evaluated based on performance measures.						
8	Outline syllabu	15	CO Mapping					
	Unit 1	Program Based on Divide & Conquer						

206
06
206
206
206
206
206
206
206
206
-

Mode of examination	Jury/Practical/Vi	Jury/Practical/Viva					
Weightage	СА	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s*	-						
Other							
References							

COPO Mapping

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)
1	CO1: Analyze the asymptotic performance of algorithms	PO1, PO2, PO3, PO4, PO5,PO8, PSO2
2	CO2 : Describe the dynamic-programming and Greedy paradigm and explain when an algorithmic design situation calls for it.	PO1, PO2, PO3, PO4, PO5,PO8, PSO2
3	CO3: Demonstrate the Dynamic programming techniques.	PO1, PO2,PO3, PO5, PO8, PSO1, PSO2,PSO3
4	CO4: Apply important algorithmic design paradigms and methods of analysis	PO1, PO2, PO3, PO4, PO5,PO8, PSO2
5	CO5: Discuss NP-complete problems and develop algorithms to solve the problems.	PO1, PO2, PO3, PO4, PO5,PO8, PSO1, PSO2
6	CO6: Choose appropriate algorithm design techniques for solving problems.	PO1, PO2, PO3, PO4, PO5,PO8, PSO1, PSO2

PO and PSO mapping with level of strength for Course Name Analysis and Design of Algorithm Lab(Course Code CSP 611)

Course Code_ Course Name	COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3
CSP611 -	CO1	3	3	1	3				2		3	
Analysis	CO2	2	3	3	2				2		2	
and Design	CO3	1	2	2	-				1	2	1	1
of	CO4	2	3	3	3				3		3	
Algorith	CO5	3	1	2	3		-	-	2	2	3	
m Lab	CO6	2	3	3	1		-	-	1	3	2	

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CSP611	Analysis & Design of Algorithm lab	2.16	2.5	2.3	2.4	-	_	-	1.83	2.3	2.3	1

Strength of Correlation

1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

Scł	nool:	School of Engineering and technology								
De	partment	Department of Computer Science and Engineerin	g							
Pro	ogram:	M.Tech.								
Bra	anch:	DSA								
1	Course Code									
2	Course Title	Massive Graph Analysis Lab								
3	Credits									
4	Contact Hours	0-0-2								
•	(L-T-P)									
	Course Status	Compulsory/Elective								
5	Course	The objective of the course is to teach students the advanced grap								
5	Objective	theory concepts and their applications in computer s								
6	Course	After successful completion of the course students w								
U	Outcomes	CO1: demonstrate graph theory concepts via basic pr								
	Outcomes	programs.	locessing							
		CO2: Apply the fundamentals of graph and trees an	d to apply these							
		as computer science applications.	u to upply these							
		CO3: Demonstrate the advanced applications of grap	h analysis.							
		CO4: Apply various algorithms to understand a								
		applications in areas like coloring problem, transpor	-							
		etc.	1							
		CO5: Examine a graph using matrices to cater the	ir application in							
		real world.	11							
		CO6: Relating the concepts to prepare grounds for pr	roject work and							
		research interests.	5							
7	Course	Numerical Analysis gives understanding of transcend	dental equation,							
	Description	solving linear equation, interpolation, differential equ	uation.							
8	Outline syllabu		СО							
			Mapping							
	Unit 1	Practical related to Basics of algorithms								
	А	To create and display a graph.	CO1,CO6							
	В	To display connectedness and components and	C01,C06							
		calculate rank and nullity.	,							
	С	To find minimum spanning trees.	CO2,CO6							
	Unit 2	Practical related to advanced graphs								
	A	To find set of fundamental circuits.	CO3,CO6							
	B	To find cut-vertices.	CO3,CO6							
	C	To demonstrate separability.	CO3,CO6							
	Unit 3	Practical related to directed graphs								
	A	To create and display a directed graph.	CO1,CO6							
	B	To display directed circuits.	CO2,CO6							
	C									
	Unit 4									
	A Cliff 4	To implement Shortest path between every pair of	CO4,CO6							
		vertices.	0,000							
	В	To find shortest path between pair of vertices.	CO4,CO6							
	C B	To implement DFS, BFS	C04,C06							
	Unit 5									
	Unit 5	Practical related to Matrix Representation of								

	Graphs			Seyona Boundarie			
А	To impleme	nt graph opera	tions using matrices.	CO5,CO6			
В		To demonstrate use of incidence matrix or cut-set matrix or circuit matrix and its application.					
С	To demonstr application.	CO5,CO6					
Mode of examination	Jury/Practica						
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s*	Engi	1. Deo, N, <i>Graphtheory with applications to</i> <i>Engineering and Computer Science</i> , Prentice Hall India.					
Other References	Pears 4. Hara Bond	on R J, <i>Introd</i> sonEducation ry, F, <i>Graph T</i> ly& Murthy <i>ication</i> . Addis	and				

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)
1.	CO1: demonstrate some of the most important notions and types of graph theory and develop their skill in solving basic exercises.	PO1, PO2, PO4
2.	CO2: Apply the fundamentals of graph and trees and to apply these as computer science applications.	PO1, PO2, PO3, PO4
3.	CO3: Demonstrate the advanced applications of graph analysis.	PO3, PO4, PSO(DSA)
4.	CO4: Apply various algorithms to understand analysis and its applications in areas like coloring problem, transportation problems etc.	PO3, PSO(DSA)
5.	CO5: Examine a graph using matrices to cater their application in real world	PO2, PO3, PSO(DSA)
6	CO6: Relating the concepts to prepare grounds for project work and research interests.	PO2, PO3, PSO(DSA)

PO and PSO mapping with level of strength for Course Name: Massive Graph Analysis Lab

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO(DSA)
CO1	3	3	1	2	1	1	-	1	1
CO2	3	3	3	2	-	1	-	1	1
CO3	1	1	3	3	2	1	-	1	2
CO4	1	1	3	2	1	2	1	1	3
CO5	1	2	3	2	2	1	1	1	3
Co6	1	2	3	2	1	2	1	3	3

Average of non-zeros	entry in	following	table	(should be	auto calculated).

Cours								Р		PSO
e	Course Name	PO	PO	PO	PO	PO	PO	0	PO	(DSA
Code		1	2	3	4	5	6	7	8)
	Massive Graph Analysis	1.6	2	2.6	2.1	1.1	1.3	0.5	1.3	0 17
	Lab	7	2	7	7	7	3	0.5	3	2.17

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

Sch	ool: SET	Batch: 2019 onwards	
	gram: M.Tech		
	nch:CSE	Semester: IV	
(Ne	tworks and		
	per Security)		
1	Course Code	CSP 630	
2	Course Title	Advanced Computer Network Lab	
		I I I I I I I I I I I I I I I I I I I	
3	Credits	1	
4	Contact Hours	0-0-2	
	(L-T-P)		
	Course Status	Compulsory	
5	Course	Course will examine the design and implement var	rious network
	Objective	protocols with the concept of layered approach of OS	SI and TCP/IP
		model.	
6	Course	CO1: Examine the various difference and challenges in v	wired and
	Outcomes	wireless Data networks	
		CO2: Define various routing protocols and mobile IP.	
		CO3: Examine the behaviour of various Transport Layer	
		CO4: Illustrate various Flow Control, Congestion Control	ol and QoS
		Protocols.	
		CO5: Outline several Traffic scheduling algorithms	
		CO6: Identify various Encryption Techniques	
7	Course	This course is to provide students the advanced cond	-
	Description	communication and computer networks by exposing s	
		concepts of Transport Layer protocol suite and netw	
-		programming, Traffic Management & Security measures	
8	Outline syllabus	8	CO
			Mapping
	Unit 1	Overview of Wired and Wireless Data Networks	GO1
	A	Configuration and logging to a CISCO Router and	CO1
		introduction to the basic user Interfaces. Introduction to	
	D	the basic router configuration and basic commands.	001
	В	Configuration of IP addressing for a given scenario for	CO1
	G	a given set of topologies.	001
	C	Configure a DHCP Server to serve contiguous IP	CO1
		addresses to a pool of four IP devices with a default	
		gateway and a default DNS address. Integrate the	
		DHCP server with a BOOTP demon to automatically serve Windows and Linux OS Binaries based on client	
		MAC address	
	Unit 2	Internetworking	
	A A	Configure, implement and debugBGP routing	CO2
	B	Configure, implement and debugOSPF routing	CO2
	ע	protocols	
	С	Configure, implement and debugStatic routes (check	CO2
		Configure, implement and debugstatic foulds (clictk	002

				beyond boundari			
	using netstat	z)					
Unit 3	Transport I						
А	Simulation of	CO3					
	communicat						
В	3 Simulation of TCP, UDP and SCTP with constant						
	traffic for VOIP services						
C	Simulation of	of TCP, UDP a	nd SCTP with constant	CO3			
	traffic for V	ideo Over IP se	ervices				
Unit 4	Traffic Con	trol and Qual	ity of Service				
А	Simulation of	of TCP and SC	TP Flow control	CO4			
В	Simulation of	CO4					
С	Implementin	ng and compari	ng WRR, DRR, WFQ,	CO4			
	PGPS, VC.						
Unit 5	Traffic Man	nagement & S	ecurity				
А	Implementin	ng Admission (Control protocols	CO5			
В	Implement A	AES and DES a	and compare	CO6			
С	Implement F	RSA		CO6			
Mode of	Jury/Practica	al/Viva					
examination							
Weightage	CA	MTE	ETE				
Distribution	60%						
Text book/s*	1.						
Other	1.						
References							

S.	Course Outcome	Program Outcomes (PO)
No		& Program Specific
		Outcomes (PSO)
1.	Examine the various difference and challenges in wired and wireless Data networks	PO1,PO2, PO3,PO8,PSO3
2.	Define various routing protocols and mobile IP.	PO1,PO2,PO3,PO8,PSO3
3.	Examine the behaviour of various Transport Layer Protocols.	PO1,PO2,PO3,PO4,PO8,P
		SO3
4.	Illustrate various Flow Control, Congestion Control and QoS	PO1,PO2,PO3, PO4,
	Protocols.	PO5,PO6,PO8,PSO3
5.	Outline several Traffic scheduling algorithms	PO1,PO2,PO3,PO4,PO5,
		PO6,PO8,PSO3
6.	Identify various Encryption Techniques	PO1,PO2,PO3,PO4,PO5,
		PO6,PO8, PSO3

PO and PSO mapping with level of strength for Course Name Advanced Computer Network Lab (Course Code CSP630)

Terwork Lub (Course Code CST 050)												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
	CO1	3	2	3	-	-	-	-	2	-	-	2
	CO2	3	2	3	-	-	-	-	2	-	-	2
	CO3	3	2	3	1	-	-	-	2	-	-	2
	CO4	3	2	3	1	2	2	-	2	-	-	2
	CO5	3	2	3	2	2	2	-	2	-	-	3
	CO6	3	2	3	2	2	2	-	2	-	-	3
	Avg.	3	1.6	3	1	1	1	-	2	-	-	2.3

CSP640:Object Oriented Software Engineering Lab

Sch	ool:	School of Engineering and technology							
	artment	Department of Computer Science and Engineering							
	gram:	M.Tech							
Bra		Software Engineering							
1 1	Course Code	CSP640							
$\frac{1}{2}$	Course Title								
<u>2</u> 3	Credits	Object Oriented Software Engineering Lab							
	Credits Contact Hours	0.2							
4	(L-T-P)	0-0-2							
	Course Status	Compulsory/Elective							
5	Course Objective	The objective of this lab is to provide students with expressive visual modeling language so they car exchange meaningful models.							
6	Course Outcomes	Students will be able to: CO1: Summarize problem statement to develop SRS for object oriented system. CO2: Explain the facets of the Unified Process approach to designing and building a software system. CO3: Create use case and class diagrams that capture requirements for a software system.							
	~	CO4: Construct various Behavioral UML diagrams CO5: Demonstrate component and deployment diagram CO6: Construct design solutions by using Functional, s behavioural patterns	tructural and						
7	Course Description	This lab deals with the analysis and design of a softwar using UML. It is used for an object oriented design of a course describes the step by step object oriented method software development from problem statement through system design, and class design.	problem. The dology of						
8	Outline syllabus	3	CO Mapping						
	Unit 1	Problem Statement & SRS							
		Write down the problem statement for solving system modeling and design problems.	CO1						
		Develop Software Requirement Specification (SRS) for suggested object-oriented system.	CO1						
	Unit 2	Function Oriented Design							
		To perform the function oriented diagram: Data Flow Diagram (DFD).	CO2,CO6						
		To study various UML diagrams.	CO2,CO6						
	Unit 3	Use Case & Structural View							
		To perform the user's view analysis for the suggested system: Use case diagram.	CO3,CO6						
		To draw the structural view diagram for the system: Class diagram, object diagram.	CO3,CO6						
	Unit 4	Behavioral View							
		To draw the behavioral view diagram : State-chart diagram, Activity diagram	CO4,CO6						

			se i	Beyond Boundaries							
	To perform t	he behavioral v	view diagram for the	CO4,CO6							
	suggested sys	stem : Sequenc	e diagram, Collaboration								
	diagram	diagram									
Unit 5	Unit 5 Implementation & Environment View										
	To perform t	he implementa	tion view diagram:	CO5,CO6							
	Component of	liagram for the	system.								
	To perform t	he environmen	tal view diagram:	CO5,CO6							
	Deployment	diagram for the	e system.								
Mode of	Jury/Practica	l/Viva									
examination											
Weightage	CA	MTE	ETE								
Distribution	60%	0%	40%								
Text book/s*	1. Bernd Bru	legge and Alle	n H. Dutoit, "Object orient	ed Software							
	Engineering,	using UML, a	nd Pattern Java" Pearson (2	2nd Edition).							
	2. George W	ilkie, "Object o	priented Software Engineer	ring", Addison-							
	Wesley.										
Other	1. Ivar Jacob	ing: A Use Case									
References	Driven Appro	oach", Addisor	n-Wesley.								
	2. Grady 1	Booch "Objed	ct-Oriented Analysis and	d Design with							
	Applications	", Addison-We	esley Professional.								

PO and PSO mapping with level of strength for Course Name Object oriented software engineering Lab (Course Code CSP640)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	2	1	2	-	-	-	2	2	3	-	-
	CO2	2	1	2	1	-	2	3	2	3	-	-
	CO3	2	1	3	1	1	2	3	2	3	-	-
	CO4	3	1	2	1	1	3	3	2	3	-	-
CSP640_Object oriented	CO5	2	1	2	1	-	2	3	2	3	-	-
software Engineering lab	CO6	3	1	3	1	1	3	3	2	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cour se Code	Course Name	P 0 1	P O2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS 0 2	PS 0 3
CSP 640	Object oriented software Engineering lab	2. 3	1	2. 3	1	1	2. 4	2. 8	2	3	-	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent

2. Addressed to Moderate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

Software Architecture and Design Pattern Lab

Sc	hool:	School of Engineering and technology	
	epartment	Department of Computer Science and Engineering	
	ogram:	M.Tech	
	anch:	Software Engineering	
1	Course		
	Code		
2	Course	Software Architecture and Design Pattern Lab	
	Title		
3	Credits	1	
4	Contact	0-0-1	
	Hours (L-T-P)		
	Course Status	Compulsory/Elective	
5	Course Objective	Software Architecture and Design teaches the principles involved in the analysis and design of large software systems UML and Analysis of system, Software Architecture and s for the system.	. It also teaches
6	Course Outcomes	 CO1:Demonstrate necessity of use case and Abstract factory CO2: Construct Adapter class and object pattern CO3: Compare builder and bridge design patterns CO4: Examine behavioral patterns CO5: Design proxy and visitor patterns CO6: Select proper architecture and patterns to improve quality 	C
7	Course Descriptio n	This course introduces to the concepts, principles and standar modern software architecting. Notions and practice of some of popular notations, techniques and tools involved in the different software architecting are given. More specifically UML for the specification phase.	of the most ent steps of
8	Outline sylla	· · ·	CO Mapping
	Unit 1	Use case and abstract factory	
		Use case diagram for Library management system	CO1
		Using UML design abstract factory design pattern	C01,C06
	Unit 2	Adapter class and object pattern	
		Using UML design Adapter-class design pattern	CO1,CO6
		Using UML design adapter object design pattern	CO1,CO6
	Unit 3	Builder & Bridge pattern	
		Using UML design builder design pattern	CO3
		Using UML design bridge design pattern	CO3
	Unit 4	Chain of responsibility and flyweight design pattern	
		User gives a print command from a word document. Design to represent this chain of responsibility design pattern.	CO4,CO6
		Design a flyweight design pattern	CO4,CO6
	Unit 5	Proxy and visitor pattern	
		Using UML design proxy design pattern	CO5,CO6
		Using UML design visitor design pattern	CO5,CO6
	Mode of	Jury/Practical/Viva	

				beyond boundaries
examinatio				
n				
Weightage	CA	MTE	ETE	
Distributio	60%	0%	40%	
n				
Text	1. The Unified M	Iodeling Language	User Guide, Grady	
book/s*	Booch, James Ru	umbaugh, Ivar Jaco	bson, Addison-Wesley	
	1999, ISBN: 0-2	01-57168-4 2. Inter	met as a resource	
Other	https://drive.goo	gle.com/file/d/1Per	TeiRAwoqJ66SD5pLTh	
References	VqYr9b3MeQ8/	preview		

PO and PSO mapping with level of strength for Software Architecture and Design Pattern Lab

Course Code_ Course		P	P	Р	Р	P	P	P	Р	PS		
Name	CO's	0	0	0	0	0	0	0	0	0	PS	PS
Ivaine		1	2	3	4	5	6	7	8	1	02	03
	CO1	3	2	2	-	-	1	3	1	3	-	-
	CO2	3	3	2	1	-	1	3	2	3	-	-
	CO3	3	3	2	1	-	1	3	2	3	-	-
	CO4	3	3	2	1	-	1	3	2	3	-	-
Software Architecture and	CO5	3	3	2	1	-	1	3	2	3	-	-
design pattern Lab	CO6	3	3	2	1	-	1	3	2	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cou rse Cod e	Course Name	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	PS O 1	PS O 2	PS O 3
	Software architecture and design pattern Lab	3	2.8	2	1	I	1	3	1. 8	3	-	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

TERM-II

	ogram: M.Tech		Current Academic Year: 2019-2021								
	anch: Cyber Se		Semester: II								
&	Networking	-									
1	Course Code		CSE650 Course Name: Pattern Recognition								
2	Course Title		Pattern Recognition								
3	Credits		5								
4	Contact Hours		3-1-2								
	(L-T-P)										
	Course Status		PG								
5	Course Objectiv	ve	The objectives of this course to teach the students								
			extraction techniques and classifiers, so that, they	-							
			these concepts in real life projects like information								
			mining, document image analysis and recognition	-							
6	Course Outcom	200	linguistics, forensics, biometrics and bioinformatics								
6	Course Outcom	105	After the completion of this course, students will b CO1: To Identify/introduce the ideas of existing pa								
			CO2: To implement existing patterns ideas based o	=							
			CO3:To conceptualize the working of patterns expl	orations using							
			computational algorithms								
			CO4: To apply performance evaluation methods for	r pattern							
			recognition								
			CO5: To become familiar with feature knowledge that can be								
			extracted from available examples and generalize to form								
			appropriate feature models.								
8	Outline syllabu	S	CO Mappir								
	Unit 1	Introdu	ıction	<u></u>							
Ī	А	Introdu	ction to pattern recognition systems and their	CO1,CO2							
L		design of	cycle, learning and adaptation.								
	В	Data se	ts for pattern recognition, Pre Processing of Input	CO1,CO2							
		data set	, Output analysis								
	С		tion areas of pattern recognition with case studies	CO1,CO2							
\dashv			cal, Defense and Optical Document Recognition								
Ļ	Unit 2		natical Background								
ļ	A		Rule, Expectation, Correlation, Covariance.	CO3, CO4							
╞	B		of Linear Algebra, Linear Transformations	CO3,CO4							
	С		n Theory, ROC Curves, Likelihood Ratio Test,	CO3,CO4							
\dashv	11.4.2		Discriminants, FMI.								
┝	Unit 3		e Extraction	CO5							
	А		ction, Shape representation Techniques – One	CO5							
		interrel	ional function, polygonal approximation, spatial								
┝	В		ts, Scale shape methods, Shape transform domains	CO5							
┝	C C	Chi-squ		CO5							
	\sim	-	Selection for Time Series Data								
\dashv	Unit 4	Classifi									
┢	A A		tions of Classification techniques, Classification	C01,C02,C0							
	4 x		d without learning.	3,CO4,CO5							

					eyond Boundaries
В	Support Vector Machine,	k-Nearest	Neighbou	r Classifier	CO1,CO2,CO
					3,CO4,CO5
С	Decision tree, Artificia	l Neural	Network	Classifiers-	CO1,CO2,CO
	Multilayer Perceptron, Ba	ackpropag	ation algor	ithms.	3,CO4,CO5
Unit 5	Clustering				
А	Clustering Large Dataset	s, Applicat	tions of Clu	istering,	CO1,CO2,CO
	Clustering techniques – H	K Means			, CO4,CO5
В	Sequential Algorithms, A	gglomerat	ive hierarc	hical	CO1,CO2,CO
	clustering,				3, CO4,CO5
С	Functional Optimization-	Based Clu	stering, Gr	aph	CO1,CO2,CO
	Clustering				3,CO4,CO5
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1. Duda and Hart P.E, "P	attern clas	sification a	nd scene anal	ysis", John
	Wiley and sons, NY.				
	2. Fu K.S., Eaglewood cl	iffs, "Synt	actic Patter	n recognition	and
	applications", Prentice H	all, N.J.			
Other	1. Earl Gose, Richard Jo				
References	Recognition and Imag	ge Analysi	s", PHI Pv	t. Ltd., NewD	elhi.
	2. Rochard O. Duda, H	art P.E, an	d David G	Stork, "Patter	rn
	classification", John	Wiley & S	Sons Inc.		
	3. Internet as source of l	Reference.			

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: To Identify/introduce the ideas of existing	PO1, PO3, PO4, PO5, PSO1
	patterns	
2.	CO2: To implement existing patterns ideas based on	PO1, PO3, PO4, PO5, PSO1
	data analysis.	
3.	CO3:To conceptualize the working of patterns	PO1, PO5, PSO1, PSO2,
	explorations using computational algorithms	PSO4
4.	CO4: To apply performance evaluation methods for	PO1, PO5, PSO1, PSO2,
	pattern recognition	PSO4
5.	CO5: To become familiar with feature knowledge that	PO1, PO3, PO4, PO5, PSO1
	can be extracted from available examples and generalize	
	to form appropriate feature models.	

PO and PSO mapping with level of strength (3 being the highest) for Pattern Recognition (CSE650)

CO	PO1:	PO2:	PO3:	PO4 :	PO5:	PO6:	PO7:	PO8:	PSO1:	PSO2:	PSO3:
CO1	3	1	3	3	1	1	3	1	2	2	
CO2	2	2	3	3	2	2	3	2	2	2	
CO3	3	3	2	2	3	2	3	3	2	3	
CO4	1	3	2	2	3	2	3	3	2	3	
CO5	1	2	3	3	1	3	3	2	2	2	

Machine Learning

Sch	ool: SET	Batch : 2019							
Pro	gram: M.Tech	Current Academic Year: 2019-2021							
	nch: Data	Semester: II							
Scie	ence								
1	Course Code	CSE605 Course Name- Machine Learning							
2	Course Title	Machine Learning							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	PG							
5	Course	This course provides an introduction to machine learnin	•						
	Objective	pattern recognition in a way to solve the problem in real-tin	ne						
6	Course	After completion of this course, student will be able to:-							
	Outcomes	1. Understand learning problems and Identify fundament	ntal problems in						
		machine learning.							
		 Conceptualize various algorithms for machine learning Select and Apply appropriate tools for developing set 							
		3. Select and Apply appropriate tools for developing so world problems using machine learning algorithms.	olutions for real						
		4. Create and Evaluate hypothesis for problems and	to implement						
		solutions for them.	i to implement						
7	Course	Introduction and concept of learning task, Decision Tree and Artificial							
,	Description	Neural Networks, Evaluating hypothesis and Bay							
	r	Computational Learning Theory and Instance Based Lea	Ũ						
		Algorithms and Reinforcement Learning	C /						
8	Outline syllabu	lis	CO Mapping						
	Unit 1	Introduction							
	А	Well defined learning problems, Designing a Learning	CO1						
		System, Issues in Machine Learning							
	В	The Concept Learning Task - General-to-specific	CO1						
		ordering of hypotheses, Find-S, List then eliminate							
		algorithms, Candidate elimination algorithm, Inductive							
	~	bias							
	C	Decision Tree Learning - Decision tree learning	CO1						
	TL '4 O	algorithm, Issues in Decision tree learning							
	Unit 2	Artificial Neural Networks							
	A	Perceptrons, Gradient descent and the Delta rule	CO2, CO3						
	B	Adaline, Multilayer networks	CO2, CO3						
	C	Derivation of backpropagation rule Backpropagation	CO2, CO3						
	Unit 2	Algorithm Convergence							
	Unit 3	Hypotheses Evaluating Hypotheses Estimating Hypotheses							
	Α	Evaluating Hypotheses – Estimating Hypotheses	CO3, CO4						
	В	Accuracy, Basics of sampling Theory Comparing Learning Algorithms	CO3, CO4						
	С	Bayesian Learning – Bayes theorem, Naïve Bayes	CO3, CO4						
		classifier, Bayesian belief networks	003,004						
	Unit 4	Computational Learning Theory							
	01111 4	Computational Learning Theory							

		🥿 🎾 Ве	yond Boundaries
Sample Corr	plexity for F		CO2, CO3,
	CO4		
Sample Com	plexity for Ir	ifinite Hypothesis space	CO2, CO3,
Instance-Bas	CO4		
k-Nearest No	eighbor Learr	ning, Locally Weighted	CO2, CO3
Regression,	Radial basis f	function networks	
An illustrativ	ve example, H	Typothesis space search,	CO2, CO3,
	-		CO4
Models of E	volution and	Learning Learning first order	CO2, CO3
rules-sequen			
-	v		
Reinforceme	ent Learning -	The Learning Task, Q	CO2, CO3
Learning	U		
Theory			
CA	MTE	ETE	
30%	20%	50%	
1. Tom. M	. Mitchell, M	Iachine Learning, McGraw Hill	
1. Ethern Al			
	•		
- ·		6	
	Sample Com Instance-Bas k-Nearest No Regression, Genetic Alg An illustrativ Genetic Prog Models of E rules-sequen beam search Reinforceme Learning Theory CA 30% 1. Tom. M Internati 1. Ethern Alj Eastern Econ 2.Bishop, C.	Sample Complexity for Ir Instance-Based Learning k-Nearest Neighbor Learn Regression, Radial basis for Genetic Algorithms An illustrative example, H Genetic Programming Models of Evolution and rules-sequential covering beam search-FOIL Reinforcement Learning - Learning Theory CA MTE 30% 20% 1. Tom. M. Mitchell, M International Edition 1. Ethern Alpaydin, Introd Eastern Economy Edition	Sample Complexity for Finite Hypothesis spaces Sample Complexity for Infinite Hypothesis space Instance-Based Learning k-Nearest Neighbor Learning, Locally Weighted Regression, Radial basis function networks Genetic Algorithms An illustrative example, Hypothesis space search, Genetic Programming Models of Evolution and Learning Learning first order rules-sequential covering algorithms-General to specific beam search-FOIL Reinforcement Learning - The Learning Task, Q Learning Theory CA MTE ETE 30% 20% 50% 1. Tom. M. Mitchell, Machine Learning, McGraw Hill International Edition 1. Ethern Alpaydin, Introduction to Machine Learning. Eastern Economy Edition, Prentice Hall of India 2.Bishop, C., Pattern Recognition and Machine Learning.

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)
1.	CO1	PO1, PO5, PSO1
2.	CO2	PO2, PO5, PSO1, PSO2
3.	CO3	PO2, PO3, PSO2, PSO4
4.	CO4	PO2, PO3, PSO2, PSO4, PSO3

PO and PSO mapping with level of strength for Machine LearningCSE605)

Cos	PO1:	PO2:	PO3:	PO4:	PO5:	PO6:	PO7:	PO8:	PSO1:	PSO2 :	PSO3 :
CO 1	3	1	1	2	3	2	3	2	1	1	
CO 2	1	3	1	2	3	1	3	3	1	2	
CO 3	1	3	3	2	1	1	2	3	1	3	
CO 4	1	3	3	2	1	1	1	3	2	3	

Sch	ool:	School of Engineering and Technology	
	gram:	M.Tech.	
	nch:	M.Tech Data Science DE-6	
1	Course Code	CSE618	
2	Course Title	Big Data Analytics	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Departmental Elective DE-6	
5	Course	The objective of this course is to bring together several ke	y big data
	Objective	technologies used for storage, analysis and manipulation of	
6	Course	CO1: To bring together several key big data technologies	
	Outcomes	storage, analysis and manipulation of data.	
	(5-6)	CO2: Identify and mitigate the challenges in Big data.	
		CO3: To recognize the key concepts of Hadoop framewor	·k,
		MapReduce, Pig, Hive, and No-SQL.	
		CO4: To prepare a sample project in Hadoop API.	
7	Course	This course is to bring together several key big data techn	ologies used
-	Description	for storage, analysis and manipulation of data.	
8	Outline syllabu	IS	CO
	TT A A		Mapping
	Unit 1		
	А	Big Data and its Importance, Four V's of Big Data,	CO1, CO2
		Drivers for Big Data ,	,
	В	Introduction to Big Data Analytics, Big Data Analytics	CO2
		applications.	
	С	Algorithms using map reduce, Matrix-Vector	CO1, CO3
	Unit 2	Multiplication by Map Reduce.	
	A A	Introduction HADOOP: Apache Hadoop	CO1, CO3
	B	Hadoop EcoSystem ,Moving Data in and out of Hadoop,	CO1, CO3 CO2, CO3
	D	Understanding inputs and outputs of MapReduce, Data	CO2, CO3
	С	Serialization.	CO2, CO3
	Unit 3		
	A	Hadoop Architecture, Hadoop Storage: HDFS,	CO2, CO3
		Common Hadoop Shell commands , Anatomy of File	,
	В	Write and Read., NameNode, Secondary NameNode,	CO1, CO2,
		and DataNode,	CO3
		Hadoop MapReduce paradigm, Map and Reduce tasks,	
	G	Job, Task trackers - Cluster Setup – SSH & Hadoop	CO1, CO2,
	C	Configuration – HDFS Administering –Monitoring &	CO3
		Maintenance.	
	Unit 4		
	А	HADOOP ECOSYSTEM AND YARN: Hadoop	CO1, CO2,
		ecosystem components - Schedulers - Fair and Capacity,	CO3
	В	Hadoop 2.0 New Features- NameNode High	CO1, CO2,
	U U	Availability, HDFS Federation,	CO3

								eyond Boundaries
С		MRv2,	, YARI	N, Running	g MR [,]	v1 in YARN.		CO1, CO2,
	•. =							CO3
Un	nit 5	HIVE AND HIVEQL, HBAS: Hive Architecture and						
A						S: Hive Architecture Traditional Data		CO2, CO3
В						orting And Aggre Sub-queries,	gating,	CO1, CO2, CO3
С		HBase Advan monito	conce ce Inde oring a	pts- Advane exing - PIG	ced U , Zoc Base u	Jsage, Schema De okeeper - how it h uses Zookeeper a	elps in	CO1, CO2, CO3
	ode of amination			Practical/V		•		
We	eightage	CA		MTE		ETE		
	stribution	30%		20%		50%		
Te.	xt book/s*	1.	Yakuł	oovich, "Pr	ofess	n t. Smith, Alexey ional Hadoop So 6551071, 2015. 2	lutions",	
	her ferences	3. 4.	Big da "HAD 2012. Arvin Techn Editio Bill F Findir with A and S. Tom	ata ", McGn DOOP: The d Sathi, "B nologies for on, IBM Co ranks, "Tar ng Opportu Advanced A AS Busines	raw H defin ig Da Cha rpora ning nities Analy ss Ser doop	the Big Data Tids in Huge Data St tics", 1st Edition, ries, 2012. : The Definitive (n White, Reilly ruptive , 1st al Wave: reams , Wiley	

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: To bring together several key big data technologies	PO1,PO5,PSO1
	used for storage, analysis and manipulation of data.	
2.	CO2: Identify and mitigate the challenges in Big data.	PO1, PO2, PO3, PO4,
		PO5, PSO1, PSO2, PSO4
3.	CO3: To recognize the key concepts of Hadoop	PO1, PO3, PO4, PSO2,
	framework, MapReduce, Pig, Hive, and No-SQL.	PSO4
4.	CO4: To prepare a sample project in Hadoop API.	PO1, PO3, PO4, PSO2,
		PSO4

2. Addressed to Moderate (Medium=2) extent

PO and PSO mapping with level of strength for Course Name Big Data Analytics (Course Code CSE618)

Average of non-zeros entry in following table (should be auto calculated).

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent
- 3. Addressed to Substantial (High=3) extent

Wireless Sensor Network

Sc	hool: SET	Batch : 2019 onwards	
Pr	ogram: M.Tech.	Current Academic Year: 2020-2021	
Br	anch: CSE (Networking	Semester: II	
	Cyber Security)		
1	Course Code	CSE646 Course Name: Wireless Sensor Ne	twork
2	Course Title	Wireless Sensor Network	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	PG	
5	Course Objective	This course provides a broad coverage of challe	nges and recent
	5	research results related to the design and manag	-
		wireless sensor networks	
6	Course Outcomes	CO1: Architect sensor networks for various app	lication setups
		CO2: Access Energy consumption of sensor no	
		CO3: Devise appropriate data dissemination pro	
		model links cost	
		CO4: Assess Topology control	
		CO5: Assess localization services and task cont	rol
		CO6: Develop knowledge to implement in allie	d applications
7	Course Description	The course covers concepts of wireless sens	or networks,
		architecture and protocols with energy mana	gement issues:
8	Outline syllabus		CO Mapping
	Unit 1	Introduction: Hardware, Architecture & Application	
	A	Introduction: Ad Hoc Wireless Networks,	CO1
		Issues in Ad-Hoc Wireless Networks, Sensor	
		networks as ad hoc networks, Comparison	
		with Ad Hoc Wireless Networks	
	В	Issues and challenges in Designing a Sensor	CO1
		Network, Applications of Sensor Networks	
	С	Sensor Network Architecture-Layered	CO1
		Architecture, Clustered Architecture, Network	
		architecture - Sensor network scenarios - types	
		of sources and sinks - single hop Vs multi hop-	
		multiple sources and sinks – mobility	
	Unit 2	Hardware & Software components	
	А	Hardware components - sensor node overview	
		- controller- memory -communication device -	
		sensors and actuators - power supply of sensor	
		nodes	
	В	Energy consumption of sensor nodes, operation	
		states with different power consumption ,	
		microcontroller energy consumption memory,	
		Radio transceivers computation and	
		communication power consumption.	
	С	OS, Embedded OS, programming paradigms	CO2, CO6

		eyond Boundari
	,protocol stack ,energy and power management, TinyOS and nesC, Gateway ,Need ,WSN to internet ,Internet to WSN	
	,WSN tunneling	
Unit 3	Communication protocols	
A	Physical layer and transceiver design in WSN energy usage profile –choice of modulation scheme, dynamic modulation scaling – antenna.	CO3
В	MAC protocols - Low duty cycle protocols and wake up concepts : S-MAC, Mediation device protocol, Wakeup radio concepts	CO3
C	Naming and addressing – Address and name management in WSN, Assignment of MAC addresses – distributed assignment of network wide addresses	CO3, CO6
Unit 4	Topology & Routing	
A	Routing protocols – Energy efficient – overview – unicast protocols, multipath unicast routing, Geographic routing – position based routing – geocasting	CO4
В	Topology control –controlling topology in flat networks –power control, Clustering – hierarchical networks by clustering – clusters - connecting clusters – rotating cluster heads, Multihop clusters – multilayer of clustering – passive clustering	CO4
C	Time synchronization: need – properties – protocol – LTS – TPSN – RBS – HRTS, clocks and communication delays – interval methods – reference broadcasts	CO4, CO6
Unit 5	Localization – services & task control	
A	Localization and positioning – properties – approaches – alteration problem – Single Hop localization, positioning in multihop environment	CO5
В	Localization services – Ranging techniques – range based localization algorithms – location services	CO5
C	Sensor tasking and control – Task driven sensing – roles of sensor nodes and utilities – information based sensor tasking, Sensor tasking and control – joint routing and information aggregation	CO5, CO6
Mode of examination	Theory	
Weightage Distribution	CA MTE ETE 30% 20% 50%	
Text book/s*	1- "Protocols and Architectures for Wireless Sen Holger Karl, Andreas Willig, <i>Wiley, ISBN:</i> 0-47	

Other References	1. "Wireless Sensor Networks", Cauligi S. Raghavendra,
	Krishna Sivalingam, Taieb M. Znati, Springer, ISBN: 1-4020-
	7883-8
	2. Internet as a resource for references

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: Architect sensor networks for various	PO1, PO3,PO8,PSO3
	application setups	
2.	CO2: Access Energy consumption of sensor nodes	PO1,PO2,PO3,PO8, PSO3
3.	CO3: Devise appropriate data dissemination	PO1,PO2,PO3,PO8,PSO3
	protocols and model links cost	
4.	CO4: Assess Topology control	PO1,PO2,PO3, PO8,PSO3
5.	CO5: Assess localization services and task control	PO1,
		PO2,PO3,PO4,PO5,PO8,PSO3
6.	CO6: Develop knowledge to implement in allied	PO1,PO2,PO3, PO4,
	applications	PO5,PO8,PSO3

PO and PSO mapping with level of strength for Course Name Wireless Sensor Network (Course CodeCSE646)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	-	3	-	-	-	_	1	-	-	2
CO2	3	2	3	-	-	-	-	1	-	-	2
CO3	3	2	3	-	-	-	-	1	-	-	2
CO4	3	2	3	-	-	-	-	1	-	-	2
CO5	3	2	3	2	2	-	-	1	-	-	3
CO6	3	2	3	2	2	-	-	1	-	-	3
Avg.	3	1.6	3	0.6	0.6	_	-	1	-	-	2.3

Sch	ool:	School of Engineering and technology						
Dep	partment	Department of Computer Science and Engineering						
Pro	gram:	M. Tech						
Bra	nch:	M. Tech. (CSE) Networking and Cyber Security						
1	Course Code	CSE616						
2	Course Title	Intrusion detection and prevention	Intrusion detection and prevention					
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course Status	Core /Elective/Open Elective						
5	Course	The objective of this course is to provide an in depth	introduction to					
	Objective	intrusion detection and prevention. The course covers						
		techniques, and tools for monitoring events in comp	=					
		network, with the objective of preventing and detec	-					
		process activity and recovering from malicious behavior.						
-			11.					
6	Course	On successful completion of this module students will be						
	Outcomes	CO1: illustrate in-depth introduction to the Science and A Detection and Prevention	Art of Intrusion					
			rla poplato					
		CO2: demonstrate the skill to capture and analyze networ CO3: analyze packet and detection methods	ik packets					
		CO3: analyze packet and detection methods CO4: analyze and apply Snort rules, outputs, and plug-in	s to detect					
		unauthorized activity	s to detect					
		CO5: apply different protocol analyzers tools						
		CO6: apply different tools related to traffic monitoring, s	nort, toolkits					
7	Course	This course introduces intrusion detection and prevention	n, which is one					
	Description	of the most essential concepts in looking at how threats and attacks are						
	-	detected and mitigated.						
8	Outline syllabu	IS	СО					
			Mapping					
	Unit 1	Introduction						
	A	Intrusion Detection, basics of Intrusion detection and	CO1					
		prevention, Intrusion Detection system and its types,						
		Intrusion Prevention System, History, IDS and IPS						
	D	analysis schemes, Attacks						
	В	Detection approaches: Misuse detection, anomaly	CO1					
		detection, specification-based detection, hybrid						
		detection; Tiered Architecture of Intrusion Detection						
		system and Intrusion Prevention System						

				eyond Boundaries					
С			ack, malformed DNS attack	CO1					
Unit 2	Traffic moni	Traffic monitoring							
А		tcpdump, binary packet capture, formats of tcpdump							
	filters, bit ma	filters, bit masking							
В	packet captur	ing using wire	shark, wireshark display	CO2, CO6					
	filters								
С	Live network	packet capturi	ng, protocol analysis	CO2, CO6					
Unit 3	Packets Ana	lysis							
А	Examination	of fields in TC	Pchecksums, normal and	CO3					
	abnormal tcp	stimulus and r	esponse						
В	Detection me	thods for appli	cation protocols, pattern	CO3					
	matching, pro	otocol decode a	and anomaly detection						
С	Sample attack	ks http, malfor	med dns, DDos, tcp reset	CO3					
	attacks	attacks							
Unit 4	Open source	Open source IDS: Snort							
А	Function of I	Function of IDS, configuration of snort							
В	flow process	of snort, Mode	l of operation sniffer, logger,	CO4, CO6					
	NIDS								
С	Writing snort	rules, writing	a rule for vulnerability	CO4, CO6					
Unit 5	Analyst tooll	kit							
А	ngrep, tcpflov	v, netcat		CO5, CO6					
В	using jpcap to	o create, read/	write, alter and send packets	CO5, CO6					
С	launch arp po	isining, dns po	bisioning attacks using jpcap	CO5, CO6					
Mode of	Theory/Jury/J	Practical/Viva							
examination									
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s	* 1.Intrusion E	Detection & Pre	evention, Carl F. Endorf,						
	Eugene Sc	Eugene Schultz and Jim Mellander, McGraw Hill							
	Profession	Professional, 2004							
Other	1. Metasploit	: The Penetrati	on Tester's Guide by David						
References	Kennedy, J	Jim O'Gorman,	, Devon Kearns, Mati						
	Aharoni								
	2. Internet as	a Resource for	Reference.						

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: illustrate in-depth introduction to the Science and	PO1, PO2, PO3, PO4,
	Art of Intrusion Detection and Prevention	PO5, PO6, PO7, PO8,
		PSO

		🥿 🎾 Beyond Boundaries
2.	CO2: demonstrate the skill to capture and analyze	PO1, PO2, PO4, PO5,
	network packets	PSO
3.	CO3: analyze packet and detection methods	PO1, PO2, PO4, PO5,
		PSO
4.	CO4: analyze and apply Snort rules, outputs, and plug-ins	PO1, PO2, PO3, PO4,
	to detect unauthorized activity	PO5, PO6, PO7, PO8,
		PSO
5.	CO5: apply different protocol analyzers tools	PO1, PO2, PO4, PO5,
		PSO
6.	CO6: apply different tools related to traffic monitoring,	PO1, PO2, PO3, PO4,
	snort, toolkits	PO5, PO6, PO7, PO8,
		PSO

PO and PSO mapping with level of strength for Course Name Intrusion detection and prevention (Course Code CSE616)

Course Code_	CO's	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
Course Name		1								
	CO1	3	3	3	2	2	2	3	3	3
CCEC1C Interview	CO2	1	2	-	1	1	-	-	-	1
CSE616_Intrusion detection and	CO3	1	2	-	1	1	-	-	-	1
prevention	CO4	2	3	3	1	2	2	1	2	3
	CO5	1	1	-	1	1	-	-	-	1
	CO6	2	2	2	1	1	2	1	2	2

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO8	PSO
CSE616	Intrusion detection and prevention	1.5	2.16	2.66	2	1.16	2	1.66	2.33	1.83 3

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

1	Course Code	CSE 606	
2	Course Title	Cloud Services in Mobile	
3	Credits	3	
4	Contact	(3-0-0)	
	Hours		
5	Course	• To understand the need of Cloud services in	
	Objective	mobile App	
6	Course Outcomes (CO)	 CO1: To understand basics and underlying concepts of cloud computing CO2: Apply different cloud programs, platforms, tools, and storage systems CO3: To understand basics of mobile app development in cloud CO4: Build and define phases of mobile application development CO5:Analyse testing and development of mobile app on the cloud. CO6 : Understand the concept of mobile design . 	
7	Prerequisite		СО
			Mapping
8		Course Contents	
8.01	Unit A	Introduction to cloud services	
8.02	Unit A	Introduction to Distributed systems, Distributed	
	Topic 1	computing	CO1
8.03	Unit A	Introduction to Cluster Computing, Introduction to Grid	
	Topic 2	Computing,,Benefits of different computing	
		environments.	CO1
8.04	Unit A	Virtualization, Introduction to Cloud Computing, Basic	
	Topic 3	Paradigms, Models, Data Centers	CO1
8.05	-		001
8.06	Unit B	File and storage services in cloud	
0.00	-	File and storage services in cloud Distributed file systems, Google file system, Google Big	CO1,CO
	Unit B Unit B Topic 1	File and storage services in cloud	CO1,CO 2
8.07	Unit B	File and storage services in cloud Distributed file systems, Google file system, Google Big Table	CO1,CO 2 CO1,CO
8.07	Unit B Unit B Topic 1 Unit B Topic 2	File and storage services in cloudDistributed file systems, Google file system, Google BigTableProgramming frameworks, Mapreduce, Hadoop	CO1,CO 2 CO1,CO 2
	Unit B Unit B Topic 1 Unit B Topic 2 Unit B Topic	File and storage services in cloud Distributed file systems, Google file system, Google Big Table Programming frameworks, Mapreduce, Hadoop Cloud Storage Service providers :AWS and Google,	CO1,CO 2 CO1,CO 2 CO1,CO
8.07 8.08	Unit B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3	File and storage services in cloud Distributed file systems, Google file system, Google Big Table Programming frameworks, Mapreduce, Hadoop Cloud Storage Service providers :AWS and Google, Effective utilization of Cloud Storage	CO1,CO 2 CO1,CO 2
8.07 8.08 8.09	Unit B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3 Unit C	File and storage services in cloud Distributed file systems, Google file system, Google Big Table Programming frameworks, Mapreduce, Hadoop Cloud Storage Service providers :AWS and Google,	CO1,CO 2 CO1,CO 2 CO1,CO 2
8.07 8.08	Unit B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3 Unit C Unit C Topic	File and storage services in cloudDistributed file systems, Google file system, Google Big TableProgramming frameworks, Mapreduce, HadoopCloud Storage Service providers :AWS and Google, Effective utilization of Cloud StorageMobile Application development Framework	CO1,CO 2 CO1,CO 2 CO1,CO 2 CO1,CO
8.07 8.08 8.09 8.10	Unit B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3 Unit C Unit C Unit C Topic 1	File and storage services in cloudDistributed file systems, Google file system, Google Big TableProgramming frameworks, Mapreduce, HadoopCloud Storage Service providers :AWS and Google, Effective utilization of Cloud StorageMobile Application development FrameworkMobile Clients, Developing mobile applications	CO1,CO 2 CO1,CO 2 CO1,CO 2 CO1,CO 3
8.07 8.08 8.09	Unit B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3 Unit C Unit C Topic 1 Unit C Topic	File and storage services in cloudDistributed file systems, Google file system, Google Big TableProgramming frameworks, Mapreduce, HadoopCloud Storage Service providers :AWS and Google, Effective utilization of Cloud StorageMobile Application development FrameworkMobile Clients, Developing mobile applications Integrating networking, the OS and hardware into mobile-	CO1,CO 2 CO1,CO 2 CO1,CO 2 CO1,CO 3 CO1,CO
8.07 8.08 8.09 8.10	Unit B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3 Unit C Unit C Unit C Topic 1	File and storage services in cloudDistributed file systems, Google file system, Google Big TableProgramming frameworks, Mapreduce, HadoopCloud Storage Service providers :AWS and Google, Effective utilization of Cloud StorageMobile Application development FrameworkMobile Clients, Developing mobile applications	CO1,CO 2 CO1,CO 2 CO1,CO 2 CO1,CO 3

	3	of mobile application framewor		ond Boundaries	
8.13	Unit D	Feature and application of M	obile Application		
8.14	Unit D	Integrating with cloud services	, Mobile app development	CO1,CO	
	Topic 1	phases		4	
8.15	Unit D	Features of mobile apps on close	CO1,,C		
	Topic 2	scalability, modifiability, availa		O4	
8.16	Unit D				
	Topic 3	User-interface design for mobil	le applications, Design	4	
	1	principles of user interface			
8.17	Unit E	Testing in Mobile Application	1		
8.18	Unit E Topic			CO1,CO	
	1	,Hybrid and Mobile Web	"FF	5,CO6	
8.19	Unit E Topic			C01,C0	
0.17	2	Application Testing ,Platform	Festing UI Testing	5,CO6	
8.20	² Unit E Topic			C01,C0	
0.20	3	,Zucchini	ottumberendi ora , rippium	5,CO6	
9	5	,Zucchini		3,000	
,				7	
				1	
			-	Г	
			6		
			1		
			1	n	
				_	
				ζ.	
				ı	
				n	
			1		
			1	1	
				ı	
			t		
			i		
)	
		Continuous Assessment	Examination		
	Attendanc	Mandatory	Mandatory 7		
9.11	e		%	Ď	
	Assignme	10 Assignments(no weight)		_	
9.12	nt				
		7Best quizzes(out of 10	L_		
9.13	Quizzes	assignments),30 marks			

Prepared by : Board of Studies, Department of CSE, SUSET

					🥕 Beyo	nd Boundaries	
9.14	Projects						
	Presentati						
9.15	ons						
					Y		
				Yes	e		
9.16	Exam				s		
	Total		30	30			
9.17	Marks		50	50	0		
10			Reading Content				
9.1	Text book*	:	1. Distributed and Clou	d Computing, 1st edi	tion,		
			Morgan Kaufmann, 20)11.			
9.2	other refere	ences	1. Dominic Duggan,	Enterprise Software			
			Architecture and D	esign, Willy Publication	on,		
			2013.				
			2. Internet as a resour	rce for references			

S.	Course Outcome (CO)	Program Outcomes (PO)
No.		
1.	CO1: To understand basics and underlying concepts of cloud computing	PO1, PO3, PO4, PO5
2.	CO2: To understand different cloud programs, platforms, tools, and storage systems	PO1, PO3, PO4, PO5, PSO2
3.	CO3: To understand basics of mobile app development in cloud	PO1, PO2, PO4, PO5
4.	CO4: To understand phases of mobile application development	PO1, PO2, PO4, PO5, PSO1
5.	CO5: To understand testing and development of mobile apps on the cloud.	PO1, PO2, PO3, PO5
6	CO6:Understand the concept of mobile design	PO1, PO3, PO4, PO5

PO and PSO mapping with level of strength for Course Name: Cloud Services in Mobile Applications (cse-606)

1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

Sch	ool:	School of Engineering and technology						
Department		Department of Computer Science and Engineering						
Pro	gram:	M. Tech						
Bra	nch:	M. Tech. (CSE) Networking and Cyber Security						
1	Course Code							
2	Course Title	Applications Programming						
3	Credits	3						
4	Contact							
	Hours	3-0-0						
	(L-T-P)							
	Course Status	Core						
5	Course Objective	Emphasis is placed on procedural programming, algor language constructs common to most high level lang handling through Python Programming.	U ,					
6	Course	Upon successful completion of this course, the student wi	ill be able to:					
	Outcomes	CO1: apply the concept of decision, repetition structures and various data types.CO2: formulate methods and functions to improve readability of programs.CO3: develop a module for Email processing using SMTP.						
	CO4:construct a logical solution by using object-oriented program methodology CO5: build application based python program to interact with datab CO6: design logical solution to solve real life problems using Pytho concept.							
7	Course	Python is a language with a simple syntax, and a powerf	ful set of libraries.					
Description		It is widely used in many scientific areas for data explor is an introduction to the Python programming langu without prior programming experience. We cover data ty object-oriented programming and Email handling	age for students					
8	Outline syllabu	IS	CO Mapping					
	Unit 1	Introduction						
	A	Introduction: History, Python architecture, Variables, Data Types, Operators.Conditional Statements: If, If- else, Nested if-else. Looping: For,While, Nested loops Control Statements: Break, Continue, Pass	CO1,CO6					
	В	Lists:Introduction, Accessing list, Operations, Working with lists, Functionand Methods with Lists	CO1,CO6					
	С	Tuple:Introduction, Accessing tuples, Operations, Working, Functions and Methods with Tuples	C01,C06					

			🡟 🎾 Ве	yond Boundaries
Unit 2	Dictionary, Fu	nctions an		
А	Dictionaries :In	troduction	Accessing values in	CO2,CO6
	dictionaries, W	orking with	n dictionaries,Functions	
В	Functions:Defin	ning a func	tion, Calling a function, Types	CO2,CO6
	of functions, Fu	unction Arg	guments, Anonymous	
	functions, Glob	al and loca	l variables	
С	Exception	Handling:	Definition Exception,	CO2,CO6
	Exceptionhand	ling, Excep	ot clause, Try ? finally clause,	
	User Defined E	Exceptions		
Unit 3	Modules, Ema	il Processi	ng	
А	Modules: Impo	CO3, CO6		
	module, Matple			
В	Contacting Use	r Through	Emails Using Python:	CO3, CO6
	Installing SMT	P python n	odule, Sending email.	
С	Reading from f	ile and sen	ding emails to all users	CO3, CO6
	addressing then			
Unit 4	Object oriente	d progran	iming	
А	OOPs concept :	C04, CO6		
В	Overloading, O	C04, CO6		
С	Python File (C04, CO6		
	Writing operati			
Unit 5	Database Han			
А	Python Databas	CO5,CO6		
	using python, C			
В	Reading and sto	CO5,CO6		
С	Programming u	CO5,CO6		
Mode of	Theory			
examination				
Weightage	CA N	ITE	ETE	
Distribution	30% 2	0%	50%	
Text book/s*	1. The Co	omplete R	eference Python, Martin C.	
	Brown,	McGrwHi	11	
Other	1. Introduc	ction to co	omputing in problem solving	
References	using Py	ython, E Ba	alahurusamy, McGrwHill	
	2. Introduc	ction to pr	ogramming using Python, Y.	
	Daniel I	Liang, Pear	rson	
	3. Masterin	ng Pythor	, Rick Van Hatten, Packet	
	Publishi			
	4. Starting	out with P	ython, Tony Gaddis, Pearson	

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1: Apply the concept of decision,	PO1, PO2, PO8, PSO3
	repetition structures and various data types.	
2.	CO2: Formulate methods and functions to	PO1, PO2, PO3, PO6, PO7, PO8, PSO3
	improve readability of programs.	
3.	CO3: Develop a module for Email processing	PO1, PO2, PO3, PO6, PO7, PO8, PSO3
	using SMTP.	
4.	CO4: Construct a logical solution by using	PO1, PO2, PO4, PO7, PO8, PSO3
	object-oriented programming	
5.	CO5: Build application based python	PO1, PO2, PO3, PO5, PO8, PSO3
	program to interact with data base.	
6.	CO6: Design logical solution to solve real life	PO1, PO2, PO4, PO6, PO8, PSO3
	problems using Python concept.	

PO and PSO mapping with level of strength for Course Name Applications Programming (Course Code)

Applications	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO3
Programming	CO1	3	2	3	-	-	-	-	2	2
	CO2	3	2	3	-	-	-	3	2	2
	CO3	3	2	3	1	-	-	3	2	2
	CO4	3	2	3	1	2	2	2	2	2
	CO5	3	2	3	2	2	2	-	2	3
	CO6	3	2	3	2	2	2	-	2	3

Course Code	Course Name	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO
	Applications Programming	3	2	3	1.5	2	2	2.6	2	2.3

Average of non-zeros entry in following table (should be auto calculated)

Agile Based Software Engineering

Sch	ool:	School of Engineering and technology							
	oartment	Department of Computer Science and Engineering							
-	gram:	M.Tech							
	nch:	Software Engineering							
1	Course Code	CSE644							
2	Course Title								
2	Course Title Credits	Agile Based Software Engineering 3							
4	Contact	3-0-0							
	Hours								
	(L-T-P) Course	Core /Elective/Open Elective							
	Status	Core /Elective/Open Elective							
5		This serves will recycle the understonding of what A cility							
5	Course	This course will provide the understanding of what Agility							
	Objective	and why to employ Agile development, the pitfalls, issues a mistakes to watch out for, and will cover key methodologie							
		Scrum and XP.	sincluding						
6	Course	Students will be able to							
0	Outcomes	CO1: Demonstrate the ability to participate effectively in ag	vile						
	Outcomes	practices/process for software development.	siic						
		CO2:Analyze best and effective Agile Development model	required for						
		Software Project Development.	required for						
		CO3: Apply Scrum &XP practices to projects							
		CO4: Compare agile software development to traditional so	oftware						
		development models.							
		CO5: Test application for feature testing, integration testing	. TDD and						
		BDD testing methods	,,						
		CO6: Choose each of the major agile development methods							
		underscoring their strengths and weaknesses							
7	Course	This course will address what agile methods are and how th	ey are						
	Description	implemented. A variety of agile methods will be described,							
	-	focus will be on Scrum and Extreme Programming. The cou							
		conclude with a discussion of some of the issues facing organizations							
		adopting agile methods.							
8	Outline syllabu	18	CO						
			Mapping						
	Unit 1	Agile Fundamentals							
	А	Overview of traditional software life cycle models.	CO1						
		Problems with the waterfall. Rapid software development.							
		Introduction to Agile. History of Agile: More or less a							
		process?							
	В	Necessity & requirement of Agility in software	CO1						
		development. Agile Manifesto & Principles. Benefits,							
		characteristics and Challenges of Agile methodology.							
	С	Suitability of Agile Methods: When to Use Agile and	CO1						
		When NOT to? Agile misconceptions, Agile hype,							
		Applications of Agile Software development. Agile							
		Lifecycle. Concept of Agile Alliance.							

Unit 2	Agile development		
А	Iterative development Process, Risk-Drive		CO2,CO4
	Driven iterative planning, Time boxed iter	ative	CO6
	development. Incremental development,		
В	Software prototyping: Process, benefits, th	nrow-away	CO2,CO4
	prototypes. Conflicting objectives of Incre		CO6
	development and throw-away prototypes.		
С	Evolutionary and adaptive development.	Classification of	CO2,CO4
-	different Agile Methods.		CO6
Unit 3	Scrum		000
A	SCRUM Roots, Philosophy behind Scrum	Scrum	CO3,CO6
	overview, Key Features, Scrum Values, S		000,000
	Scrum Events-Sprint,		
В	Sprint Planning, Daily Scrum, Sprint Revi	ew Sprint	CO3,CO6
D	Retrospective, Scrum Meetings, Strengths		005,000
	Weaknesses, Characteristics, Pros and cor	is, 10018 allu	
С	Techniques	voducto Doloc	CO3,CO6
C	Scrum artifacts, Scrum practices, Work pr	oducts, Roles,	005,000
	Responsibilities, Common mistakes and		
T T •4 4	misunderstandings, Adoption strategies.		
Unit 4	XP(Extreme Programming)		
А	Method overview, Core values of XP, XF	-	CO3
_	Lifecycle, XP and agile principles, Work		~ ~ ~ ~
В	Roles and Responsilities, Strengths and W	CO3	
	Characteristics, Pros and cons, Tools and		
С	Common mistakes and misunderstandings	· •	CO3,CO6
	strategies, Scrum vs. XP, Testing in XP, 1	Pair	
	Programming.		
Unit 5	Agile testing		
А	Concept of agile testing, Roles and activit	ies on an Agile	CO5
	Team, Traditional vs. Agile testing, Conce		
	Team Approach		
В	Role of Tester in Agile Team, Ten Princip	oles for Agile	CO5
	testers, Six concrete practices for testing of	n agile teams.	
	Organizational and cultural challenges aff	ect tester's role	
	on agile team		
С	Agile testing methods-TDD, ATDD, BDD	, Exploratory.	CO5,CO6
	Agile Testing Lifecycle, Test Plan for Agi	· · ·	,
	Quadrants.	0 0	
Mode of	Theory/Jury/Practical/Viva		
examination	5 5		
Weightage	CA MTE ETE		
Distribution	<u>30%</u> 20% 50%		
Text book/s*	1.Agile Testing: A Practical Guide f	or Testers and Ag	ile Teams
1 CAL UUUK/ 5	2. Agile and Iterative Development:		
	Larman	n manager s Ould	ic by Clarg
Other		opmont Using So	rum
	1. Succeeding with Agile: Software Devel		
References	2. Agile Software Engineering By Orit Ha	izzan, 1 aer Dubin	ѕку.
	3. Internet resources		

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)
1.	CO1: Demonstrate the ability to participate effectively in agile practices/process for software development.	PO1,PO2,PO3,PO5,PO7,PO8,P SO1
2.	CO2:Analyze best and effective Agile Development model required for Software Project Development.	PO1,PO2,PO3,PO5,PO7,PO8,P SO1
3.	CO3: Apply Scrum &XP practices to projects	PO1,PO3,PO4,PO5,PO6,PO7,P 08,PSO1
4.	CO4: Compare agile software development to traditional software development models.	PO1,PO2,PO3,PO7,PO8,PSO1
5.	CO5: Test application for feature testing, integration testing, TDD and BDD testing methods	PO1,PO2,PO3,PO4,PO5,PO6,P O7,PO8,PSO1
6.	CO6: Choose each of the major agile development methods underscoring their strengths and weaknesses	PO1,PO2,PO3,PO4,PO5,PO6,P O7,PO8,PSO1

PO and PSO mapping with level of strength for Course Name Agile based software Engineering(Course Code CSE644)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	P O4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	3	2	2	-	1	-	3	2	3	-	-
	CO2	3	3	2	-	2	-	3	3	3	-	-
	CO3	3	-	3	3	2	3	3	3	3	-	-
	CO4	2	3	2	-	-	-	3	2	3	-	-
CSE644_ Agile based	CO5	3	2	2	2	2	3	3	3	3	-	-
software engineering	CO6	3	3	3	2	2	3	3	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cours e Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	PS O 1	PS O 2	PS 0 3
CSE6 44	Agile based software engineering	2. 8	2.6	2. 3	2. 3	1. 8	3	3	2. 6	3	-	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent

2. Addressed to Moderate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

CSE649: Secure Software Engineering

Sch	ool:	School of Engineering and technology								
	artment	Department of Computer Science and Engineering								
-	gram:	M.Tech								
	nch:	Software Engineering								
1	Course Code	CSE649								
2	Course Title	Secure software Engineering								
3	Credits	3								
4	Contact	3-0-0								
•	Hours									
	(L-T-P)									
	Course Status	Core /Elective/Open Elective								
5	Course	The objective is to demonstrate an understanding for secu	re software							
	Objective	engineering and a formal specification for secure software								
6	Course	Students will be able to:								
	Outcomes	CO1: Outline issues related secure software development								
		methodologies								
		CO2: Select the most appropriate requirement engineering	g approach to							
		secure software development								
		CO3: Identify the implications and impact of secure archi								
		CO4: Analyze challenges of security protocols, functional	and attacker							
		perspectives								
		CO5: Assess adaptations to the development process to make sure a secure deployment								
		CO6: Adapt approaches and tools that support the security								
		the whole systems development lifecycle resulting in soft	ware that is							
7	Course	secure by default. The course describes the security aspects of software deve	lopmont that							
/	Description	are embedded into the system to be developed. It includes								
	Description	architecture design, secure coding, secure deployment and								
		software development methodologies	secure							
8	Outline syllabu		СО							
			Mapping							
	Unit 1	Security a software Issue								
	А	Introduction, the problem, Software Assurance and	CO1							
		Software Security								
	В	Threats to software security, Sources of software	CO1							
		insecurity, Benefits of Detecting Software Security								
	С	What Makes Software Secure: Properties of Secure	CO1							
		Software, Influencing the security properties of software								
	Unit 2	Requirements Engineering for secure software								
	A	Introduction, Misuse and Abuse Cases	CO2							
	В	The SQUARE process Model	CO2,CO6							
	C	Requirements elicitation and prioritization	CO2,CO6							
	Unit 3	Secure Software Architecture and Design								
	A	Introduction, Software security practices for architecture	CO3,CO6							
		and design: Architectural risk analysis.								
	В	Software security knowledge for architecture and	CO3,CO6							

		1 ' 0	•. • • •		leyond Boundaries
		design: Secur			
C			elines, and Att	ack patterns	CO3,CO6
U	nit 4	Security and	Complexity		
A		System Asser	nbly Challenge	es: introduction, security	CO4
		failures			
В		Functional an	d attacker pers	spectives for security	CO4,CO6
		analysis			
C		System comp	lexity drivers a	and security	CO4,CO6
U	nit 5	Governance			
		Software			
Α		Governance a	CO5,CO6		
В		Adopting an e	CO5,CO6		
		How much se			
C		Security and	CO5,CO6		
M	lode of	Theory/Jury/H			
ex	amination				
W	eightage //	CA	MTE	ETE	
Di	istribution	30%	20%	50%	
Te	ext book/s*	1. Software S	ecurity Engine	ering: A Guide for Project	
		Managers, by	Julia H. Allen	, Sean	
		Barnum, Rob	ert J. Ellison, (Gary McGraw, Nancy R.	
		Mead, Addiso	on-Wesley, 1s	t edition, 2008.	
		2. Security M	etrics: Replaci	ng Fear, Uncertainty, and	
		Doubt, by Ar	ndrew Jaquith,	AddisonWesley, 1st edition	
		, 2007			
Ot	ther	1. Developing	g Secure Softw	vare: Jason Grembi, Cengage	
Re	eferences	Learning			
		2. Software S	ecurity : Richa	rd Sinn, Cengage Learning	

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Outline issues related secure software development	PO1,PO2,PO3,PO7,PO8,
	methodologies	PSO1
2.	CO2: Select the most appropriate requirement engineering	PO1,PO2,PO3,PO4,PO5,
	approach to secure software development	PO7,PO8,PSO1
3.	CO3: Identify the implications and impact of secure	PO1,PO2,PO3,PO4,PO5,
	architecture design	PO6,PO7,PO8,PSO1
4.	CO4: Analyze challenges of security protocols, functional	PO1,PO2,PO3,PO4,PO5,
	and attacker perspectives	PO6,PO7,PO8,PSO1
5.	CO5: Assess adaptations to the development process to	PO1,PO2,PO3,PO4,PO5,
	make sure a secure deployment	PO6,PO7,PO8,PSO1
6.	CO6: Adapt approaches and tools that support the security	PO1,PO2,PO3,PO4,PO5,
	concerns in the whole systems development lifecycle	PO6,PO7,PO8,PSO1
	resulting in software that is secure by default.	

PO and PSO mapping with level of strength for Course Name Secure software engineering (Course Code CSE649)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	PO 4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	1	3	2	-	-	-	2	2	3	-	-
	CO2	3	2	2	1	1	-	3	3	3	-	-
	CO3	2	2	2	1	1	2	2	3	3	-	-
	CO4	3	3	2	1	2	2	2	2	3	-	-
CSE649_ secure software	CO5	3	3	2	1	2	2	2	2	3	-	-
engineering	CO6	3	3	2	2	3	2	2	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cours e Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P 0 5	P 0 6	P O 7	P O 8	PS O 1	PS O 2	PS O 3
CSE6 49	secure software engineering	2. 5	2.6	2	1. 2	1. 8	2	2. 1	2. 5	3	I	-

Strength of Correlation

Addressed to Slight (Low=1) extent
 Addressed to Substantial (High=3) extent
 Addressed to Substantial (High=3) extent

2.1 Template A1: Syllabus for Theory Courses (SAMPLE)

Sch	ool:	School of Engineering and technology							
	partment	Department of Computer Science and Engineering MTECH							
	gram:								
	inch:								
1	Course Code	CSE 6							
2	Course Title	Advance Web Analytics							
3	Credits	2							
4	Contact	2-0-0							
•	Hours								
	(L-T-P)								
	Course Status	Core /Elective/Open Elective							
5	Course	An introductory study of Web analytics on how organizat	ions may use						
	Objective	to analyze and measure website traffic which helps in enhancing their business presence.							
6	Course Outcomes	 CO1: Define importance of Web Analytics and Qualitative analysis. CO2:Illustrate data collection options available for strong analytics with pros and cons of each methodology CO3:Identify effective Web analytics strategies and implementation CO4:Examine Key tools and diagnostics associated with Web analytics CO5: Determine basic navigation of Google Analytics Interface. CO6:Elaborate how web analytic is used as a tool for e-Commerce, business research, and market research 							
7	Course Description	This course is an overview of the modern Web Analytica the Web. The motivation behind this course is to give stu understanding of how things work in the Web world from point of view as well as to give the essential outline of open source technologies with use cases.	dents the basic the analytical						
8	Outline syllabu		CO Mapping						
	Unit 1	Introduction							
	А	History, current landscape and challenges, The ROI of Web Analytics , Importance of Web Analytics	CO1						
	В	Data Collection - Importance and Options , Clickstream Data, Outcomes Data, Research Data, Competitive Data	CO2						
	С	Overview of Qualitative Analysis –Heuristic evaluation,Components of Successful Web Analytics Strategy	CO1						
	Unit 2	Web Analytic Fundamentals – Core Analytic							
		Concepts							
	A	Introduction to XML technologies, Web Analytics Process: Key Performance Indicators (KPI),Data Capturing	CO3						
	В	Key features and capabilities of Google analytics, Website content quality and navigation report, discoverability	CO3						

				Beyond Boundarie		
С	Selecting and Co	omparing D		CO3		
	Export of Data,	Cross-Segr	nentation			
Unit 3	Web Data Ana	lysis – Sear	ch Analytics			
А	Performing Inter	rnal Site Sea	arch Analytics, Beginning	CO3		
	Search Engine C					
	Analyzing Pay p					
В	*			CO4		
	-	•	-			
	Analysis	•	•			
С	Introduction of Web analytics tools(OPTIMIZELY,					
,KISSMETRICS, CRAZY EGG, KEY METRICS)						
Unit 4						
A	0		0	CO4		
	effectiveness,					
В	CO4					
С						
	-	-	• •			
Unit 5						
А		CO5				
В	Setting Up Clier	nt Accounts,	, Seven Steps to Creating a	CO5,CO6		
В	0 1		, Seven Steps to Creating a ing Culture	CO5,CO6		
B C	Data-Driven De	cision-Maki	ing Culture	,		
	Data-Driven De	cision-Maki	1 0	CO5,CO6 CO5,CO6		
	Data-Driven De E-Commerce Tr Event Tracking	cision-Maki cacking ,Onl	ing Culture	,		
С	Data-Driven De E-Commerce Tr	cision-Maki cacking ,Onl	ing Culture	,		
C Mode of examination	Data-Driven De E-Commerce Tr Event Tracking Theory/Jury/Pra	cision-Maki cacking ,Onl	ing Culture	,		
C Mode of	Data-Driven De E-Commerce Tr Event Tracking Theory/Jury/Pra	cision-Maki acking ,Onl ctical/Viva	ing Culture ine Campaign Tracking,	,		
C Mode of examination Weightage Distribution	Data-Driven DeE-Commerce TrEvent TrackingTheory/Jury/PraCAM30%20	cision-Maki cacking ,Onl ctical/Viva 1TE 0%	ing Culture ine Campaign Tracking, ETE 50%	,		
C Mode of examination Weightage	Data-Driven DeE-Commerce TrEvent TrackingTheory/Jury/PraCAM30%20Web Analytic	cision-Maki cacking ,Onl ctical/Viva ITE 0% ics : an hour	ing Culture ine Campaign Tracking, ETE			
C Mode of examination Weightage Distribution	Data-Driven DeE-Commerce TrEvent TrackingTheory/Jury/PraCAM30%20	cision-Maki cacking ,Onl ctical/Viva ITE 0% ics : an hour	ing Culture ine Campaign Tracking, ETE 50%	,		
C Mode of examination Weightage Distribution	Data-Driven DeE-Commerce TrEvent TrackingTheory/Jury/PraCAM30%20Web AnalytiJohn Wiley a	cision-Maki acking ,Onl actical/Viva ITE 0% ics : an hour & Sons.	ETE 50% a day, Avinash Kaushik,			
C Mode of examination Weightage Distribution Text book/s*	Data-Driven De E-Commerce Tr Event Tracking Theory/Jury/Pra CA M 30% 20 Web Analyti John Wiley Web Analyti	cision-Maki acking ,Onl actical/Viva <u>ATE</u> 0% ics : an hour & Sons. alytics 2.0 :	ETE 50% a day, Avinash Kaushik, The art of online	,		
C Mode of examination Weightage Distribution Text book/s* Other	Data-Driven De E-Commerce Tr Event Tracking Theory/Jury/Pra CA M 30% 20 Web Analyti John Wiley Web Analyti accountation	cision-Maki cacking ,Onl ctical/Viva <u>1TE</u> 0% ics : an hour & Sons. alytics 2.0 : ibility and so	ETE 50% a day, Avinash Kaushik,	,		
	Unit 3 A B C Unit 4 A B C Unit 5	Export of Data ,Unit 3Web Data AnalAPerforming Inter Search Engine C Analyzing Pay pBHow Google and Acquisition Anal AnalysisCIntroduction of V ,KISSMETRICSUnit 4Measuring Email effectiveness,BLeveraging bend dashboards andCCompetitive inter Reports, SearchUnit 5Implementation A collection of date	Export of Data , Cross-SegrUnit 3Web Data Analysis – SearAPerforming Internal Site SeaSearch Engine Optimization Analyzing Pay per Click EffBHow Google analytic works Acquisition Analysis, Behay AnalysisCIntroduction of Web analyti ,KISSMETRICS, CRAZY IUnit 4Measuring Email and mul A effectiveness,BLeveraging benchmarks and dashboards and create effectCCompetitive intelligence Ar Reports, Search Engine RepUnit 5Implementation of Google A Create Google Analytics Ac collection of data	CSelecting and Comparing Date Ranges, Scheduled Export of Data , Cross-SegmentationUnit 3Web Data Analysis – Search AnalyticsAPerforming Internal Site Search Analytics , Beginning Search Engine Optimization, Measuring SEO Efforts, Analyzing Pay per Click Effectiveness .BHow Google analytic works, Audience Analysis, Acquisition Analysis, Behavior Analysis, Conversion AnalysisCIntroduction of Web analytics tools(OPTIMIZELY, ,KISSMETRICS, CRAZY EGG, KEY METRICS)Unit 4Measuring Email and multi-channel marketing effectiveness,BLeveraging benchmarks and goals for driving actions, dashboards and create effective programs,CCompetitive intelligence Analytics, Competitive Traffic Reports, Search Engine ReportsUnit 5Implementation of Google AnalyticsACreate Google Analytics Account, Tagging and		

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1: Define importance of Web Analytics and	PO1,PO2,PO3,PO8,PSO2
	Qualitative analysis.	
2.	CO2:Illustrate data collection options available	PO1,PO2,PO3,PSO2
	for strong analytics with pros and cons of each	
	methodology	
3.	CO3:Identify effective Web analytics	PO1,PO2,PSO2
	strategies and implementation	
4.	CO4:Examine Key tools and diagnostics	PO1,PSO2

	associated with Web analytics	
5.	CO5:Determine basic navigation of Google	PO1,PO8,PSO2
	Analytics Interface.	
6.	CO6:Elaborate how web analytic is used as a	PO1,PO2,PO3,PO4,PO8,PSO1,PSO2
	tool for e-Commerce, business research, and	
	market research	

PO and PSO mapping with level of strength for Course Name Advance Web Analytics (**Course Code CSE 6**)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	PO 4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PSO 2	PSO 3
	CO1	2	1	2					1		1	
	CO2	2	1	1							2	
	CO3	2	1								2	
	CO4	2									3	
Cse6_ Advance Web	CO5	2							2		3	
Analytics	CO6	3	2	2	1				2	1	3	

Average of non-zeros entry in following table (should be auto calculated).

Course	Course	PO	PO2	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
Code	Name	1		3	4	5	6	7	8	1	2	3

Strength of Correlation

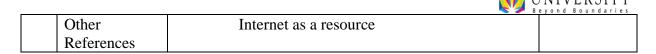
- 1. Addressed to Slight (Low=1) extent
 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

Performance Modeling of Computer Communication Network

Sc	chool: SET	Batch: 20	19 onwards	
Pr	ogram: M.Tech	Current A	cademic Year: 2020-2021	
Bı	ranch: CSE (Networking	Semester:	II	
&	Cyber Security)			
1	Course Code	CSE-629	Course Name: Performance Modeli	ing of
			Computer Communication Networ	rk
2	Course Title		nce Modeling of Computer Commu	nication
		Network		
3	Credits	2		
4	Contact Hours (L-T-P)	2-0-0		
	Course Status	PG		
5	Course Objective		e applies the concepts of available mod	leling
-			, including mathematical and simulation	-
6	Course Outcomes		tify the role of probabilistic, poisson p	
			ain in evaluating network performance	
			sify the various performance models	
			ain the working of queueing theory	
		-	rate the working of petri nets	
			yze various performance models	
			ly the simulation based on pertinets M	Iodal
7	Come Description		•	
7	Course Description		burse examine the methods and concept	
		method	inication network modeling using simi	ulation
8	Outline syllabus	metho	15.	CO Mapping
0	Unit 1	Introducti	ion to probability theory	
	A		oints, events probability, random	CO1
		variable		001
	В	Expectatio	n and other moments, stochastic	CO1
		process		
	С	-	l distribution and poisson process,	CO1
		markov cł		
	Unit 2		nce Modelling	
	A	system, models	odel and modelling, classification of	CO1, CO2
	В	performan	ce models, simulation models	CO1, CO2
	С	Analytical	models	CO1, CO2
	Unit 3	Single ser	ver queueing model	
	А		eueing models	CO3
	В		FS Queuing Models, G M 1-FCFS FCFS Queueing Models	CO3
	С		Dueueing Models, Polling Models	CO3
	Unit 4		Network Model	
	A		euing Networks, Closed Queueing	CO3, CO4

			🥆 🧪 B	eyond Boundaries					
В	BCMP Queue	ing Netwo	rks	CO3, CO4					
С	Hierarchical Q	CO3, CO4							
Unit 5	Stochastic Pe	tri Models	5						
А		,	Numerical Solution of	CO5, CO6					
	Markov Chain	IS							
В	Stochastic Per SPN	tri Net ap	plication, infinite-state	CO5, CO6					
С	Simulation me	ethodology	and statistics	CO5, CO6					
Mode of examination	Theory								
Weightage Distribution	CA	MTE	ETE						
	30%	20%	50%						
Text book/s*	1.Performance	e of Compu	ter Communication Sys	stems: A					
	Model-Based	Approach,	Boudewijn R. Haverkon	rt, 1998 John					
	Wiley & Sons	, Ltd							
Other References	1. Performa	nce Mo	dels and Risk Ma	anagement in					
	Communicatio	ons System	ms Gülpınar, Nalân, I	Harrison, Peter					
	G., Rustem, Berc (Eds.								
	2. Performance Modelling of Communication Networks and								
	Computer Arc	hitectures	: Peter G. Harrison , N	aresh M. Patel					
	3. Internet as s	source of r	eference						

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1. Identify the role of probabilistic, poisson	PO1,PO3,PO8 PSO3
	process and markov chain in evaluating network	
	performance	
2.	CO2.Classify the various performance models	PO1,PO2,PO3,PO8 PSO3
3.	CO3.Explain the working of queueing theory	PO1,PO2,PO3,PO8 PSO3
4.	CO4.Illustrate the working of petri nets	PO1,PO2,PO3,PO8 PSO3
5	CO5.Analyze various performance models	PO1,PO2,PO3,PO4,PO5,PO8
		PSO3
6.	CO6. Apply the simulation based on perti nets Model	PO1,PO2,PO3,PO4,PO5,PO8
		PSO3


PO and PSO mapping with level of strength for Course Name Performance Modeling of Computer Communication Network (Course Code CSE629)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	-	3	-	-	-	-	1	-	-	2
CO2	3	2	3	-	-	-	-	1	-	-	2
CO3	3	2	3	-	-	-	-	1	-	-	2
CO4	3	2	3	-	-	-	-	1	-	-	2
CO5	3	2	3	2	2	-	-	1	-	-	3
CO6	3	2	3	2	2	-	-	1	-	-	3
Avg.	3	1.6	3	0.6	0.6	-	-	1	-	-	2.3

CSP648:Recent Advances in Software Engineering Lab

Sch	nool:	School of E	ngineering	and technology							
Der	partment			iter Science and E	Ingineering						
	gram:	M.Tech	4		8 8						
	anch:	Software Engineering									
1	Course Code	CSP648	88								
2	Course Title		ances in So	ftware Engineering	Lab						
3	Credits	3									
4	Contact Hours	<u> </u>									
•	(L-T-P)		3-0-0								
	Course Status	Compulsory	/Elective								
5	Course	· · ·		ts model using UM	IL class notati	ons					
	Objective		-	and plan the sprint							
	5			do project planning		C					
6	Course			amental principles		nced concepts					
	Outcomes	of analysis a			C						
		CO2: Expla	in the featu	res of JIRA							
		CO3: Const	ruct the pro	ject reports using J	IRA						
				ities using MS Pro	ject						
			-	project conflicts.							
		CO6: Design project using recent tools of software engineering									
7	Course		This course introduces UML Designs-activity, sequence, deployme and component diagram. This course enables students to explore								
	Description			n. This course enab	les students to	explore					
		JIRA, MS P	roject.								
8	Outline syllabus	8				CO					
			<u> </u>			Mapping					
	Unit 1	Software D	<u></u>								
				uence diagram		C01					
	TT :4 0			d Component Diag	ram	CO1					
	Unit 2	Introductio									
		Explore Jira				CO2,CO6					
	11.4.2	Create a pro	0	τ.		CO2,CO6					
	Unit 3	Report gen		U		002 007					
			0	reate a sprint	• • •	CO3,CO6					
	TT •4 4			e task and Generat	ion of report	CO3,CO6					
	Unit 4	Project plan				001000					
		Getting Star			1 /	CO4,CO6					
	TI			and add tasks with	i date	CO4,CO6					
	Unit 5	Task sched		*	A	CO5 CO(
				work Diagram and	Assign the	CO5,CO6					
		resource to t	CO5 CO6								
		Document the work.	CO5,CO6								
	Mode of	Jury/Practic									
	examination										
	Weightage	CA									
	Distribution	60%									
	Text book/s*	-									

PO and PSO mapping with level of strength for Course Name Recent advances in Software Engineering Lab (Course Code CSP648)

Course Code_ Course Name	CO's	P O	PS O	PS	PS							
ivanie		1	2	3	4	5	6	7	8	1	02	03
	CO1	1	1	1	-	-	1	3	2	3	-	-
	CO2	3	3	1	-	-	1	3	2	3	-	-
	CO3	3	3	1	-	-	1	3	3	3	-	-
	CO4	3	3	1	-	-	1	3	3	3	-	-
CSP648_Recent advances	CO5	3	3	2	-	-	1	3	3	3	-	-
in software Engineering	CO6	3	3	2	2	-	2	3	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cour se Code	Course Name	P 0 1	P O2	P 0 3	P 0 4	P O 5	P O 6	P O 7	P 0 8	PS O 1	PS O 2	PS 0 3
CSP6 48	Recent advances in software Engineering	2. 6	2.6	1. 3	2	-	1. 16	3	2. 6	3	-	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

Grid Computing

Sc	hool: SET	Batch : 2019 onwards				
Pr	ogram: M.Tech.	Current Academic Year: 2020-21				
	ranch: CSE (Networking d Cyber Security)	Semester: II				
1	Course Code	CSE607 Course Name: Grid Computing				
2	Course Title	Grid Computing				
3	Credits	3				
4	Contact Hours (L-T-P)	3-0-0				
	Course Status	PG				
5	Course Objective	The student should be enable to gain knowledge on of virtualization and security issues in the grid and t environment.	-			
6	Course Outcomes	CO1: Explain Grid computing infrastructure and ar CO2: Experiment with Grid Computing protocols a CO3: Demonstrate Grid scheduling and monitoring CO4: Apply the concept of Hadoop and other grid r CO5: Identify security issues in grid computing CO6: Compare the cloud environments.	nd models framework			
7	Course Description	This course is intended to computational gravarious type of cloud environments, basic service				
8	Outline syllabus		CO Mapping			
	Unit 1	Introduction				
	A	Evolution of Distributed computing, Scalable computing over the Internet, Technologies for network based systems, clusters of cooperative computers	CO1			
	В	Grid computing Infrastructures, cloud computing, service oriented architecture	CO1			
	С	Introduction to Grid Architecture and standards, Elements of Grid, Overview of Grid Architecture	CO1			
	Unit 2	Grid Computing protocols and models				
	A	High Performance computing – cluster Computing, Peer-to-peer Computing, Internet Computing, Grid Computing	CO2			
	В	Grid Computing Models, Grid protocols	CO2			
	С	Types of Grids: Desktop Grids, Cluster Grids, HPC Grids, Data Grids	CO2			
	Unit 3	Grid Monitoring Architecture and scheduling				
	A	Grid Monitoring Architecture (GMA) - An Overview of Grid Monitoring Systems	CO3			
	В	Grid Scheduling and Resource Management, CO3 Scheduling Paradigms, Working principles of Grid Scheduling with QoS				
	С	QoS based resource provisioning and scheduling in grids	CO3			

Unit 4	Middleware			nd Boundaries				
Α	Introduction Hadoop file sy	1	Framework, Design of FS concepts	CO4				
В			rid Services Architecture nctionality Requirements	CO4				
С		Practical & Detailed view of OGSA/OGSI, Data intensive grid service models, OGSA services.						
Unit 5	Security							
A		n and Aut	d security environment, horization methods, Grid	CO5				
В	Security issue	s in grid co	omputing	CO5				
С	IAM practice availability in cloud	CO6						
Mode of examination	Theory							
Weightage Distribution	CA 200/	MTE	ETE 50%					
Text book/s*	1. Kai Hwa "Distributed a the Future of Publisher, and	30%20%50%1. Kai Hwang, Geoffery C. Fox and Jack J. D"Distributed and Cloud Computing: Clusters, Grids, Clothe Future of Internet", First Edition, Morgan HPublisher, an Imprint of Elsevier, 2012.2. Maozhen Li, Mark Baker, The Grid Core TechnologiWilson & Same 2005						
Other References	 Jason Ver Applications i Tom White O"Reilly, 200 	ner, "Pro n the Cloud e, "Hadoop 9. (Editor), "	Hadoop- Build Scalable d", A Press, 2009 o The Definitive Guide", 1 Introduction to Grid Comp 005	First Edition.				

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Explain Grid computing infrastructure and	PO1, PO3, PO8,PSO3
	architecture	
2.	CO2: Experiment with Grid Computing protocols and	PO1,PO2,PO3, PO8,
	models	PSO3
3.	CO3: Demonstrate Grid scheduling and monitoring	PO1,PO2,PO3, PO8,
	framework	PSO3
4.	CO4: Apply the concept of Hadoop and other grid	PO1,PO2,PO3, PO8,
	middleware	PSO3
5.	CO5: Identify security issues in grid computing	PO1,PO2,PO3,PO4,PO5,
		PO8,PSO3
6	CO6: Compare the cloud environments.	PO1,PO2,PO3,PO4,PO5,
		PO8,PSO3

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	-	3	-	-	-	-	1	-	-	2
CO2	3	2	3	-	-	-	-	1	-	-	2
CO3	3	2	3	-	-	-	-	1	-	-	2
CO4	3	2	3	-	-	-	-	1	-	-	2
CO5	3	2	3	2	2	-	-	1	-	-	3
CO6	3	2	3	2	2	-	-	1	-	-	3
Avg.	3	1.6	3	0.6	0.6	_	_	1	-	-	2.3

PO and PSO mapping with level of strength for Course Name Grid Computing (CSE607)

Ad Hoc Wireless Networks

Sc	hool: SET	Batch : 2019 onwards	S							
	ogram:	Current Academic Year: 2020-2021								
	.Tech.									
-	anch: CSE	Semester: II								
	etworking &	Semester: II								
	0									
	<u>ber Security)</u>		N NT A 1 TT TT/• 1 NT	4 1						
1	Course Code		Course Name: Ad Hoc Wireless No	etworks						
2	Course Title	Ad Hoc Wireless Net	tworks							
3	Credits	3								
4	Contact Hours	3-0-0	0-0							
	(L-T-P)									
	Course Status	PG								
5	Course	This course will enable								
	Objective	1. Understand the	e fundamental principles of Ad-hoc	e Networks and						
		protocols.								
		-	ent and emerging trends in Ad-hoc	Wireless						
		Networks.								
			y management in ad-hoc wireless r	networks						
			ifferent types of MAC protocols.							
6	Course		nd analyze the issues in ad-hoc n	etworks, energy						
	Outcomes	consumption and n	6							
			e challenges in designing MA	C, routing and						
			s for wireless ad-hoc networks.							
			e issues in designing protocols and	d Classifications						
		of Routing Protoco								
			CP issues in ad-hoc networks.							
			e architecture and protocols of	wireless sensor						
		networks.								
			issues in Ad-hoc and wireless sense							
7	Course		nines wireless, ad hoc and sense							
	Description	various aspects of a	routing, mobility, QoS and Energy							
8	Outline syllabus			CO Mapping						
	Unit 1	Introduction								
	A	Cellular and Ad-hoc V	Wireless Networks, Applications	CO1						
		of Ad-hoc Wireless Ne								
	В		reless Networks-Medium Access	CO1						
	-	scheme, security								
	С	· · · · ·	Deployment considerations	CO1						
	Unit 2	MAC Protocols		001						
	A A		, Issues in Designing a MAC	CO2						
	4 x	Protocol for Ad-HOC								
	В		AC protocols-Contention based	CO2						
			based protocols with reservation							
		-	ion based MAC protocols with							
		scheduling Mechanism	-							
	С			CO2						
	C Other MAC protocols- Multi Channel MAC protocol, CO2 Power Control MAC protocol for Ad- Hoc Networks									
		protocol for Au- Hoc Networks								

Unit 3	Routing Protocol	Beyond Boundaries
A	Issues in Designing a Routing Protocol for Ad- Hoc Wireless Networks-Mobility, Hidden and Exposed terminal Problems, Characteristics of an Ideal Routing	CO1,CO3
В	Protocol for Ad Hoc Wireless Networks Classifications of Routing Protocols-Based on Routing Information, Routing Topology, Utilization of Specific resources, Hierarchical Routing Protocol, Power aware Routing Protocol	CO1,CO3
С	Multicast Routing-Introduction, Issues in Multicast Routing Protocols, classification: Tree Based Multicast Routing protocol, Mesh Based Multicast Routing protocol	CO1, CO3
Unit 4	Ad Hoc Transport Layer Protocols	
А	Ad hoc transport layer Issues, Design Goals and Classification of Transport layer Protocol	CO4
В	TCP over Ad-hoc Wireless Networks-Feedback Based TCP,TCP with Explicit Link Failure Notification	CO4
С	TCP-BuS, Ad-hoc TCP and Split TCP.	CO4
Unit 5	Wireless sensor networks	
A	Introduction to wireless sensor networks, Applications of Sensor Networks, Comparison with Ad-hoc Wireless Networks,	CO5, CO6
В	Issues and challenges in Designing a Sensor Network, Sensor Network Architecture	CO2,CO5,CO6
С	Comparison of MAC in ad-hoc and WSN, Energy management in WSN.	CO1,CO5,CO6
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	1. C.Siva Ram Murthy and B.Smanoj, "Ad Hoc Wireles Architectures and Protocols", Pearson Education	s Networks –
Other References	 Feng Zhao and Leonidas Guibas, "Wireless Sensor N Morgan Kaufman Publishers C.K.Toh, "Ad Hoc Mobile Wireless Networks Pearson Education Thomas Krag and Sebastin Buettrich, "Wireless I Networking", O'Reilly Internet as Source of Reference 	",

<u>CO</u> and **PO** Mapping

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Evaluate and analyze the issues in ad-hoc	PO1,PO3,PO8, PSO3
	networks, energy consumption and management.	
2.	CO2: Explain the challenges in designing MAC, routing	PO1, PO2, PO3, PO8,
	and transport protocols for wireless ad-hoc networks	PSO3
3.	CO3: Examine the issues in designing protocols and	PO1, PO2, PO3, PO8,
	Classifications of Routing Protocols	PSO3
4.	CO4: Illustrate TCP issues in ad-hoc networks.	PO1, PO2, PO3, PO8,
		PSO3
5.	CO5: Discuss the architecture and protocols of wireless	PO1, PO2, PO3, PO4, PO8,
	sensor networks.	PSO3
6.	CO6: Contrast the issues in Ad-hoc and wireless sensor	PO1, PO2, PO3, PO4, PO8,
	networks.	PSO3

PO and PSO mapping with level of strength for Course Name Ad Hoc Wireless Networks (Course Code CSE628)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	-	3	-	-	-	-	1	-	-	2
CO2	3	2	3	-	-	-	-	1	-	-	2
CO3	3	2	3	-	-	-	-	1	-	-	2
CO4	3	2	3	-	-	-	-	1	-	-	2
CO5	3	2	3	2	2	-	-	1	-	-	3
CO6	3	2	3	2	2	-	-	1	-	-	3
Avg.	3	1.6	3	0.6	0.6	-	-	1	-	-	2.3

Advanced Wireless Communication

Cab		Sahaal of Engine	wine and Tashna	1]				
Sch		School of Engine							
-	artment	Department of Co	omputer Science	and Engineering					
	gram:	M.TECH -CSE							
	nch:	Networking & Cy	ber Security						
1	Course Code	CSE633							
2	Course Title	Advanced Wireless Communication							
3	Credits	3	0						
4	Contact	3	0						
	Hours								
	(L-T-P)								
	Course	Core /Elective/Ope	en Elective						
_	Status								
5	Course	-		ent developments					
	Objective			of this course, stu	Ũ				
	flavor of new and future wireless communications technologies, the ideas, main concepts, and simple theories behind these technologies, as								
6	0			gies to the future w					
6									
	Outcomes	capacity of wireles		. 1.1.					
		CO2: Illustrate mu			alani ayya ayya a				
		wireless channels	performance of di	igital modulation te	confiques over				
			oggible techniques	to improve the per	formanaa of				
		wireless systems	ossible techniques	to improve the per-					
		•	advantages of mul	ticarrier modulation	n and study of				
		receiver & Transm			i and study of				
		CO6: Categorize d	•	vireless equalizers					
7	Course			tipath channel mod	els, and				
	Description	modulation technic			-10, 4110				
8	Outline syllabu				CO Mapping				
0	Unit 1	WIRELESS CHA	NNELS		e e numpring				
	A			al modeling for	CO1				
		wireless channels,			001				
	В	time and frequen		U	CO1,CO2				
	_	channel models	- , ~	······································					
	С	narrowband fading	g models, wideba	nd fading models.	CO1,CO2				
	-	Space-time channe	-						
	Unit 2	CAPACITY OF		NNELS					
	А	AWGN channel			CO1				
		channels	1 5/ 1						
	В	channel distribution	on Information know	own at transmitter	CO1,CO2				
		or receiver and bot			ŕ				
	С	Capacity of freque			CO1,CO2				
		invariant- time var	-	-					
	Unit 3	PERFORMANC		MODULATION					
		OVER WIRELES							
	А			or probability for	CO3,CO4,CO5				
	**	State and Ord Syll	icor energy, ene	producinty for	203,201,203				

 				<u> </u>	Beyond Boundaries			
	BPSK, QPSF	K, MPSK, MP	AM, MQAM ,					
В	probability fo	or FSK and CF		Error	CO3,CO4,CO5			
С		ability approaction approaction approaction approaches approaches approaches approaches approaches approaches a approaches approaches approaches approaches approaches approaches approaches approaches approaches approaches a		oherent	CO3,CO4,CO5			
Unit 4	DIVERSITY							
А	threshold c		ection combining naximal ratio com ing (EGC)		CO5			
В	t the mitter, erating	CO5						
С	functions(MC Diversity and coherent mod	entially	CO5					
Unit 5	EQUALIZA							
А			nt, equalizer types		CO6			
В	likelihood se	quence estima			CO6			
С			tion, adaptive equaliz	zers	CO6			
Mode of examination	Theory/Jury/	Practical/Viva						
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1]. Andrea South Asia E [2].Theodore Communicat Edition, Pe available).							
Other References	Wireless Co Press [2]. Todd K	 [1]David Tse, Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press [2]. Todd K Moon, Wynn C. Stirling" Mathematical Methods and Algorithms for Signal Processing, 						

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	Model the wireless channel to estimate the path loss	PO1,PO2,PO3,PO4,PSO2,PSO3
	and study of capacity of wireless channels	
2.	Illustrate multipath channel models	PO1,PO2,PO3,PO4,PSO2,PSO3
3.	Evaluate the performance of digital modulation	PO1,PO2,PO3,PO4,PSO2,PSO3
	techniques over wireless channels	
4.	Define the possible techniques to improve the	PO1,PO2,PO3,PO4,PSO2,PSO3
	performance of wireless systems	

5.	Identify the advantages of multicarrier modulation	PO1,PO2,PO3,PO4,PSO2,PSO3
	and study of receiver & Transmitter diversity	
6.	Categorize different types of wireless equalizers	PO1,PO2,PO3,PO4,PSO2,PSO3

PO and PSO mapping with level of strength for Course Name Advanced Wireless Communication (Course Code CSE633)

Course Code_ Course Name	CO' s	Р О 1	P O 2	P O 3	PO 4	Р О 5	P O 6	P O 7	P O 8	Р О 1	PSO 2	PSO 3
	CO1	3	3	3	2	-	-	-	-	-	2	3
	CO2	3	3	2	3	-	-	-	-	-	2	3
CSE633_Advance d Wireless	CO3	2	3	3	3	-	I	-	-	I	2	3
communication	CO4	3	3	3	3	-	I	-	-	I	2	3
communication	CO5	3	3	2	3	-	I	-	-	I	2	3
	CO6	3	2	3	3	-	-	-	-	-	2	3

Average of non-zeros entry in following table (should be auto calculated).

Cour		Р		Р	P	Р	Р	Р	Р	PS	PS	PS
se	Course Name	0	PO	0	0	0	0	0	0	0	0	0
Code		1	2	3	4	5	6	7	8	1	2	3
CSE6	Advanced Wireless	2.	20	2.	2.						2	2
33	communication	8	2.8	6	8	-	-	-	-	-	2	3

Strength of Correlation

1. Addressed to Slight (Low=1) extent

2. Addressed to Moderate (Medium=2) extent 3. Addressed to Substantial (High=3) extent

Software Reliability Engineering

Sch	ool:	School of Engineering and technology									
	partment	Department of Computer Science and Engineering M.Tech									
	gram:										
	inch:	Software Engineering									
1	Course Code	CSE635									
2	Course Title	Software Reliability Engineering									
3	Credits	3-0-0									
4	Contact	3-0-0									
•	Hours										
	(L-T-P)										
	Course Status	Core /Elective/Open Elective									
5	Course	nd									
-	Objective	To learn about the engineering techniques for developing and maintaining reliable software systems. This Course measures the									
		reliability of software systems.									
6	Course	Students will be able to:									
	Outcomes	CO1: Explain the fundamental concepts of Software									
		Reliability									
		CO2: Apply fault handling and failure intensity in software	e systems.								
		CO3: Analyze reliability models for software systems.									
		CO4: Distinguish static and dynamic program complexity									
		CO5: Elaborate Software reliability Estimation									
		CO6: Develop reliable software systems									
7	Course										
	Description	engineering and software reliability process. The course ind									
		introduction to the software reliability process, defining ne	•								
		reliability, developing operational profiles, preparing and e	xecuting								
0		test.									
8	Outline syllabu	18	CO								
			Mapping								
	Unit 1	Introduction and Operational Profile									
	А	The Need for Reliable Software, Software Reliability	CO1								
		Engineering Concepts, Basic definitions, Software									
		practitioners biggest problem									
	В	software reliability engineering approach, software	CO1								
		reliability engineering process, defining the product,									
		Reliability concepts, software reliability and hardware									
		reliability									
	C	developing operational profiles, applying operational	CO1								
		profiles, learning operations and run concepts.									
	Unit 2	Software Reliability Concepts									
	A	Defining failure for the product, common measure for all	CO2								
		associated systems, setting system failure intensity									
		objectives									
	В	determining develop software failure intensity objectives,	CO2								
		software reliability strategies, failures, faults and errors,									
		availability									

		Bey	ond Boundaries			
~	1	bilities and failure intensities,	CO2			
Introduction, Exponential F	spective and Implementation, lass of Models, Weibull and	CO3,CO6				
Infinite Failur	e Category M		CO3,CO6			
C Software Reliability Prediction in Early Phases of the Cycle, software reliability growth modeling						
Software Me	bility Assessment					
	-	n Complexity, Dynamic	CO4,CO6			
Software Con	nplexity and S	oftware Quality	CO4,CO6			
	* · ·		CO4,CO6			
	,					
Introduction,	CO5					
Time/Structure Based Software Reliability Estimation, Benefits and approaches of SRE, SRE during						
SRE during in	nplementation	phase, SRE during	CO5,CO6			
Theory/Jury/I	Practical/Viva					
CA	MTE	ETE				
30%	20%	50%				
by Michael R Press and Mc 2. Software R	 Handbook of Software Reliability Engineering Edited by Michael R. Lyu, published by IEEE Computer Society Press and McGraw-Hill Book Company. Software Reliability Engineering, John D. Musa, 					
4th Edition, J 2. Fault tolera PA Lee, PHI, 3. Fault tolera Pradhan D K						
	predicting bas Software Rel Introduction, Exponential F Gamma Failu Infinite Failun Model Relation Software Relif Cycle, software Software Me Introduction, Program Com Software Com Software Com Software Relif Software Relif Software Relif Software Tes Introduction, profiles Time/Structur Benefits and a requirements SRE during in Maintenance Theory/Jury/F CA 30% 1. Handbook by Michael R Press and Mc 2. Software R second edition 1. Practical R 4th Edition, Ju 2. Fault tolera PA Lee, PHI, 3. Fault tolera Pradhan D K 4. Reliability	predicting basic failure interSoftware Reliability ModeIntroduction, Historical PersExponential Failure Time ClassInfinite Failure Category MeModel RelationshipSoftware Reliability PredictCycle, software reliability PredictCycle, software reliability PredictCycle, software Reliability ModeliSoftware Metrics for ReliaIntroduction, Static ProgramProgram ComplexitySoftware Reliability ModeliSoftware Testing and ReliaIntroduction, Overview of SprofilesTime/Structure Based SoftwBenefits and approaches of requirements phaseSRE during implementationMaintenance phaseTheory/Jury/Practical/VivaCAMTE30%2.0%1. Handbook of Software Reliability Engisecond edition Tata McGrawIn Practical Reliability EngiSoftware Reliability EngiSoftware Reliability EngiSaftware Reliability EngiSoftware Reliability EngiSo	system and component reliabilities and failure intensities, predicting basic failure intensity Software Reliability Modeling Survey Introduction, Historical Perspective and Implementation, Exponential Failure Time Class of Models, Weibull and Gamma Failure Time Class of Models Infinite Failure Category Models, Bayesian Models, Model Relationship Software Reliability Prediction in Early Phases of the Life Cycle, software reliability growth modeling Software Metrics for Reliability Assessment Introduction, Static Program Complexity, Dynamic Program Complexity Software Reliability Modeling Software Reliability Modeling Software Reliability Modeling Software Testing and Reliability Introduction, Overview of Software Testing, Operational profiles Time/Structure Based Software Reliability Estimation, Benefits and approaches of SRE, SRE during requirements phase SRE during implementation phase, SRE during Maintenance phase Theory/Jury/Practical/Viva CA MTE ETE 30% 20% 50% 1. Handbook of Software Reliability Engineering Edited by Michael R. Lyu, published by IEEE Computer Society Press and McGraw-Hill Book Company. 2. Software Reliability Engineering, John D. Musa, second edition Tata McGraw-Hill. 1. Practical Reliability Engineering, Patric D. T. O connor 4th Edition, John Wesley & Sons, 2003. 2. Fault tolerance principles and Practice, Anderson and PA Lee, PHI, 1981. 3. Fault tolerance computing-Theory and Techniques, Pradhan D K (Ed.): Vol 1 and Vol 2, Prentice hall, 1986. 4. Reliability Engineering, E. Balagurusamy, Tata			

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes (PSO)
1.	CO1: Explain the fundamental concepts of	PO1,PO2,PO3,PO6,PO7,PO8,PSO1
	Software Reliability	
2.	CO2: Apply fault handling and failure intensity	PO1,PO2,PO3,PO6,PO7,PO8,PSO1
	in software systems.	

		🥆 🥓 Beyond Boundaries
3.	CO3: Analyze reliability models for software	PO1,PO2,PO3,PO6,PO7,PO8,PSO1
	systems.	
4.	CO4: Distinguish static and dynamic program	PO1,PO2,PO3,PO6,PO7,PO8,PSO1
	complexity	
5.	CO5: Elaborate Software reliability Estimation	PO1,PO2,PO3,PO6,PO7,PO8,PSO1
6.	CO6: Develop reliable software systems	PO1,PO4,PO5,PO6,PO7,PO8,PSO1

PO and PSO mapping with level of strength for Course Name Software Reliability Engineering (Course Code CSE635)

Course Code_ Course Name	CO' s	P 0 1	P 0 2	P 0 3	P O4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	2	1	2	-	-	1	1	1	3	-	-
	CO2	2	1	2	-	-	1	2	2	3	-	-
	CO3	1	1	1	-	-	1	1	1	3	-	-
	CO4	1	1	2	-	-	1	1	-	3	-	-
CSE635_Software	CO5	2	1	2	-	-	1	1	2	3	-	-
reliabilty Engineering	CO6	3	-	-	2	2	1	2	2	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cours e Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P 0 5	P 0 6	P O 7	P O 8	PS O 1	PS O 2	PS O 3
CSE6 35	Software reliabilty Engineering	1. 8	1	1. 8	2	2	1	1. 3	1. 6	3	-	-

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent
- 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

2.1 Template A1: Syllabus for Theory Courses

Sc	hool:	School of Engineering and technology							
	partment	Department of Computer Science and Engineering							
	ogram:								
	anch:								
1	Course	CSE6							
	Code								
2	Course	Web Engineering							
	Title								
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course	Core /Elective/Open Elective							
	Status								
5	Course	This course aims to introduce the methods and techniques us	ed in Web-						
	Objective	based system development.							
6	Course	CO1: Define basic concepts of Web Engineering							
	Outcomes	CO2: Contrast developments in web application architecture	with more						
		traditional tiered approaches.							
		CO3: Identify the web engineering methodologies for Web a	pplication						
		development	ashnalagiag						
		CO4:Analyze and transform data using XML and its related technologiesCO5:Select the appropriate framework components in creation ofwebservice solutionCO6. Develop effective approaches to solve a real life challenges.							
7	Course	Students will be familiar with web application development s							
,	Description	and environments currently available on the market. Students							
	Description	the concepts, principles and methods of web engineering.							
8	Outline syllab		СО						
	5		Mapping						
	Unit 1	Introduction							
	А	Introduction to Web Engineering: Need of Web	CO1						
		Engineering, Web Applications and their Categorization,							
		Characteristics of Web Applications,							
	В	Software Engineering v/s Web Engineering, Difference	CO1, CO2						
		between a web application and a software, Evolutionary							
		web development process							
	С	HTTP, SMTP, POP3, MIME, IMAP, Domain Name Server	CO1						
	Unit 2	HTML,CSS & Javascript							
	А	HTML basic tags, various links implementation, image,	CO3						
		table formatting, Lists, form design.							
	В	Cascading style sheet, inline styles, embedded style, linking	CO3						
		external style sheets							
	C	JavaScripts: Introduction to scripting, user input/output,	CO3						
		memory concepts, arithmetic, decision making, control							
		statement, functions, event handling in javascript.							
	Unit 3	XML & Document Object Model							

A XML, syntax, well form XML document, DTD, scher	ma CO4
B Introduction, modelling a document, DOM nodes and	l trees, CO4
Traversing and modifying a DOM tree	
C DOM collections, Dynamic styles, summary of DOM	CO4
objects and Collections	
Unit 4 Web Services	
A Introduction to Web Services, UDDI, SOAP, WSDL,	CO5
B Roles in a Web Services Architecture, Operations in a	a Web CO5
Service Architecture, Artifacts of a Web Service, Web	b
Services Development Lifecycle	
C Ajax–Improving web page performance using Ajax,	CO5
Programming in Ajax.	
Unit 5 WEB APPLICATION ARCHITECTURES	
A Introduction- Components of a Generic Web Application	tion CO5,CO6
Architecture, Layered Architectures, Data-aspect	
Architectures,	
B Database-centric Architectures Architectures for	CO5,CO6
Multimedia Data, MVC	
C Web Services Stack, XML Messaging to Web Service	es CO5,CO6
Mode of Theory	
examination	
WeightageCAMTEETE	
Distribution 30% 20% 50%	
Text 1.Roger Pressman, "Web Engineering: A Practitioner	's
book/s* Approach", McGraw-Hill Higher Education	
2. Deitel and Deitel, Internet and World Wide Web: H	How to
Program, 4th edition, Prentice Hall, 2009	
Other 1.Web Services Conceptual Architecture (WSCA 1.0)	
References https://www.csd.uoc.gr/~hy565/docs/pdfs/papers/wsc	a.pdf
2.Internet as source of Reference.	

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: Define basic concepts of Web Engineering	PO3,PO8,PSO1
2.	CO2: Contrast developments in web application	PO2,PO8,PSO1
	architecture with more traditional tiered approaches.	
3.	CO3: Identify the web engineering methodologies for	PO2,PO8,PSO1
	Web application development	
4.	CO4: Analyze and transform data using XML and its	PO4,PO8
	related technologies	
5.	CO5:Select the appropriate framework components in	PO2,PO3,PO8
	creation of webservice solution	
6.	CO6. Develop effective approaches to solve a real life	PO1,PO2,PO3,PO4,PO5,P
	challenges.	O8,PSO1,PSO2

PO and PSO mapping with level of strength for Course Name Web Engineering (Course Code cse6)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P O 3	PO 4	P O 5	P O 6	P O 7	P 0 8	PS O 1	PSO 2	PSO 3
	CO1			1					2	2		
	CO2		1						2	2		
	CO3		1						2	2		
	CO4				1				2			
CSE6_Web	CO5		1	1					2			
Engineering	CO6	1	2	1	2	1			3	1	2	

Average of non-zeros entry in following table (should be auto calculated).

Cou rse Cod e	Course Name	P 0 1	P O2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	Р О 9	P O 1 0	P 0 1 1	P O 1 2	PS O 1	PS O 2	PS O 3
CSE 6	Web Engineerin g	1	1.3	1	1. 5	1	0	0	2. 2	1. 75	2	0	1	1.3	1	1.5

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

CSE608: Natural Language Computing

1	Course Code	CSE608 Course Name: Natural Language Co	omputing							
2	Course Title	Natural Language Computing								
3	Credits	3								
4	Contact Hours (L-T-P)	3-0-0								
	Course Status	PG								
5	Course Objective	intelligent web searching, speech recognition, and	in applications such as information retrieval and extraction, intelligent web searching, speech recognition, and machine translation. These applications will involve various statistical and							
6	Course Outcome	 After the completion of this course, students will be able to: CO-1. <i>Identify</i> Linguistic phenomena and an ability to model them with formal grammars. CO-2. <i>Illustrate</i> proper experimental methodology for training 								
		and evaluating empirical NLP systems. CO-3. <i>Use</i> probabilities, construct statistical m and trees, and estimate parameters using	 and evaluating empirical NLP systems. CO-3. Use probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods. 							
		 CO-4. <i>Compare</i> algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics. CO-5. <i>Integrate</i> knowledge representation, inference, and relations to the artificial intelligence. CO-6. <i>Support</i> Machine Translation techniques in intelligent 								
7	Course Description	systems. This course introduces natural language co techniques and tools. Those are frequen understanding and developing the explorator techniques, and knowledge discovery and intellige	tly required for ory data analysis							
8	Outline syllabus	teeningues, and knowledge discovery and memge	CO Mapping							
0	Unit 1	Introduction								
	A	Definition, History, Applications, Goals.	CO1							
	В	Regular expressions and Automata,	CO1, CO2							
	С	Morphology and Finite State Transducers.	CO1, CO2							
	Unit 2	N-grams:								
	А	Introduction, Simple (Unsmoothed) N-Grams,	CO2							
	В	Smoothing: Add-one smoothing, Witten-Bell Discounting,	CO2,CO3							
	С	Good-Turing Discounting, Back off, Deleted Interpolation. Entropy	CO2, CO3							
	Unit 3	HMM								
	А	Overview	CO3							
	В	Viterbi Algorithm	CO3, CO4							
	С	Syntax: Word Classes and Part-of Speech Tagging, Context Free Grammars for English,	CO3, CO4							

			🥆 🥟 Bey	ond Boundaries
	Parsing with C	Context-Fre	ee Grammars.	
Unit 4	Classification			
A	Word Sense D Restriction Ba	0	tion: Selection biguation,	CO3, CO4
В		Machine I	Learning, Supervised	CO4, CO5
С	Bootstrapping Methods, Dict	CO4, CO5		
Unit 5	Machine Tran			
А	Introduction, Differences,	Language S	Similarities and	CO5, CO6
В	Approaches, i design.	CO5, CO6		
С	Steps involve design.	CO5, CO6		
Mode of examination	Theory			
Weightage Distribution	CA	MTE	ETE	
	30%	20%	50%	
Text book/s*	Introducti Linguistic 2) Grosz, B.J	on to Nat s, and Spec J., Sparck J anguage	artin, "Speech and Langu tural Language Process ech Recognition" Prentice ones, K. & Webber, B.L. processing", Los Alte	ing Computational e Hall. . (eds) "Readings in
Other References	Benjamin 4) Bharti, Ak	Cummings shar, Chai Processing	tanya Vineet, Sangal Raj g", Prentice Hall.	-

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	Identify Linguistic phenomena and an ability to	PO1,PO5,PSO1
	model them with formal grammars.	
2.	<i>Illustrate</i> proper experimental methodology for	PO1, PO2, PO3, PO4,
	training and evaluating empirical NLP systems.	PO5, PSO1, PSO2, PSO4
3.	Use probabilities, construct statistical models over	PO1, PO3, PO4, PSO2,
	strings and trees, and estimate parameters using	PSO4
	supervised and unsupervised training methods.	
4.	<i>Compare</i> algorithmic description of the main	PO1, PO3, PO4, PSO2,
	language levels: morphology, syntax, semantics, and	PSO4
	pragmatics.	
5.	<i>Integrate</i> knowledge representation, inference, and	PO4, PO5, PSO2, PSO3
	relations to the artificial intelligence.	
6.	<i>Support</i> Machine Translation techniques in intelligent	PO1, PO4, PO5, PO6,
	systems.	PSO3

Cos	PO1:	PO2:	PO3:	PO4:	PO5:	PO6:	PO7:	PO8:	PSO1:	PSO2:	PSO3:
CO1	3	1	1	2	3	2	3	2	1	2	
CO2	3	3	3	3	3	2	3	3	1	3	
CO3	3	2	3	3	2	2	2	3	1	3	
CO4	3	2	3	3	2	2	2	3	1	3	
CO5	1	1	2	3	3	2	2	3	3	2	
CO6	3	2	2	3	3	3	2	2	3	2	

PO and PSO mapping with level of strength for Course Name: Natural Language Computing (Course Code CSE608)

Strength of Correlation

1. Addressed to Slight (Low=1) extent

2. Addressed to Moderate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

Sch	ool:	School of Engineering and technology								
Dep	partment	Department of Computer Science and Engineering								
Program: Branch:		M. Tech								
Bra	nch:	M. Tech. (CSE) Networking and Cyber Security								
1	Course Code	CSE641								
2	2 Course Title Malware Analysis, Detection & Prevention									
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course Status	Elective								
5	Course	The objective of this course is to provide an insight to fu	indamentals of							
	Objective	malware analysis, detection and prevention such as diff	ferent types of							
		malware, static and dynamic analysis, functionality	and detection							
		technique of malware.								
6	Course	On successful completion of this module students will be	able to:							
	Outcomes	CO1: illustrate the nature of malware, its capabilities, type	es and its							
		analysis								
		CO2: apply the tools and methodologies used to perform	•							
		CO3: apply the tools and methodologies used to perform	dynamic							
		analysis.								
		CO4: explain executable formats, Windows internals and	API, and							
		analysis techniques.								
		CO5: utilize the techniques of signature-based and non-si	gnature based							
		of malware detection.	h 1							
		CO6: identify and apply the techniques for real world pro	blems in the							
7	Course	domain This course is to provide students with an overview of the	accordents and							
/	Course Description	This course is to provide students with an overview of the	-							
	Description	fundamentals of malware, static analysis, dynamic analysis, malware functionality, Covert malware launching, malware detection techniques								
		and Case Studies.	on teeninques							
8	Outline syllabu		СО							
Ū			Mapping							
	Unit 1	Introduction	······································							
	A	Introduction to malware, OS security concepts, malware	CO1							
		threats, evolution of malware.								
	В	Malware types, viruses, worms, rootkits, Trojans, bots,	CO1							
		spyware, adware, logic bombs,								
	С	Malware analysis, static malware analysis, dynamic	CO1							
		malware analysis.								
	Unit 2	Static Analysis								
	A	Antivirus Scanning: A Useful First Step, Hashing: A CO2								

		Beyond Boundaries						
	Fingerprint for Malware, Finding Strings, Packed and							
	Obfuscated Malware, Portable Executable File Format,							
	Linked Libraries and Functions							
В	Static Analysis in Practice, PotentialKeylogger.exe: An	CO2, CO6						
	Unpacked Executable, PackedProgram.exe: A Dead							
	End, The PE File Headers and Sections							
С	Malware analysis in virtual machines : The Structure of	CO2, CO6						
	a Virtual Machine, Creating Your Malware Analysis							
	Machine, Configuring VMware, Using Your Malware							
	Analysis Machine							
Unit 3	Dynamic Analysis							
A	Sandboxes: The Quick-and-Dirty Approach, Using a	CO3						
	Malware Sandbox, Sandbox Drawbacks, Running							
	Malware, Monitoring with Process Monitor, The							
	Procmon Display, Filtering in Procmon							
В	Viewing Processes with Process Explorer: The Process	CO3, CO6						
	Explorer Display, Using the Verify Option, Comparing	000,000						
	Strings, Using Dependency Walker, Analyzing							
	Malicious Documents. Comparing Registry Snapshots							
	Walicious Documents. Comparing Registry Snapshots with Regshot, Faking a Network : Using ApateDNS, Monitoring with Netcat							
С	Packet Sniffing with Wireshark, Using INetSim, Basic	CO3, CO6						
C	Dynamic Tools in Practice	005,000						
Unit 4	Malware Functionality							
A	•	CO4						
A	Downloaders and Launchers, Backdoors, Credential Stealers	04						
В	Persistence Mechanisms, Privilege Escalation, Covering	CO4						
	Its Tracks—User-Mode Rootkits							
С	Covert malware launching- Launchers, Process	CO4						
	Injection, Process Replacement, Hook Injection,							
	Detours, APC injection							
Unit 5	Malware Detection Techniques							
A	Signature-based techniques: malware signatures, packed	CO5						
	malware signature, metamorphic and polymorphic							
	malware signature							
В	Non-signature based techniques: similarity-based	CO5						
	techniques, machine-learning methods, invariant							
	inferences							
С								
Č	Smartphone (Apps) Security	CO6						
Mode of	Theory/Jury/Practical/Viva							
examination	Theory/July/Tractical/ Viva							
	CA MTE ETE							
Weightage	CA MTE ETE							

Distribution	30%		20%	50%					
Text book/s*	1.	Michael	Sikorski and A	ikorski and Andrew Honig, "Practical					
		Malware	Analysis : The	e Hands-On Guide to					
		Dissectir	ng Malicious So	oftware", No Starch					
		Press,20	12.						
Other	1.	Jamie Bu	tler and Greg	Hoglund, "Rootkits:					
References		Subvertin							
		2005.							
	2.	Dang, Ga							
		Engineer	ring", Wiley, 20	014.					
	3.	Reverence	d Bill Blunden,	"The Rootkit Arsenal:					
		Escape a	nd Evasion in t	the Dark Corners of the					
		System"	Second Edition	n, Jones & Bartlett, 2012.					
	4.	Monnapp	Monnappa K A, "Learning Malware Analysis:						
		Explore	the concepts, to	ools, and techniques to					
		analyze a	and investigate	Windows malware"					

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: illustrate the nature of malware, its capabilities,	PO2, PO3. PO6, PO7,
	types and its analysis	PSO
2.	CO2: apply the tools and methodologies used to perform	PO1, PO2, PO3, PO5,
	static analysis.	PO6, PSO
3.	CO3: apply the tools and methodologies used to perform	PO1, PO2, PO3, PO5,
	dynamic analysis.	PO6, PSO
4.	CO4: explain executable formats, Windows internals and	PO2, PO3, PO5, PO7,
	API, and detection and prevention techniques	PSO
5.	CO5: utilize the techniques of signature-based and non-	PO1, PO2, PO3, PO4,
	signature based of malware detection.	PO5, PO8, PSO
6.	CO6: identify and apply the techniques for real world	PO1, PO2, PO3, PO4,
	problems in the domain	PO7, PO8, PSO

PO and PSO mapping with level of strength for Course Name Malware Analysis,
Detection & Prevention (Course Code CSE641)

Course Code_	CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
Course Name										
	CO1	-	1	1	-	-	2	2	-	1
CSE641_Mal	CO2	2	2	2	-	2	1	-	-	2
ware Analysis,	CO3	2	2	2	-	2	1	-	-	2
Detection &	CO4	-	1	1	-	1	-	1	-	1
Prevention	CO5	2	2	2	2	2	-	-	2	2
	CO6	3	3	3	2	-	-	3	2	3

Average of non-zeros entry in following table (should be auto calculated).

Course	Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
Code										
CSE641	Malware Analysis,	2.25	1.83	1.83	2	1.75	1.33	2	2	1.83
	Detection &									
	Prevention									

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent
- 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

School: School of Engineering and technology										
De	epartment	Department of Computer Science and Engineering								
Pr	ogram:	M. Tech								
Br	anch:	M. Tech. (CSE) Networking and Cyber Secur	rity							
1	Course Code	CSE617								
2	Course Title	Advanced Cryptography								
3	Credits	3	3							
4	Contact Hours (L-T-P)	3-0-0								
	Course Status	Elective								
5	Course Objective	The main objective of the course is to Introduce to students Advance theories, techniques of Cryptography. Applications that are frequently required for understanding and transmission of data across networks.								
6	Course Outcomes	On successful completion of this module studen	ts will be able to:							
		CO1: Evaluate different cryptographic protocols	5							
		CO2: Apply advanced cryptographic Protocols v	with mathematical							
		analysis.								
		CO3: Identify the security services in different r								
		CO4: Demonstrate vulnerabilities, mechanisms	to identify							
		vulnerabilities/threats/attacks.								
		CO5: Compare various advanced cryptograph	nic protocolsused for							
		Network Security.	. 1 10							
		CO6: Compare various Advanced algorithm of	cryptography used for							
7	Course	Information Security.	ringinlag and practice							
/	Description	This course will provide a survey of both the p of advanced cryptography. It covers the cryptog								
	Description									
		addressed by a mathematical solutions on network security capability, and explored by providing a solution of Hash Function and Digital								
		Signaturenetwork security technology.	i unetion und Digital							
8	Outline syllabus		CO Mapping							
	Unit 1	Basic Concept of Network Security								
		Cryptographic Protocols	CO1							
	А	Review of modern cryptographic techniques.	CO1							
	В	Authentication, digital signatures, Key	CO1,CO2							
		exchange, Time stamping services, Undeniable								
		digital Signatures, Proxy signatures, Group								
		signatures, Fail stop digital signatures.								
	С	Zero knowledge Proofs, Zero Knowledge								
		proofs of identity, Blind signatures, Identity								
		based public key cryptography.								
	Unit 2	Cryptographic Techniques	CO2							
	А	Mathematics behind cryptographic key,	CO2, CO6							

						🥿 🎾 Beyond Boundaries		
	symmetric key length and public key length,							
	Birthday atta							
В	Block Ciphe	r Te	chniques	- Luc	ifer, Madryga,	CO2, CO6		
New DES, FEAL-4, REDOC								
С	IDEA, MME	B , C <i>I</i>	AST, BLO	OWFI	SH, CRAB,			
	RC5.							
Unit 3	Hash Funct	ions				CO3		
А	One way has	h fu	nctions -	MD2	, MD4, MD-5.	CO3,CO4		
В	SHA, RIPM	ED,	HAVAL.			CO3, CO6		
С	Key Exchang	ge A	lgorithms	s - Sta	tion to Station,			
	Shamir's Alg	gorit	hm, CON	ISET				
Unit 4	Digital Sign	atur	es			CO4		
А	DSA, DSA v	varia	nts, Ghos	t sign	ature	CO4,CO5		
	algorithms, I	Disci	rete Loga	rithm	ic Signature			
	Schemes.							
В	Ong-Schnorn	-Sh	amir Sign	ature	Scheme,	CO4		
	Electronic Si	gna	tures in G	lobal	and National			
	Commerce A	Act.						
С	Identification	n sch	nemes - F	eige-	Fiat–Shamir			
	identification	n sch	neme, The	e Guil	lou-Quisquater			
	protocol, Sch		-	e.				
Unit 5	Real Life Pr	oble	ems			CO5		
А	IBM secret k	tey e	exchange	proto	col, Kerberos	CO5		
В	PGP, Smart	card	s, PKCS			CO6		
С	Message sec	urity	v protocol	, Priv	acy Enhanced			
	mail, SESAN	ЛE						
Weightage	CA		MTE	ETH	Ξ			
Distribution	30%		20%	50%)			
Text book/s*	1. Steven Ga	lbra	ith, "Publ	ic Ke	y Cryptography	",Cengage Learning.		
Other References	1. Raymond	R .]	nd Network Security",					
	Pearson Edu	catio	on.					
	2. Willam S	talliı	ngs, "Cry	ptogr	aphy and Netwo	ork Security", Pearson		
	Education.							
	3. Internet as	a re	esource fo	or refe	rences			

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1:Evaluate different cryptographic protocols	PO2, PO3. PO6, PO7,
		PSO

		🡟 🌽 Beyond Boundaries
2.	CO2: Apply advanced cryptographic Protocols with	PO1, PO2, PO3, PO5,
	mathematical analysis.	PO6, PSO
3.	CO3: Identify the security services in different real life	PO1, PO2, PO3, PO5,
	scenarios.	PO6, PSO
4.	CO4: Demonstrate vulnerabilities, mechanisms to	PO2, PO3, PO7, PSO
	identify vulnerabilities/threats/attacks.	
5.	CO5: Compare various advanced cryptographic	PO2, PO3, PO4, PO5,
	protocolsused for Network Security.	PO8, PSO
6.	CO6: Compare various Advanced algorithm of	PO1, PO2, PO3, PO4,
	cryptography used for Information Security.	PO7, PO8, PSO

PO and PSO mapping with level of strength for Course Name Advanced Cryptography (CSE617)

Course Code_	CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
Course Name										
	CO1	-	2	1	-	-	2	2	-	2
	CO2	2	2	2	-	2	1	-	-	2
Advanced Cryptograph	CO3	2	2	2	-	2	1	-	-	2
Cryptograph y	CO4	-	2	1	-	-	-	1	-	1
y	CO5	-	2	2	2	2	-	-	2	2
	CO6	2	3	3	2	-	-	3	2	3

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
CSE617	Advanced Cryptography	2	2.16	1.83	2	2	1.33	2	2	2

Strength of Correlation

1. Addressed toSlight (Low=1) extent 2. Addressed toModerate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

CSE647: Component Based Software Engineering

Sch	ool:	School of Engineering and technology								
	artment	Department of Computer Science and Engineering M.Tech								
	gram:									
	nch:	Computer Science and Engineering								
1	Course Code	CSE 647								
2	Course Title	Component Based Software Engineering								
3	Credits	Somponent Bused Software Engineering								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course Status	Core /Elective/Open Elective								
5	Course	Component-based software engineering, as an emerging	development							
	Objective	paradigm, targets very similar goals by focusing on the a								
		software systems from components and emphasizing sof								
		This course Describe technical platforms conditions for a	-							
	~	with the development of larger component-based softwar	re systems.							
6	Course	Students will be able to:								
	Outcomes	CO1: Define component based software development, m	odels and							
		approaches	ilding							
		CO2: Demonstrate the principles and role of teams in bu component based software development.	nung							
		CO3: Identify the processes involved in Design of Softw	are Component							
		Infrastructures and study existing models	are component							
		CO4: Demonstrate the learnt principles in effective reuse	e and							
		maintenance of software								
		CO5: Survey technologies that support implementation of	of component							
		based software development								
		CO6: Design and maintain software using technologies	and standard							
		for component based software								
7	Course	The course provides knowledge on the essentials of component-based								
	Description	software engineering main characteristics of components								
		component models. This course creates awareness on sol								
		development processes for component-based systems and understand relations between software architecture and c								
		models.	omponent							
8	Outline syllabu		СО							
U			Mapping							
	Unit 1	Introduction								
	А	Introduction to Component Based Development:	CO1							
		Definition of a Software Component and its elements								
	В	The Component Industry Metaphor	CO1							
	С	Component Models and Component Services	CO1							
	Unit 2	Software Engineering Practices								
	A	Practices of Software Engineering	CO2							
	B	Roles for Component-Based Development	CO2							
	С	From Subroutines to Subsystems: Component-Based	CO2							
		Software Development								

r				leyond Boundaries			
Unit 3	Design of So	ftware Con	nponent				
А		1	nd the UML, Component	CO3,CO6			
	Infrastructure	es : Placing	Software Components in				
	Context						
В			Components and Connectors, An	CO3,CO6			
			onent-Based Development				
C		hitecture, S	oftware Architecture Design	CO3,CO6			
	Principles						
Unit 4	Managemen						
А	Measuremen	t and Metr	ics for Software Components	CO4,CO6			
В	The Practical	Reuse of	Software components,	CO4,CO6			
	Selecting the	e Right CC	OTS Software				
С	The Evolutio	n, Maintena	nce and Management of	CO4,CO6			
	Component-l	Based Syste	ms				
Unit 5	5 Component Technologies						
А	Overview of	Overview of the CORBA Component Model					
В	Enterprise Ja	avaBeans C	Component Model	CO5,CO6			
С	Software Ag	ents as Ne	xt Generation Software	CO5,CO6			
	Components						
Mode of	Theory/Jury/	Practical/Vi	va				
examinatio		1					
Weightage		MTE	ETE				
Distributio		20%	50%				
Text book/	· · · ·		oftware Engineering, G.T.				
			incill, Addison- Wesley,				
	Pearson Educ						
Other			C.Szyperski, D.Gruntz and				
References	,	S.Murer, Pearson Education.2. Software Engineering, Roger S. Pressman, 6thedition,					
	Tata McGrav						
			, Ian Sommerville, seventh				
	edition, Pears						
		0 0	Principles and Practice, Hans				
	Van Vliet, 3 ^r	^u edition, W	iley India.				

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Define component based software development,	PO1,PO3,PO6,PO7,PO8
	models and approaches	,PSO1
2.	CO2: Demonstrate the principles and role of teams in	PO1,PO3,PO4,PO5,PO6
	building component based software development.	,PO7,PO8,PSO1
3.	CO3: Identify the processes involved in Design of	PO1,PO2,PO3,PO4,PO5
	Software Component Infrastructures and study existing	,PO6,PO7,PO8,PSO1
	models	
4.	CO4: Demonstrate the learnt principles in effective reuse	PO1,PO2,PO3,PO4,PO5
	and maintenance of software	,PO6,PO7,PO8,PSO1

		i seyona soundarie
5.	CO5: Survey technologies that support implementation	PO1,PO2,PO3,PO4,PO7
	of component based software development	PO8,PSO1
6.	CO6: Design and maintain software using technologies	PO1,PO2,PO3,PO4,PO5
	and standard for component based software	,PO6,PO7,PO8,PSO1

PO and PSO mapping with level of strength for Course Name Component Based Software Engineering (**Course Code CSE647**)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	2	-	1	-	-	1	2	1	3	-	-
	CO2	1	-	1	1	1	1	2	2	3	-	-
	CO3	2	1	2	1	1	2	2	2	3	-	-
CSE647_ Component	CO4	2	1	2	1	2	2	2	2	3	-	-
Based Software	CO5	3	1	2	1	-	-	2	2	3	-	-
Engineering	CO6	3	3	2	3	2	3	2	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cou rse Cod e	Course Name	P 0 1	P O2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	PS O 1	PS O 2	PS O 3
CSE 647	Compo ent Based Software Engineering	2. 1	1.5	1. 6	1. 4	1. 5	1. 8	2	2	3	-	-

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent
- 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

Sc	hool: SET	Batch : 2019 onwards										
	ogram: M.Tech	Current Academic Year: 2020-2021										
_	anch: CSE	Semester: II										
1	Course Code	CSP646 Course Name: Wireless Sensor Netw	vork lab									
2	Course Title	Wireless Sensor Network Lab										
3	Credits	1										
4	Contact Hours	0-0-2										
	(L-T-P)											
	Course Status	PG										
5	Course Objective	This course provides a broad coverage of challenges and latest research results related to the design and management of wireless sensor networks										
6	Course Outcomes	 CO1: Explain the basic concepts of wireless sensor networks, sensing, computing and communication tasks CO2: Describe and explain radio standards and communication protocols adopted in wireless sensor networks CO3: Describe and explain the hardware, software and communication for wireless sensor network nodes CO4 Explain the architectures, features, and performance for wireless sensor network systems and platforms CO5: Describe and analyse the specific requirements of application in wireless sensor networks for energy efficiency, computing, storage and transmission CO6:Evaluate the significance of scientific studies in wireless sensor networks 										
7	Course	The course covers concepts in sensor networks, its e	energy issues									
0	Description	and challenges.	CO Magnina									
8	Outline syllabus Unit 1	Introduction, Handman, Analitecture & Analization	CO Mapping									
	A	Introduction: Hardware, Architecture & Application Understand IP forwarding within a LAN and across a router	CO1									
	В	Study the working of spanning tree algorithm by varying the priority among the switches.	CO1									
	С	Understand the working of "Connection Establishment" in TCP usingNetSim.	CO1									
	Unit 2	Hardware & Software components										
	A	Study the throughputs of Slow start + Congestion avoidance (OldTahoe) and Fast Retransmit (Tahoe) Congestion Control Algorithms.	CO2									
	В	Study how the Data Rate of a Wireless LANCO2(IEEE 802.11b) networkvaries as the distance between the Access Point and the wireless nodesCO2										
	С	isvariedCO2Study the working and routing table formation of Interior routingprotocols, i.e. Routing Information Protocol (RIP) and Open ShortestCO2										

		N	🖻 🌽 Beyond Boundari		
PathFirst (OSPF)					
Communication protoco	ols				
Plot the characteristic c traffic for a	curve thro	oughput versus offe	ered CO3		
Slotted ALOHA system	n				
Understand the impact of and investigate	of bit err	or rate on packet er	rror CO3		
the impact of error of a network	ı simple l	ub based CSMA /	CD		
To determine the optim persistent CSMA / CD	um persi	stence of a p-	CO3		
network for a heavily lo	oaded bu	s capacity.			
Analyze the performance	Analyze the performance of a MANET, (running				
MAC) with increasing i	node den	sity			
• •			CO4		
· , ,	le				
	3GP CO4				
<u> </u>					
•			CO5		
		1			
	• •				
	. Compa	re this with the			
		1 1 ¹ 6 T 1			
	ne unoug	input of the CK CP	Ľ		
	ng of inte	ernet of things (IoT	[']). CO5, CO6		
	115 OF 1110	and or unings (101	,. [005,000		
Jury/Practical/Viva					
j / 1					
	MTE	ETE			
CA					
)%	40%			
60% 0)%	40%	Networks". Holge		
60%0"Protocols and Archite")% ectures fo	40% r Wireless Sensor I			
60% 0)% ectures fo <i>Wiley, IS</i>	40% r Wireless Sensor I BN: 0-470-09510-5	5		
	Communication protoc Plot the characteristic of traffic for a Slotted ALOHA system Understand the impact and investigate the impact of error of a network To determine the optim persistent CSMA / CD network for a heavily le Topology & Routing Analyze the performan CSMA/CA (802.11b) i MAC) with increasing Analyze the performan CSMA/CA (802.11b) i mobility Study the working of Routing table Localization – services Analyze the scenario sl transmits data to Node obtain the theoretical th IEEE802.15.4 standard simulation result. To analyze how the op (Primary User)affects t (Secondary User)	Communication protocols Plot the characteristic curve throus traffic for a Slotted ALOHA system Understand the impact of bit errow and investigate the impact of error of a simple for network To determine the optimum persists persistent CSMA / CD network for a heavily loaded bustor Topology & Routing Analyze the performance of a MCSMA/CA (802.11b) in MAC) with increasing node dent Analyze the performance of a MCSMA/CA (802.11b) in MAC) with increasing node dent Analyze the performance of a MCSMA/CA (802.11b) in MAC) with increasing node dent Analyze the performance of a MCSMA/CA (802.11b) in MAC) with increasing node dent Analyze the scenario shown, wh transmits data to Node 2, with not obtain the theoretical throughput IEEE802.15.4 standard. Company simulation result. To analyze how the operational (Primary User)affects the throug (Secondary User) Introduction and working of inter-	PathFirst (OSPF) Communication protocols Plot the characteristic curve throughput versus offer traffic for a Slotted ALOHA system Understand the impact of bit error rate on packet er and investigate the impact of error of a simple hub based CSMA / network To determine the optimum persistence of a p- persistent CSMA / CD network for a heavily loaded bus capacity. Topology & Routing Analyze the performance of a MANET, (running CSMA/CA (802.11b) in MAC) with increasing node density Analyze the performance of a MANET, (running CSMA/CA (802.11b) in MAC) with increasing node mobility Study the working of BGP and formation of H Routing table Localization – services& task control Analyze the scenario shown, where Node 1 transmits data to Node 2, with no path loss and obtain the theoretical throughput based on IEEE802.15.4 standard. Compare this with the simulation result. To analyze how the operational behavior of Incum (Primary User)affects the throughput of the CR CP (Secondary User) Introduction and working of internet of things (IoT Jury/Practical/Viva		

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Explain the basic concepts of wireless sensor	PO1, PO2, PO8,PSO3
	networks, sensing, computing and communication tasks	

		🥆 🥟 Beyond Boundarie
2.	CO2: Describe and explain radio standards and	PO1, PO2, PO3, PO6,
	communication protocols adopted in wireless sensor	PO7, PO8, PSO3
	networks	
3.	CO3: Describe and explain the hardware, software and	PO1, PO2, PO3, PO6,
	communication for wireless sensor network nodes	PO7, PO8, PSO3
4.	CO4 Explain the architectures, features, and	PO1, PO2, PO4,
	performance for wireless sensor network systems and	PO7,PO8,PSO3
	platforms	
5.	CO5: Describe and analyse the specific requirements of	PO1, PO2, PO3, PO5,
	applications in wireless sensor networks for energy	PO8, PSO3
	efficiency, computing, storage and transmission	
6.	CO6:Evaluate the significance of scientific studies in	PO1, PO2, PO4,
	wireless sensor networks	PO6,PO8,PSO3

PO and PSO mapping with level of strength for Course Name Wireless Sensor Network (Course Code CSP646)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PS7	PO8	PSO1	PSO2	PSO3
CO1	2	2	-	-	-	-	-	2	-	-	3
CO2	3	3	2	-	-	2	2	3	-	-	3
CO3	2	2	2	-	-	2	2	2	-	-	3
CO4	1	2	-	2	-	-	2	3	-	-	3
CO5	2	2	1	-	3	-	-	2	-	-	3
CO6	1	3	-	2	-	2	-	2	-	-	3
Average	1.83	2.33	0.83	0.67	0.5	1	1	2.5	_	-	3

Sch	ool:	School of Engineering and technology	Beyond Boundaries			
Dep	artment	Department of Computer Science and Engineering				
Pro	gram:	M. Tech				
Bra	nch:	M. Tech. (CSE) Networking and Cyber Security				
1	Course Coo	le CSP616				
2	Course Tit	le Intrusion detection and prevention Lab				
3	Credits	1				
4	Contact	0-0-2				
	Hours					
	(L-T-P)					
	Course Star	tus Core /Elective/Open Elective				
5	Course Objective	The objective of this course is to provide an in depth intrusion detection and prevention. The course covers in techniques, and tools for monitoring events in compu- network, with the objective of preventing and detec process activity and recovering from malicious behavior.	methodologies, ater system or			
6	CourseOn successful completion of this module students will be able to:OutcomesCO1: illustrate and able to perform scanning using nmap.CO2: demonstrate the skill to capture and analyze network packetsCO3: analyze packet and detection methodsCO4: analyze and apply Snort rules, outputs, and plug-ins to detectunauthorized activityCO5: apply different protocol analyzers toolsCO6: apply different tools related to traffic monitoring, snort, toolk					
7	Course	This course introduces intrusion detection and prevention	, which is one			
	Description	_				
		detected and mitigated.				
8	Outline syl	labus	СО			
			Mapping			
	Unit 1	nmap				
	Α	Performa an experiment to demonstrate	CO1			
	B	1. Download and install nmap.	CO1			
	C	2. Use nmap with different options to scan open ports.	CO1			
		3. Perform OS fingerprinting, ping scan, tcp port scan, udp				
		port scan, etc. using nmap				
	Unit 2	Traffic monitoring				

			JNIVEKSIIY eyond Boundaries						
1. Performa an ex	periment to d	emonstrate how to perform	CO2, CO6						
binary packet cap	oture, formats	of tcpdump filters, bit							
masking using tc	pdump								
2. Performa an ex	xperiment to de	emonstrate how to sniff for							
router traffic by u	using the tool v	wireshark							
- Download and	d install wires	hark network analyzer.							
- Capturing liv	e network dat	a							
- Open, save ar	nd merge Cap	ture Files							
- Working with	a captured pack	kets							
Packets Analysis	s								
Performa an expe	eriment to dem	onstrate	CO3						
-									
-	-								
		1 1							
01		•							
-		onstrate	CO4, CO6						
-									
-	_								
0 0	U U								
		lew Rule							
-	eriment to dem	onstrate	CO5, CO6						
-			000,000						
	•								
		1 001 1							
		istoning attacks using jpeup							
Theory/Jury/Prac	tical/Viva								
30%	20%	50%							
Text1.Intrusion Detection & Prevention , Carl F. Endorf,book/s*Eugene Schultz and Jim Mellander, McGraw Hill									
						-			
Professional, 2									
Professional, 2		Tester's Guide by David							
Professional, 2 1. Metasploit: Th	e Penetration O'Gorman, De	evon Kearns, Mati Aharoni							
	 binary packet cap masking using tc 2. Performa an ex- router traffic by u Download an Capturing liv Open, save ar Working with Packets Analysis Performa an expetance in the standard s	binary packet capture, formats masking using tcpdump 2. Performa an experiment to d router traffic by using the tool y - Download and install wires - Capturing live network dat - Open, save and merge Cap - Working with captured pace Packets Analysis Performa an experiment to dem 1. Examination of fields in TCI abnormal tcp stimulus and resp 2. Detection methods for applic matching, protocol decode and attacks http, malformed dns , 1 Open source IDS: Snort Performa an experiment to dem 1. Installing Snort into the Ope 2. Configuring and Starting the 3. Defines Snort rules to detect 4. Write and Add Snort Rule 5. Triggering an Alert for the N Analyst toolkit Performa an experiment to dem 1. TCP/ UDP connectivity usin 2. Create , read/write, alter and 3. launch arp poisining, dns poi Theory/Jury/Practical/Viva	1. Performa an experiment to demonstrate how to perform binary packet capture, formats of tcpdump filters, bit masking using tcpdump 2. Performa an experiment to demonstrate how to sniff for router traffic by using the tool wireshark . Download and install wireshark network analyzer. . Capturing live network data . Open, save and merge Capture Files . Working with captured packets Packets Analysis Performa an experiment to demonstrate 1. Examination of fields in TCPchecksums, normal and abnormal tcp stimulus and response 2. Detection methods for application protocols, pattern matching, protocol decode and anomaly detection 3. Sample attacks http, malformed dns , DDos, tcp reset attacks Open source IDS: Snort Performa an experiment to demonstrate 1. Installing Snort into the Operating System. 2. Configuring and Starting the Snort IDS. 3. Defines Snort rules to detect the intrusions. 4. Write and Add Snort Rule 5. Triggering an Alert for the New Rule Analyst toolkit Performa an experiment to demonstrate 1. TCP/ UDP connectivity using ngrep, tcpflow, netcat. 2. Create , read/write, alter and send packets using jpcap 3. launch arp poisining, dns poisioning attacks using jpcap Theory/Jury/Practical/Viva						

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: illustrate and able to perform scanning using	PO1, PO2, PO3, PO4, PO5,
	nmap.	PO6, PO7, PO8, PSO
2.	CO2: demonstrate the skill to capture and analyze	PO1, PO2, PO4, PO5, PSO
	network packets	
3.	CO3: analyze packet and detection methods	PO1, PO2, PO4, PO5, PSO
4.	CO4: analyze and apply Snort rules, outputs, and	PO1, PO2, PO3, PO4, PO5,
	plug-ins to detect unauthorized activity	PO6, PO7, PO8, PSO
5.	CO5: apply different protocol analyzers tools	PO1, PO2, PO4, PO5, PSO
6.	CO6: apply different tools related to traffic	PO1, PO2, PO3, PO4, PO5,
	monitoring, snort, toolkits	PO6, PO7, PO8, PSO

PO and PSO mapping with level of strength for Course Name Intrusion detection and prevention (Course Code)

Course Code_	CO's	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
Course Name		1								
	CO1	3	3	3	2	2	2	3	3	3
CCDC1C Interview	CO2	1	2	-	1	1	-	-	-	1
CSP616_Intrusion detection and	CO3	1	2	-	1	1	-	-	-	1
prevention	CO4	2	3	3	1	2	2	1	2	3
	CO5	1	1	-	1	1	-	-	-	1
	CO6	2	2	2	1	1	2	1	2	2

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO8	PSO
	Intrusion detection and prevention	1.5	2.16	2.66	2	1.16	2	1.66	2.33	1.83 3

Strength of Correlation

1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

Sch	ool: SET	Batch:								
Pro	gram: BTE	CH Current Academic Year:								
Bra	nch:CSE	Semester:								
1	Course Co	ode CSP 606								
2	Course T	itle Cloud Services in Mobile Applications Lab								
3	Credits	1	1							
4	Contact H	ours 0-0-2								
	(L-T-P)									
	Course St	atus Compulsory/Elective								
5	Course	The objective is to understand the need of Cloud serv	ices in mobile							
	Objective	Арр								
6	Course	CO1: Able to design basic concepts of cloud computing								
	Outcomes	CO2: Setting up different tool of cloud in mobile								
		CO3: Build application in android.								
		CO4 :Testing and development of mobile app.								
		CO5: Experiment with Grid Computing protocols and m	odels							
		CO6: Compare the cloud environments using any Tool.								
7	Outline sy	llabus	СО							
			Mapping							
	Unit 1	Introduction to cloud services								
		1. Create an account on any online android emulator	CO1							
		(e.g. AWS,GenyMotion)								
		2. Configure a basic android emulator .								
	Unit 2	File and storage services in cloud								
		3. Write a program to create a small android application	CO1,CO2							
		with some internal storage(Use Dynamo DB for								
		Storage).								
		4. Create a list maker app in AWS.								
	Unit 3	Mobile Application development Framework								
		5. Handle a complete CRUD operation in Android.	CO3							
		6. Setup facebook sign-in in AWS.								
	Unit 4	Application of Mobile Application								
		7. Setup Google sign in on AWS.	CO2,CO4,C							
		8. Create a project on AWS mobile hub.	05							
	Unit 5	Testing in Mobile Application								
		9. Test and compile a calculator application on Android	CO2,CO4,C							
		Studio.	O5							
		10. Test and compile a calculator application on cloud.								
	Tool	Android Studio / AWS Cloud								
	Use									
	Mode of	Jury/Practical/Viva								
	examina									

tion				eyona boundarres
Weighta	CA	MTE	ETE	
ge	60%	0%	40%	
Distribut				
ion				
Text	-			
book/s*				
Other				
Referenc				
es				

PO and PSO mapping with level of strength for Course Name Cloud Services in Mobile Applications Lab (Course Code CSP 606)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	P O4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	2	1	2	2	-	-	3	3	3	-	-
	CO2	2	1	2	2	-	-	3	3	3	-	-
CSP606_ Cloud Services in	CO3	2	1	2	2	-	-	3	3	3	-	-
Mobile Applications Lab	CO4	2	1	2	2	-	-	3	3	3	-	-
	CO5	2	1	2	2	-	-	3	3	3	-	-
	CO6	3	3	2	2	2	-	3	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cour		Р		Р	Р	Р	Р	P	Р	PS	PS	PS
se	Course Name	0	Р	0	0	0	0	0	0	0	0	0
Code		1	02	3	4	5	6	7	8	1	2	3
CSP	Cloud Services in Mobile	2.	12	2	2	2		2	2	2		
606	Applications Lab	1	1.3	2	2	2	-	3	3	3	-	-

Strength of Correlation

Addressed to Slight (Low=1) extent
 Addressed to Substantial (High=3) extent
 Addressed to Substantial (High=3) extent

Agile Based Software Engineering Lab

Sch	ool:	School of Engineering and technology								
	artment	Department of Computer Science and Engineering								
-	gram:	M.Tech								
	nch:	Software Engineering								
1	Course Code	CSP644								
2	Course Title	Agile Based Software Engineering Lab								
3	Credits	2								
4	Contact Hours	0-0-2								
	(L-T-P)									
	Course Status	Compulsory/Elective								
5	Course	This course provides an overview of ClickUp a projec	t management							
	Objective	tool that is used to assist organizations in streamlining structure, promoting compartmentalization between departments.	a hierarchical							
6	Course Outcomes	Students will be able to: CO1: Define the process management activities. CO2: Outline the task management activities CO3: Choose the different time management events CO4: Analyze the integration of software with other app CO5: Assess team collaboration and device agnostic CO6: Build tasks, documents, chats, goals, timelines and daily operations of project management.								
7	Course Description	With agile methodologies, client portals, Gantt cha tracking, resource management and collaboration tools help to improve the automation and collaboration for team.	, ClickUp can							
8	Outline syllabus	8	CO Mapping							
	Unit 1	Process management								
		Streamlines and automates the steps required to ensure custom statuses are completed.	CO1,CO6							
		Streamlines and automates the steps required to ensure recurring checklists and status templates are completed.	CO1,CO6							
	Unit 2	Task management								
		Filter and search tasks and sort all important details	CO2,CO6							
	II	Create sidebars and use the drag-and-drop option	CO2,CO6							
	Unit 3	Time management	CO3,CO6							
		To schedule time, manage workforce capacity and organize important events.	03,000							
		Implement two-way calendar sync and Gantt charts	CO3,CO6							
	Unit 4	Integrations								
		To integrate other applications within the system	CO4,CO6							
		Provide connectivity among popular productivity tools	CO4,CO6							
		such as API, GitLab, Slack, Harvest and more.	201,200							
	Unit 5	Team collaboration & Device agnostic								
		To embed links and set permissions to increase productivity and teamwork between the workforces.	CO5,CO6							

				i 🔍 🌽	leyond Boundaries						
		To downloa	d and integr	rate the software solution on all	CO5,CO6						
		platforms a	nd to use the	e application with other mobile							
		or desktop s	or desktop services like Amazon Alexa, Google								
		Assistant, C	Assistant, Chrome and Image Markup.								
Mode	of	Jury/Practic	Jury/Practical/Viva								
examin	nation	-	-								
Weigh	tage	CA	MTE	ETE							
Distrib	ution	60%	0%	40%							
Text be	ook/s*	Internet as a	resource								
Other		NIL									
Refere	nces										

PO and PSO mapping with level of strength for Course Name Agile based software engineering Lab (Course Code CSP644)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	P O4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	2	1	2	2	-	-	3	3	3	-	-
	CO2	2	1	2	2	-	-	3	3	3	-	-
CSP644_ Agile based	CO3	2	1	2	2	-	-	3	3	3	-	-
software engineering lab	CO4	2	1	2	2	-	-	3	3	3	-	-
	CO5	2	1	2	2	-	-	3	3	3	-	-
	CO6	3	3	2	2	2	-	3	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cour se Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P O 5	P O 6	P 0 7	P 0 8	PS 0 1	PS O 2	PS 0 3
CSP6 44	Agile based software engineering lab	2. 1	1.3	2	2	2	-	3	3	3	-	-

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent 3. Addressed to Substantial (High=3) extent
- 3. Addressed to Substantial (High=3) extent

Secure Software Engineering Lab

Scł	nool:	School of Engineering and technology									
	partment	Department of Computer Science and Engineering									
	ogram:	M.Tech									
	anch:	Software Engineering									
1	Course Code	CSP 649									
2	Course Title	Secure Software Engineering Lab									
3	Credits										
4	Contact Hours	0-0-2									
4	(L-T-P)	0-0-2									
	Course Status	Compulsory/Elective									
5	Course	Compulsory/Elective	avalopment and								
3		Course objective it to integrate secure software d	evelopment and								
6	Objective	patterns into software engineering.	fterrano apopuniter								
6	Course Outcomes	CO1: Demonstrate various aspects and principles of software security CO2: Illustrate Configuring server securely									
	Outcomes										
		CO3: Inspect, identify and apply security mechanisms CO4: Test for software security using test cases and pr	ioritizing the								
		test cases	ionuzing the								
		CO5: Explain security issues and secure software									
		CO6: Discuss and compare software engineering pract	ices and								
		standards related to software security									
7	Course	This course will introduce the practical approaches and	tools that								
,	Description	support the security concerns in the whole systems dev									
	Description	lifecycle resulting in software that is secure by default.	-								
8	Outline syllabus		CO Mapping								
U	Unit 1	Apache Tomcat server	e e mupping								
		Study of secure software engineering in research and	C01,C06								
		find topic related to it for review.	001,000								
		To Install Apache Tomcat Server in Windows.	CO1,CO2								
	Unit 2	Configuring Apache Tomcat server									
		To Configure Apache Tomcat Server in Windows.	CO2								
		To startup, access and shutdown Apache Tomcat	CO2								
		Server in Windows.									
	Unit 3	Development of web app									
		Develop and Deploy a Web App.	CO3								
		Configuring Tomcat To Use SSL.	CO2								
		Perform static analysis (Memory leaks, Access	CO1,CO3								
		violations, Arithmetic errors, array and string	ŕ								
		overruns etc) of code using open source tool									
	Unit 4	Secure software designing									
		Requirement: Develop a user login password page	CO4,CO5,CO6								
		for web-site in which password should be strong and									
		consists of combination of letter, number, special									
		character and capital letter. It should consist of at									
		least 8 characters.									
	Unit 5	Secure software testing									
		Perform requirement-based testing.	CO4,CO5,CO6								
		Test login-password page using test cases	CO4,CO5,CO6								

		Beyond Boundaries								
	Analyze the	security issue	considered while design,	CO3,CO5,CO6						
	implementat	implementation and testing phases of the								
	requirement.									
Mode of	Jury/Practica									
examination		-								
Weightage	CA	MTE	ETE							
Distribution	60%	0%	40%							
Text book/s*	-									
Other										
References										

PO and PSO mapping with level of strength for Course Name Secure Software Engineering Lab (Course Code CSP649)

Course Code_ Course Name	CO's	P 0 1	P 0 2	P O 3	Р О4	P O 5	P O 6	P O 7	P O 8	PS 0 1	PS O2	PS O3
	CO1	1	3	2	1	-	1	2	3	3	-	-
	CO2	1	-	2	-	-	-	-	1	3	-	-
	CO3	3	3	2	1	-	1	1	2	3	-	-
	CO4	3	-	1	2	-	2	3	2	3	-	-
CSP649_Secure software	CO5	2	-	2	1	-	1	2	2	3	-	-
Engineering lab	CO6	1	2	2	2	-	2	2	2	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cours e Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	PS O 1	PS O 2	PS O 3
CSP6 49	Secure software Engineering lab	1. 8	2.6	1. 8	1. 4	-	1. 4	2	2	3	-	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent

3. Addressed to Substantial (High=3) extent

Sch	ool: SET	Batch:				Beyond Boundaries
Pro	gram: BTECH	Current Ac	ademic Ye	ar:		
	nch:CSE	Semester:				
1	Course Code	CSP 610				
2	Course Title	Advance We	b Analytic	s Lab		
3	Credits	1	ž			
4	Contact Hours	0-0-2				
	(L-T-P)					
~	Course Status		· 1	CXX 7 1 1 4	· 1 ·	· ·
5	Course Objective	to a	nalyze and	•	ics on how organiz vebsite traffic w ence.	•
6	Course Outcomes	CO2:Demon technologies CO3:Identify CO4:Analyz using web an CO5: Detern CO6:Elabora	strate the n or effective e qualitative nalytic tool mine basic ate how we	nechanism of Web analytics re and quantita navigation of	ection and Qualitat Web analytic proc s strategies and imp ative data from you Google Analytics used as a tool for e-	esses and XML plementation ar website Interface.
7	Course Description	This course the Web. Th basic unders analytical po	is an overvi e motivatio tanding of int of view	iew of the mo on behind this how things wo	dern Web Analytic course is to give st ork in the Web wor give the essential of	tudents the rld from the
8				0		СО
-						Mapping
	Unit 1	Introduction	n			
				litative Analy	sis	CO1
	Unit 2			nentals – Cor		
		Concepts				
		Program rela	ted to XM	L technologie	s ,web analytics	CO2
	TT * 2	processes	1			
	Unit 3			Search Analy		602
		tools	ited to sear	ch analytics a	nd web analytics	CO3
	IImit 4		Emailand	multi ahann	almanizating	
	Unit 4			multi-channe		
		Program rela analytics	CO5			
	Unit 5	Implementa				
		Program rela	CO5,CO6			
	Mode of examination	Theory/Jury/	Practical/V	/iva		
	Weightage	СА	MTE	ETE		
	Distribution	30%	20%	50%		
	Text book/s*	Web Ana		hour a day, A	vinash Kaushik,	

Other	Web Analytics 2.0 : The art of online accountability and science of
References	customer centricity (Google ebook), Avinash Kaushik, John wiley &
	sons.

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1: Define the concept of data collection and	PO1,PO2,PO3,PO8,PSO2
	Qualitative analysis.	
2.	CO2:Demonstrate the mechanism of Web	PO1,PO2,PO3,PSO2
	analytic processes and XML technologies.	
3.	CO3:Identify effective Web analytics	PO1,PO2,PSO2
	strategies and implementation	
4.	CO4: Analyze qualitative and quantitative data	PO1,PSO2
	from your website using web analytic tool.	
5.	CO5: Determine basic navigation of Google	PO1,PO8,PSO2
	Analytics Interface.	
6.	CO6:Elaborate how web analytic is used as a	PO1,PO2,PO3,PO4,PO8,PSO1,PSO2
	tool for e-Commerce, business research, and	
	market research	

PO and PSO mapping with level of strength for Course Name Advance Web Analytics **lab(Course Code CSP 610)**

Course Code_ Course Name	CO's	P 0 1	P 0 2	P 0 3	PO 4	P 0 5	P 0 6	P O 7	P 0 8	PS 0 1	PS O2	PS O3
	CO1	2	1	2	1				1		1	
	CO2	2		1							2	
	CO3	2	1								2	
	CO4	2	1	1	1				1		3	
CSP610_ Advance Web	CO5	2							2		3	
Analytics lab	CO6	3	2	2	1				2	1	3	

Average of non-zeros entry in following table (should be auto calculated).

Cours e Code	Course Name	P 0 1	PO 2	P 0 3	P O 4	P O 5	P O 6	P O 7	P O 8	PS O 1	PS O 2	PS O 3
CSp61	Advance web	2.		1.					1.			
0	anaytics	2	1.3	5	1	0	0	0	5	1	2.3	0

Strength of Correlation

Addressed to Slight (Low=1) extent
 Addressed to Substantial (High=3) extent

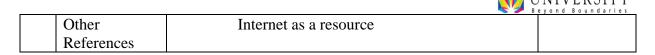
2. Addressed to *Moderate* (*Medium=2*) *extent*

Performance Modeling of Computer Communication network Lab

Sch	ool: SET	Batch: 2019-2023						
Pro	gram: M.Tech							
	inch:CSE	Semester:II						
(Ne	tworks and							
	per Security)							
1	Course Code	CSP 629						
2	Course Title	Performance Modeling of Computer Communication	n network Lab					
3	Credits	1						
4	Contact Hours	0-0-2						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	To strengthen students in primal principles, perforn	nance measure					
	Objective	of different protocols for a Computer Networks and	analysis of					
		Computer Network protocols.						
6	Course	CO1: Describe and compare the basic technologies	used in					
	Outcomes	computer network systems						
		CO2: Evaluate performance of different protocols						
		CO3: Analyze the protocols used in computer netwo	orks					
		CO4: Compare of different protocol as a stochastic process						
		CO5: Illustrate the use of simulation tools						
		CO6: Utilize the performance modeling principles in real life						
		applications of networks.						
7	Course	This course provides an introduction to the techniqu	ues and tools					
,	Description	needed to construct and analyse performance models						
	2 comption	systems and communication networks. Such skills at						
		for research-related careers.	FF					
8	Outline syllabus		CO Mapping					
	Unit 1	Introduction to probability theory						
	А	Implement Bayes Theorem in Python	CO1					
	В	Implement Poisson distribution in Python	CO1					
	С	Implement Markov chain rule in Python	CO1					
	Unit 2	Performance Modelling						
	А	Measure the performance of the computer network	CO2, CO6					
		while it is handling real traffic.						
	В	evaluate the impact of different versions of a	CO2, CO6					
		network component, strategy or algorithm on						
		network performance.						
	C	to control, minimize and/or understand physical	CO2, CO6					
		phenomenon or other interference sources that can						
		produce discrepancies and variability in the						
		measurement results						
	Unit 3	Single server queueing model						
	A	Implement M/M/1 queueing model	CO3,CO5					
	B	Implement M/G/1queueing model	CO3,CO5					
	C	Implement G/G/1 queueing model	CO3,CO5					
	Unit 4	Queueing Network Model						

				🗞 🥭 Beyond Boundarie			
Α	Imple	ment M/M/n que	CO3,CO5				
В	Imple	Implement BCMP networks using python					
С	Study	the working of l	CO3,CO4				
Unit 5	Stoch	astic Petri Mod					
A		lling and Evalua Fime NET	CO4,CO5				
В	Study	the working of i	CO4,CO6				
Mode o examin	-	Practical/Viva					
Weight	age CA	MTE	ETE				
Distrib	ution 60%	0%	40%				
Text bo	ook/s* 2.	÷					
Other	2.						
Referen	nces						

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Describe and compare the basic technologies	PO1, PO2, PO8,PSO3
	used in computer network systems	
2.	CO2: Evaluate performance of different protocols	PO1, PO2, PO3, PO6,
		PO7, PO8, PSO3
3.	CO3: Analyze the protocols used in computer networks	PO1, PO2, PO3, PO6,
		PO7, PO8, PSO3
4.	CO4: Compare of different protocol as a stochastic	PO1, PO2, PO4,
	process	PO7,PO8,PSO3
5.	CO5: Illustrate the use of simulation tools	PO1, PO2, PO3, PO5,
		PO8, PSO3
6.	CO6: Utilize the performance modeling principles in	PO1, PO2, PO4,
	real life applications of networks.	PO6,PO8,PSO3


PO and PSO mapping with level of strength for Course Name Performance Modeling of Computer Communication network Lab (Course Code CSP 629)

\rightarrow	Computer Communication network Lab (Course Code CS1 027)											
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
	CO1	3	2	3	-	-	-	-	2	-	-	2
	CO1											
		3	2	3	-	-	-	-	2	-	-	2
	CO2											
		3	2	3	1	-	-	-	2	-	-	2
	CO3											
	CO4	3	2	3	1	2	2	-	2	-	-	2
	CO5	3	2	3	2	2	2	-	2	-	-	3
	CO6	3	2	3	2	2	2	-	2	-	-	3
	Avg.											

CSP648:Recent Advances in Software Engineering Lab

Sch	nool:	School of E	ngineering	and technolog	y				
Department		Department of Computer Science and Engineering							
	gram:	M.Tech							
	anch:	Software Engineering							
1	Course Code	CSP648							
2	Course Title		Recent Advances in Software Engineering Lab						
3	Credits	3							
4	Contact Hours	3-0-0							
•	(L-T-P)								
	Course Status	Compulsory	/Elective						
5	Course			ts model using	UML class notati	ons			
	Objective		-	•	rint effectively us				
	5	To use MS	C						
6	Course				bles through adva	nced concepts			
	Outcomes	of analysis a			C				
		CO2: Expla	in the featur	es of JIRA					
		CO3: Const	ruct the pro	ject reports usir	ng JIRA				
		CO4: Plan p	project activ	ities using MS	Project				
			-	project conflic					
					of software engin				
7	Course				activity, sequence				
	Description		and component diagram. This course enables students to explore						
		JIRA, MS P	Project.			СО			
8	Outline syllabus	syllabus							
	TT •4 1		• •			Mapping			
	Unit 1	Software D				001			
				uence diagram		CO1			
	II			l Component D	lagram	CO1			
	Unit 2	Introductio							
		Explore Jira				CO2,CO6			
	II:4 2	Create a pro	CO2,CO6						
	Unit 3	Report gen		0		002.000			
			0	reate a sprint		CO3,CO6			
	TI •4 A				eration of report	CO3,CO6			
	Unit 4	Project pla							
		Getting Star		<u>v</u>	with data	CO4,CO6			
	Unit 5			and add tasks	with date	CO4,CO6			
	Unit 5	Task sched		work Diagram	and Assign the	CO5,CO6			
		resource to		work Diagrain a	and Assign the	05,000			
				and track the o	ompletion of the	CO5,CO6			
		work.	ne resource		impletion of the				
	Mode of	Jury/Practic	al/Viva						
	examination	Jury/I factic							
	Weightage	CA	MTE	ETE					
	Distribution	60%	0%	40%					
	Distribution 60% 0% 40% Text book/s* - - -								

PO and PSO mapping with level of strength for Course Name Recent advances in Software Engineering Lab (Course Code CSP648)

		P	Р	Р	Р	Р	P	Р	Р	PS		
Course Code_ Course Name	CO's	0	0	0	0	0	0	0	0	0	PS	PS
		1	2	3	4	5	6	7	8	1	02	03
	CO1	1	1	1	-	-	1	3	2	3	-	-
	CO2	3	3	1	-	-	1	3	2	3	-	-
	CO3	3	3	1	-	-	1	3	3	3	-	-
	CO4	3	3	1	-	-	1	3	3	3	-	-
CSP648_Recent advances in	CO5	3	3	2	•	-	1	3	3	3	-	-
software Engineering	CO6	3	3	2	2	-	2	3	3	3	-	-

Average of non-zeros entry in following table (should be auto calculated).

Cour se Code	Course Name	P 0 1	P O2	P 0 3	P 0 4	P O 5	P O 6	P 0 7	P 0 8	PS O 1	PS O 2	PS 0 3
CSP6 48	Recent advances in software Engineering	2. 6	2.6	1. 3	2	-	1. 16	3	2. 6	3	-	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent3. Addressed to Substantial (High=3) extent

Sc	School: SET Batch : 2019-21									
Pr	ogram: MTech	Current Academic Year:	2019-20							
Br	anch: NA	Semester: IIIrd								
1	Course Code	CSP681	SP681							
2	Course Title	SEMINAR	EMINAR							
3	Credits	2								
4	Contact Hours									
	(L-T-P)									
	Course Status	PG								
5	Course			evant information, defining						
	Objective			ill apply theories, methods	and knowledge					
		bases from multiple fields	to a single of	question or problem.						
6	Course	Students will be able :								
	Outcomes			lent learning and acquiring l	knowledge.					
		5	CO2: Identify and discuss domain specific problems.							
				egy to address real-world is						
				espect while interaction wit						
		CO5: Demonstrate the ab		cipate effectively in discussion	lons.					
7	Course			eaching 2nd year Mtech st	tudante to malza					
/	Description			has to choose a paper /						
	Description			t need not be related to the I						
				tific research problem. The						
				n, categorization of approx						
		approaches, etc.	no procion	, energenzanten er appre	success, specific					
8	Outline syllabus									
		s to choose a paper / top	ic related t	o Computer Science and	Engineering. It					
	need not be related to the Mtech project. A detailed literature review of a specific research problem. This can include: background related to the problem, categorization of approaches,									
	-	-		DP-tier conference paper						
				ution and partial results,						
		*		are a good talk will be n	•					
	coordinator.				inde og mieen					
	Weightage	СА	MTE	ETE						
	Distribution	30%	20%	50%						
			0.0		L					

S. No	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)
1.	CO1: Develop the ability for independent learning and acquiring knowledge.	PO1,PO2,PO3,PO4,PO8
2.	CO2: Identify and discuss domain specific problems.	PO1,PO2,PO3,PO8,PSO1,PS O2,PSO3
3.	CO3: Choose a multidisciplinary strategy to address real-world issues.	PO1,PO2,PO3,PO4,,PO8,PSO 1,PSO2,PSO3
4.	CO4: Apply principles of ethics and respect while interaction with others.	PO3,PO5,PO6,PO7,PO8
5	CO5: Demonstrate the ability to participate effectively in discussions.	PO1,PO3,PO4,PO7,PO8
6	CO6: Improve oral and written communication skills.	PO1,PO3,PO4,PO6,PO7,PO8

Prepared by : Board of Studies, Department of CSE, SUSET

CO/PO-PSO Mapping

(1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Low Course Objective PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PSO1 PSO2 PSO3 S CO1 2 2 2 2 3 ------CO2 1 2 2 2 3 3 3 --_ -CO3 2 2 2 2 2 2 2 3 _ --CO4 -3 2 3 1 --3 ---CO5 1 1 3 1 _ _ _ -_ _ -CO6 1 1 2 3 1 _ -_ _ --Average PO attained 2 1.84 2.5 2 <u>2.5</u> 3 1.67 2.5 2.5 1.4 2.5

Sc	hool: SET	Batch :
Pr	ogram:MTech	Current Academic Year:
	anch:	Semester:
1	Course Code	CSP682
2	Course Title	PROJECT
3	Credits	4
4	Contact Hours (L-T-P)	
	Course Status	PG
5	Course Objective	In this course, students will use the wide range of knowledge and skills that they have gathered over the course of their post graduate program. This course presents the opportunity to build upon a core of learning, gained in the earlier years, and to broaden the scope of that knowledge.
6	Course Outcomes	 Students will be able to: CO1: Demonstrate a sound technical knowledge of selected project topic. CO2: Plan problem identification, formulation and solution strategies. CO3: Design engineering solutions to complex problems utilizing a systematic approach. CO4: Develop solutions of real world engineering problems. CO5: Utilize technology tools for communication, collaboration, information management, and decision support. CO6: Communicate project work effectively with research community at large in written and oral forms, mandatorily a research paper.
7	Course Description	Students are required to take complete ownership of their project and this necessitates a considerable shift in attitude as the project demands that, beyond the exercise of knowledge and skills, they must be self- regulating and self-directed in their time management.
\cap	utline syllabus	regulating and self-directed in their time management.

Outline syllabus

Project being the student's important activity at the institution, it fulfills a purpose of synthesis of all the knowledge they have acquired throughout the different years. In addition, this knowledge must be used in a particular way, in order to solve a specific problem, which lets student demonstrate their aptitude by applying this knowledge.

This project also helps the student to analyze and determine the current requirements of the society, to understand the whole project development process. Makes student follow strict schedules, learn efficient time management & make changes as per the constrained requirements. It also helps student to improve communication skills. All these factors affect the overall development of student for his/her future profession.

S.	Course Outcome	Program Outcomes (PO) & Program Specific
No.		Outcomes (PSO)
1.	CO1: Demonstrate a sound technical knowledge of selected project topic.	PO1,PO2,PO3,PSO1,PSO2,PSO3
2.	CO2: Plan problem identification, formulation and solution strategies.	PO1,PO2,PO3,PO6,PO8
3.	CO3: Design engineering solutions to complex problems utilizing a systematic approach.	PO1,PO2,PO3,PO6,PO8,PSO1,PSO2,PSO3
4.	CO4: Develop solutions of real world engineering problems.	PO1,PO2,PO4,PO5,PO6,PO8,PSO1,PSO2,PSO3
5	CO5: Utilize technology tools for communication, collaboration, information management, and decision support.	PO6,PO7,PSO1,PSO2,PSO3
6	CO6: Communicate project work effectively with research community at large in written and oral forms, mandatorily a research paper.	PO7,PO8

CO/PO Mapping

(1/2/3 indicates strength of correlation) 3.	-Strong, 2-Medium, 1-Low
---	--------------------------

		-					0,				
Course Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	2	-	-	-	-	-	2	2	2
CO2	2	2	2	-	-	2	-	2	-	-	-
CO3	3	2	2	-	-	2	-	2	2	2	2
CO4	2	3	-	3	2	2	-	2	2	2	2
CO5	-	-	-	-	-	-	3	3	-	-	-
CO6	-	-	-	-	-	2	3	-	2	2	2
Avg PO attained	2.5	2.25	2	3	2	2	3	2.25	2	2	2

Sc	hool: SET	2019 Onwards
Pr	ogram: MTech	Current Academic Year: 19-20
Br	anch: NA	Semester: IIIrd
1	Course Code	CSP691
2	Course Title	DISSERTATION-I
3	Credits	10
4	Contact Hours	
	(L-T-P)	
	Course Status	
5	Course Objective	The main objective of this course is to provide exposure to design a research investigation that incorporates appropriate theoretical approaches, conceptual
	Objective	models, and a review of the existing literature.
6	Course	Students will be able to:
	Outcomes	CO1: Identify, summarize and evaluate relevant literature.
		CO2: Analyze and interpret suitable data to enable the research question to be answered.
		CO3: Formulate research questions and hypotheses, and operationalize them.
		CO4: Propose the solution to the real world problem which shall benefit the community.
		CO5: Use modern tools, computer programs and simulators to evaluate the proposed solution and result.
		CO6: Develop an ability to effectively communicate (oral and written) knowledge in a scientific manner.
7	Course	The dissertation presents a major piece of guided independent research on a topic
	Description	agreed between the student and their supervisor. It typically involves a literature
	_	review and an appropriate form of critical analysis of sources of primary and /or
		secondary data; it may involve field and/or laboratory work. The dissertation must
		show evidence of wide reading and understanding of critical analysis and/or
		appropriate use of advanced research techniques.
	Weightage	CA MTE ETE
	Distribution	

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: Identify, summarize and evaluate relevant literature.	PO1,PO2,PO3,PO4,PO5,PO6,P
		O7,PO8,PSO1,PSO2,PSO3
2.	CO2: Analyze and interpret suitable data to enable the	PO1,PO2,PO3,PO4,PO5,PO6,P
	research question to be answered.	O7,PO8,PSO1,PSO2,PSO3
3.	CO3: Formulate research questions and hypotheses, and	PO1,PO2,PO3,PO4,PO5,PO6,P
	operationalize them.	O7,PO8,PSO1,PSO2,PSO3
4.	CO4: Propose the solution to the real world problem which	PO1,PO2,PO3,PO4,PO5,PO6,P
	shall benefit the community.	O7,PO8,PSO1,PSO2,PSO3
5	CO5: Use modern tools, computer programs and simulators	PO1,PO2,PO3,PO4,PO5,PO6,P
	to evaluate the proposed solution and result.	O7,PO8,PSO1,PSO2,PSO3
6	CO6: Develop an ability to effectively communicate	PO1,PO3,PO4,PO5,PO6,PO7,P
	(oral and written) knowledge in a scientific manner.	O8

	0			0							
Course Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	1	2	1	1	3	2	2	2	2
CO2	3	3	1	2	1	1	3	2	2	2	2
CO3	3	3	1	3	2	2	3	3	2	2	2
CO4	3	3	1	3	2	2	3	3	2	2	2
CO5	3	2	1	2	2	2	3	3	2	2	2
CO6	1	-	3	1	1	2	3	2	-	-	-
Average PO attainted	2.7	2.8	1.3	2.1	1.5	1.67	3	2.5	2	2	2

PO and PSO mapping with level of strength

Sch	ool: SET	Batch : 2019								
Pro	gram: M.Tech	Current Academic Year: 2019-2021								
	nch: Data	Semester: II								
Scie										
1	Course Code	Course Name- Bioinformatics								
2	Course Title	Bioinformatics								
3	Credits	3								
4	Contact	3-0-0								
-	Hours	500	-0							
	(L-T-P)									
	Course Status	PG								
5	Course	The course is aimed at introducing the students	to the field of							
5	Objective	Bioinformatics and enable them understand the conce biology.								
6	6 Course On successful completion of this module students will be able to: 0utcomes 1.Understand the theory behind fundamental bioinformatics analysi methods. 2.Identify widely used bioinformatics databases. 3.Apply basic concepts of probability and statistics. 4.Describe statistical methods and probability distributions relevant for molecular biology data.									
		5.Model Applications and eliminate limitation bioinformatics and statistical methods.6. Perform and interpret bioinformatics and statistical molecular biology data.								
7	Course Description	Bioinformatics has been defined as the science of structure and function of genes and proteins three computational analysis, statistics, and pattern recognit recent workforce studies have shown that there is a unmet demand for people trained to various levels bioinformatics, from technicians and technical librari of new and improved methodologies and applie estimates of needed positions in the field in the next for about 20,000. Bioinformatics is a rapidly evolving and both in terms of breadth of scope of useful application depth of what can be accomplished.	bugh the use of ion. A number of high current and s of expertise in ans to developers cations. National bur to five years is I developing field							
8	Outline syllabu	IS	CO Mapping							
	Unit 1	Fundamental of Bioinformatics								
	A	Introduction to Bioinformatics: philosophical, directional and application oriented background of Bioinformatics.	CO1							
	В	Basic Biology: Prokaryotes and Eukaryotes, Yeast and People, Evolutionary time and relatedness.	CO1, CO2							
	С	Living parts: Tissues, cells, compartments and	CO1, CO2							

r		Beyond Boundaries
	organelles, Central dogma of molecular biology, Concept of DNA, RNA, Protein and metabolic pathway.	
Unit 2	Biological databanks	
A	NCBI data model, GenBank sequence database.	CO2
В	Structural database, biodiversity information, virology	CO2,CO3
	information database, Chemoinformatics databases.	
С	Protein databases-PIR, SWISSPROT, TrEMBL, Prosite, PRINTS.	CO2, CO3
Unit 3	Sequence Analysis	
А	Methods of sequence alignment. Pair wise alignment- Global, local, dot plot and its applications.	CO3
В	Words method of alignment- FASTA and its variations, BLAST- Filtered and gapped BLAST, PSIBLAST.	CO3, CO4
С	Multiple sequence alignment- methods and Tools for MSA, Application of multiple alignments, Viewing and editing of MSA	CO3, CO4
Unit 4	Molecular phylogeny	
А	Concepts of trees- Distance matrix methods.	CO3, CO4
В	Character based methods. maximum Parsimony, maximum likelihood methods	CO4, CO5
С	Solving UPGMA, NJ and small parsimony problems	CO4, CO5
Unit 5	Applications	· · · · · ·
А	Application of graph theory in Biology: Biochemical Pathway	CO5, CO6
В	Protein-protein interaction network, Regulatory network and their analysis.	CO5, CO6
С	Bioinformatics in pharmaceutical industry: informatics & drug- discovery	CO5, CO6
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	 Attwood T K, D J Parry-Smith, "Introduction to Bioinformatics", Pearson Education, 2005. David W Mount, "Bioinformatics: Sequence and genome analysis", Cold spring harbor laboratory press, 2nd edition, 2004. Des Higgins and Willie Taylor, "Bioinformatics Sequence, Structures and Databanks", Oxford University Press, USA, 2000. 	
Other References	 Arun Jagota, "Data Analysis and Classification for Bioinformatics", Pine Press, 2001. David Edwards, Jason Eric Stajich, David Hansen, "Bioinformatics: Tools and Applications", Springer, 2009. Internet as a Resource for Reference 	

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	Understand the theory behind fundamental	PO1,PO2,PO3,PO4,PO5,PO6,P
	bioinformatics analysis methods.	O7,PO8,PSO1,PSO2,PSO3
2.	Identify widely used bioinformatics databases.	PO1,PO2,PO3,PO4,PO5,PO6,P
		O7,PO8,PSO1,PSO2,PSO3
3.	Apply basic concepts of probability and statistics.	PO1,PO2,PO3,PO4,PO5,PO6,P
		O7,PO8,PSO1,PSO2,PSO3
4.	Describe statistical methods and probability	PO1,PO2,PO3,PO4,PO5,PO6,P
	distributions relevant for molecular biology data.	O7,PO8,PSO1,PSO2,PSO3
5	Model Applications and eliminate limitations of	PO1,PO2,PO3,PO4,PO5,PO6,P
	different bioinformatics and statistical methods.	O7,PO8,PSO1,PSO2,PSO3
6	Perform and interpret bioinformatics and statistical	PO1,PO3,PO4,PO5,PO6,PO7,P
	analyses with real molecular biology data.	O8

PO and PSO mapping with level of strength

Course Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	1	2	1	1	3	2	2	2	2
CO2	3	3	1	2	1	1	3	2	2	2	2
CO3	3	3	1	3	2	2	3	3	2	2	2
CO4	3	3	1	3	2	2	3	3	2	2	2
CO5	3	2	1	2	2	2	3	3	2	2	2
CO6	1	-	3	1	1	2	3	2	-	-	-
Average PO attainted	2.7	2.8	1.3	2.1	1.5	1.67	3	2.5	2	2	2

DE 2: Internet of Things

	chool: ET	2019 Onwards							
	rogram: I.Tech	Current Academic Year: 2019-2021							
Sc	ranch: oftware	Semester: II							
<u>Е</u> і 1	ngineering Course	Course Name: Internet of Things							
2	Code Course Title	Internet of Things							
3	Credits Contact Hours (L-T-P)								
	Course Status	PG							
5	Course Objective	 The objectives of this course is To analyse, design and develop IOT solutions. To explore the entrepreneurial aspect of the Internet of Th To apply the concept of Internet of Things in the real worl 	-						
6	Course Outcome s	 On successful completion of this module students will be ab 1. Analyze types of technologies that are available and can be utilized to implement IoT solutions. 2. Apply these technologies to tackle business scenarios 3. Identify the main components of Internet of Things . 4. Program the sensors and controller as part of IOT . 5. Assess different Internet of Things technologies and 6. Model IOT to business. 	le to: in use today and s.						
7	Course Descripti on								
8	Outline syl	llabus	CO Mapping						
	Unit 1 A B C	IntroductionMotivation & Need of IoT, Overview & IntroductionIoT Communication ProtocolsMaking Things Smart: Getting things onto the Internet	C01,C02						
	Unit 2 A B	Internet of Things (IoT) and Web of Things (WoT) IoC to IoT IoT to WoT	CO2,CO3						
	C Unit 3	Internet & Web Layering Business Aspects of the IoT	C03,C04						

Prepared by : Board of Studies, Department of CSE, SUSET

-			eyond Boundaries							
	А	Business cases & Conc	epts							
	В	Business Issues & Mod	lels							
	С	Persuasive Technologie	es & Behavioural c	hange						
	Unit 4	Modeling			CO3,CO4,C O5					
	А	Representational State	Transfer (REST)							
	В	Activity Streams								
	С	Making Things Smart:	Getting things onto	o the Internet						
	Unit 5	Applicative Dimension			CO5,CO6					
	А	Big Data & Semantic T								
	В	Implications of Society								
	С	IoT in the Wild								
	Mode of	Theory								
	examinati									
	on									
	Weightag	CA	MTE	ETE						
	e	30%	20%	50%						
	Distributi									
	on									
	Text book/s*	1.http://dret.net/lecture	s/iot-spring15/							
	Other	1. http://www.iot-lab.cl	h/wp-							
	Referenc	content/uploads/2014/0	9/EN_Bosch-Lab-	White-Paper-GM-						
	es	im-IOT-1_1.pdf								
		2.http://www.ischool.b	erkeley.edu/newsa	ndevents/events/2014						
		0226yingding								
		3. Internet as a Resource	e for Reference							

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	Analyze types of technologies that are available and in use	PO1,PO2,PO3,PO4,PO5,PO6,P
	today and can be utilized to implement IoT solutions.	O7,PO8,PSO1,PSO2,PSO3
2.	Apply these technologies to tackle business scenarios.	PO1,PO2,PO3,PO4,PO5,PO6,P
		O7,PO8,PSO1,PSO2,PSO3
3.	Identify the main components of Internet of Things .	PO1,PO2,PO3,PO4,PO5,PO6,P
		O7,PO8,PSO1,PSO2,PSO3
4.	Program the sensors and controller as part of IOT.	PO1,PO2,PO3,PO4,PO5,PO6,P
		O7,PO8,PSO1,PSO2,PSO3
5	Assess different Internet of Things technologies and their	PO1,PO2,PO3,PO4,PO5,PO6,P
	applications.	O7,PO8,PSO1,PSO2,PSO3
6	Model IOT to business.	PO1,PO3,PO4,PO5,PO6,PO7,P
		08

Course Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	1	2	1	1	3	2	2	2	2
CO2	3	3	1	2	1	1	3	2	2	2	2
CO3	3	3	1	3	2	2	3	3	2	2	2
CO4	3	3	1	3	2	2	3	3	2	2	2
CO5	3	2	1	2	2	2	3	3	2	2	2
CO6	1	-	3	1	1	2	3	2	-	-	-
Average PO attainted	2.7	2.8	1.3	2.1	1.5	1.67	3	2.5	2	2	2

PO and PSO mapping with level of strength

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	Analyze types of technologies that are available and in use today and can be utilized to implement IoT solutions.	PO1, PO2, PO4, PSO2
2.	Apply these technologies to tackle business scenarios.	PO1, PO4, PO5, PSO1, PSO2
3.	Identify the main components of Internet of Things .	PO1, PO2, PO3, PO4, PO5, PSO1, PSO2
4.	Program the sensors and controller as part of IOT.	PO1, PO4, PSO2
5.	Assess different Internet of Things technologies and	PO1, PO2, PO3, PO4,
	their applications.	PO5, PO6, PO7, PSO1,
		PSO2
6.	Model IOT to business.	PO1, PO2, PO3, PO4,
		PO5, PO6, PO7, PO8,
		PSO1, PSO2

PO and PSO mapping with level of strength for Course Name (Course Code)

Cos	POI	P02	PO3	P04	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	2	3	-	2	-	-	-	-	-	1	-
CO2	3	-	-	2	2	-	-	-	2	1	-
CO3	3	2	3	2	2	-	-	-	2	1	-
CO4	2	-	-	2	-	-	-	-	-	1	-
CO5	3	3	3	2	2	3	2	-	2	2	-
CO6	3	3	3	2	3	3	2	2	3	2	-

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO
	Internet of Things and its applications	2.25	1.83	1.83	2	1.75	1.33	2	2	1.83

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent

Department Elective 1: Vehicular Communication

So	chool: SET	2019 Onwards
P	rogram: M.Tech	Current Academic Year: 2019-2021
	ranch: Computer	Semester: I
N	etwork	
1	Course Code	CSE 632 Course Name: Vehicular Communication
2	Course Title	Vehicular Communication
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	PG
5	Course Objective	 To explore the fundamental concept of Vehicular Ad- Hoc Networks (VANET) To understand Models for Traffic flow and Vehicle Motion and networking issues To understand delay tolerant and localization concepts in VANET
6	Course Outcomes	 Students will be able to: CO-1. Understand introductory concepts of Vehicular Ad-Hoc Networks (VANET). CO-2. Apply mathematical tools to simulate and analyze models for traffic flow CO-3. Identify the networking issues in routing. CO-4. Analysis of delay tolerant networks CO-5. Understand the localization in VANET CO-6. Study of Vehicular Network Simulators.

		· · · · · · · · · · · · · · · · · · ·	Beyond Boundaries
7	Course Description	Major topics covered in this subjects are Introductory concepts of Vehicular Ad-H (VANET), Models for Traffic flow and and networking issues, delay tolerant and concepts in VANET	Vehicle Motion
8	Outline syllabus		CO Mapping
0		T 4 1	CO Mapping
	Unit 1	Introduction to Vehicular Ad Hoc Networks	
		(VANETs)	
	А	Traffic Monitoring, Causes of congestion, Traffic	CO1
		Monitoring Data, Common Applications of Traffic Data	
	В	Commonly used sensor technology, Detection	CO1
		methods, Vehicular Applications	
	С	Safety related vehicular applications, use of Infrastructure in VANETs.	CO1
	Unit 2	Models for Traffic flow and Vehicle Motion	
	А	Models for Longitudinal Vehicle Movement, Lane	CO2
		changes situations	
	В	Simulating Vehicle-toVehicle	CO2
	С	Infrastructure-to-Vehicle Communication.	CO2
	Unit 3	Networking Issues	
	А	Routing in MANET, Applicability of MANET.	CO3
	В	Routing to Vehicular Environment	CO3
	С	Routing protocols for VANET	CO3
	Unit 4	Delay-Tolerant Networks in VANETs	
	A	Deterministic/Stochastic Delay-Tolerant Routing	CO4
	В	Vehicle Traffic Model, Vehicle- Roadside Data Access	CO4
	С	Data Dissemination in VANETs.	CO4
	Unit 5	Localization in Vehicular Ad-Hoc Networks	
	A	Localization-Aware VANET applications,	CO5
		Localization Techniques for VANETs	
	В	Data Fusion in VANET Localization Systems	CO5
	С	Vehicular Network Simulators.	CO6
	Mode of	Theory	
	examination		
	Weightage	CA MTE ETE	
	Distribution	30% 20% 50%	
	Text book/s*		
	Othern D. C	Auerbach Publications, 2009	
	Other References	1. C. Siva Ram Murthy and B.S. Manoj, "Ad Hoc	

	Wireless Networks: Architectures and Protocols,"	
	Prentice Hall, 2004.	
	2. Internet as a resource for references	

S.	Course Outcome	Program Outcomes (PO)
	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO-1. Understand introductory concepts of	PO1, PO2, PO3, PO4,
	Vehicular Ad-Hoc Networks (VANET).	PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
2.	CO-2. Apply mathematical tools to simulate and	PO1, PO2, PO3, PO4,
	analyze models for traffic flow	PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
3.	CO-3. Identify the networking issues in routing.	PO1, PO2, PO3, PO4,
		PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
4.	CO-4. Analysis of delay tolerant networks	PO1, PO2, PO3, PO4,
		PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
5.	CO-5. Understand the localization in VANET	PO1, PO2, PO3, PO4,
		PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
6.	CO-6, Study of Vehicular Network Simulators	PO1, PO2, PO3, PO4,
		PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
L		1502,1505

PO and PSO mapping with level of strength for Course Name (Course Code)

Cos	PO1	P02	PO3	P04	PO5	P06	PO7	PO8	PSO1	PSO2	PSO3
CO1	1	2	3	2	3	1	1	1	2	1	3
CO2	1	1	2	1	2	3	1	2	1	2	1
CO3	1	2	3	2	3	1	1	1	2	1	3
CO4	1	1	2	1	2	3	1	2	1	2	1
CO5	1	2	3	2	3	1	1	1	2	1	3

											RDA RSITY
CO6	1	1	2	1	2	3	1	2	1	2	1

Average of non-zeros entry in following table (should be auto calculated).

Cours e Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P O 5	P O 6	P O 7	P O 8	PS O 1	PS O 2	PS O 3
CSE6	Vehicular	2.		1.					1.			
32	Communication	2	1.3	5	1	0	0	0	5	1	2.3	0

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent 3. Addressed to Substantial (High=3) extent
- 3. Addressed to Substantial (High=3) extent

	Data Acquisition and Production							
Sc	chool: SET	2019 Onwards						
Pr	ogram:	Current Academic Year: 2019-2021						
Μ	.Tech							
Bı	ranch: Data	Semester: I						
Sc	cience							
1	Course	Course Name: Data Acquisition and Production						
	Code							
2	Course	Data Acquisition and Production						
	Title							
3	Credits	4						
4	Contact	3-0-2						
	Hours							
	(L-T-P)							
	Course	PG						
	Status							
5	Course	1. To explore the fundamental concept of data processing, extraction,						
	Objective	cleaning, annotation, integration						
		2. To understand various information visualization techniques.						
		3. To understand data productization techniques						
6	Course	Students will be able to:						
	Outcomes	CO1: To understand the fundamental concept of data processing,						
		extraction, cleaning, annotation, integration						
		CO2: To bring together several key data aggregation technologies used for						
		storage, analysis and manipulation of data.						
		CO3: To acquire knowledge of various information visualization						
		techniques.						
		CO4: Awareness of data productization techniques						
		CO5: To apply IoT and Embedded systems						
		CO6: Case study on Data Acquisition using Dashboards, Android and						
7		iOSapps						
7	Course	Major topics covered in this subjects are data acquisition process, managing						

Data Acquisition and Production

	Description	data, Graphical representation of data, Data Aggregation, Group (,Timeseries , Visualization of data, Data Productization I Virtualization on Embedded Boards IoT.	-
8	Outline sylla	bus	CO Mappin g
	Unit 1	Introduction	
	А	Introduction to Data Warehouse- OLTP and OLAP concepts- Introduction to Data Mining- Data Objects and Attribute Types- Basic Statistical Descriptions of Data Exploratory	CO1
	В	Data analysis- Measuring Data Similarity and Dissimilarity- Graphical representation of data. Introduction to Data Acquisition – Applications –Process- Data Extraction-	CO1
	C	Data Cleaning and Annotation- Data Integration –Data Reduction, Data Transformation, Data Discretization and Concept Hierarchy Generation	CO1
	Unit 2	Data Aggregation	CO2
	А	Group Operations ,Time series , Group By Mechanics – Data Aggregation – Group wise Operations and Transformations	02
	В	Pivot Tables and Cross Tabulations – Date and Time Date Type tools	CO2
	С	Time Series Basics – Data Ranges, Frequencies and Shifting.	CO2
	Unit 3	Visualization	
	A	Terminology- Basic Charts and Plots- Multivariate Data Visualization- Data Visualization Techniques– Pixel-Oriented Visualization Techniques-	CO3
	В	Geometric Projection Visualization Techniques- Icon-Based Visualization Techniques- Hierarchical Visualization Techniques- Visualizing Complex Data and Relations- Data Visualization Tools	CO3
	С	Rank Analysis Tools- Trend Analysis Tools Multivariate Analysis Tools- Distribution Analysis Tools- Correlation Analysis Tools Geographical Analysis Tools.	CO3
	Unit 4	Data Productization	ac t
	A	IoT Overview- IoT Design methodology- Semantic Web Infrastructure Intelligence Applications	CO4
	В	Programming Framework for IoT- Distributed Data Analysis for IoT	CO4
	С	Security and Privacy in IoT- Applied IoT- Cloud Based Smart Facilities Management	CO4
	Unit 5	Embedded Boards	
	А	Virtualization on Embedded Boards IoT- Stream Processing in IoT	CO5
	В	Internet of Vehicles and Applications	CO5
	С	Case study on Data Acquisition using Dashboards, Android and iOSapps	CO6

			🥆 🌽 Beyona	d Boundaries
Mode of	Theory			
examinatio				
n				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text	Han, Jiawei, Jian Pe	ei, and Micheline I	Kamber, "Data mining:	
book/s*	concepts and technie	ques",3rd Edition,	Elsevier,2011.	
Other	1. Margaret H.	Dunham, "Data N	Aining: Introductory and	
References	Advanced T	opics", Pearson E	ducation,2012.	
	2. Arshdeep B	ahga, Vijay Madi	setti, "Internet of Things -	
	A hands-on	approach", Unive	rsitiesPress,2015.	
	3. Manoel Car	los Ramon, "Intel	Galileo and Intel Galileo	
	Gen 2: API I	Features and		
	ArduinoProj	ectsforLinuxProg	rammers", Apress, 2014.	
	4.			
	KarlPover,"	LearningQlikview	DataVisualization",Packt,	
	2013.			
	5. Rajkumar B	uyya, Amir Vahid	Dastjerdi, "Internet of	
	Things: Prin	ciples and Paradig	gms",Elsevier,2016.	

C		
S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: To understand the fundamental concept of data	PO1, PO2, PO3, PO4,
	processing, extraction, cleaning, annotation, integration	PO5, PO6, PO7, PO8,
	CO-1.	PO9, PO10, PO11, PSO1,
		PSO2, PSO3
2.	CO2: To bring together several key data aggregation	PO1, PO2, PO3, PO4,
	technologies used for storage, analysis and manipulation of	PO5, PO6, PO7, PO8,
	data.	PO9, PO10, PO11, PSO1,
		PSO2, PSO3
3.	CO3: To acquire knowledge of various information	PO1, PO2, PO3, PO4,
	visualization techniques.	PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
4.	CO4: Awareness of data productization techniques	PO1, PO2, PO3, PO4,
		PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
5.	CO5: To apply IoT and Embedded systems	PO1, PO2, PO3, PO4,
		PO5, PO6, PO7, PO8,
		PO9, PO10, PO11, PSO1,
		PSO2, PSO3
6.	CO6: Case study on Data Acquisition using	PO1, PO2, PO3, PO4,
	Dashboards, Android and iOSapps	PO5, PO6, PO7, PO8,
	Dushoourus, rindroid und robupps	, , , , ,

	SHARDA UNIVERSITY
	PO9, PO10, PO11, PSO1,
	PSO2, PSO3

PO and PSO mapping with level of strength for Course Name (Course Code)

Cos	POI	P02	PO3	P04	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	1	2	3	2	3	1	1	1	2	1	3
CO2	1	1	2	1	2	3	1	2	1	2	1
CO3	1	2	3	2	3	1	1	1	2	1	3
CO4	1	1	2	1	2	3	1	2	1	2	1
CO5	1	2	3	2	3	1	1	1	2	1	3
CO6	1	1	2	1	2	3	1	2	1	2	1

Average of non-zeros entry in following table (should be auto calculated).

Cour se Code	Course Name	P 0 1	PO 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	PS 0 1	PS O 2	PS 03
	Data Acquisition and production	2. 6	2.6	1. 3	2	-	1.1 6	3	2. 6	3	I	-

Strength of Correlation

1. Addressed to Slight (Low=1) extent2.3. Addressed to Substantial (High=3) extent

2. Addressed to Moderate (Medium=2) extent

COURSE: DEEP LEARNING AND WEB

Sch		School of Engineering and technology	
-	artment	Department of Computer Science and Engineering	
	gram:	M. Tech	
Bra	nch:	M. Tech. (CSE)	
1	Course Code		
2	Course Title	DEEP LEARNING AND WEB	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status		
5	Course	To acquire knowledge on the basics of Deep learning neu	ral network.
	Objective	To implement neural network using computational tools	for variety of
		problems.	-
		To know the importance of the qualitative data, get	insights and
		techniques.	-
		To know the principles, tools and methods of web intellig	ence.
		To apply analytics for business situation.	
6	Course	On successful completion of this module students will be	able to:
	Outcomes	CO1: Recognize the characteristics of deep learning mode	els that are
		useful to solve real-world problems.	
		CO2:Understand different methodologies to create application	ation using
		deep nets.	
		CO3:Identify and apply appropriate deep learning algorith	nms for
		analyzing the data for variety of problems.	
		CO4:Implement different deep learning algorithms	
		CO5:Design the test procedures to assess the efficacy of t	he developed
		model.	
		CO6:Combine several models in to gain better results	
7	Course	In this course student will learn different algorithm for si	
	Description	learning algorithm. Define train and use a deep Neura	
		solving real world problems that require artificial inte	-
		solutions. In this course student will also learn the	-
		techniques related to web analytics. Exploration of vari	-
		used for web analytics and their impact. Can use vari	ious tools and
		techniques for web analytics.	
8	Outline syllabu	IS	CO
			Mapping
	Unit 1	Introduction	
	A	Deep learning architectures: Convolutional Neural	CO1
		Networks : Neurons in Human Vision-The	
		Shortcomings of Feature Selection-Vanilla Deep Neural	
		Networks Don't Scale-Filters and Feature Maps	
	В	Full Description of the Convolutional Layer-Max	CO1
		Pooling-Full Architectural Description of Convolution	
		Networks-Closing the Loop on MNIST with	
		Convolutional Networks-Image Preprocessing Pipelines	

	Enable More Robust Models	eyond Boundari
С	Accelerating Training with Batch Normalization-	CO1
	Building a Convolutional Network for CIFAR-10-	
	Visualizing Learning in Convolutional Networks.	
Unit 2	Memory Augmented Neural Networks	
А	Neural Turing Machines-Attention-Based Memory	CO2
	Access-NTM Memory Addressing Mechanisms-	
	Differentiable Neural Computers-Interference-Free	
	Writing in DNCs-DNC Memory Reuse- Temporal	
	Linking of DNC.	
В	Reinforcement Learning: Deep Reinforcement Learning	CO2, CO6
D	Masters Atari GamesWhat Is Reinforcement Learning-	002,000
	Markov Decision Processes (MDP)	
С	Explore Versus Exploit-Policy versus Value Learning-	CO2, CO6
C		CO_{2}, CO_{0}
	Pole-Cart with Policy Gradients-Q-Learning and	
Unit 3	DeepQ-Networks Web Analytics	
A Unit 3	Basics – Traditional Ways – Expectations – Data	CO3
	Collection – Clickstream Data – Weblogs	005
В	Beacons – JavaScript Tags – Packet Sniffing –	CO3, CO6
D		005,000
	Outcomes data–Competitive data–Search Engine Data.	
	Qualitative Analysis – Customer Centricity – Site Visits	
C	– Surveys – Questionnaires	<u> </u>
C	Website Surveys – Post visits – Creating and Running-	CO3, CO6
	Benefits of surveys – Critical components of successful	
Unit 4	strategy. Web Analytic concepts	
A	URLS – Cookies – Time on site – Page views –	CO4
1	Understand standard reports – Website content quality –	004
	Navigation reports (top pages, top destinations, site	
	overlay).	
В	Search Analytics – Internal search, SEO and PPC –	CO4
	Measuring Email and Multichannel Marketing	007
С	Competitive intelligence and Web 2.0 Analytics–	CO4
	Segmentation–Connectable reports.	
Unit 5	Qualitative Analysis	
A A	Customer Centricity – Site Visits – Surveys –	CO5
	Questionnaires – Website Surveys – Post visits –	005
	Creating and Running- Benefits of surveys – Critical	
	componentsofsuccessfulstrategy. Web Analytic concepts	
	– URLS – Cookies – Time on site	
В	Page views – Understand standard reports – Website	CO5
	content quality – Navigation reports (top pages, top	005
	destinations, site overlay). – Search Analytics – Internal search, SEO and PPC.	
С	Google Analytics: Analytics - Cookies - Accounts vs	CO6
	Property - Tracking Code Tracking Unique Visitors -	
	Demographics - Page Views & Bounce Rate	

	A	111- 1	7		🥿 🥟 B	eyond Boundaries			
		Acquisitions CustomReporting.							
Mode of examination	Theory	/Jury/P	Practical/Viva						
Weightage	CA	MTE ETE							
Distribution	30%		20%	50%					
Text book/s*	1. 2. 3.	Phil K Machi Artific 2017. Nikhil "Funda Next- Genera eillyM Avinas of Onl Science 2009.							
Other References		User E canhel mann,, Bing I Hyper Edition Justin 6. Eric "Goog	Experience: Ho pyouUndersta 2013. Liu, "Web Data links, Content n,Springer,201 Cutroni,"Goog Fettman, Shin	ndyourÚsers",Morga a Mining: Exploring , and Usage Data", 2n	nKauf nd ly,2010.				

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Recognize the characteristics of deep learning	PO2, PO3. PO6, PO7,
	models that are useful to solve real-world problems.	PSO
2.	CO2:Understand different methodologies to create	PO1, PO2, PO3, PO5,
	application using deep nets.	PO6, PSO
3.	CO3:Identify and apply appropriate deep learning	PO1, PO2, PO3, PO5,
	algorithms for analyzing the data for variety of problems.	PO6, PSO
4.	CO4:Implement different deep learning algorithms	PO2, PO3, PO5, PO7,
		PSO
5.	CO5:Design the test procedures to assess the efficacy of	PO1, PO2, PO3, PO4,
	the developed model.	PO5, PO8, PSO
6.	CO6:Combine several models in to gain better results	PO1, PO2, PO3, PO4,
		PO7, PO8, PSO

PO and PSO mapping with level of strength for Course Name Deep Learning (**Course Code**)

Course Code_	CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO	PSO
Course Name										1	2	3
	CO1	-	1	1	-	-	2	2	-	1	1	3
	CO2	2	2	2	-	2	1	-	-	2	2	1
Deep Learning	CO3	2	2	2	-	2	1	-	-	2	2	3
Deep Learning	CO4	-	1	1	-	1	-	1	-	1	1	1
	CO5	2	2	2	2	2	-	-	2	2	2	3
	CO6	3	3	3	2	-	-	3	2	3	3	1

Average of non-zeros entry in following table (should be auto calculated).

Course Code	Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1
	Deep Learning	2.25	1.83	1.83	2	1.75	1.33	2	2	1.83

Strength of Correlation

- 1. Addressed to Slight (Low=1) extent 2. Addressed to Moderate (Medium=2) extent
- 3. Addressed to Substantial (High=3) extent