

Program and Course Structure Master in Computer Application (MCA)

School of Engineering and Technology MCA-Master in Computer Application Batch: 2018 Onwards

TERM: I

S.	Paper ID	Subject	Subjects	Т	eaching	Load	Cuadita	Remarks
No.	-	Code		L	T	Р	Credits	
THEOR	Y SUBJECTS							
1.	16000	MCA161	Introduction to C Programming	3	1	0	4	NEW
2.	16001	MCA162	Digital Electronics	3	0	0	3	NEW
3.	16002	MCA163	Fundamental of Information Technology	undamental of Information Technology 3				
4.	30739	MTH133	Mathematical Foundation of computer science	3	1	0	4	NEW
5.	15987	FEN101	Functional English Beginners-I	0	0	2	1	
	15988	FEN103	Functional English Intermediate-I		U	2	_	
Practic	al/Viva-Voc	e/Jury						
1.	16003	MCP161	Introduction to C Programming Lab	0	0	2	1	
2.	16004	MCP162	Digital Electronics Lab	0	0	2	1	
3.	15228	ENP 102	Functional English-I Lab	0	0	2	1	
			TOTAL CREDITS				18	

School of Engineering and Technology MCA-Master in Computer Application Batch: 2018 Onwards

TERM: II

S.	Paper	Course	Course	To	eaching	Load		Pre-Requisite/Co
No.	ID	Code		L	T	P	Credits	Requisite
THEC	ORY SUBJ	ECTS						
1.		MCA164	Object oriented programming with JAVA	3	1	0	4	
2.		MCA165	System Analysis and Design	3	0	0	3	
3.		MCA166	Computer Organization and Architecture	3	0	0	3	
4.		MTH128	Numerical Analysis	3 0 0			3	
5.		HMM207	Management Concepts & Practices	3	0	0	3	
6.		FEN102	Functional English Beginners-II		0	2	1	
		FEN104	Functional English Intermediate-II	0	0	2	1	
Practi	cal/Viva-V	oce/Jury						
1.		MCP164	Object oriented programming with JAVA Lab	0	0	2	1	
2.		MTH153	Numerical Analysis Lab	0	0	2	1	
3.		ENP 103	Functional English-I I Lab	0	0	2	1	
•		•	TOTAL CREDITS	•		•	20	

School of Engineering and Technology MCA-Master in Computer Application Batch: 2018 Onwards TERM: III

S.	Paper	Course	Course	Te	eaching	Load		Pre-Requisite/Co
No.	ID	Code		L	T	P	Credits	Requisite
THEC	ORY SUBJ	ECTS						
1.		MCA261	JAVA Programming	3	0	0	3	OOPS
2.		MCA262	Introduction to Computer Networks	3	0	0	3	
3.		MCA263	Principles of Database Management Systems	3	0	0	3	
4.		MCA264	Operating System Concept	Operating System Concept 3 0 0		3		
5.		MCA265	Data Structures	3	0	0	3	
Practi	cal/Viva-V	oce/Jury						
6.		MCP261	JAVA Programming Lab	0	0	2	1	
7.		MCP262	Introduction to Computer Networks Lab	0	0	2	1	
8.		MCP263	Principles of Database Management Systems Lab	0	0	2	1	
9.		MCP 264 Operating System Concept Lab 0 0 2		2	1			
10.		MCP265 Data Structures Lab 0 0 2		2	1			
11.		ARP203	Aptitude Reasoning and Business Communication Skills-Basic	0	0	4	2	
			TOTAL CREDITS				22	

School of Engineering and Technology MCA-Master in Computer Application Batch: 2018 Onwards TERM: IV

S. Paper Course		Course	Course	To	eaching	Load		Pre-Requisite/Co
No.	ID	Code		\mathbf{L}	T	P	Credits	Requisite
THE	 DRY SUBJ	ECTS						
1.	MCA266 Software Engineering Principles 3 0 0		3					
2.		MCA267	Design and analysis of algorithms	3	1	0	4	
3.		MCA270	Computer Graphics and Animation	Computer Graphics and Animation 3 1		0	4	
4.			Program Elective -1	3	0	0	3	
5.			Program Elective -2	3	0	0	3	
Practi	ical/Viva-V	oce/Jury						
6.		ARP204	Aptitude Reasoning and Business Communication Skills-Intermediate	0	0	4	2	
7.		MCP267	Design and analysis of algorithms Lab 0 0 2		2	1		
8.		MCP270	Computer Graphics and Animation Lab	0	0	2	1	
			TOTAL CREDITS				21	

School of Engineering and Technology

MCA-Master in Computer Application Batch: 2018 Onwards

TERM: V

S. Paper		Course	Course	Te	eaching	Load		Pre-Requisite/Co
No.	ID	Code		L	T	P	Credits	Requisite
THEO	ORY SUBJ	ECTS				<u> </u>		<u> </u>
1.		MCA361	Python Programming Concepts	3	0	0	3	
2.		MCA362	Web and its Applications	3	0	0	3	
3.			Program Elective-3	3	0	0	3	
4.			Program elective-4	3	0	0	3	
5.		ENG401	Writing for Technical Purpose	3	0	0	3	
Practi	cal/Viva-V	oce/Jury		•				
6.		ARP301	Quantitative Aptitude Behavioral and Interpersonal Skills	0	0	4	2	
7.		MCP361	Python Programming Concepts Lab	0	0	2	1	
8.		MCP362	Web and its Applications Lab	0	0	2	1	
9.		MCP301	Mini Project	0	0	2	1	
			TOTAL CREDITS	•	•	•	20	

School of Engineering and Technology MCA-Master in Computer Application Batch: 2018 Onwards

TERM: VI

S.	Paper	Course	Course	Te	eaching	Load		Pre-Requisite/Co
No.	ID	Code		L	T	P	Credits	Requisite
THE	HEORY / Practical SUBJECTS							
1.		MCA354	Seminar	0	0	8	4	
2.		MCA356	Project	0	0	30	15	
				19				

	Program Elective		
Advanced Database Management Systems MCA268	Data Mining & Knowledge discovery MCA273	Business Intelligence MCA363	Big Data Analytics MCA366
Mobile Technologies MCA269	Cloud Computing MCA271	Cryptography and Network Security MCA364	Cyber Laws MCA367
	Android Application Development MCA272	Software Project Management MCA365	Software Testing MCA368

Sc	chool: SET	Batch : 2018								
Pr	ogram: MCA	Current Academic Year:								
Bı	anch:	Semester: I								
1	Course Code	MCA 161 Course Name: Programming in C								
2	Course Title	Introduction to C Programming								
3	Credits	5								
4	Contact Hours	3-1-2								
	(L-T-P)									
	Course Status	PG								
5	Course Objective	 Learn basic programming constructs –da 	ata types,							
		decision structures, control structures in								
		2. learning logic aptitude programming in	С							
		language								
		3. Developing software in c programming								
6	Course Outcomes	Students will be able to:								
		CO1: Understand core concept of c Program	ming							
		CO2: Implement Array and String								
		CO3: Implement Functions								
		CO4: Use Union and Structure								
		CO5: Understand and implement Pointers								
7	Course Description	Programming for problem solving gives the Understan	_							
0	O (I' 11.1	programming and implement code from flowchart or a								
8	Outline syllabus		CO							
	Unit 1	Introduction to C Programming	Mapping							
	A	Introduction to C programming language, Data types,	CO1,							
	Α	Variables, Constants, Identifiers and keywords,	CO1,							
		, mineres, consumis, racinities and not well,								
	В	Storage classes	CO1							
		Operators and expressions, Types of Statements:								
		Assignment, Control, jumping.								
	C	Control statements: Decisions, Loops, break,	CO1							
	TI:4 2	continue								
	Unit 2	Arrays and Strings	COA							
	A	Arrays: One dimensional and multi dimensional	CO2							
		arrays:	~~							
	В	Declaration, Initialization and array	CO2							
		manipulation (sorting, searching).	G 0.4							
	C	Strings, String operations, String Functions	CO2							
	Unit 3	Functions								
	A	Functions: Definition, Declaration/Prototyping	CO3							
		and Calling, Types of functions								
	В	Parameter passing: Call by value, Call by	CO3							

	reference.			Beyond Bound
С	Passing and Re Recursive Func	_	ys from Functions,	CO3
Unit 4	Structure and	Unions		
A	Structure and Difference, App		ntroduction, Declaration,	CO4
В	Nested structu	CO4		
С	Array of structu	CO4		
Unit 5	Pointers &File	e Handling		
A	Pointer: Intro variables, Ope	CO5		
В	Pointer arithn memory alloc	CO5		
С		g, Types	t of record, I/O Streaming of Files: Indexed file, file	CO5
Mode of examination	Theory			
Weightage Distribution	CA	MTE	ETE	
	30%	20%	50%	
Text book/s*	Kernighan, B Programming L		Dennis Ritchie. The C	
Other References	1. B.S. Go Outline 2004. 2. E. Bala Second			

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: Understand core concept of c Programming	PO1,PO2,PO3,PO11,PO12
		PSO1,PSO2,PSO3,PSO4,SPO5
2.	CO2: Implement Array and String	PO1,PO2,PO3,PO11,PO12
		PSO1,PSO2,PSO3,PSO4,SPO5
3.	CO3: Implement Functions	PO1,PO2,PO3,PO11,PO12
	_	PSO1,PSO2,PSO3,PSO4,SPO5
4.	CO4: Use Union and Structure	PO1,PO2,PO3,PO11,PO12
		PSO1,PSO2,PSO3,PSO4,SPO5
5.	CO5: Understand and implement Pointers	PO1,PO2,PO3,PO11,PO12
	-	PSO1,PSO2,PSO3,PSO4,SPO5

PO and PSO mapping with level of strength for Course Name Introduction to C Programming (Course Code MCA161)

	COs	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
			2				6					11		01				
	CO1	3	2	3	1	-	-	1	1	-	-	2	1	3	2	2	1	2
C S	CO2	3	2	3	-	-	-	-	-	-	-	2	1	3	2	2	1	2
E 1 0	CO3	3	2	3	-	-	-	-	-	-	-	1	1	2	3	2	1	2
7	CO4	3	2	3	-	-	-	-	-	-	-	3	2	3	2	1	1	1
	CO5	3	2	3	-	-	-	-	-	=	-	3	1	2	2	2	1	3

Sch	ool: SET	Batch :2018
—	gram: MCA	Current Academic Year:
	nch:NA	Semester:
1	Course Code	MCA162 Course Name: Digital Electronics
2	Course Title	Digital Electronics
3	Credits	4
4	Contact	3-0-2
	Hours (L-T-P)	
	Course Status	Compulsory
5	Course	1. To acquire the basic knowledge of digital logic levels and application
	Objective	of knowledge to understand digital electronics circuits.
		2. To prepare students to perform the analysis and design of various
		digital electronic circuits
6	Course	Students will be able to:
	Outcomes	CO1: Have a thorough understanding of the fundamental concepts and techniques used in digital electronics.
		CO2:The ability to understand, analyze and design various combinational and
		sequential circuits. CO3:The ability to identify and prevent various hazards and timing problems
		in a digital design
		CO4:To develop skill to build, and troubleshoot digital circuits.
7	Course	Digital Electronics (DE) is the study of electronic circuits that are used to
	Description	process and control digital signals as opposed to analog signals that are
		varying. This distinction allows for greater signal speed and storage
		capabilities and has revolutionized the world electronics. Digital electronics is
		the foundation of all modern electronic devices such as cellular phones, MP3
		players, laptop computers, digital cameras, high definition televisions, etc.

*	SHARI)A
	UNIVERS	

8	Outline syllabi	110			CO Manning
0	•		CO Mapping		
	Unit 1	Digital Logic C	CO1 CO2		
	A	and two's co	mplement, B		CO1,CO2
	В		•	AND,OR,NOT), other gates Universal gates,	CO1,CO2
	С			rsal gates using basic gates , statement and Proof	CO1,CO4
	Unit 2	Boolean Algel	ora		
	A	Boolean Law using Laws,	s, Simplificat	ion of Boolean expression	CO1,CO2
	В	Min terms (S Standard/Ca	· ·	ms (POS), and POS forms	CO1,CO2
	С			s), Don't care conditions	CO1,CO2
	Unit 3	Combinationa		.,, In the second second	201,002
	A	Introduction t		nal circuits, Adder: Half & Full,	CO1,CO2
	В	Multiplexer (4 to 8,1 to 16,	to 1,8 to 1 ,16	6 to 1), Demultiplexer(1 to 4, 1	CO1,CO2
	С			6), encoder(decimal to BCD,	CO1,CO2
	Unit 4	Sequential Cir	cuits		
	A	What is seque and NOR), clo		P Flip flop: SR flip Flop (NAND	CO1,CO2,CO3,CO4
	В	D Flip flop, JK	Flip Flop, T Fli _l	p Flop	CO1,CO2,CO3,CO4
	С	Registers: buf register, appli		ift left register, shift right	CO1,CO2,CO3,CO4
	Unit 5	Counters			
	A	Counters, need asynchronous		unter,types-synchronous & ications	CO1,CO2,CO3,CO4
	В	Ripple coun	iter,synchro	nous counter	CO1,CO2,CO3,CO4
	С	ring counter	;BCD coun	ter	CO1,CO2,CO3,CO4
	Mode of examination	Theory			
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*		ern Digital El on, McGraw		
	Other References	N. S. 2. Digita Third 3. Digita	al Design and Gill and J. B. D al computer el Edition-TMH al Principles each, TMH Pu		

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: Have a thorough understanding of the fundamental	PEO1,PEO2,PEO3,
	concepts and techniques used in digital electronics.	PEO4,PSO2
2.	CO2: The ability to understand, analyze and design various	PEO1,PEO2,PEO3,PSO1, PSO2
	combinational and sequential circuits.	
3.	CO3: The ability to identify and prevent various hazards and	PEO1,PEO2,PEO3,PSO1,
	timing problems in a digital design	PSO2,PSO3
4.	CO4: To develop skill to build, and troubleshoot digital	PEO1,PEO3,PEO4,PSO1,PSO2,
	circuits.	PSO3

C S	Cos	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
E	CO1	3	3		1		3	
	CO2	3	2	3		1	3	
	CO3	3	2	2		1	3	3
	CO4	3	2		2	2	2	3

Scho	ool: SET	Batch : 2018				
Prog	gram: MCA	Current Academic Year: 2018-19				
Bra	nch:	Semester: I				
1	Course Code	MCA163 Course Name-				
2	Course Title	Fundamentals of IT				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course Status					
5	Course	1. The main objective is to introduce IT in a simple language to all				
	Objective	undergraduate students, regardless of their specialization.				
		2. The focus of the subject is on introducing skills relating to IT basics,				
		computer applications, programming, interactive medias, Internet basics				
		etc.				
6	Course	Students will be able to:				
	Outcomes	CO1: To understand personal computers and their operations.				
		CO2:be able to identify computer hardware components and describe their function;				
		CO3: Understand basic concepts and terminology of information technology.				
		CO4: Understand basic concepts and working of internet				
7	Course	The course Fundamentals of Information Technology has become essential the				

	Description	plications of	
8	Outline syllabu	information technology can be found in all aspects of our lives.	CO Mapping
	Unit 1	Introduction to Computers	Comapping
	A	Introduction, Definition, .Characteristics of computer, Evolution of Computer	CO1
	В	Block Diagram Of a computer, Generations of Computer, Classification Of Computers,	CO1, CO2
	С	Applications of Computer, Capabilities and limitations of computer.	CO1, CO2
	Unit 2	Basic Computer Organization:	
	A	Role of I/O devices in a computer system. Input Units: Keyboard, Terminals and its types. Pointing Devices, Scanners and its types	CO1, CO2
	В	Voice Recognition Systems, Vision Input System, Touch Screen, Output Units: Monitors and its types. Printers: Impact Printers and its types	CO1, CO2
	С	Non Impact Printers and its types, Plotters, types of plotters, Sound cards, Speakers.	CO1, CO2
	Unit 3	Storage	
	A	Primary Vs Secondary Storage, Data storage & retrieval methods. Primary Storage: RAM ROM, PROM, EPROM, EEPROM	CO1,CO2
	В	Secondary Storage: Magnetic Tapes, Magnetic Disks. Cartridge tape, hard disks, Floppy disks Optical Disks, Compact Disks, Zip Drive, Flash Drives. Software and its needs, Types of S/W.	CO1,CO2
	С	System Software: Operating System, Utility Programs Programming Language: Machine Language, Assembly Language, High Level Language their advantages & disadvantages. Application S/W and its types: Word Processing, Spread Sheets Presentation, Graphics, DBMS s/w.	CO2
	Unit 4	Information Technology Basics	
	A	Information Technology Basics, Introduction, Need for Information Storage and Processing	CO1,CO2,CO3
	В	Information Technology Components, Role of Information Technology,	CO1,CO2,CO3
	C	Information Technology and the Internet	CO1,CO2,CO3
	Unit 5	Internet	
	A	Internet and its Tools, Internet Evolution, Basic Internet Terminology, Data over Internet, Modes of Data Transmission,	CO1,CO2,CO4
	В	Types of Networks, Types of Topologies, Protocols used in the Internet, Getting Connected to Internet Applications, Internet Applications, Computer Ethics, Emerging Trends in IT	CO1,CO2,CO4
	С	Electronic Commerce (E-Commerce), Electronic Data	CO1,CO3,CO4

*	SHARDA
	UNIVERSITY

		nterchange (EDI),Smart Cards, Mobile Communication, nternet Protocol TV					
Mode of examination	Theory	Theory					
Weightage Distribution	CA 30%	MTE 20%	ETE 50%				
Text book/s*	3. Comp	3. Computer Fundamentals by P.K.Sinha					
Other References	1.						

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Have a basic understanding of personal computers and	PO1,PO2,PO3,PO4,PSO1
	their operations.	
2.	CO2:	PO1, PO3, PO4, PSO2
3.	CO3: Understand basic concepts and terminology of	PO1,PO2,PO3,PO4
	information technology.	
4.	CO4:	PO9, PO10,PO11, PSO5

${\bf PO}$ and ${\bf PSO}$ mapping with level of strength for Course Name Fundamentals of IT (Course Code MCA153)

С	COs	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
S			2				6					11		01				
E	CO1	3	3	3	3	1	1	1	2	2	1	2	1	3	2	2	1	2
	CO2	3	2	3	3	1	1	1	2	2	2	1	1	2	3	2	1	2
	CO3																	
	CO4																	

School: SET		Batch: 2018
Program: MCA		Current Academic Year: 2018-19
Branch: CSE		Semester: I
1	Course Code	MCP 161
2	Course Title	Programming in C Lab
3	Credits	1
4	Contact Hours	0-0-2
	(L-T-P)	

	Course Status	Compulsory	Beyond Boundaries					
5	Course		, decision					
	Objective		structures, control structures in C					
		5. learn	ge					
		6. Deve						
6	Course	Students wil	l be able to:					
	Outcomes	CO1: Und	lerstand core c	oncept of c Programming				
		CO2: Imp	lement Array	and String				
		CO3: Imp	lement Functi	ons				
		CO4: Use	Union and Str	ucture				
				nplement Pointers				
7	Course		•	ing gives the Understanding of C	programming			
	Description	_	t code from flow	chart or algorithm	1			
8	Outline syllabus				CO Mapping			
	Unit 1	Introduction	to C Programm	ing	CO1			
			gram to swap t					
			gram to Add Ty					
				ven year is leap year	CO1			
		•	<u> </u>	CD of two numbers				
	Unit 2	Arrays and S			CO1, CO2			
				the average using arrays				
		Write a c prog	ram to find the la	argest element of the array				
		Write a c prog	ram to add two r	matrix				
		Write a c prog	ram to concaten	ate two strings				
	Unit 3	Functions			CO1, CO2			
				a function to count number of				
		vowels in a str	001 002					
		Write a function	CO1, CO2					
	TT .*4 4	Write a recurs	CO1, CO2					
	Unit 4	Structure and	CO3, CO5					
		Write a c pro						
			ogram to store i	nformation of a student using	CO3, CO5			
		union	grain to store i	mormation of a student using	CO3, CO3			
	Unit 5	Pointers &Fil	e Handling		CO4			
				values using pointers				
				rmation of a student in a file	CO4			
	Mode of	Practical						
	examination							
	Weightage	CA	ETE					
	Distribution	60%	MTE 0%	40%				
	Text book/s*			s Ritchie. The C Programming				
	Other 4. B.S. Gottfried - Programming With C - Schaum's Outline							
	References	Series	- Tata McGraw Hill	2nd Edition - 2004.				

_		В В	eyond Boundaries
	5.	E. Balagurusamy - Programming in ANSI C - Second Edition -	
		Tata McGraw Hill- 1999	

Course outline

This course implements array and pointer and Recursive applications. The course talks primarily about Array, string, functions, structure & union and Pointers etc.

about 1 Hray, samig, functions, structure & amon and 1 ometis etc.						
Course Evaluation	Course Evaluation					
Attendance	None					
Any other	CA judged on the practicals conducted in the lab, weightage may be specified					
References						
Text book	Kernighan, Brian, and Dennis Ritchie. The C Programming Language					
Other References	 B.S. Gottfried - Programming With C - Schaum's Outline Series - Tata McGraw Hill 2nd Edition - 2004. E. Balagurusamy - Programming in ANSI C - Second Edition - Tata McGraw Hill-1999 					
Softwares	Turbo C					

Scho	ool: SET	Batch: 2018
Prog	gram: MCA	Current Academic Year: 2018-2019
Branch:		Semester: I
1	Course Code	MCA121 Course Name
2	Course Title	Mathematical Foundation of Computer Science
3	Credits	4
4	Contact Hours (L-T-P)	3-1-0
	Course Status	
5	Course Objective	Fundamental concepts and tools in discreet mathematics with emphasis on their applications to computer science
6	Course Outcomes	Students will be able to: CO1: understanding the role and importance of proof in mathematics, as well as the concept of the importance of assumptions in the proof
		CO2: knowledge of the concepts and methods of mathematical logic, set theory, relation calculus, and concepts concerning functions which are included in the fundamentals of various disciplines of mathematics, Student will be able to comprehend mathematical principles and logic
		CO3:Formulate Minimized Finite Automata for regular Languages.
		CO4: To understand the structure and dynamics of mathematics such as axioms, definitions, theorems, proofs, and to learn the fundamental proof strategies in mathematics, such as proof by contrapositive, proof by contradiction.

					Beyond Bound
7	Course Description	mathematics	with emphasis cs include log	ndamental concepts and tools in s on their applications to compute and Boolean circuits; sets, fur expression.	ter science.
8	Outline syllabus		CO Mapping		
	Unit 1	Set Theory			
	A	Combination Identities. Re Properties of relations, Orc	lations: Defin relations, Co	CO1, CO2	
	В	Operations o	n functions, R	Classification of functions, ecursively defined functions.	CO1, CO2
	С	Hasse diagrar	m.	ation of partial order sets,	CO1, CO2
	Unit 2	Algebraic str			
	A	Groups, Prop group.	erties of grou	ps, semi-group, monoid	CO1, CO2,CO4
	В			cyclic group, normal sub s and Symmetric groups	CO1, CO2,CO4
	С	Definition and Integers Mod	•	propertiesof Rings and Fields,	CO1, CO2,CO4
	Unit 3	Propositiona			
	A	Propositional Truth tables,	CO1,CO2		
	В	•		gical equivalence, arguments- s, rules of inferences, duality	CO1,CO2
	С	Connectives- prepositional	CO1,CO2		
	Unit 4	Finite Autom			
	A	Introduction Automata (FA Automata (N	CO3,CO4		
	В	DFA, Construction of DFA from	CO3,CO4		
	С	Optimization	of Finite Auto	omata.	CO3,CO4
	Unit 5	Regular Expr	ession and Fi	nite Automata	CO3,CO4
	A	Regular Expre	CO3,CO4		
	В	Arden Theore	em		CO3,CO4
	C	Applications	and Limitation	n of FA. (FAT tool).	CO3,CO4
	Mode of examination	Theory			
	Weightage	CA	MTE 20%	ETE	
	Distribution	30%	50%		

Text book/s*	 Liu and Mohapatra, "Elements of Distcrete Mathematics", McGraw Hill K.L.P. Mishra and N.Chandrasekaran, "Theory of Computer Science(Automata, Languages and Computation)", PHI 	
Other References	Internet as the resource for reference	

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: understanding the role and importance of proof in	PO1,PO2,PO3,PO4,PSO1
	mathematics, as well as the concept of the importance of	
	assumptions in the proof	
2.	CO2: knowledge of the concepts and methods of mathematical logic, set theory, relation calculus, and concepts concerning functions which are included in the fundamentals of various disciplines of mathematics, Student will be able to comprehend mathematical principles and logic	PO1, PO3, PO4, PSO2
3.	CO3:Formulate Minimized Finite Automata for regular Languages.	PO1,PO2,PO3,PO4
4.	CO4: To understand the structure and dynamics of mathematics such as axioms, definitions, theorems, proofs, and to learn the fundamental proof strategies in mathematics, such as proof by contrapositive, proof by contradiction.	PO9, PO10,PO11, PSO5

PO and PSO mapping with level of strength for Course Name Mathematical Foundation of Computer Science (Course Code MCA120)

	1				1				1					1	1		
COs	PO1	Р	PO	PO	PO5	Р	PO	PO8	PO9	PO	Р	PO	Р	PSO2	PSO3	PS	PS
		0	3	4		0	7			10	0	12	S			04	O5
		2				6					1		0				
											1		1				
MCA1 20 CO1	3	3	3	3				2	2	1	2	1	3	2	2	1	2
CO311 CO2	3	2	3	3				2	2	2	1	1	2	3	2	1	2
MCA1	3	3	3	3				1	1	1	3	2	3	2	1	1	1

School:SET		Batch : 202	18					
Program:		Current Academic Year: 2018-19						
MCA								
Bı	ranch:	Semester:	II					
1	Course	MCA164	Course Name					
	Code							
2	Course	Object Orie	ented Programming with Java					
_	Title	_						
3	Credits	5						
4	Contact	3-1-2						
	Hours							
	(L-T-P)	DC						
	Course	PG						
5	Status	1 Cainkney	vledgeaboutbasicJavalanguagesyntaxandsemanticstowrite.	lavanrogramsandus				
3	Course Objective		suchasvariables,conditionalanditerativeexecutionmetho					
	Objective							
		2. Understand the fundamentals of object-oriented programming in Java, including						
		defining classes, objects, invoking methods etc and exception handling mechanisms.						
		3. Understa	nd the principles of inheritance, packages and interface	S.				
6	Course		Il be able to:					
	Outcomes	CO1. Identif	yclasses, objects, members of a class and relationships among th	em needed for a				
		specificprob						
			eJavaapplicationprogramsusingOOPprinciplesandprope	rDemonstrate the				
		-	polymorphism and inheritance					
			lava programs to implement error handling techniqu	es using exception				
		handling.	o test, document and prepare a professional looking	nackago for each				
			iject using javadoc.	package for each				
7	Course	•	Oriented Programming (OOP) concepts, includir	ng objects. <i>classes</i> .				
	Descripti	-	arameter passing, information hiding, inheritance and					
	on	• •	and their implementations using Java are discussed.	•				
8	Outline syll	labus	-	CO Mapping				
	Unit 1	Introductio	n to Object Oriented Paradigm	11				
	A	Introduction	n to OOP, Characteristics of OOP, Difference	CO1, CO2				
		between O	OP and procedural languages, Features of Java.s					
	В	Java Sourc	e file structure, Prerequisites for compiling and	CO1, CO2				
		running Jav						
	C	ByteCode,A	rchitecture of JVM, Class Loader	CO1, CO2,CO3				

CO3 MCA1

CO4

*	SHARDA
	UNIVERSITY

ExecutionEngine,Garbage collection. Unit 2 Introduction to Java A JavadevelopmentKit(JDK),IntroductiontoIDEforjav t,Settingjava environment(stepsforpathandCLASS	vadevelopmen CO1, CO2,CO4
A JavadevelopmentKit(JDK),IntroductiontoIDEforjav	vadevelopmen CO1, CO2,CO4
	vadevelopmen CO1, CO2,CO4
t,Settingjava environment(stepsforpathandCLASS	
	PATHsetting).
B Constants, Variables, Data Types, Operators, Expi	ressions. CO1, CO2,CO4
C Decision Making Branching, Loops, command line	
Unit 3 Class & Object	
A Arrays, Type conversion & casting, Input from key Classes Objects	rboard, CO1,CO2,CO3
B MethodsMethod overloading, Constructors, Consoverloading.	ctructors CO1,CO2,CO3
C static keyword, Access Modifiers, Strings, the strings	ng buffer class CO4
Unit 4 Inheritance, package and InterfaceInheritance	
Implementation	
A Multilevel Hierarchy, Overriding methods, Polymofthis and super, Constructor call in inheritance, and method,	. , , ,
B Final class, method and variable, Implementing Ir Concept of multiple inheritance in Java, Wrapper	
C Packages: User defined packages, built-in package (java.langpackage).	es CO1,CO2,CO3
Unit 5 Exception and Multithreading	
A Input/output: Exploring java.io, File,Stream Class Classes and Character stream Classes.	resByte Stream CO1,CO2,CO3, CO4
B reading and writing in file, Introduction to Exception Introduction to try, catch, Finally, throw and throw Unchecked exceptions, User define exception	n Handling, CO1,CO2,CO3
C Introduction to Multithreading:multithreading a issues, Creating thread using Runnable interface ar Thread life cycle, Thread priorities, sleep m synchronization	nd Thread class, CO4
Mode of examinati on Theory	
Weightag CA MTE ETE	
e 30% 20% 50%	
Distributi	
on	
Text book/s* 1.Schildt H, "The Complete Reference JAVA2", TMH	
Other Reference 1. Balagurusamy E, "Programming in JAVA", TMH	
S 2. Professional Java Programming:BrettSpell,WRO	X Publication

*	SHARDA
	UNIVERSITY

		S Deyona Boanaan
S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1.	PO1,PO2,PO3,PO4,PSO1
	Identifyclasses, objects, members of a class and relationships among	
	them needed for a specificproblem.	
2.	CO2: Fundamental features of an object oriented language	PO1, PO3, PO4, PSO2
	like Java: object classes and interfaces, exceptions and	
	libraries of object collections.	
3.	CO3.Write Java programs to implement error handling	PO1,PO2,PO3,PO4
	techniques using exception handling.	
4.	CO4.How to test, document and prepare a professional	PO9, PO10,PO11, PSO5
	looking package for each business project using javadoc.	

$PO \ and \ PSO \ mapping \ with \ level \ of \ strength \ for \ Course \ Name \ OOPs \ using \ java \ (Course \ Code \ MCA164)$

Coc	IC IVI CI.	1101	,														
COs	PO1	PO	PO3	PO4	PO5	PO	PO7	PO8	PO9	PO10	PO	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	3	3	3	1		1	2	2	1	2	1	3	2	2	1	2
CO2	3	2	3	3	1		1	2	2	2	1	1	2	3	2	1	2
CO3	3	3	3	3	1		1	1	1	1	3	2	3	2	1	1	1
CO4	2	2	2	2	1			2	3	3	3	1	2	2	2	1	3

Sch	ool: SET	Batch: 2018							
Pro	gram: MCA	Current Academic Year:							
Bra	nch:	Semester: II							
1	Course Code	MCP164							
2	Course Title	Object Oriented Programming with Java Lab							
3	Credits	1							
4	Contact Hours	0-0-2							
	(L-T-P)								
	Course Status	Compulsory							
5	Course Objective	 Gain knowledge about basic Java language syntax and semantics to write Java programs and use concepts such as variables, conditional and iterative execution methods etc. Understand the fundamentals of object-oriented programming in Java, including defining classes, objects, invoking methods etc and exception handling mechanisms. Understand the principles of inheritance, packages and interfaces. 							
6	Course Outcomes	Students will be able to: CO1. Identify classes, objects, members of a class and relationships among them needed for a specific problem. CO2. Write Java application programs using OOP principles and proper Demonstrate the concepts of polymorphism and inheritance							

			Beyond Boundari							
		CO3. Write 3	CO3. Write Java programs to implement error handling techniques							
		using except	using exception handling.							
		CO4. How to	CO4. How to test, document and prepare a professional l							
			package for each business project using javadoc.							
7	Course			Programming (OOP) conce	pts, including					
	Description			parameter passing, inform						
	1	inheritance		orphism are introduced						
		implementat		are discussed.						
		1	C							
8	Outline syllabus	S			CO					
					Mapping					
	Unit 1	Practical ba	sed on classes	and objects	CO1,CO2					
				d in Instructional Plan	,					
	Unit 2		Practical based on constructors							
		Sub unit - a,	b and c detaile	d in Instructional Plan						
	Unit 3		Practical based on inheritance and package							
		Sub unit - a,	b and c detaile	d in Instructional Plan						
	Unit 4	Practical ba	sed on Polymo	orphism	CO1, CO2					
		Sub unit - a,	b and c detaile	d in Instructional Plan						
	Unit 5	Practical ba	sed on Except	ion handling	CO1, CO3					
				d in Instructional Plan						
	Mode of	Practical								
	examination									
	Weightage	CA	CA MTE ETE							
	Distribution	60%								
	Text book/s*	1.Schildt H,	1. Schildt H, "The Complete Reference JAVA2", TMH							
	Other	1. Balag								
	References	TMH								
		2. Profe	ssionalJava							
		Programmin	g:BrettSpell,W	ROX Publication						
			0							

Sch	ool: SET	Batch: 2018								
Pro	gram: MCA	Current Academic Year: 2018-19								
Bra	nch:	Semester: II								
1	Course Code	MCA165 Course Name MCA								
2	Course Title	System Analysis and Design								
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course Status	Compulsory								
5	Course	1. This course provides an introduction to the fundamentals of								
	Objective	distributed computer systems,								

			Beyond Boundari							
		Designing Algorithms used in Distributed system.								
		3. Various issues and challenges used in Distributed System.								
6	Course	Students will be able to:								
	Outcomes	CO1 :apply software testing knowledge and engineering methods.								
		CO2: design and conduct a software test process for a software testing project.								
		· ·								
		CO3: identify the needs of software test automation, and define and develop a test tool to support test automation.								
		CO4: Have an ability understand and identify various software	a tecting							
		problems, and solve these problems by designing and selection	-							
		models, criteria, strategies, and methods.	ing software test							
		iniodeis, criteria, strategies, and methods.								
7	C	This serves introduces the serves of Contons Angloric alex	-:+b							
7	Course	This course introduces the concepts of System Analysis, algor								
	Description	issues and challenges in Distributed system, dentify the prob	iems, and choose							
		the relevant models and algorithms to apply.								
8	Outline syllabu		CO Mapping							
	Unit 1	Fundamental of System Development:								
	A	System concept-characteristics-elements of system, types of system.	CO1, CO2							
	В	Modern approach to system analysis and design, system	CO1, CO2							
		development life cycle, approaches to improve the system								
		development.								
	С	Tools for system development, role of system analyst.	CO1, CO3							
	Unit 2	System Analysis:								
	A	Determining system requirements, traditional methods, modern	CO1,							
		methods.	CO2,CO4							
	В	Structuring system requirements, process modeling, data flow	CO1,							
		diagram.	CO2,CO4							
	С	Logic modeling-conceptual data modeling, E-R modelling.	CO1,							
			CO2,CO4							
	Unit 3	System Design:								
	A	The Process and Stages of System Design, Design Methodologies,	CO1,CO2,CO3							
	A	Development Activities.	CO1,CO2,CO3							
	В	Input Design, Output Design.	CO1,CO2,CO3							
	C	Types of Forms, Basics of Form Design.	CO4							
	Unit 4	Documentation	CO4							
			CO1 CO2 CO2							
	A	Documentation: Importance, Types of documentation,	CO1,CO2,CO3							
		Security, Disaster/ Recovery and Ethics in System								
	D	Development:	GO1 GO2 GO2							
	В	Threats to System Security, Control,	CO1,CO2,CO3							
	С	Measures, Disaster/ recovery planning.	CO1,CO2,CO3							
	Unit 5	CASE Tools:								
	A	Design Issues and CASE Tools Forms and Reports Design:	CO1,CO2,CO3							
		Forms, Importance of Forms, Reports, Importance of								
		Reports,.								
	В	Differences between Forms and Reports, Process of	CO1,CO2,CO3							
		Designing Forms and Reports, Deliverables and Outcomes,								
<u> </u>	t.	, , ,	I.							

*	SHARDA
	UNIVERSITY

S beyond Boundarie
sability CO1,CO2,CO3
ition,
ral
ems", Mc
System:
Jniversity

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Students will identify the core concepts of distributed	PO1,PO2,PO3,PO4,PSO1
	systems.	
2.	CO2: the way in which several machines orchestrate to	PO1, PO3, PO4, PSO2
	correctly solve.	
3.	CO3: Students will examine how existing systems have	PO1,PO2,PO3,PO4
	applied the concepts of distributed systems in designing large	
	system.	
4.	CO4: Can additionally apply these concepts to develop	PO9, PO10,PO11, PSO5
	distributed systems.	

PO and PSO mapping with level of strength for Course Name Introduction to Distributed System (Course Code MCA165)

COs	PO1	РО	PO3	PO4	PO5	PO	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	3	3	3		-		2	2	1	2	1	3	2	2	1	2
CO2	3	2	3	3		-		2	2	2	1	1	2	3	2	1	2
CO3	3	3	3	3		-		1	1	1	3	2	3	2	1	1	1
CO4	2	2	2	2	1			2	3	3	3	1	2	2	2	1	3

Scho	ool: SET	Batch: 2018							
Prog	gram: MCA	Current Academic Year: 2018-2019							
Brar	nch: CS	Semester: II							
1	Course Code	Course Code MCA166 Course Name							
2	Course Title	Computer Organization and Architecture							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	PG							
5	Course	Objective of this course is to study organization of a digital							
	Objective	design techniques for designing various components of a digital	ital computer.						
6	Course	Students will be able to:							
	Outcomes	CO1: Evaluate and compare computer designs							
		CO2: Design buses							
		CO3: Design simple arithmetic circuitsCO4: Compare various design techniques for control unit							
		CO5: Construct and evaluate a memory system using RAM/I	ROM chins						
7	Course	This course covers basic topics about computer architecture a							
,	Description	The course provides the study of the structure, characteristics							
	2 courpus	modern day computer systems including a basic background							
		evolution, its design process and its internal characteristics w							
		processor components, control unit architecture, memory org							
		system organization.							
8	Outline syllabus		CO Mapping						
	Unit 1	Introduction to Computer Organization							
	A	History, Computer Organization vs. Computer	CO1, CO2						
		Architecture, Bus: Types, Buses using multiplexers and tri-							
		state buffers, Bus and memory transfer.	~~. ~~.						
	В	Register transfer language, Micro-operations: CO1, CO2							
		Arithmetic, shift and logic micro operations	GO1 GO2 GO2						
	С	Adder-Subtractor- Incrementor, Arithmetic unit, Logic unit.	CO1, CO2, CO3						
	Unit 2	Computer Arithmetic							
	A	Representation of numbers in 1's and 2's complement,	CO1, CO2,CO3						
		Addition and subtraction of signed numbers.							
	В	Binary Multiplier, Multiplication: Signed operand	CO1, CO2,CO3						

				🤝 🥟 Beyond Boundari				
	multiplication	on, Booth a	lgorithm					
C	Floating poin	Floating point representation: addition and subtraction.						
Unit 3	Control Uni							
A	Hardwire an	CO1,CO2,CO4						
В	Micro-progr	CO1,CO2,CO4						
С	Micro-progr	amming Seq	uencer, Horizontal and vertical	CO1,CO2,CO4				
	Micro-Progr	ramming.						
Unit 4	Processor	Organizatio	1					
A	Instruction c	ycle and sub	cycles (fetch and	CO1,CO2,CO3				
	e x e c u t e e	tc), interrupt	: Types and cycle.					
В	General reg	ister organiz	zation, stack organization	CO1,CO2,CO3				
C		modes, Instru	action types, formats,	CO1,CO2,CO3				
	RISC/CISC							
Unit 5	Memory and							
A	RAM/ROM	CO1,CO3,CO5						
	RAM and RO							
В			nierarchy, performance	CO1,CO3,CO5				
	Consideratio							
C			vs. memory mapped I/O,	CO1,CO3,CO5				
	Programmed	I/O, Interrupt	t driven I/O, DMA					
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	•	•	tecture", Morris M. Mano,					
	Prentice-Hal							
Other	1."Computer	1."Computer Organization", V. C. Hamacher et al.,						
References	Mcgrew Hill	_	in, v. c. Hamacher et al.,					
			and Architecture designing for					
	pertormance	″ Wıllıam Sta	llings, Pearson.					

S.	Course Outcome	Program Educational
No.		Objectives (PEO) &
		Program Specific Outcomes
		(PSO)
1.	CO1: Evaluate and compare computer designs	PEO1,PEO2,PSO1
2.	CO2:Design buses	PEO3, PEO4, PSO2
3.	CO3: Design simple arithmetic circuits	PEO2,PEO3,PO4
4.	CO4: Compare various design techniques for control unit	PEO1,PEO2,PSO3
5.	CO5: Construct and evaluate a memory system using RAM/ROM chips	PEO1,PEO2,PEO3,PEO4

PO and PSO mapping with level of strength for Course Name Computer Organization and Architecture (Course Code MCA166)

CSE	Cos	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
	CO1	3	3	1	1	3	1	
	COI	3	3	1	1	3	1	-
	CO2	1	2	3	3	-	3	1
	CO3	1	3	3	3	1	1	1
	CO4	3	3	-	2	1	-	3
	CO5	3	3	3	3	1	1	2

Sch	ool: SET	Batch: 2018
Pro	gram:MCA	Current Academic Year:
Bra	nch:	Semester: III
1	Course Code	MCA261 Course Name
2	Course Title	Java Programming
3	Credits	4
4	Contact Hours	3-0-2
	(L-T-P)	
	Course	UG
	Status	
5	Course Objective	Objective of this course is to provide the ability to design console based, GUI based and web based applications. Students will also be able to understand
	Objective	integrated development environment to create, debug and run multi-tier and
		enterprise-level applications
6	Course	Students will be able to:
	Outcomes	CO1:Develop Swing-based GUI
		CO2:Develop client/server applications and TCP/IP socket programming CO3Update and retrieve the data from the databases using SQL
		CO4Develop distributed applications using RMI
		CO5Develop component-based Java software using JavaBeans
		CO6 Develop server side programs in the form of servlets
7	Course	This <i>course</i> introduces computer <i>programming</i> using the <i>JAVA</i>
	Description	programming language with object-oriented programming principles. Emphasis
		is placed on event-driven <i>programming</i> methods, including creating and
		manipulating objects, classes, and using object-oriented tools such as
		the <i>class</i> debugger.
8	Outline syllabu	IS CO Mapping

*	SH	IA.	RI	DA	
	UN	IVE			

Unit 1	GUI Programming	Beyond Boundaries
A	Introduction to AWT: Layout managers, AWT and Swing	CO1, CO2
	components, Menu, Submenu	
В	DialogEvent handling: Action Events, Mouse Events,	CO1, CO2
	Keyboard Events, Window Events, Listeners	
C	The Delegation Model of Event Handling, Adapter	CO1, CO2, CO6
	Classes Java applet: life cycle, Implementation.	
Unit 2	Data Base Connectivity	
A	Introduction to JDBC: JDBC API, java.sql package, JDBC	CO1, CO2,CO4
	Drivers and ArchitectureDatabase connectivity	
	Implementation.	
В	Creating and Accessing Database: Creating tables,	CO1, CO2,CO4
	Retrieving values, Inserting, Updating and deleting	001, 002,001
	records	
С	Using Prepared statement, Callable statement,	CO1, CO2,CO4
	Transactions, Metadata, Handling SQL Exceptions.	231, 332,331
Unit 3	Network Programming	
A	Sockets: Introduction, Application, TCP socket and UDP	CO1,CO2,CO3
	socket Implementation	, , , , , , , , , , , , , , , , , , , ,
В	Client and Server sockets, data transmission over socket	CO1,CO2,CO3
С	Introduction to RMI, RMI Architecture, Registry server,	CO4, CO6
	RMI server and RMI client	,
Unit 4	Servlets	
A	Servlet: Overview and Architecture, Life Cycle, Servlets	CO1,CO2,CO3
	Interface , Javax.servlet and javax.servlet.http package,	
	Implementing and Deploying Servlets, Exploring	
	Develoyment Descriptor (web.xml) .Handling Client HTTP	
	Request & Server HTTP Response	
В	Redirecting Requests to Other Resources, Initializing	CO1,CO2,CO3
	Parameters & ServletContext, Initializing a Servlet,	
	Session Management, Request Dispatcher and	
	Redirecting	
C	, Session Tracking: Cookies, Session Tracking with	CO1,CO2,CO3
	HttpSession, Deployment and Database connectivity	
TT 14 F	with Servlet.	
Unit 5	Introduction to JSP	001 002 003 003
A	Life cycle of JSP, JSP API, JSP Application Design, Tomcat	CO1,CO2,CO3,CO6
	Server, Scripting elements, scriptlet tag, expression tag,	
D	declaration tag	GO1 GO2 GO2
В	Implicit Objects, JSP Objects, Directive Elements, Action	CO1,CO2,CO3
C	Elements Evention Handling Error Pages, Database connectivity	CO1 CO2 CO2 CO2
C	Exception Handling, Error Pages, Database connectivity with JSP	CO1,CO2,CO3,CO6
Mode of		
	Theory	
examination	CA MTE ETE	
Weightage	CA MTE ETE	<u> </u>

Distribution	30%	20%	50%	
Text book/s*	1.Balagurusa	my E, "Progra	mming in JAVA", TMH	
Other	3. Schildt H	, "The Comple		
References	4. Schildt H	, "The Comple	te Reference J2EE", TMH	
	5. Profession	nal Java Progi		
	Publication	on		

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific			
110.		Outcomes (PSO)			
1.	CO1:Develop Swing-based GUI	PO1,PO2,PO3,PO4,PSO1			
2.	CO2: Develop client/server applications and TCP/IP socket programming	PO1, PO3, PO4, PSO2			
3.	CO3:Update and retrieve the data from the databases using SQL	PO1,PO2,PO3,PO4			
4.	CO4:Develop distributed applications using RMI	PO9, PO10,PO11, PSO5			
5.	CO5Develop component-based Java software using JavaBeans	PO1,PO2,PO3,PO4			
6.	CO6 Develop server side programs in the form of servlets	PO1, PO3, PO4, PSO2			

PO and PSO mapping with level of strength for Course Name Java Programming (Course Code MCA261)

E	Cos	PO1	PO 2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PS O1	PSO2	PSO3	PSO4	PSO5
	CO1	3	3	3	3				2	2	1	2	1	3	2	2	1	2
	CO2	3	2	3	3		1		2	2	2	1	1	2	3	2	1	2
	CO3	3	3	3	3				1	1	1	3	2	3	2	1	1	1
	CO4	2	2	2	2	1	1	1	2	3	3	3	1	2	2	2	1	3
	CO5	3	3	3	3		-		2	2	1	2	1	3	2	2	1	2
	CO6	3	2	3	3				2	2	2	1	1	2	3	2	1	2

Sch	ool: SET	Batch :20	18						
Pro	gram: MCA	Current A	Academic Year: 2018-19						
Bra	nch:MCA 262	Semester:	3						
1	Course Code	MCA262	Course Name: MCA						
2	Course Title	Introduct	ion to Computer Networks						
3	Credits	4							
4	Contact	3-0-2	3-0-2						
	Hours								

	(L-T-P)		Beyond Boundarie								
	Course Status	Compulsory									
5	Course	Provide students with an overview of networking									
	Objective	4. Gain insight into the issues, challenges and wor	k at all level of								
		reference models									
		5. Provide the students with practice on applying netwo	ork design								
		Enhance students communication and problem solvii	-								
		o. Elimance students communication and problem solving	ig skills								
6	Course	Students will be able to:									
	Outcomes	CO1:Demonstrate and differentiate working of all layers of the	ne OSI Reference								
		Model and TCP/IP model									
		CO2:Investigate and explore fundamental issues driving netw	ork design								
		including error control, IP addressing, access control, flow an	d congestion								
		control									
		CO3:Have a basic knowledge of the use ofcryptography and r									
	C	CO4:Understand and analyze working of various routing algo									
7	Course	To familiarize with the basic taxonomy and terminology	ogy of computer								
8	Description Outline avillable	networking area.	CO Mapping								
0	Unit 1	atline syllabus if 1 Introduction									
	A	Introduction to computer networks, applications and uses,	CO1, CO2								
	Λ	classification of Networks based on topologies, geographical	CO1, CO2								
		distribution and communication techniques									
	В	Reference models: OSI model, TCP/IP model , Overview of	CO1, CO2								
		Connecting devices (Hub, Repeaters, Switches, Bridges, Routers,									
	С	Gateways) Transmission Media:wired , wireless, Multiplexing techniques-	CO1, CO2								
	C	FDM, TDM	CO1, CO2								
	Unit 2	Data Link Layer									
	A	Functions, Framing, Error Control-Error correction	CO1, CO2								
		codes(Hamming code), Error Detection codes(Parity Bit, CRC)									
	В	Flow Control- Stop and Wait Protocol, Sliding window –Goback N	CO1, CO2								
		and Selective repeat(ARQ)									
	C	MAC- Sub-layer Protocols: ALOHA, CSMA, CSMA/CD protocols,	CO1, CO2								
	Unit 3	IEEE Standards 802.3, 802.4,802.5 Network Layer									
	A	Design issues , IPV4addressing basics and Header format, CIDR,	CO1,CO2								
	11	sub-netting and sub-masking	001,002								
	В	Routing, optimality Principle Routing protocols-, Shortest path,	CO1,CO2,CO4								
	D	flooding, distance vector routing, link state routing	01,002,004								
	С	Congestion control-Leaky bucket , Token Bucket, jitter control	CO1,CO2								
	Unit 4	Transport Layer									
	A	Need of transport layer with its services, Quality of service,	CO1,CO2								
	•	connection oriented and connection less	, - 								
	В	Transmission Control Protocol: Segment structure and header	,								
		format, TCPConnection Management, Flow Control									

					Seyonu bounuarii							
C	_	•	•	ontrol Algorithm,	CO1,CO2							
	Overview of U	ser Datagram P	rotocol (UDP)									
Unit 5	Application La	yer										
A	Domain Name)	CO1,CO2									
В		-		Symmetric versus	CO1,CO2,CO3							
	Asymmetric cr	Asymmetric cryptographic algorithms- DES, and RSA Application of Security in Networks: Digital signature										
C	CO1,CO2,CO3											
Mode of	Theory	Theory										
examination												
Weightage	CA	MTE	ETE									
Distribution	30%	20%	50%									
Text book/s*		nbaum, A.S. on, PHI	" Computer	Networks", 4 th								
Other References	Lates	 Forouzan, B, "Communication Networks", TMH, Latest Edition W. Stallings, "Data and Computer Communication" Macmillan Press 										

S.	Course Outcome	Program Outcomes (PO) & Program Specific
No.		Outcomes (PSO)
1.	CO1: Demonstrate and differentiate working of all layers of the OSI Reference	PO11,PO12,PSO2,PSO3,PSO4
	Model and TCP/IP model	
2.	CO2:Investigate and explore fundamental	PO1,PO3,PO4,PO5,PO7,PO10,PO11PO12,PSO4
	issues driving network design	
3.	CO3: Have a basic knowledge of the use of	PO1,PO2,PO4,PO6,PO7,PO8,PO10,PSO1,PSO3
	cryptography and network security;	
4.	CO4: Understand and analyze working of various routing algorithms	PO2,PO7,PSO2,PSO3

PO and PSO mapping with level of strength for Course Name Java Programming (Course Code MCA262)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	-	-	-	-	-	-	-	-	-	1	3	-	2	3	1	-
CO2	3	-	3	3	2	-	3	-	-	3	1	2	-	-	-	1	-
CO3	2	3	-	2	-	2	3	2	-	2	-	-	1	-	3	-	-
CO4	-	2	-	-	-	-	1	-	-	-	-	-		1	3	-	-

School:		Batch : 2018	eyond Boundaries
Program:MCA		Current Academic Year:	
Bran	ch:	Semester: 3	
1	Course Code	MCA-263 Course Name	
2	Course Title	Principles of Database Management Systems	
3	Credits	4	
4	Contact Hours	3-0-2	
	(L-T-P)		
	Course Status		
5	Course	1.Develop the ability to design,	
	Objective	2.implement and manipulate databases.	
		3.Introduce students to build data base management systems.	
		4.Apply DBMS concepts to various examples and real life applica	tions.
6	Course	Students will be able to:	
	Outcomes	1. Apply the knowledge of databases to E-R modelling.	
		2. Apply major components of Relational Database model to data	base design.
		3.Learn and apply Structured Query Language (SQL) for data defir	ition and data
		manipulation.	
		4.Design a normalized databaseand able to perform transaction n	nanagement
		concurrency control and recovery system.	
7	Course	This course introduces database design and creation using a DBM	S product.
	Description	Emphasis is on, normalization, data integrity, data modeling, and	creation of
		simple tables, queries, reports, and forms. Upon completion, stud	lents should be
		able to design and implement normalized database structures by	creating simple
		database tables, queries, reports, and forms.	
8	Outline syllabus		CO Mapping
	Unit 1	Introduction to Databases:	
	Α	Concept & Overview of DBMS, Data Models, Database	CO1
		languages, Database Administrator, Database Users.	
	В	Three Schema architecture of DBMS, Data Models, Hierarchical,	CO1,CO2
		Network ,Data independence and database language, DDL,	
		DML, Data Modeling using Entity Relationship Model	
	С	Strong Entity, Weak entity, Specialization and generalization,	CO1,CO2
		converting ER Model to relational tables.	
	Unit 2	Relational Database Language and Interfaces:	
	Α	Relational data model concepts ,Concept of keys, Mapping	CO3,CO2
		Constraints	
	В	Null Values, Domain Constraints, Referential Integrity	CO3,CO2
		Constraints	
	С	Unary Relational Operations: SELECT and PROJECT Relational	CO3,CO2
		Algebra Operations from Set Theory ,Binary Relational	
		Operations: JOIN and DIVISION ,SQL.	
	Unit 3	Normalization in Design of Databases:	
	Α	Functional Dependency, Different anomalies in designing a	CO4,CO2
		Database, Normalization first	
	В	second and third normal forms, BoyceCodd normal form, multi-	CO4,CO2
		valued dependencies	

*	SHARDA
	UNIVERSITY

С		fourth normal forms, Inclusion dependencies, loss less join decompositions					
Unit 4	Transaction N	1anagemen	t and Concurrency Control:				
А	•	Transaction processing system, schedule and recoverability, Testing of serializability, Serializability of schedules					
В		conflict & view serializable schedule.Concurrency Control: Locking Techniques for concurrency control					
С	time stamping schemes	g protocols f	for concurrency control, multiversion	CO4,CO2			
Unit 5	Recovery Sy	stem					
А	Failure Class Algorithm	Failure Classification ,Recovery and Atomicity ,Recovery					
В	Buffer Mana	gement ,Fa	ailure with Loss of Nonvolatile Storage	CO4,CO2			
С	<u> </u>						
Mode of examination	Theory	Theory					
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*		 Korth , Silberschatz&Sudarshan, Data base Concepts, Tata McGraw-Hill, Latest Edition 1.Elmasri, Navathe, Fundamentals of Database Systems, Pearson Education Inc. 2.Thomas Connolly, Carolyn Begg, Database Systems: A Practical Approach to design, Implementation and Management, Pearson Education, Third Edition. 3.Jeffrey D. Ullman, Jennifer Windon, A first course in Database Systems, Pearson Education. 4.Date C.J., An Introduction to Database Systems, Addison Wesley. 					
Other References	Education 2.Thomas Approach Education 3.Jeffrey Systems, 4.Date C						

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)			
1.	CO1: To understand and implement classical algorithms in data mining and data warehousing.	PO1,PO2,PO3,PO10,PSO12,PSO3			
2.	CO2: To assess the strengths and weaknesses of the algorithms.	PO1, PO2, PO3, PS5,PO9,PO10,PO11,PO12,PSO1,PSO2,PSO3			
3.	CO3: To identify the application area of algorithms, and apply them.	PO1,PO2,PO3,PO5,PO9,PO10,PO11,PO12,PSO1,PSO2,PSO3			
4.	CO4: To integrating and interpreting the data sets and improving effectiveness, efficiency and quality for data analysis.	PO1, PO2,PO3, PO4,PO5,PO9,PO10,PO11,PO12,PSO1,PSO2,PSO3,PSO4			

PO and PSO mapping with level of strength for Course Name Principles of data Base Management Systems (Course Code MCA263)

М	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	PSO
С											0	1	2	1	2	3	4
A	CO1	2	1	1	-	·	-	-	-	-	3	-	2	-	-	1	-
	CO2	3	3	3		3	-	-	-	2	3	2	1	3	3	3	-
	CO3	3	3	3	-	3	-	-	-	3	1	3	3	2	2	3	1
	CO4	3	3	3	2	3	-	-	-	3	1	3	3	3	3	3	2

School: SET		Batch: 2018				
	gram: MCA	Current Academic Year:				
Bra	J	Semester: III				
1	Course Code	MCP263				
2	Course Title	Data Base Management System Lab				
3	Credits	1				
4	Contact Hours	0-0-2				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	 To Develop efficient SQL programs to access Oracl 	e databases			
	Objective	Build database using Data Definition Language Stat				
		Perform operations using Data Manipulation Langu	ıage			
		statements like Insert, Update and Delete				
6	Course	By the end of this course you will be able to:				
	Outcomes	CO1: Understandthe concept of SQL commands in DBMS				
		CO2: Create SQL SELECT statements that retrieve any required da				
		CO3: Perform operations using Data Manipulation Language stateme like Insert, Update and Delete				
		CO4: Manipulate your data to modify and summaries your results for reporting				
7	Course	An introduction to the design and creation of relational dat	abases. Create			
	Description	database-level applications and tuning robust business appl	ications. Lab			
		sessions reinforce the learning objectives and provide partic	cipants the			
8	Outling avillation	opportunity to gain practical hands-on experience.	CO Mannina			
0	Outline syllabus Unit 1		CO Mapping			
	OIIIt I	Practical based Data types Classification SQL, Data types of SQL/Oracle	CO1,CO2			
	Unit 2	Practical based on DDL commands	CO1,CO2			
	Unit 2	Tractical pased on DDL commands				

*	SHARDA
	UNIVERSITY

		Beyond Boundaries			
	Create table,	CO1,CO2			
Unit 3	DML comma	ands and Aggr	egate functions		
	CO2,CO4				
	DELETE con				
Unit 4	CO1,CO4				
	ORDER BY	& GROUP BY	HAVING		
	Briefly explai	in Group by, or	der by, having clauses with		
	examples.				
Unit 5	Practical bas	sed on Sub- qu	eries, JOINS	CO1,CO4	
	Related exam	ple of Sub- que	ries, Joins and related		
	examples				
Mode of	Jury/Practical	l/Viva			
examination					
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Text book/s*	1. Korth , Sil McGraw-H				
Other References					
	4. Thoma Practic Manag				
	-	D. Ullman, Jennife se Systems, Pearso	r Windon, A first course in on Education.		

Sch	ool: SET	Batch: 2018				
Pro	gram: MCA	Current Academic Year: 2018-19				
Bra	nch:	Semester: III				
1	Course Code	MCA264 Course Name				
2	Course Title	Principles of Operating Systems				
3	Credits	3				
4	Contact	3-0-0				
	Hours(L-T-					
	P)					
	Course	Non Elective				
	Status					
5	Course	This course introduces the challenges for designing the operating				
	Objective	systems.				
		2. Includes different design principles and algorithms.				
		3. Evaluation of algorithms proposed.				
		4. Implementation of algorithms and utilities.				
6	Course	Students will be able :				
	Outcomes	CO1: To identify the challenges and apply suitable algorithms for them.				

	1	ı			Beyond Boundaries
			ess the streng		
			derstand and	e allocation and	
		utilization.			
		CO4: To int	egrate and int	erpret effectiveness, efficiency of	falgorithms used for
		resource m	anagement of	operating systems.	
7	Course	This course	introduces th	e design principles of operating s	ystems, resource
	Description	manageme	nt, identifying	challenges and applying respecti	ve algorithms.
8	Outline syllabu	ıs			CO Mapping
	Unit 1	Introduction	1		
	A	_	ystem Concer erating system	pts and functions, Comparison of	CO1, CO2
	В		erating System Multiprocessing vstem)	CO1, CO2	
	С			, Operating System Services	CO1, CO2
	Unit 2	Process Synd			,
	A	Process Cond		cess States , Process Operations,	CO1, CO2,CO3
	В		on problem & t	heir solutions, Introduction to	CO1, CO2,CO3
	С	Classical Pro Problem, Re	blems of Synch aders Writer Pr	ronization (Producer Consumer oblem, Dining philosophers	CO1, CO2,CO3,CO4
	IImit 2	CPU Schedu	•	of synchronization algorithms.	
	Unit 3			and Chartenna Langtona Naidella	GO1 GO2
	A	term), Dispa	tcher, Performa		CO1,CO2
	В			(FCFS, SJF, Priority, Round Robin, el feedback Queue)	CO1,CO2,CO3,CO4
	С		ncepts & Hand nd Detection &	ling Techniques(Avoidance, & Recovery)	CO1,CO2,CO3,CO4
	Unit 4	Memory Ma	nagement		
	A	Memory Hie	rarchy, Memor	y Management Unit	CO1,CO2,CO3
	В	Paging, Segn	nentation		CO1,CO2,CO3
	С			emand paging, Page replacement RU), Associative memory	CO1,CO2,CO3
	Unit 5		Management	,	
	A	File Concept	,File operation	s, File Directories, Case study of	CO1,CO2,CO3
	В	Windows Operating System Disk structure, Disk scheduling(FCFS,SSTF, SCAN, LOOK,C-SCAN, C-LOOK) Case study: UNIX, Commands related to Process and File Handling			CO1,CO2,CO3,CO4
	С				CO1,CO2,CO3
	Mode of examination	Theory			
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*	_	i	erating System Concepts, Wiley	

Other	1.	W. Stalling, "Operating System", Maxwell Macmillan	·
References	2.	Tannenbaum A S, Operating System Design and Implementation, Prentice Hall India	
	3.	Milenkovic M, <i>Operating System Concepts</i> , McGraw Hill	

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: To identify the challenges and apply suitable algorithms for them.	PO1,PO2,PO3,PO4,PSO1
2.	CO2: To assess the strengths and weaknesses of the algorithms.	PO1, PO3, PO4, PSO2
3.	CO3: To understand and implement algorithms in resource allocation and utilization.	PO1,PO2,PO3,PO4
4.	CO4: To integrate and interpret effectiveness, efficiency of algorithms used for resource management of operating systems.	PO9, PO10,PO11, PSO5

PO and PSO mapping with level of strength for Course Name Principles of Operating System(Course Code MCA264) $\,$

E	COs	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4
			2				6					11		01			
	CO1	3	3	3	3				2	2	1	2	1	3	2	2	1
	CO2	3	2	3	3	1			2	2	2	1	1	2	3	2	1
	CO3	3	3	3	3				1	1	1	3	2	3	2	1	1
	CO4	2	2	2	2	1			2	3	3	3	1	2	2	2	1

Scho	ool: SET	Batch: 2018-2020		
Prog	gram: MCA	Current Academic Year: 2018-19		
Bran	nch:	Semester:III		
1	Course Code	MCA265		
2	Course Title	Data Structures		
3	Credits	5		
4	Contact	3-1-2		
	Hours			
	(L-T-P)			
	Course Status	Core		
5	Course	1. Learn the basicconcepts of Data Structures and algorithms.		

*	S	H	A	\I	$\left\{ \right\}$	D_{ℓ}	4
						TI	

	Objective	Design and Implementation of Linear and Non linear Data	Structures		
	Objective	3. Learn the concepts of various searching, Sorting			
		Techniques.	and mashing		
		4. Choose the appropriate data structures and algorithm desi	gn method for a		
		specified application.			
6	Course	CO1: Understand the importance of various data structures.			
	Outcomes	CO2: Evaluate algorithms and data structures in terms of time and memory			
		complexity.			
		CO3: Understand the application of linear data structure(s) to	o solve various		
		problems			
		CO4: Understand the application of non linear data structu	ure(s) to solve		
		various problems.			
		CO5: Implement and know when to apply standard a	algorithms for		
		searching and sorting.	() C ·		
		CO6: Identify and define the most appropriate data structure	e(s) for a given		
		problem			
7	Course	This course starts with an introduction to data struct	uras with its		
'	Description	classification, efficiency of different algorithms, array and			
	Description	implementations and Recursive applications. As the course			
		study of Linear and Non-Linear data structures are studied			
		course talks primarily about Linked list, stacks, queue,			
		Graphs etc. This Course also deals with the concept of sea			
		1	rennig, sorung		
8	Outline syllabu	and hashing methods.	CO Mapping		
8	Outline syllabu Unit 1	and hashing methods. Introduction			
8		and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types.			
8	Unit 1	and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space	CO Mapping		
8	Unit 1 A	and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms.	CO Mapping CO1, CO2		
8	Unit 1	and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem,	CO Mapping		
8	Unit 1 A	and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms.	CO Mapping CO1, CO2		
8	Unit 1 A B	and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series	CO Mapping CO1, CO2 CO1		
8	Unit 1 A	and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem,	CO Mapping CO1, CO2 CO1		
8	Unit 1 A B	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address	CO Mapping CO1, CO2 CO1		
8	Unit 1 A B	and hashing methods. Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices.	CO Mapping CO1, CO2 CO1		
8	Unit 1 A B C Unit 2	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List	CO Mapping CO1, CO2 CO1 CO1, CO2		
8	Unit 1 A B	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in	CO Mapping CO1, CO2 CO1		
8	Unit 1 A B C Unit 2 A	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow,	CO Mapping CO1, CO2 CO1 CO1, CO2 CO3, CO6		
8	Unit 1 A B C Unit 2	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow, Singly Linked Lists – Circular Linked Lists, Operations	CO Mapping CO1, CO2 CO1 CO1, CO2		
8	Unit 1 A B C Unit 2 A B	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow, Singly Linked Lists – Circular Linked Lists, Operations Associated with different linked list,	CO Mapping CO1, CO2 CO1 CO1, CO2 CO3, CO6 CO3, CO6		
8	Unit 1 A B C Unit 2 A	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow, Singly Linked Lists – Circular Linked Lists, Operations Associated with different linked list, Doubly Linked Lists, Operations Associated with different	CO Mapping CO1, CO2 CO1 CO1, CO2 CO3, CO6		
8	Unit 1 A B C Unit 2 A B C	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow, Singly Linked Lists – Circular Linked Lists, Operations Associated with different linked list, Doubly Linked Lists, Operations Associated with different linked list, Polynomial representation and addition.	CO Mapping CO1, CO2 CO1 CO1, CO2 CO3, CO6 CO3, CO6		
8	Unit 1 A B C Unit 2 A B C Unit 3	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow, Singly Linked Lists – Circular Linked Lists, Operations Associated with different linked list, Doubly Linked Lists, Operations Associated with different linked list, Polynomial representation and addition. Stack and Queues	CO Mapping CO1, CO2 CO1 CO1, CO2 CO3, CO6 CO3, CO6 CO3, CO6		
8	Unit 1 A B C Unit 2 A B C	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow, Singly Linked Lists – Circular Linked Lists, Operations Associated with different linked list, Doubly Linked Lists, Operations Associated with different linked list, Polynomial representation and addition. Stack and Queues Array Representation and Implementation of stack, Operations	CO Mapping CO1, CO2 CO1 CO1, CO2 CO3, CO6 CO3, CO6		
8	Unit 1 A B C Unit 2 A B C Unit 3	Introduction Data Structure – Definition, Operations, Applications and types. Abstract Data Types, Asymptotic Notations, Time and space complexity of algorithms. Recursion – Definition, Examples- Tower of Hanoi problem, Fibonacci Series Array Definition, Single and Multidimensional Arrays, Address Calculation, application of arrays, String Operation, Sparse Matrices, Lower and Upper Triangular matrices, and tri-diagonal matrices. Linked List Concept of Linked List, Representation of linked List in memory, Garbage Collection, Overflow and Underflow, Singly Linked Lists – Circular Linked Lists, Operations Associated with different linked list, Doubly Linked Lists, Operations Associated with different linked list, Polynomial representation and addition. Stack and Queues	CO Mapping CO1, CO2 CO1 CO1, CO2 CO3, CO6 CO3, CO6 CO3, CO6		

*	SHARDA
	UNIVERSITY

				leyond Boundaries	
	Expressions, Ev	valuation of post	fix expression using stack.		
В	Array and linke	d representation	and implementation of queues,	CO3, CO6	
	Operations on (Queue: Create, A	Add, Delete, Full and Empty.		
C	Circular queue,	CO3, CO6			
Unit 4	Tree and Grap	oh			
A	Trees: Termin	CO4, CO6			
	Traversals – I	Traversals – Binary Tree Representations – Binary Search			
	Trees	-			
В	Threaded binar	y Trees – Applic	eation of Trees (Sets) – Binary	CO4, CO6	
			nd Deletion in BST, AVL Trees		
C			ph Implementation – Graph	CO4, CO6	
			ph Traversals– Minimum Cost		
TT *4 5		- Shortest Path			
Unit 5		ting and Hashi		COF	
A		ear & Binary sea		CO5	
В		e sort, insertior ge sort, Heap So	n sort, Selection sort, Quick sort,	CO5	
С			ble, Hash Functions, Methods	CO5	
C	_	-	iole, Hash Functions, Methods	CO3	
25.1.0	of Resolving (lasnes			
Mode of	Theory				
examination	~ .	1	Lamb		
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*		"Data Structur	es" Schaum's Outline Series,		
	TMH				
Other			didyah Langsam and Moshe		
References			res Using C and C++" , PHI		
		•	ındamentals of Data		
		Galgotia Public			
			Paul G. Sorenson, "An		
		to Data Struct	ures with applications",		
	McGraw Hill				
			tures and Program Design in		
	C", Pearson E				
	5. G A V Pai, "D	ata Structures	and Algorithms", TMH		

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	Understand the importance of various data structures.	PO1, PO3, PSO1, PSO3
2.	Evaluate algorithms and data structures in terms of time and memory complexity.	PO2, PO4, PO9, PSO1, PSO2

*	SHARDA
	UNIVERSITY

3.	Understand the application of linear data structure(s) to solve various problems	PO1, PO2, PO3, PO9, PSO2
4.	Understand the application of non linear data structure(s) to solve various problems.	PO1, PO2, PO3, PO4, PO9, PSO2
5.	Implement and know when to apply standard algorithms for searching and sorting.	PO2, PO3, PO9, PSO3
6.	Identify and define the most appropriate data structure(s) for a given problem	PO3, PO4, PO5, PO9, PSO3

PO and PSO mapping with level of strength for Course Name Data Structures (MCA265)

Course Code	Course Name	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
	Principles of Data Structures																
	CO1	2		1										2		1	
	CO2		2		1					2				3	1		
	соз	3	3	2						3					3		
	CO4	3	3	2	3					3					3		
	CO5		1	2												2	
	CO6			3	3	2										3	

Scho	ool: SET	Batch: 2018-2020				
Prog	gram: MCA	Current Academic Year: 2018-19				
Bran	nch:	Semester: III				
1	Course Code	MCP 265				
2	Course Title	Data Structures Lab				
3	Credits	1				
4	Contact Hours	0-0-2				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	 Learn the basic concepts of Data Structures and algorithms. 				
	Objective	 Design and Implementation of Linear and Non linear Data Structures. Learn the concepts of various searching, Sorting and Hashing 				
		Techniques. 4. Choose the appropriate data structures and algorithm design method for a specified application.				
6	Course	CO1: Understand the importance of various data structures.				
	Outcomes	CO2: Evaluate algorithms and data structures in terms of time and memory complexity. CO3: Understand the application of linear data structure(s) to solve				

	Beyond Boundaries									
		various proble								
				ation of non linear data struct	ure(s) to solve					
		various proble			1 1.1 6					
				w when to apply standard a	algorithms for					
		_	searching and sorting.							
			CO6: Identify and define the most appropriate data structure(s) for a							
		given problen	This course starts with an introduction to data structures with its							
7	Course									
	Description		•	different algorithms, array and						
		_		ive applications. As the course						
		•		near data structures are studied						
				t Linked list, stacks, queue,						
		-		deals with the concept of sea	rening, sorting					
8	Outline syllabus	and hashing r	nemous.		CO Mapping					
0	Unit 1	Introduction			CO Mapping					
	Omt 1		nlement Operat	ion on Array such as Traversing,	CO1					
		_	•	ion on Array such as Traversing,	COI					
	Unit 2	Linked List	Insertion & Deletion operation							
	Cint 2		Program to implement different operation on the following CO1, CO3,							
					CO6					
	Unit 3	Stack & Queue	linked list: Singly, Doubly and circular linked list. Stack & Queue							
		-		peration using Array and Linked	CO1, CO3					
		list	•		,					
		Program to co	nvert infix expres	ssion to post fix expression	CO1, CO3					
		Program on Ev	aluation of Post	fix expression	CO1, CO3					
		Program to im	plement queue o	operation using array and linked	CO1, CO3					
		list								
				queue and deque.	CO1, CO3					
	Unit 4	Tree & Graphs								
			plement binary t		CO4, CO6					
				d shortest path algorithm.	CO4, CO6					
	Unit 5		orting & Hash							
		_	arching, Sorting	and Hashing	CO2, CO5					
	Mode of	Practical								
	examination		1.600	Lama						
	Weightage	CA	MTE	ETE						
	Distribution	60%	0%	40%						
	Text book/s*	1. Lipschutz, Series, TMH	1. Lipschutz, "Data Structures" Schaum's Outline Series, TMH							
	Other	1. Aaron M. T								
	References	Moshe J. Augenstein "Data Structures Using C and C++"								
		, PHI								
		2. Horowitz a	and Sahani, "Fu	ındamentals of Data						
		Structures",	Galgotia Public	cation						
	· · · · · · · · · · · · · · · · · · ·									

*	SHARDA
	UNIVERSITY

3. Jean Paul Trembley and Paul G. Sorenson, "An	
Introduction to Data Structures with applications",	
McGraw Hill	
4. R. Kruse etal, "Data Structures and Program Design	
in C", Pearson Education	
5. G A V Pai, "Data Structures and Algorithms", TMH	

Course outline

This course starts with an introduction to data structures with its classification, array and pointer based implementations. As the course progresses the study of Linear and Non-Linear data structures are studied. The course talks primarily about Linked list, stacks, queue, Tree structure, Graphs etc. This Course also deals with the concept of searching, sorting and hashing methods..

Course Evaluation						
Attendance	None					
Any other	CA judged on the practicals conducted in the lab, weightage may be specified					
References						
Text book	1. Lipschutz, "Data Structures" Schaum's Outline Series, TMH					
Other References	1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein					
	"Data Structures Using C and C++", PHI 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication					
	3. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill					
	4. R. Kruse etal, "Data Structures and Program Design in C", Pearson					
	Education					
	5. G A V Pai, "Data Structures and Algorithms", TMH					
Softwares	Turbo C/C++					

Scho	ool: SET	Batch: 2018
Prog	gram: MCA	Current Academic Year:
Bra	nch:	Semester: III
1	Course Code	MCP 261
2	Course Title	Java Programming Lab
3	Credits	1
4	Contact Hours	0-0-2
	(L-T-P)	
	Course Status	Compulsory
5	Course	Objective of this course is to provide the ability to design console
	Objective	based, GUI based and web based applications. Students will also be
		able to understand integrated development environment to create,
		debug and run multi-tier and enterprise-level applications
6	Course	Students will be able to:

				<u>""</u>	Beyond Boundaries				
	Outcomes		CO1: Develop Swing-based GUI						
			CO2:Develop client/server applications and TCP/IP soci						
			CO3Update and retrieve the data from the databases using						
			CO4Develop distributed applications using RMI						
		_	-	ased Java software using Java					
		CO6 Develo	p server side p	rograms in the form of servle	ts.				
7	Course			computer programming u					
	Description			rith object-oriented program					
				vent-driven programming m					
		_		objects, classes, and using obj	ject-oriented tools				
		such as the c	lassdebugger.						
					1				
8	Outline syllabus				CO Mapping				
	Unit 1	Practical ba	CO1,CO2,CO5						
		,		d in Instructional Plan					
	Unit 2		sed on JDBC		CO1, CO2,CO5				
				d in Instructional Plan					
	Unit 3			k programming	CO1, CO2,CO3				
		Sub unit - a,	b and c detaile	d in Instructional Plan					
	Unit 4	Practical ba	sed on servlet	implementation	CO1, CO2,CO6				
		Sub unit - a,	b and c detaile	d in Instructional Plan					
	Unit 5	Practical ba	sed on JSP im	plementation	CO1,CO5,CO6				
			b and c detaile	d in Instructional Plan					
	Mode of	Practical							
	examination								
	Weightage	CA	MTE	ETE					
	Distribution	60%	0%	40%					
	Text book/s*	1.Balagurusa							
	Other	6. Schildt H							
	References		7. Schildt H, "The Complete Reference J2EE", TMH						
		Professional	Java Pi	rogramming:BrettSpell,WROX					
		Publication							

School: SET		Batch: 2018-2021				
Prog	ram: MCA	Current Academic Year: 2018-2019				
Bran	ch:	Semester: 3				
1 Course Code		MCP 262				
2	Course Title	Introduction to Computer Networks Lab				
3	Credits	1				
4	Contact Hours	0-0-2				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	To identify the working difference between different topologies				
	Objective	To interpret the working principle of various communication				

					Beyond Boundar				
		proto							
	Carran	_		ept of data transfer bet	ween nodes				
6	Course	By the end of	this course yo	u will be able to:					
	Outcomes	CO1: To inter	arat tha warkin	a principle of various p	otwork topologies				
		CO1. TO IIILEI	pret the working	g principle of various no	etwork topologies				
		CO2: To analy		IA,CSMA/CD for packet	communication				
				common topology	communication				
		CO3: Investig	ate and explore	fundamental issues in I	P addressing and				
		application la			-				
		CO4: To distir	nguish different	flow control mechanism	n over an unreliable				
		network							
7	Course			the basic taxonomy and	= -				
	Description	•	•	incapsulate basic under	standing of networking				
	0 11: 11 1	in a way to us	e and apply.						
8	Outline syllabus				CO Mapping				
	Unit 1	Introduction		in a server in DUC town!					
		•	•	sing access in BUS topol	0,				
				n passing access in RING on with Networking					
				ibs, Switches, Routers e	to				
	Unit 2	Data link laye		ibs, switches, nouters c					
	Onit 2		To create scenario and study the performance of network						
			CSMA , CSMA/C	•	cwork CO2				
	Unit 3	Network Laye		'					
		<u> </u>	:sub netting, S	uper netting	CO3				
	Unit 4	Transport Lay	ver						
		Implementati	on of Stop and	Wait Protocol , sliding	CO4				
		window go ba	ack N protocol						
	Unit 5	Application L							
		-		Simple mail transfer pr	otocol CO3				
		and file trans	_						
	Mode of	Jury/Practical	/Viva						
	examination		1	T					
	Weightage	CA	MTE	ETE					
	Distribution	60%	0%	40%	E Inc				
	Text book/s*		nbaum, A.S." Co	emputer Networks", 4 th	Edition,				
		PHI	FIII						
	Other	1 Foroi	172n B "Con	 nmunication Networks"	TMH				
	References		t Edition	imunication Networks	, 1141[7]				
	Nerer enecs		2. W. Stallings, "Data and Computer Communication"						
			nillan Press	Joinpacer commun					
	1	1							

School: SET		Batch:						
Program: MCA		Current Academic Year:						
	nch:	Semester: 3						
1	Course Code	MCP 263						
2	Course Title	Principles of Data Base Management System Lab						
3	Credits	1						
4	Contact Hours	urs 0-0-2						
	(L-T-P)							
	Course Status	Compulsory						
5	Course Objective	 To Develop efficient SQL programs to access On Build database using Data Definition Language S Perform operations using Data Manipulation Language Statements like Insert, Update and Delete 	Statements					
6	Course	By the end of this course you will be able to:						
	Outcomes	CO1: Understandthe concept of SQL commands in DBN	MS					
		CO2: Create SQL SELECT statements that retrieve any	required data					
		CO3: Perform operations using Data Manipulation Lang statements like Insert, Update and Delete	guage					
		CO4: Manipulate your data to modify and summaries your results for reporting						
7	Course Description	An introduction to the design and creation of relational Create database-level applications and tuning robust bus applications. Lab sessions reinforce the learning objective provide participants the opportunity to gain practical har experience.	iness ves and					
8	Outline syllabus		СО					
			Mapping					
	Unit 1	Practical based Data types						
		Classification SQL, Data types of SQL/Oracle	CO1,CO2					
	Unit 2	Practical based on DDL commands						
		Create table, Alter table and drop table	CO1,CO2					
	Unit 3	DML commands and Aggregate functions						
		Introduction about the INSERT, SELECT, UPDATE	CO2,CO4					
		& DELETE command.,sum,avg,count,max,min	004.55					
	Unit 4	Practical based on Grouping Clauses GROUP BY ORDER BY & GROUP BY HAVING	CO1,CO4					
		Briefly explain Group by, order by, having clauses with examples.						
	Unit 5	Practical based on Sub- queries, JOINS	CO1,CO4					
	Omt 5	Related example of Sub- queries, Joins and related	001,004					
	1	related example of Sub-queries, Joins and related						

	ı			- Beyond Boundari		
	examples	examples				
Mode of	Jury/Practica	Jury/Practical/Viva				
examination						
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text book/s*	· ·	2. Korth , Silberschatz& Sudarshan, Data base Concepts, Tata McGraw-Hill				
Other References		7. Elmasri, Navathe, Fundamentals of Database Systems, Pearson Education Inc.				
	Praction	8. Thomas Connolly, Carolyn Begg, Database Systems: A Practical Approach to design, Implementation and Management, Pearson Education, Latest Edition.				
9. Jeffrey D. Ullman, Jennifer Windon, A first course in Database Systems, Pearson Education.						

Sch	ool: SET	Batch: 2018							
Pro	gram: MCA	Current Academic Year: 2018-2019							
	nch: MCA	Semester: 4							
1	Course Code	MCA266 Course Name							
2	Course Title	Software Engineering Principles							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Core							
5	Course	7. Provide students with an overview of the Software development life							
	Objective	cycle for software development methodologies.							
		8. Provide students with insights on requirement gathering activities.							
		9. Provide the students with design methodology practices.							
		10. Gain Insights about testing techniques.							
		11. Apply Quality management and reliability measurement							
		techniques.							
6	Course	Students will be able to:							
	Outcomes	CO1: Illustrate software characteristics and Implement different software							
		development methodologies.							
		CO2: Perform requirement gathering in requirement analysis. CO3: Design UML diagrams/DFD/ER diagrams for development of a software and							
		apply testing techniques using test cases and test suites.							
		CO4: Conduct all aspects of software quality maintenance process.							
		COT. Conduct an aspects of software quanty maintenance process.							
7	Course	The objective of this course is to provide fundamental knowledge of software							
	Description	engineering, and make student aware of best software engineering practices, and							
	1	contemporary software engineering tools.							

0	Outling and	10			Beyond Boundari					
8	Outline syllabu		CO Mapping							
	Unit 1 A		oftware eng	gineering, Importance of software, tware applications, Software crisis	CO1					
	В	Waterfall model, Model,	Incrementa	l model, Prototyping Model, Spiral	CO1					
	С	Introduction to Ag	gile Process	models, Scrum, case studies.	CO1					
	Unit 2	Software requires	ment Specifi	cation						
	A	-		rathering process, Requirements ysis, Requirements	CO2					
	В	Requirements vali	CO2							
	С	IEEE standards for	r SRS with ex	amples.	CO2					
	Unit 3	Software Design								
	A	design,		cioning, Top-Down and Bottom-Up	CO3					
	В	Effective modular Object- Oriented a	_	esion and Coupling Functional vs.	CO3					
	С	Introduction to UI guidelines.	Introduction to UML, UML diagrams, Coding standards and							
	Unit 4	Software Testing								
	A	Bug, Fault and Fa	ilure,	ne Terminologies: Error, Mistake,	CO3					
	В	Testing: -Levels of testing and white	_	d Structures testing - Black Box,	CO3					
	С			tegration Testing, Unit Testing, d Verification, test cases, overview	CO3					
	Unit 5	Software Quality								
	A	Quality concepts Software Quality	-	Quality Control, Cost of Quality,	CO4					
	В		-	s of Reliability and Availability, ality Assurance Plan, COCOMO,	CO4					
	С	Framework and m		O 9000, CMM, and Statistical ix Sigma For Software Engineering.	CO4					
	Mode of examination	Theory								
	Weightage	CA M	ИТЕ	ETE						
	Distribution		0%	50%						
	Text book/s*	1. Pressmar Approach	tware Engineering: A Practitioners Hill.							
	Other References	 Sommery (Latest Ed) Jalote, Narosa (I) SADSE (S) Parthasa 								

I			 реу	UIIU	b u u ii u a	1163
	4	Schaum's Series, "Software Engineering" TMH				
	•••	John March Ling Heart Ling Heart Ling Heart Ling Line				

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Illustrate software characteristics and Implement different	PO1,PO2,PO7,PO9,PO10,
	software development methodologies.	,PSO1
2.	CO2: Perform requirement gathering in requirement analysis.	PO2, PO3, PO4, PO5,
		PSO2
3.	CO3: Design UML diagrams/DFD/ER diagrams for development of a	PO1,PO2,PO3,PO4, PO6,
	software and apply testing techniques using test cases and test	PO9, PO11, PO12
	suites.	
4.	CO4: Conduct all aspects of software quality maintenance process.	PO6,PO11, PSO5

$\begin{tabular}{ll} PO and PSO mapping with level of strength for Course Name {\tt Software Engineering Principles} (Course Code MCA266) \end{tabular}$

Cos	PO1	PO	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	3	1	1			3	-	2	2	-	-	3	-	-	-	-
CO2	1	2	3	3	3			1	1	1	-	-	1	2	-	-	-
CO3	3	3	3	3		2		1	2	1	3	2	1	-	-	-	-
CO4	1	1	1	1	-	3		1	1	-	3	1	1	1	1	1	3

Sch	ool: SET	Batch: 2018							
Pro	gram:MCA	Current Academic Year: 2018-19							
Branch:		Semester: 4							
1	Course Code	MCA267 Course Name							
2	Course Title	Design and Analysis of Algorithms							
3	Credits	5							
4	Contact	3-1-2							
	Hours								
	(L-T-P)								
	Course	UG							
	Status								
5	Course	Objective of this course is to							
	Objective	1. Reinforce basic design concepts (e.g., pseudocode, specifications, top-							
		down design)							

			Beyond Boundarie								
		Knowledge of algorithm design strategies									
		3. Familiarity with an assortment of important algo									
		4. Enable students to analyze time and space comp	olexity								
6	Course	Students will be able to:									
	Outcomes	CO1: Analyze the asymptotic performance of algorithms									
		CO2 :Write rigorous correctness proofs for algorithms.									
		CO3: Demonstrate a familiarity with major algorithms ar									
7	C	CO4: Apply important algorithmic design paradigms and									
7	Course	This course introduces concepts related to the design an	•								
	Description	gorithms. Specifically, it discusses recurrence relations, and illustrates their ble in asymptotic and probabilistic analysis of algorithms. It covers in detail									
		greedy strategies divide and conquer techniques, dynam									
		max flow - min cut theory for designing algorithms, and	illustrates them using a								
	0 11 11 1	number of well-known problems and applications.	COM:								
8	Outline syllabu		CO Mapping								
	Unit 1	Introduction	~~~								
	A	Notion of an Algorithm – Fundamentals of Algorithmic	CO2, CO3								
		Problem Solving – Important Problem Types –									
		Fundamentals of the Analysis of Algorithm Efficiency –									
		Analysis Framework									
	В	Asymptotic Notations and their properties –	CO1, CO2, CO3								
		Mathematical analysis for Recursive and Non-recursive									
		algorithms, Recurrences relations									
	C	Divide-and-conquer: Analysis and Structure of divide-	CO1, CO2, CO4								
		and-conquer algorithms, Divide-and-conquer									
		examples- Binary search, Quick sort, Merge sort,									
		Medians and Order Statics									
	Unit 2	Dynamic Programming									
	A	Overview, Difference between dynamic programming	CO1, CO2, CO3,								
		and divide and conquer	CO4								
	В	Applications and analysis: Matrix Chain Multiplication,	CO1, CO2, CO4								
		0/1 Knapsack Problemrecords									
	С	Applications and analysis: Longest Common sub-	CO1, CO2, CO3,								
		sequence, All pairs shortest paths	CO4								
	Unit 3	Greedy Method									
	A	Overview of the Greedy paradigm, Analysis and	CO1,CO2,CO4								
		example of exact optimization solution, Minimum	, ,								
		Spanning Tree – Prim's and Kruskal's Algorithm									
	В	Fractional Knapsack problem, Single source shortest	CO1,CO2,CO3,								
		paths, task scheduling	CO4								
	С	Overview and analysis of Backtracking & Branch and	CO1, CO2, CO3,								
		Bound: N-Queens problem and Sum of subsets	CO4								
	Unit 4	Advanced Data Structures									
	A	Red-Black Trees - Definition, Applications, Insertion	CO1,CO2,CO3								
	· = -	and deletion of elements in RB-Tree	232,002,000								
	В	B-Trees - Definitions, Applications, Insertion and	CO1,CO2,CO3								
	_	Deletion in B-Trees	201,002,000								
		1									

*	SHARDA
	UNIVERSITY

				Seyond Boundarie			
C	Data Structur	e for Disjoint	Sets - Definition,	CO1,CO2,CO3			
	Operations, A	Applications i	n Kruskal's algorithm.				
Unit 5	Selected Top	ics					
A		•	ete and NP Hard Problems,	CO1,CO2,CO3,			
В	Examples, An Approximation Problem and Algorithms.	n Algorithms	CO1,CO2,CO3,				
С							
Mode of examination	Theory						
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	8. Corm Algori	en et al., ithms", Prenti					
Other References	Galgotia P 9. Hopcroft A	al., "Fundame ublications. A, The Design A s, Addison We					

S.	Course Outcome	Program Outcomes (PO)		
No.		& Program Specific		
		Outcomes (PSO)		
1.	CO1: Analyze the asymptotic performance of algorithms	PO1,PO2,PO3,PO4,PSO1		
2.	CO2: Write rigorous correctness proofs for algorithms	PO1, PO3, PO4, PSO2		
3.	CO3: Demonstrate a familiarity with major algorithms and data structures	PO1,PO2,PO3,PO4		
4.	CO4: Apply important algorithmic design paradigms and methods of analysis	PO9, PO10,PO11, PSO5		

PO and PSO mapping with level of strength for Course Name Design and Analysis Algorithm (Course Code MCA268) $\,$

Cos	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	3	3	3				2	2	1	2	1	3	2	2	1	2
CO2	3	2	3	3				2	2	2	1	1	2	3	2	1	2
CO3	3	3	3	3				1	1	1	3	2	3	2	1	1	1
CO4	2	2	2	2	1			2	3	3	3	1	2	2	2	1	3

Sch	ool: SET	Batch: 2018			Beyond Boundaries							
Pro	gram: MCA	Current Academic Year: 2018-19										
Bra	nch:	Semester: 4										
1	Course Code	MCP 267										
2	Course Title	Design and A	nalysis of Algo	orithms Lab								
3	Credits	1										
4	Contact Hours	0-0-2										
	(L-T-P)											
	Course Status	Compulsory										
5	Course	Objective of th	Objective of this course is to									
	Objective		 Reinforce basic design concepts (e.g., pseudocode, specifications, top- down design) 									
		 Knowl 	edge of algorith	m design strategies								
		• Familia	arity with an ass	ortment of important algorithms								
		• Enable	students to ana	alyze time and space complexity								
6	Course	Students will b										
	Outcomes	•		erformance of algorithms								
				ss proofs for algorithms.								
				y with major algorithms and data								
7	Course			mic design paradigms and metho cepts related to the design a	•							
/	Description			cusses recurrence relations, and	•							
	Description		•	bilistic analysis of algorithms. It								
			•	conquer techniques, dynamic pr								
				designing algorithms, and illustra	-							
			•	ns and applications.	o l							
8	Outline syllabus		•	•	CO Mapping							
	Unit 1		sed on algorith	ım design by brute force	CO1, CO2,							
		and divide a	nd conquer pa	radigm	CO4							
				l in Instructional Plan								
	Unit 2	Practical rela	ated to dynam	ic programming paradigm	CO1, CO2.							
					CO3, CO4							
		Sub unit - a, l	and c detailed	l in Instructional Plan								
	Unit 3	Practical rela	ated to greedy	method	CO2, CO3,							
					CO4							
		· · · · · · · · · · · · · · · · · · ·		l in Instructional Plan								
	Unit 4	Practical rela	ated to advanc	ced data structures	CO2, CO3,							
					CO4							
<u> </u>				l in Instructional Plan	701 75							
	Unit 5	Practical rela	ated to string	matching algorithms	CO1, CO2,							
		CO3										
	1	·		l in Instructional Plan								
	Mode of	Jury/Practical	l/Viva									
	examination	G.) (TE	FOR								
	Weightage	CA	MTE	ETE								
	Distribution	60%	0%	40%								

Text book/s*	-	
Other		
References		

Sch	ool: SET	Batch: 2018					
	gram: MCA	Current Academic Year: 2018-2019					
	nch:	Semester: 4					
1	Course Code	MCA270 Course Name					
2	Course Title	Computer Graphics and Animation					
3	Credits	5					
4	Contact	3-1-2					
	Hours						
	(L-T-P)						
	Course						
	Status						
5	Course Objective	This course is designed to provide a comprehensive introduction to computer graphics leading to the ability to understand contemporary terminology, progress, issues, and trends. A thorough introduction to computer graphics techniques, focusing on 3D modeling, image synthesis, and rendering.					
6	Course	Students will be able to:					
	Outcomes	CO1:Understand the technology requirement for grapl	nics system.				
		CO2:Construct various object to create various applica					
		CO3:Formulate proficiency in 2D and 3D computer gr	raphics API				
		programming.					
		CO4: Apply in-depth knowledge of display systems, in shape modeling, and interactive control of 3D computapplications.					
7	Course	Computer Graphics I is a study of the hardware and so	ftware				
	Description	principles of interactive raster graphics. Topics include					
	1	to the basic concepts, 2-D and 3-D modeling and trans					
		viewing transformations, projections, rendering technic					
		software packages and graphics systems.					
8	Outline syllabi	1S	CO Mapping				
	Unit 1	Graphic System Primitives					
	A	Display devices, Input and Output Devices. Output	CO1, CO2				
		Primitives: Points and Lines, Pixels, Pixel addressing					
		and Object Geometry, Planes, Frame buffers, vector					
		and character generation					
	В	Line-Drawing Algorithms-DDA and Brenham's	CO1,				
		algorithms. Circle-Generating algorithms	CO2,CO3				
	С	Scan-Line, Polygon Fill algorithms, Boundary Fill	CO1,				
	77. 1. 0	and Flood-Fill Algorithms	CO2,CO3				
	Unit 2	Transformations	G0.1				
	A	Basic Transformations, Composite Transformations	CO1,				

İ				
D	Cananal Eisead Da	oint Ca-	ling Other Treeslations	CO2,CO3
В			ling, Other Translations-	CO1,
<u>C</u>	Reflection, Shear		Coordinate Createring	CO2,CO3
С			n Coordinate Systems,	CO1,
TI .4.2	Raster Methods f	CO2,CO3		
Unit 3			ng And 3D Transformation	G02 G02 G04
A			dow-To-Viewport	CO2,CO3,CO4
			on, zooming and panning,	
			int Clipping, Line Clipping-	
			Clipping, Cohen-Sutherland Midmoint Subdivision Line	
			, Midpoint Subdivision Line	
В	Clipping Algorith			CO2,CO3,CO4
D	Shearing, Reflect		nslation, Rotation, Scaling,	CO2,CO3,CO4
С			ons, Rotation about an	CO2,CO3,CO4
	-		through an arbitrary plane.	CO2,CO3,CO4
Unit 4			Hidden surface Removal	
A	· ·		s, Oblique Projections,	CO2,CO3,CO4
^	Parallel Projectio		s, Conque i rojections,	002,003,004
В			One Point, Two, Three Point	CO2,CO3,CO4
B	vanishing points	cuons,	One I ome, I wo, I mee I ome	002,003,004
С		ction D	Depth Buffer Method, Depth	CO2,CO3,CO4
	Sorting Method (602,603,601
Unit 5			es and Animation	
A			Cubic Spline Interpolation,	CO2,CO3,CO4
			ermite Interpolation Cubic	
	Spline approxima		1	
В			ces, B-Spline, Uniform	CO2,CO3,CO4
	periodic curve, cu		=	
С			on, Principles of Animation,	CO2,CO3,CO4
	Types of Animati			
Mode of	Theory			
examination				
Weightage	CA MT	E	ETE	
Distribution	30% 20%		50%	
Text book/s*	• .	-	Feiner, J. Hughes, "Computer	
	Graphics Princip	ples ar	nd Practice", 2nd Edition,	
	Pearson Education			
Other	1. D. Rogers, J. A	Adams,	"Mathematical Elements for	
References	Computer Graph			
	Publication, Lates	on.		
	2.Hearn, M. B	aker, '	"Computer Graphics – C	
	Version", 2nd Ed	ition, Pe	earson Education, 2002.	
	3.D. Rogers, "Pi	rocedur	al Elements for Computer	
	Graphics", 2nd	d Edi	tion, Tata McGraw-Hill	
	Pearson Education 1. D. Rogers, J. A. Computer Graph Publication, Lates			

	Publication, Latest Edition.
	i abilication, Latest Laition.

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1: Understand the technology requirement for	PO1,PO2,PO3,PO4,PSO1
	graphics system.	
2.	CO2:Construct various object to create various	PO1, ,PO3, PO4, PSO2
	application.	
3.	CO3:Formulate proficiency in 2D and 3D computer	PO1,PO2,PO3,PO4,PO11,PS11
	graphics API programming.	
4.	CO4: Apply in-depth knowledge of display systems,	PO10,PO11, PSO5
	image synthesis, shape modeling, and interactive	
	control of 3D computer graphics applications.	

PO and PSO mapping with level of strength for Course Name Computer Graphics and Animation(Course Code MCA270 $)\,$

С	P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS	PS	PS	PS
Os	O	O	O	O	O	Ο	O	O	O	10	11	12	O1	O2	O3	O4	O5
	1	2	3	4	5	6	7	8	9								
С	3	3	3	3				2	2	1	2	1	3	2	2	1	2
O1																	
C	3	2	3	3				2	2	2	1	1	2	3	2	1	2
O2																	
С	3	3	3	3				1	1	1	3	2	3	2	1	1	1
O3																	
С	2	2	2	2	1			2	3	3	3	1	2	2	2	1	3
O4																	

School:		Batch: 2018
Program:		Current Academic Year: 2018-2019
Brai	nch:	Semester:IV
1	Course Code	MCP 270
2	Course Title	Computer Graphics and Animation Lab
3	Credits	1
4	Contact Hours	0-0-2

	(L-T-P)	•	Beyond Boundar				
	Course Status	Compulsory/Elective					
5	Course Objective	This course is designed to provide a comprehensive introduction to computer graphics leading to the ability to understand contemporary terminology, progress, issues, and trends. A thorough introduction to computer graphics techniques, focusing on 3D modeling, image synthesis, and rendering.					
6	Course Outcomes	Students will be able to: CO1:Understand the technology requirement for graphics system. CO2:Construct various object to create various application. CO3:Formulate proficiency in 2D and 3D computer graphics API programming. CO4:Apply in-depth knowledge of display systems, image synthesis, shape modeling, and interactive control of 3D computer graphics applications.					
7	Course Description	Computer Graphics I is a study of the hardware and soft principles of interactive raster graphics. Topics include a to the basic concepts, 2-D and 3-D modeling and transformations, projections, rendering techniques of tware packages and graphics systems.	n introduction rmations,				
8	Outline syllabu	s	CO Mapping				
	Unit 1	Graphics Systems Premitives					
	A	Drawing of line & basic shapes using-in-built functions					
	В	Implementation of object drawing algorithm (Line,circle,etc).					
	С	Implementation of color filling algorithms.					
	Unit 2	2D Transformation					
	A	Implementation of 2D transformation methods,					
	В	Implementation of composite transformation methods.					
	С	Implementation of composite transformation about certain points.					
	Unit 3	3D Transformation					
	A	Implementation of 3D transformation methods,					
	В	Implementation of composite transformation methods.					
	С	Implementation of clipping algorithms					
	Unit 4	Projections and Hidden Surface Removal					
	A	Implementation of various projection methods.					
	В	Implementation of hidden surface removal algorithms.					
	С	Implementation of z-Buffer Algorithm.					
	Unit 5	Animation					

A	Uses of inbui	Uses of inbuilt functions for animation.					
В	One menu dr	iven project for	r animation.				
Mode of	Practical/Viv	Practical/Viva					
examination							
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s*	-						
Other							
References							

Sch	ool: SET	Batch :2018				
	gram: MCA	Current Academic Year: 2018-19				
Bra	nch:	Semester: 4				
1	Course Code	MCA268 Course Name				
2	Course Title	Advance Data base Management System				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course	DE 1				
	Status					
5	Course	The objective of this course is to:				
	Objective	 Exhibit memory of previouslylearnedmaterial byrecalling facts, terms, basic concepts. To Understand the different architecture of databases. To Learn & Solve the new database structure problems Handling different user views of the same stored data, combining interrelated data, setting standards, controlling concurrent updates so as to maintain data integrity. 				
6	Course Outcomes	Students will be able to: 1. To Unterstand the overview of Database 2. To learn the types of system architectures commercial relational database system 3. Understand the various concepts about the distributed databases and its architectures. 4. Understand the basic concepts of Concurrecy control, Times & validation based protocols, Predicate reads 5. Understand and analyze the database storage structures and access techniques like, indexing methods, hashing methods, query evaluation techniques and and query optimization.				

7	Course	This course in	troduces adva	anced aspects of data				
	Description				1			
8	Outline syllabu	ıs			CO Mapping			
	Unit 1	INTRODUCTION	TO DATABASES	AND ER DIAGRAM				
	A	Concept & Overv	CO1					
	В	Three Schema a	rchitecture of DE	BMS Data Models, Schema – Star and	CO1			
	С	DDL and DML of Constraints, View		ain Constraints, Referential Integrity	CO1			
	Unit 2	SYSTEM ARC		E				
	A	Database-Syste	m Architecture	s, Centralized and Client –Server	CO1, CO2			
		Architectures,						
	В	Parallel Databa	ses, Introduction	on,Parallelism , Interquery	CO1, CO2			
		Parallelism ,Int		± •	_ ,			
	С	Intraoperation Doptimization D		eroperation Parallelism, Query	CO1, CO2			
	Unit 3	DISTRIBUTE		-				
		ARCHITECT	URES					
	A	Distributed Dat database, Distri		s, Homogenous Heterogenous rage,	CO1,CO3			
	В			ng, Overview of Transaction	CO1,CO3			
				atabases, Data Fragmentation,	- ,			
				echniques for Distributed				
	C	Database Desig		atrol and Dagovore in Distribute 3	CO1 CO2			
	С			ntrol and Recovery in Distributed and Optimization in Distributed	CO1,CO3			
				ed Database Systems, Distributed				
		Database Archi		<u> </u>				
	Unit 4	CONCURRENC	CY CONTROL					
	A	Lock-Based Pr	otocols ,Deac	llock Handling, Multiple	CO1,CO4			
		Granularity ,T	imestamp-Ba	sed Protocols ,Validation-				
		Based Protoco	ols,					
	В	MultiversionS	chemes ,Snap	shot Isolation, Insert	CO1,CO4			
		Operations, D	elete Operati	ons, and Predicate Reads				
	С	Insert Operat	ions, Delete O	perations, and Predicate	CO1,CO4			
		Reads, Weak	Levels of Cons	sistency in Practice				
	Unit 5	DATABASES	AND PERFO	RMANCE TUNING				
	A	Temporary Tab	oles, Indexing a	nd Hashing (SQL)–	CO5			
	В	Query Process	ing, Query Opt	imization, Data Fragmentation	CO5			
	C							
	Mode of	Theory	CO5					
	examination	111001						
		eightage CA MTE ETE						
	Distribution							
	Text book/s*	Tata McGraw-Hill						
			ndamentals of Database Systems,					
			on Education In					

Other References	 Thomas Connolly, Carolyn Begg, Database Systems: A Practical Approach to design, Implementation and Management, Pearson Education, Latest Edition. 	
	11. Jeffrey D. Ullman, Jennifer Windon, A first course in	
	Database Systems, Pearson Education.	
	12. Date C.J., An Introduction to Database Systems,	
	Addison Wesley.	
	13. Richard T. Watson, Data Management: databases and	
	organization, Wiley.	

S. No.	Course Outcome	Program Outcomes (PO) & Program Specific Outcomes (PSO)
1.	CO1:To Unterstand the overview of Database To learn the types of system architectures commercial relational database system .	PO1,PO2,PO3,PSO1
2.	CO2Understand the various concepts about the distributed databases and its architectures.	PO1, PO3, PO9, PSO3
3.	CO3:Understand the basic concepts of Concurrecy control, Times & validation based protocols, Predicate reads	PO1,PO2,PO9,PO4
4.	CO4: Understand and analyze the database storage structures and access techniques like, indexing methods, hashing methods, query evaluation techniques and and query optimization	PO2, PO3,PO9, PSO1

PO and PSO mapping with level of strength for Course Name Advance Data base Management System(Course Code MCA268)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2		1		1	2	1	2	1	3	2	2	1	2
CO2	3	2	3	3				2	2	2	1	1	2	3	2	1	2
CO3	3	3	3	3				1	1	1	3	2	3	2	1	1	1
CO4	2	2	2	2	1			2	3	3	3	1	2	2	2	1	3

Scho	ool: SET	Batch: 2018	Beyond Boundaries									
Prog	gram: MCA	Current Academic Year: 2018-19										
Brai	nch:	Semester: 4										
1	Course Code	MCA269 Course Name:										
2	Course Title	Mobile technologies										
3	Credits	3										
4	Contact	3-0-0										
7	Hours											
	(L-T-P)											
	Course Status	Elective										
_												
5	Course	systems and techniques.	The objective of the course is to impart knowledge of mobile and wireless computing									
	Objective											
6	Course	On successful completion of this module students will be able to										
	Outcomes	CO1: Synthesize the basic concepts and principles in mobile computing CO2: Analyze the concept of wireless and their communication.	g.									
		CO3:Synthesize the structure and components for mobile IP and mobile	lity Management.									
7	Course	This course introduces advanced aspects of mobile generation 8										
,	Description	Also impart knowledge of Satellite broadcast system & routing a	•									
	Description	on wireless network.										
8	Outline syllabu		CO Mapping									
0	Unit 1	Introduction	Comapping									
	A	Issues, challenges, and benefits, Mobile radio communication	CO1									
	Λ	fundamentals, overview of mobile generation 1G,2G,3G,4G and 5G	COI									
	В	Fundamental of wireless communication, bandwidth concept, type	CO1,CO2									
	D	of signals, path loss, modulation: shift key modulation, Spread	001,002									
		spectrum modulation, MAC issue										
	C	Multiple Access: FDMA, TDMA, CSMA/CD, SDMA, CDMA	CO1,CO2									
	Unit 2	Cellular System										
	A	Cell concepts, frequency and channel allocation, frequency reuse	CO1,CO2									
		concepts: sectorization and clustering, Handoff										
	В	Global System for Mobile Communication (GSM) System Overview:	CO1,CO2,CO3									
		GSM Architecture, channels, Mobility Management, localization and	, ,									
		calling										
	C	General Packet Radio Service (GPRS): GPRS Architecture, GPRS	CO1,CO2									
	TI '4 G	network nodes, EDGE, 3G and 4G, Cognitive Radio Network (5G)										
	Unit 3	Satellite & Broadcast System	G0.1									
	A	Basics concepts of satellite and Applications, types of satellite	CO1									
	В	Cyclical repetition of data, Digital audio/video broadcasting,	CO1,CO2									
	C	Broadcasting convergence and mobile communication	CO2									
	C	HD radio, working of DTH (Direct To Home)	CO2									
	Unit 4	Wireless network & Routing Algorithm	G02 G02									
	A	Mobile IP, DHCP, Mobile Adhoc Network, Hidden and exposed terminal problems	CO2,CO3									
	D	Bluetooth, Wi-Fi Standard, WiMAX Standard, Zigbee, Ultra-	CO2,CO3									
	В	wideband(UWB)	CO2,CO3									
	С	Routing protocols classification, challenges in MANET routing, DSDV,	CO2,CO3									
		DSR, AODV	202,203									
	Unit 5	Mobile Transport Layer										

				Beyond Boundaries							
A	Traditional TCF Transaction or		nooping TCP, Mobile TCP,	CO2,CO3							
В	TCP over 2.5G/	'3G/4G wireless	network, File System	CO2							
С	World Wide W protocol stack	World Wide Web, Wireless Application Protocol: architecture, protocol stack									
Mode of	Theory										
examination											
Weightage	CA	CA MTE ETE									
Distribution	30%	30% 20% 50%									
Text book/s*	2. U	Education.									
Other References	3	Computers a Willium C. Y. and fundame D. R. communicati Haykin,S ar communicati T.S. Rappa	KamiloFehar, "Wireless digital								

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Synthesize the basic concepts and principles in mobile computing.	PO1,PSO4
2.	CO2: Analyze the concept of wireless and their communication.	PO1,PO2,PSO2
3.	CO3: Synthesize the structure and components for mobile IP and mobility Management.	PO1,PO3,PSO1,PSO2

PO and PSO mapping with level of strength for Course Name Mobile Technologies (Course Code MCA269)

Cos	PO1	PO	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	PO	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	2	1	1	1	2	2	2	1	1	1	2	2	2	2	3	1
CO2	3	3	1	1	1	2	2	2	2	2	2	2	2	3	2	2	1
CO3	3	1	3	1	1	1	1	2	1	1	1	1	3	3	2	1	2

Scho	ool: SET	Batch: 2018	Beyond Boundaries							
Pros	gram: MCA	Current Academic Year: 2018-19								
	nch:	Semester: 4								
1	Course Code	MCA273 Course Name								
2	Course Title	Data Mining and Knowledge Discovery								
3	Credits	3								
4	Contact	3-0-0								
-	Hours									
	(L-T-P)									
	Course Status	Elective								
5	Course	12. Provide students with an overview of the methodologic	es and approaches							
	Objective	to data mining								
	,	13. Gain insight into the challenges and limitations of diff	erent data mining							
		techniques	creme data mining							
		·	ning calutions							
		14. Provide the students with practice on applying data min	_							
		15. Prepare students for research in the area of data m	nining and related							
		applications								
		16. Enhance students communication and problem solving skills								
6	Course	Students will be able to:								
	Outcomes	CO1: To understand and implement classical algorithms in data	mining a							
		CO2: To assess the strengths and weaknesses of the algorithms	i							
		CO3: To identify the application area of algorithms, and apply t								
		CO4: To integrating and interpreting the data sets and improving	ng effectiveness,							
		efficiency and quality for data analysis.								
7	Course	This course introduces advanced aspects of data warehousing a								
	Description	encompassing the principles, to analyze the data, identify the p	roblems, and							
	0 11 11 1	choose the relevant models and algorithms to apply.	G0.14 :							
8	Outline syllabu		CO Mapping							
	Unit 1	Introduction	G04 G04							
	A	Evolution of Data mining and introductory concepts,	CO1, CO2							
	В	Knowledge Discovery Process,	CO1, CO2							
	С	Introduction to outlier.	CO1, CO2							
	Unit 2	Data Preprocessing								
	A	Descriptive Data Summarization, Data Cleaning,	CO1,							
	_		CO2,CO4							
	В	Integration and Transformation,	CO1,							
			CO2,CO4							
	С	Data Reduction, Discretization and Concept Hierarchy	CO1,							
	TI '4 2	Generation.	CO2,CO4							
	Unit 3	Frequent Pattern Mining	001 002 002							
	A	Efficient and Scalable Frequent Itemset Mining Methods:	CO1,CO2,CO3							
	D	Aprori	CO1 CO2 CO2							
	В	FPGrowth, ECLATS	CO1,CO2,CO3							
	C	correlation Analysis.	CO4							

*	SHARDA
	UNIVERSITY

			~ /	Beyond Boundaries							
Unit 4	Classification	& Prediction									
A	What is classi	fication, requi	rements of classification, Decision	CO1,CO2,CO3							
	Tree-ID3Algoi	rithm, ,									
В	Naive Bayes C	Classifier, Rule	Based classification,	CO1,CO2,CO3							
	Backpropogat	ion									
C	Support Vector	Support Vector Machine for linearly separable data.									
	Prediction: - L	Prediction: - Linear Regression.									
Unit 5	Clustering										
A	What is cluste	What is cluster analysis, requirements of cluster analysis,									
В	Partitioning m	nethods-k-mea	ans and k-mediods,	CO1,CO2,CO3							
C	Hierarchical N	/lethods-Agglo	merative and divisive, Density	CO1,CO2,CO3							
	based method	ds- DBSCAN									
Mode of	Theory										
examination											
Weightage	CA	MTE	ETE								
Distribution	30%	20%	50%								
Text book/s*	11. J.Han,	M. Kamber, J	. Pei "Data Mining Concepts and								
	Techn	iques",Edition:3	3, Morgan Kaufmann								
Other		· ·	Mining Introductory and Advanced								
References	Topics										
	15. Adriaa	ans, Data Mining	g, Pearson Education								
			dhakrishnan, "Data Mining", Oxford								
	Unive	rsity Press									

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: To understand and implement classical algorithms in data mining and data warehousing.	PO1,PO2,PO3,PO4,PSO1
2.	CO2: To assess the strengths and weaknesses of the algorithms.	PO1, PO3, PO4, PSO2
3.	CO3: To identify the application area of algorithms, and apply them.	PO1,PO2,PO3,PO4
4.	CO4: To integrating and interpreting the data sets and improving effectiveness, efficiency and quality for data analysis.	PO9, PO10,PO11, PSO5

PO and PSO mapping with level of strength for Course Name Data Warehouse and Data Mining (Course Code MCA273)

Cos	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	3	3	3			-	2	2	1	2	1	3	2	2	1	2
CO2	3	2	3	3		-		2	2	2	1	1	2	3	2	1	2
CO3	3	3	3	3	1	1	1	1	1	1	3	2	3	2	1	1	1
CO4	2	2	2	2	1		1	2	3	3	3	1	2	2	2	1	3

Sch	nool: SET	Batch: 2018
Pro	ogram: MCA	Current Academic Year: 2018-19
Bra	anch:	Semester: IV
1	Course Code	MCA271 Course Name
2	Course Title	Cloud Computing
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course	Elective
	Status	
5	Course	17. Provide students with an overview of the fundamental concepts of
	Objective	Cloud Computing.
		18. Gain insight into the challenges and limitations Models of cloud
		computing.
		19. To learn the various technologies of the cloud computing paradigm and
		learn about recent advances in Cloud Computing and enabling
		technologies.
		20. Prepare students for research in the area of cloud Computing risks and
		cloud security challenges.
		21. Enhance students communication and problem solving skills
		21. Elimance stadents communication and problem solving skins
6	Course	Students will be able to:
	Outcomes	CO1: To understand the cloud computing Concepts.
		CO2:Explain how and why this paradigm came about and the influence of
		several enabling technologies like Virtualization (e.g. VMware) and Google file
		systems
		CO3:Build cloud based applications using MS Azure, Amazon AWS and/or
		Google App Engine.
		CO4:Understanding of Cloud Computing risk issues and Cloud security

		challenges.	Beyond Boundar
7	Course	This course introduces advanced aspects of Cloud Computing,	encompassing
	Description	the principles, to analyze the cloud, identify the problems, and	
	Beschption	relevant models and algorithms to apply.	
8	Outline syllab		CO Mapping
	Unit 1		
	A	Introduction Cloud Computing Introduction to distributed systems, Defining Cloud	CO1, CO2
	11	Computing, Understanding of Cloud Architecture:	001, 002
		Composability, Infrastructure, Platform, Virtual Appliances,	
		Communication Protocols, Applications, Understanding	
		Services: SaaS, PaaS, IaaS	
	Unit 2	Understanding Abstraction and Virtualization	
	A	Advanced Load Balancing, the Google Cloud, Virtual	CO1,
	71	machine types, VMware vSphere, Understanding Machine	CO2,CO4
		Imaging, Porting Applications.	CO2,CO4
		Storage in the Cloud:	
		Google file system.	
	TI 2		
	Unit 3	Cloud Computing with the Titans	CO1 CO2 CO2
	A	Google Web Services: Google app Engine, Google Web	CO1,CO2,CO3
		Toolkit. Amazon: Amazon Elastic Cloud Computing, Amazon	
	TT *4 4	Simple Storage System, Amazon Block Store (EBS).	
	Unit 4	Cloud Computing Risk Issues	201 202 202
	A	The CIA Triad: Confidentiality, Integrity, And Availability.	CO1,CO2,CO3
		Privacy and Compliance: PCI DSS, Information Privacy and	
		Privacy law. Common Threats and Vulnerability: Logon	
		Abuse, Inappropriate System Use, Eavesdropping, Denial-of-	
		service (DoS) Attack, Session Hijacking Attack.	
		Cloud Service Provider (CSP) Risks: Back Door, Spoofing,	
		Replay Attack, Social Engineering Attack, Dumpster Diving,	
	·	Trojan Horse and Malware.	
	Unit 5	Cloud Computing Security Challenges	
	A	Security Policy Implementation, Policy Types: Senior	CO1,CO2,CO3
		Management Statement of Policy, Regulatory Policies,	
		Advisory Policies, And Informative Policies.	
	Mode of	Theory	
	examination		
	Weightage	CA	MTE
	Distribution		
		30%	20%
	Text	12. Barrie Sosinsky "Cloud Computing (Bible)", Wiley	
	book/s*	13. Anthony T.Velte, Toby J. Velte, Robert Elsenpeter"Cloud	
	Other	Computing: A Practical Approach" TATA McGRAW-HILL Edition.	
	References	14. Ronald L. Krutz and Russell Dean Vines, "Cloud Security: A	
		comprehensive Guide to Secure Cloud Computing", WILEY.	
		Table 10 de	
			l

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: To understand and implement classical algorithms in	PO1,PO2,PO3,PO4,PSO1
	data mining and data warehousing.	
2.	CO2: To assess the strengths and weaknesses of the	PO1, PO3, PO4, PSO2
	algorithms.	
3.	CO3: To identify the application area of algorithms, and apply	PO1,PO2,PO3,PO4
	them.	
4.	CO4: To integrating and interpreting the data sets and	PO9, PO10,PO11, PSO5
	improving effectiveness, efficiency and quality for data	
	analysis.	

PO and PSO mapping with level of strength for Course Name Cloud Computing (Course Code MCA 271)

Cos	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	3	3	3	1			2	2	1	2	1	3	2	2	1	2
CO2	3	2	3	3				2	2	2	1	1	2	3	2	1	2
CO3	3	3	3	3				1	1	1	3	2	3	2	1	1	1
CO4	2	2	2	2	1			2	3	3	3	1	2	2	2	1	3

Sch	ool: SET	Batch: 2018				
Prog	gram: MCA	Current Academic Year: 18-19				
Bra	nch:	Semester:IV				
1	Course Code	MCA272 Course Name				
2	Course Title	Android Application Development				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course Status	Elective				
5	Course	Describe the components and structure of a mobile development frameworks				
	Objective	(Android SDK and Eclipse Android Development Tools (ADT)) and learn how and				
		when to apply the different components to develop a working system.				
6	Course	On successful completion of the course, the student will:				
	Outcomes	5. Design App user Interface				
		6. Perform Event driven programming				
		7. Implement relational Databases on devices using SQLite				
		8. Examine the usage of commonly available device sensors while building				

	1	A 1 '1 A			Beyond Boundaries		
		Android App		1	A 1 11 11 11		
7	Course	The course will introduce c					
	Description	components, Activities and		.It will a	lso help students to buil		
		applications according to the					
8	Outline syllabi		CO Mapping				
	Unit 1	Introduction to Android					
	A	Android architecture, Fea	CO1				
		mobile devices					
	В	Configuration of android S	<u> </u>		CO1		
	С	Generation of APK file for	for android project, Test	run of	CO1		
		application on device					
	Unit 2	Android UI Components					
	A	Layouts-Linear layout, F	Relative layout, Table	layout,	CO1,CO2		
		Frame layout					
	В	Button, TextView, EditT	TextView, Label, List,	Radio	CO1,CO2		
		Button, Checkbox					
	C	Concept of intent, configura	ation of intent, Intent filte	rs	CO1,CO2		
	Unit 3	Services and Notification					
	A	Services- states and life cyc	cle		CO1		
	В	Type of notification, T	Γoast notification, state	ıs bar	CO1,CO2		
		notification			,		
	С	Creating Menu Option Mer	nu, Context Menu		CO1,CO2		
	Unit 4	Working with SQL Lite					
	A	Introduction to SQLite of	database, Steps for con	necting	CO3		
		application with database.		C			
	В	Fetch and update data in da	tabase from application,		CO3		
	С	Cursor and content value, o	pening and closing datab	ase	CO3		
	Unit 5	Sensor Device	1 0				
	A	Sensor Manager, Sensor Fr	amework Types of Senso	ors	CO2,CO4		
	В	Accelerometer, Gyroscope	* *		CO2,CO4		
		Light Sensor	, I toximity bensor, offe	intation,	CO2,CO4		
	С	Detect availability of sens	sor Fetch data from sen	sors on	CO2,CO4		
		frequent basis	or, receir data from Sen	3015 011	002,001		
	Mode of	Theory					
	examination						
	Weightage	CA M'					
	Distribution						
					anciloarn Evaloro Anali		
	Text book/s*						
	Other	Using Android , 1st Edition, Wiley India. 1. Wei-Meng Lee , Beginning Android 4 Application Development.					
	References						
	References		Nell Striytti ,Ariarola Stadio Developinent essentiais Ariarola o				

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific Outcomes
		(PSO)
1.	CO1:Design App user Interface	PO4,PO5,PSO4
2.	CO2:Perform Event driven programming	PO3,PO5
3.	CO3:Implement relational Databases on devices using	PO4,PO5,PO9
	SQLite	
4.	CO4:Examine the usage of commonly available device	PO5,PO7,PO12,PSO4
	sensors while building Android App	

PO and PSO mapping with level of strength for Course Name Android Application Development (Course Code MCA272)

	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3	PSO 4
	CO1	1	2	2	3	3	2	1	2	2	2	2	2	1	2	2	3
C S E	CO2	2	2	3	2	3	1	1	2	2	2	1	2	2	2	2	2
	CO3	2	1	2	3	3	1	2	-	3	2	2	2	-	1	1	2
	CO4	2	1	1	1	3	1	3	-	2	1	2	3	-	2	1	3

Scho	ool: SET	Batch: 2018-2021				
Prog	gram: MCA	Current Academic Year: 2018-19				
Bra	nch:	Semester: 5				
1	Course Code	MCA361 Course Name				
2	Course Title	Python Programming Concepts				
3	Credits	3-0-2				
4	Contact					
	Hours	4				
	(L-T-P)					
	Course Status	Regular				
5	Course	Emphasis is placed on procedural programming, algorithm design, and				
	Objective	language constructs common to most high level languages and Email handling through Python Programming.				
6	Course	Upon successful completion of this course, the student will be able to:				
	Outcomes	CO1. Apply decision and repetition structures in program design.				
		CO2. Implement methods and functions to improve readability of programs.				
		CO3. Demonstrate the use of Python lists, tuples and dictionaries				
		CO4. Describe and apply object-oriented programming methodology.				
		CO5. Apply top-down concepts in algorithm design.				
		CO6. Write Python programs to illustrate concise and efficient algorithms				
7	Course	Python is a language with a simple syntax, and a powerful set of				

	Description	libraries. It is widely used in many scientific areas for of this course is an introduction to the Python programm students without prior programming experience. We control flow, object-oriented programming and Email ha	ing language for over data types,
8	Outline syllabi	us	CO Mapping
	Unit 1	Introduction	
	A	Introduction: History, Python architecture, Variables, Data Types, Operators.Conditional Statements: If, Ifelse, Nested if-else. Looping: For,While, Nested loops Control Statements: Break, Continue, Pass	CO5
	В	Lists:Introduction, Accessing list, Operations, Working with lists, Functionand Methods with Lists	CO1,CO5
	С	Tuple:Introduction, Accessing tuples, Operations, Working, Functions and Methods with Tuples	C01,CO5
	Unit 2	Dictionary, Functions and Exceptions	
	A	Dictionaries : Introduction, Accessing values in dictionaries, Working with dictionaries,Functions	CO3
	В	Functions: Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables	CO3
	С	Exception Handling:DefinitionException, Exceptionhandling ,Except clause, Try ? finally clause, User Defined Exceptions	CO3
	Unit 3	Modules, Email Processing	
	A	Modules: Importing module, Math module, Random module, Matplotlib, Packages	C02,CO6
	В	Contacting User Through Emails Using Python: Installing SMTP python module, Sending email, .	C02,CO6
	С	Reading from file and sending emails to all users addressing them directly for marketing	CO2,CO6
	Unit 4	Object oriented programming	
	A	.OOPs concept : Class and object, Attributes, Inheritance	C04
	В	Overloading, Overriding, Data hiding	CO4
	С	Python File Operation: Opening, Closing, Reading, Writing operation into files. Manipulating File Pointer	CO4
	Unit 5	Database Handling	
	A	Python Database Interaction: SQL Database connection using python, Creating and searching tables,	C02,CO5,CO6
	В	Reading and storing config information on database	C02,CO5,CO6

*	SHARDA
	UNIVERSITY

С	Programmin	C02,CO5,CO6		
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	15. The (McGr	=	rence Python, Martin C. Brown,	
Other References	Pytho 18. Introd Liang, 19. Maste House	n, E Balahurusa luction to prog Pearson ering Python, F	nputing in problem solving using my, McGrwHill gramming using Python, Y. Daniel sick Van Hatten, Packet Publishing non, Tony Gaddis, Pearson	

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1. Apply decision and repetition structures in program design.	PO1,PO2,PO4,PSO1,PSO2
2.	CO2. Implement methods and functions to improve readability of programs.	PO1,PO5,PO2,PO3,PSO5,PSO2
3.	CO3. Demonstrate the use of Python lists, tuples and dictiaonries	PO2.PO3,PO1,PO5,PO11,PSO1,PSO,2
4.	CO4. Describe and apply object-oriented programming methodology.	PO2.PO3,PO1,PO5,PO11,PSO1,PSO,2
5.	CO5. Apply top-down concepts in algorithm design.	PO2.PO3,PO1,PO5,PO11,PSO1,PSO,2
6.	CO6. Write Python programs to illustrate concise and efficient algorithms	PO2.PO3,PO1,PO5,PO11,PSO1,PSO,2

PO and PSO mapping with level of strength for Course Name Data Warehouse and Data Mining (Course Code MCA 361)

COs	PO1	Р	PO	PO	РО	PO	РО	PO8	PO9	PO	PO1	РО	PS	PS	PSO	PS	PS
		0 2	3	4	5	6	7			10	1	12	01	02	3	04	O5
CO1	1	3	2	2	1	-	-	ı	1	-	1	-	2	2	1	2	3
CO2	3	3	3	3	3	1	-	1	3	1	3	1	3	3	3	3	3
CO3	3	3	3	3	2	1	-	1	3	1	2	1	3	3	2	2	2
CO4	2	2	2	1	2	-		ı	2	-	1	-	2	1	1	2	1
CO5	1	3	1	1	2				1		2		1	2	2	1	1
CO6	2	2	2	2	3				1		2		2	1	1	2	2

Cah	ool: SET	Datah : 2019						
		Batch: 2018						
	gram: MCA	Current Academic Year: 2018-19						
	nch:	Semester: V						
1	Course Code	MCA362 Course Name						
2	Course Title	Web and its application						
3	Credits	3						
4	Contact	3-0-2						
	Hours							
	(L-T-P)							
	Course Status	Compulsory						
5	Course	Provide the knowledge to design and develop web application with and without						
	Objective	database. Students will gain the skills and project-based experience needed for entry						
	into web application and development careers.							
6	Course	On successful completion of this module students will be able	to:					
	Outcomes	Design interactive web pages by applying CSS						
		2. Design web page which has animation and dynamic data						
		Design web pages/site having validation on user data access. Develop web site for small business and organization or for individual.						
7	Course	4. Develop web site for small business and organization or for individual						
/		This course is an overview of the modern Web technologies used for the Web						
	Description	development. The purpose of this course is to give students the basic						
		understanding of how things work in the Web world from the technology						
		point of view as well as to give the basic overview of the different technologies.						
8	Outline syllabi		CO Mapping					
0	Unit 1	HTML& HTML 5	CO Mapping					
			GO2 GO4					
	A	HTML& HTML 5: HTML basic tags, various links implementation, image map, table formatting, form design.	CO3,CO4					
	В	Page layout design using frame, div and span tag, iframe, embed	CO2,					
	D	file/object with web pages, DHTML	CO2, CO3,CO4					
	C	HTML5: New elements, canvas, offline webpage, HTML Media:	<i>'</i>					
	С	video, audio, HTML API: geolocation, location storage	CO3,CO4					
		video, addio, it ivit Ari. geolocation, location storage						

	1	т			S' Beyond Boundari
	Unit 2	CSS & CSS3			
	A	CSS & CSS3 margin, align,	CO1, CO4		
	В	Navigation bar	CO1, CO4		
	С	CSS3: Introduc	CO1,CO2,CO4		
		Background fo			
	Unit 3	Java Script			
	A	Java Script: II	CO3,CO4		
		operators, Cor	nditional stater	ments, looping statements	
	В	Functions, obj	CO1,CO2,		
		form elements	CO3,CO4		
	С	Animation & s	CO1, CO2,		
		image slider, a	CO3,CO4		
	Unit 4	Jquery& AJAX			
	A	Jquery& AJAX effect: hide/sh	CO1,CO3,CO4		
	В		get, set, add,		CO1,CO3,CO4
	С	AJAX: Introduc	tion, request,	response, event	CO1,CO3,CO3
	Unit 5	PHP			
	A	PHP:Introduct development,	CO1,CO2,CO3		
	В	Conditional standling form management,	CO1,CO2,CO3		
	С	Filters, PHP-OI	CO1,CO2,CO3		
	Mode of examination	Theory			
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*	1. Ivan E Public 2. Steve			
	Other References	1. Rick I and C 2. Burdr Wesk 3. Chris Appli			

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1:Design interactive web pages by applying CSS.	PO3,PO5,PO8,PO12,PS01,PSO3,PSO4
1.	CO2: Design web page which has animation and dynamic data	PO3,PO5,PO8,PO10,PSO3,PSO4

*	SHARDA
	UNIVERSITY

2.	CO3: Design web pages/site having validation on user data access.	PO3,PO4,PO5,PO8,PO10, PS01,PSO3,PSO4
3.	CO4: Develop web site for small business and organization or for individual	PO3,PO4,PO5,PO8,PO10, PO12,PSO3,PSO4

PO and PSO mapping with level of strength for Course Name Data Warehouse and Data Mining (Course Code MCA 362)

Cos	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PS O1	PSO2	PSO3	PSO4
CO1	1	-	3	1	3	2	-	3	2	2	2	3	3	-	3	3
000				2		2		-		2		2	2			2
CO2	2	-	3	2	3	2	-	3	1	3	2	3	2	-	3	3
CO3	1	-	3	3	3	2	-	3	1	3	2	3	3	-	3	3
CO4	2	-	3	3	3	2	-	3	2	3	2	3	2	-	3	3

Sch	ool: SET	Batch: 2018-2021
Pro	gram: MCA	Current Academic Year: 2018-19
Bra	nch:	Semester: 5
1	Course Code	MCP361
2	Course Title	Python Programming Concepts Lab
3	Credits	3-0-2
4	Contact Hours (L-T-P)	4
	Course Status	Regular
5	Course Objective	Emphasis is placed on procedural programming, algorithm design, and language constructs common to most high level languages and Email handling through Python Programming.
6	Course Outcomes	Upon successful completion of this course, the student will be able to: CO1. Apply decision and repetition structures in program design. CO2. Implement methods and functions to improve readability of programs. CO3. Demonstrate the use of Python lists, tuples and dictionaries CO4. Describe and apply object-oriented programming methodology. CO5. Apply top-down concepts in algorithm design. CO6. Write Python programs to illustrate concise and efficient algorithms
7	Course Description	Python is a language with a simple syntax, and a powerful set of libraries. It is widely used in many scientific areas for data exploration. This course is an introduction to the Python programming language for students without prior programming experience. We cover data types, control flow, object-oriented programming and Email handling
8	Outline syllabus	

*	SF	łΑ	RI	DA
				ITY

				Beyond Boundaries			
Unit 1	Practical ba		onal statements and				
	•	•	nt all conditional statements nt different control structures	CO1			
Unit 2	Practical rel	Practical related to List, Tuples and ictionaries					
	1. Progra	am to impleme	nt operations on lists	CO1,CO2,CO3			
	_	-	nt operations on Dictionary				
	3. Progra	am to impleme	nt operations on Tuple				
Unit 3	Practical rel Handling	ated to Funct	ions and Exception				
	_	am to impleme am to use differ	nt Exception Handling rent functions	CO2,CO5			
Unit 4	Practical rel	ated to Objec	t Oriented Programming				
	Program to u overloading p Program for f	CO4,CO6					
Unit 5	Practical rel	ated to Datab	ase				
	•	ake connection ccess database	s with different databases	CO6,CO4,CO2			
Mode of examination	Practical and	Viva					
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s*	16. The C McGrv						
Other References	21. Introd Pythor 22. Introd Liang, 23. Maste House 24. Startin						

Sch	ool:	Batch:	Beyond Boundari
Pro	gram: BTECH	Current Academic Year:	
Bra	nch:	Semester:	
1	Course Code	MCP 362	
2	Course Title	Web Technology	
3	Credits	4	
4	Contact Hours	3-0-2	
	(L-T-P)		
	Course Status	Provide the knowledge to design and develop web application	
		database. Students will gain the skills and project-based expentry into web application and development careers. It provide	
		web technologies that relate to the interface between web serve	
5	Course	On successful completion of this module students will be al	ble to:
	Objective	5. Design interactive web pages	
		6. Design web pages/site having validation on user data ac7. Develop web site for small business and organization or	
		Client server communication RMI	Tor marviduar
6	Course	This course is an overview of the modern Web technologie	s used for the
	Outcomes	Web development. The purpose of this course is to give stu	
		understanding of how different computers and devices to cor	
		share resources as well as to give the basic overview of the	different
7	Course	technologies. This course is an overview of the modern Web technologies.	ologies used for
/	Description	the Web development. The topics include (although in so	-
	Description	History of the Web, Hypertext Markup Language (HTML),	• • •
		(XHTML), Cascading Style Sheets (CSS), and JavaScript.	
8	Outline syllabus	3	CO Mapping
	Unit 1	INTRODUCTION TO HTML & JAVA SCRIPT	
		Write HTML code to design College Website	
		2. Write HTML code to design students	GO1 GO2
		registration form	CO1, CO2
		3. Write javascript code to perform validation	
		on above form.	
	Unit 2	XML	
		1. Write a program in XML to create Product	CO1,CO2
		Catalog.	
		2. Write a program for Product Catalog DTD.	
		3. Write a program to display the XML file data	
		into HTML file.	
	Unit 3	JAVA APPLET & SERVLET	
		1. Write a program to count number of character	CO2,
		in words in the text written in text area.	CO3,CO4
<u></u>	1	II or oo iii did toild iii toilt diddi	<u> </u>

				Beyond Boundari		
	3. Writ	e a progran	n to draw circle using mouse n to insert and then retrieve I branch rom the database			
Unit 4	JAVA SERV BEANS	ER PAGES	S & ENTERPRISE JAVA			
	usinş 2. Writ jsp:p	g jsp. e a progran aram,jsp:in	n to create registration form n to describe clude and jsp forward action n to implement EJB	CO1,CO2,CO3		
Unit 5	RMI AND J	AVA NETV	VORKING			
	 Write a j Create C Program Write a j input fro "Over" i 	CO3,CO4				
Mode of examination	Jury/Practic					
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text book/s*						
Other References	4. Rick D					

Scho	ool:	Batch: 2018	eyond Boundaries			
	gram: MCA	Current Academic Year:				
Brai	9	Semester: 5				
1	Course Code	MCA363 Course Name:				
2	Course Title	Business Intelligence				
3	Credits	3				
4	Contact Hours	3-0-0				
	(L-T-P)					
	Course Status	Elective				
5	Course	1 .Provide students with an overview of the methodologies and	l approaches to			
	Objective	Business Intelligence				
		2.It focuses on dashboards design by utilizing key performance	indicators that			
		managers can use to improve day-to-day business operations				
		3. Provide students to plan and implement BI development projec	ts			
		4. Prepare student to know the administrative and deployment so issues in BI space.	cenarios &			
6	Course Outcomes	Students will be able to: CO1:Design and develop dashboards CO2:Learn the best practices to work on BI projects. CO3:Use tools to develop, implement and administrate wide range of BI artifacts CO4:Apply various modeling techniques and Apply business intelligence methods to various situations				
7	Course Description	This course have an overall understanding of the major issues and business intelligence including a basic grasp of the algorithm c practices for building successful BI projects.	• •			
8	Outline syllabus		CO Mapping			
	Unit 1	Introduction to Business Intelligence:				
	А	Business Intelligence (BI), Scope of BI solutions and their fitting into existing infrastructure, BI Components and architecture, BI Components, Future of Business Intelligence, SaaS and Cloud computing techniques	CO2,CO3			
	В	Functional areas of BI tools, End user assumptions, Setting up data for BI, Data warehouse, OLAP and advanced analytics,	CO2,CO3			
	С	Supporting the requirements of senior executives including performance management, Glossary of terms and their definitions specific to the field of BI and BI systems.	CO2,CO3			
	Unit 2	Elements of Business Intelligence Solutions:				
	А	Business Query and Reporting, Dashboard design principles, Dashboards and Scorecards Development,	CO1,CO2			

*	SHARDA
	UNIVERSITY

				leyond Boundaries	
В	Role of Metac and Events	data, challenge	es of Metadata ,Automated Tasks	CO1,CO2	
С	Mobile Busine	ess Intelligence	e, Software development kit (SDK).	CO1,CO2	
Unit 3	Building BI Pr	oject:			
Α	Stages of Busi	Stages of Business Intelligence Projects, Gartner Maturity			
	Model, ASUG	Model, ASUG business intelligence maturity model			
В	Risk Manager	nent and Mitig	gation, Cost justifying BI solutions	CO3,CO4	
С	measuring su	ccess. BI Desig	n and Development.	CO3,CO4	
Unit 4	Reporting:				
Α	Metadata Lay	er, Presentatio	on Layer, Data Layer, Use of	CO2,CO3	
	different laye	rs and overall	Reporting architecture,		
В	Basic Report	authoring, Var	ious report elements such as	CO2,CO3	
	Charts, Tables	s, prompts, Da	ta aggregation		
С	Table based, I	Materialized vi	iews, OLAP, Ad-hoc reports,	CO2,CO3	
	interactivity in	n analysis (drill	l down, drill up).		
Unit 5	BI Deploymer	nt and Efficien	cy:		
Α	Centralized ve	ersus Decentra	lized Architecture, EPM (Enterprise	CO4,CO2	
	performance	Management)	•		
В	Efficiency mea	asures – The C	CR model: Definition of target	CO4,CO2	
	objectives- Pe	er groups – Id	entification of good operating		
	practices; cro	ss efficiency a	nalysis		
С	virtual inputs	and outputs –	Other models. Pattern matching –	CO4,CO2	
	cluster analys	is, outlier anal	ysis.		
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*			ess Intelligence: Making Decisions		
. SAC SOON S	•	-	w York, N.Y., Business Expert Press		
Other	· ·	•	ntelligence: Data Mining and		
References		-	aking, A John Wiley and Sons, Ltd.,		
Hererendes	Publication				
	2. Ralph Ki				
	dimensional				
	publication IS				
	•		a," "The data warehouse ETL toolkit:		
	•	•	tracting, cleaning, conforming, and		
			: Wiley. ISBN: 0-7645-6757-8		

S.	Course Outcome	Program Outcomes (PO) & Program
No.		Specific Outcomes (PSO)
1.	CO1:Design and develop dashboards	PO1,PO3,PO4,PO5,PO9,PO11,PO12

*	SHARDA	
	UNIVERSITY	

2.	CO2: Learn the best practices to work on BI projects.	PO1, PO3, PO4,PO9,PO12
3.	CO3:Use tools to develop, implement and	PO1,PO2,PO3,PO4,PO5,PO9,PO11,PO12
	administrate wide range of BI artifacts	
4.	CO4:Apply various modeling techniques and Apply	PO1, PO2,PO3,
	business intelligence methods to various situations	PO5,PO9,PO10,PO11,PO12

PO and PSO mapping with level of strength for Course Name Business Intelligence(Course Code MCA363)

М	С	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	РО	РО	PS	PS	PS	PS	PS
CA	Os	0	0	0	0	0	0	0	0	0	10	11	12	01	02	03	04	05
		1	2	3	4	5	6	7	8	9								
	С	3	-	3	3	3	-	-	-	3	-	3	3	3	-	3	1	3
	01																	
	С	2	-	2	2	-	-	-	-	3	-	-	3	2	-	1	1	-
	02																	
	С	3	3	3	1	3	-	-	-	3	3	3	3	3	3	3	1	3
	О3																	
	С	3	3	2	-	3	-	-	-	2	2	2	2	3	3	2	1	2
	04																	

Scho	ool: SET	Batch : 2018
Prog	gram: MCA	Current Academic Year: 2018-19
Bra	nch:	Semester: V
1	Course Code	MCA364 Course Name:
2	Course Title	Cryptography & Network Security
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course Status	Elective
5	Course	To familiarize the students with security related issues in computer and communication
	Objective	networks which are the basic building blocks of all IT infrastructures based organizations and the role of cryptography in mitigating these security threats.
		and the fole of cryptography in intigating these security threats.
6	Course	After the successful completion of this course, students will be able to:
	Outcomes	
		CO1: Understanding of threat perception in the computer and communication network
		and able to recognize the vulnerability in the various layers of the network.
		CO2: Analyze the conventional ciphers and steganographic technique which are basically designed to maintain confidentiality of the data.
		CO3: Establish the mathematical background for development of symmetric and
		asymmetric key cryptography.
		CO4: Developing skills for implementation of cryptographic tools.
		CO5: Comprehend the working knowledge of the security protocols during data

		commun	ication.		Beyond Boundaries				
7	Course			concepts of cryptography and math	omatical skills				
/				of security tools for confidentiality					
	Description		•	ation in the computer and commun					
8	Outline syllabu		•						
0	•				CO Mapping				
	Unit 1	Introduction	1. 1	Secretary Agents Great Great Great	GO1 GO2				
	A	Security Mecha	nism and mode	Security Attack, Security Services, el for network security.	CO1,CO2				
	В	Pre-requisite Mathematics: Number Theory, Integer Arithmetic, Modular Arithmetic, Extended Euclid Algorithm, and Congruence's, Eulers Totient Function, Fermat little Theorem,							
	С	Multiplicative of	ciphers, mono-a	Substitution ciphers, Additive and lphabetic and poly alphabetic ciphers. ical and electromechanical systems.	CO2,CO3,CO4				
	Unit 2	Modern Cryp		•					
	A	One Time Pad,	the Concept of	modern cryptography, Random	CO3				
		numbers, Basic	tests of randon	nness.					
	В	Classification of	f Symmetric Ci	pher systems, Modes of operation.	CO3,CO4				
	С	Stream ciphers,	RC4, and Bloc	k ciphers. DES and AES.	CO3,CO4				
	Unit 3	Asymmetric C	ryptography &	k Key Exchange	,				
	A	Pre-requisite N	Mathematics: F	Random number generator, LCG,	CO2,CO3				
		Prime Number	and Primality T	esting- Miller Rabin test,,	202,003				
				square and multiply method, Discrete					
	-	logarithms, Chi			G02 G02				
	В	cryptography,	ptograpny-RSA	, Cryptanalysis of RSA, Elgamal	CO2,CO3				
	С		f Kevs. Kev Dis	stribution Center, Life time of the	CO3,CO4				
				Asymmetric key length, Diffie	203,201				
		Hellman key ex							
	Unit 4	Digital Signatu							
	A	0		DSA), DSA- variants User eros, Digital Signature –RSA,	CO2,CO3				
	В		unction, charact	eristics of Hash Functions,	CO2,CO4				
	C	Data integrity a	lgorithms, MD:	5, SHA-512	CO2,CO4				
	Unit 5	Security			- , - - -				
	A	-		Email Architecture, S/MIME, P Certificates)	CO4,CO5				
	В			L(Services, Protocols)	CO4,CO5				
	C	=	work layer-IPS	ec(Modes, Protocols, Security	CO4,CO5				
	Mode of	Theory							
	examination	-							
	Weightage								
	Distribution	30%	20%	50%					
	Text book/s*	10. Stallings, W., "Cryptography and Network Security – Principles and Practices", Prentice Hall of India, Fourth Edition.							
	Other	Behrouz A McGraw H		ryptography And Network Security"-					

References	2.	Bruce Schneier, "Applied Cryptography", John Wiley & Sons	
		Inc, 2001.Internet as a resource for reference	

S.	Course Outcome	Program Outcomes (PO) &
No.		Program Specific
		Outcomes (PSO)
1.	CO1: Analyze the conventional ciphers and stenographic technique which are basically designed to maintain confidentiality.	PO1,PO2,PO11,PSO1
2.	CO2: Compare the algorithms developed in modern cryptographic era. (ABET program outcomes a and j)	PO1,PO2,PO3,PSO1,PSO2
3.	CO3: Establish the mathematical background of the ciphers proposed in symmetric and asymmetric key cryptography.	PO1,PO2,PSO1,PSO2
4.	CO4: Comprehend the working knowledge of security protocols during data communication.	PO1,PO2,PSO1,PSO2

PO and PSO mapping with level of strength for Course Name Cryptography & Network security(Course Code MCA 364 $)\,$

CS	Cos	PO	PO1	PO1	PSO	PSO	PSO	PSO	PSO									
Е		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4	5
		3	3	1	1	1	1	1	1	1	2	3	2	3	3	1	1	1
	CO																	
	1																	
		3	3	3	1	1	2	2	2	2	1	1	1	3	3	1	2	2
	CO																	
	2																	
		3	3	2	2	2	1	2	2	2	1	1	1	3	3	1	2	1
	CO																	
	3																	
	CO	3	3	2	2	1	1	1	2	2	1	1	2	3	3	1	2	2
	4																	

Sch	ool: SET	Batch: 2018			
Program: MCA Current Academic Year: 2018-19					
Bra	nch:	Semester: V			
1	Course Code	MCA365			
2	Course Title	Software Project Management			
3	Credits	3			
4	Contact	3-0-0			
	Hours				
	(L-T-P)				
	Course	Non Elective			
	Status				
5	Course				
	Objective	22. Introduces students with an overview and concepts of software			

			Beyond Bounda						
		project management.							
		23. Gain insight into the challenges and limitations of	f different phases						
		of software project management							
		24. Using techniques for planning, monitoring and control of softw							
		projects							
		25. Prepare students understand project evaluation ar	nd software effort						
		estimation.							
		26. Enhance the managerial and leadership skillsof th	e students						
		-							
6	Course	Students will be able to:							
	Outcomes	CO1. Apply software project recovered and engineering							
		CO1: Apply software project management and engineering projects under taken.	g methods in the						
		CO2: design and conduct a software effort estimation in a p	roiect under						
		taken							
		CO3:Develop the ability to lead or, work in a team till the co	ompletion of a						
		project.							
		CO4: Have an ability understand and identify various softw	, ,						
		management problems, and solve these problems by desig	ning and						
		selecting appropriate strategies, and methods.							
7	Course	This course introduces concepts of software project mana	agement in which						
	Description	Project Planning, Project Evaluation, Software Effort estim							
		and control and Managing contracts tools and techniques a	re included.						
0	Oveties a syllabo		CO Mannina						
8	Outline syllabu	Introduction	CO Mapping						
	Unit 1	Introduction	CO1, CO2						
	A	Introduction to software project management, software	CO1, CO2						
		projects versus other types of project,							
	В	activities covered by software project management, the	CO1, CO2						
		project as a system, problems with software projects,	,						
	С	management control, stakeholders, requirement	CO1, CO2						
		specification, information and control in organization.							
	Unit 2	Project Planning							
	A	Introduction to step wise project planning, select project,	CO1,						
		identify project scope and objectives,	CO2,CO4						
	В	identify project infrastructure, analyze project	CO1,						
		characteristics, identify project products and activities,	CO2,CO4						
	С	estimate effort for each activity, identify activity risk,	CO1,						
		allocate resources, review/publicize plan, execute plan and lower levels of planning	CO2,CO4						
	TI '4 2								
	Unit 3	Project Evaluation Strategic assessment, Technical assessment: cost-benefit	CO1,CO2,CO3						

				Beyond Bounda		
	analysis, cash					
В	cost-benefit e	evaluation ted	chniques, risk evaluation.	CO1,CO2,CO3		
С		model, the s	nodels: the waterfall model, piral model, software	CO4		
Unit 4	Software Effo					
A	Introduction, over and und	CO1,CO2,CO3				
В		xpert judgme	mating, effort estimation ent, estimating by analogy, esis,	CO1,CO2,CO3		
С	•	e resource scl	bject points, COCOMO, nedule, cost schedule, the	CO1,CO2,CO3		
Unit 5	Monitoring a	nd Managing	contracts			
A	Creating the progress, cos	CO1,CO2,CO3				
В	prioritizing m	CO1,CO2,CO3				
С	placement, ty	pical terms o	of contract, stages in contract f a contract, contract nagement, acceptance.	CO1,CO2,CO3		
Mode of examination	Theory	-				
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*		Project Ma terell, McGra	nnagement, Bob Hughes and w Hill			
Other References	2. Software Project Management A Unified Framework,					

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: Apply software project management and engineering methods in the projects under taken.	PO1,PO2,PO3,PO4,PSO1
2.	CO2 :design and conduct a software effort estimation in a project under taken	PO1, PO3, PO4, PSO2
3.	CO3:Develop the ability to lead or, work in a team till the	PO1,PO2,PO3,PO4

	completion of a project.	
4.	CO4: Have an ability understand and identify various software	PO9, PO10,PO11
	project management problems, and solve these problems by	
	designing and selecting appropriate strategies, and methods.	

PO and PSO mapping with level of strength for Course Name Software Project Manageent (Course Code MCA 365)

Cos	PO1	PO	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PS O1	PSO2	PSO3	PSO4
CO1	3	3	3	3				2	2	1	2	1	3	2	2	1
CO2	3	2	3	3				2	2	2	1	1	2	3	2	1
CO3	3	3	3	3				1	1	1	3	2	3	2	1	1
CO4	2	2	2	2	1			2	3	3	3	1	2	2	2	1

Cob	ool: SET	Batch: 2018						
	gram: MCA	Current Academic Year: 2918-19						
Bra	nch:	Semester: V						
1	Course Code	ACA366 Course Name						
2	Course Title	Essentials of Big data Analytics						
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course Status	Elective						
5	Course	Understand the Big Data Platform and its Use cases						
	Objective	Provide an overview of Apache Hadoop						
		Provide HDFS Concepts and Interfacing with HDFS						
		Understand Map Reduce Jobs						
		Provide hands on Hodoop Eco System						
		Apply analytics on Structured, Unstructured Data.						
		Exposure to Data Analytics with						
6	Course	The students will be able to:						
	Outcomes	Identify Big Data and its Business Implications.						
		List the components of Hadoop and Hadoop Eco-System						
		Access and Process Data on Distributed File System						
		Manage Job Execution in Hadoop Environment						
		Develop Big Data Solutions using Hadoop Eco System						
7	Course							

Description Outline syllabus Unit 1 INTRODUCTION TO BIG DATA AND HADOOP A Types of Digital Data, Introduction to Big Data, Big Data, Analytics, History of Hadoop, Apache Hadoop B Analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, C Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets. Unit 2 HDFS(Hadoop Distributed File System) A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	th CO1, CO2
Unit 1 INTRODUCTION TO BIG DATA AND HADOOP A Types of Digital Data, Introduction to Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop B Analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, C Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets. Unit 2 HDFS(Hadoop Distributed File System) A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	th CO1, CO2 CO1, CO2
Analytics, History of Hadoop, Apache Hadoop B Analysing Data with Unix tools, Analysing Data wi Hadoop, Hadoop Streaming, C Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets. Unit 2 HDFS(Hadoop Distributed File System) A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	th CO1, CO2
B Analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, C Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets. Unit 2 HDFS(Hadoop Distributed File System) A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	CO1, CO2
Hadoop, Hadoop Streaming, C Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets. Unit 2 HDFS(Hadoop Distributed File System) A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	CO1, CO2
C Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets. Unit 2 HDFS(Hadoop Distributed File System) A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	,
to Infosphere BigInsights and Big Sheets. Unit 2	,
A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	COI
A The Design of HDFS, HDFS Concepts, Command Line Interface B Hadoop file system interfaces, Data flow, Data Ingest with	CO1
B Hadoop file system interfaces, Data flow, Data Ingest with	LCO1
B Hadoop file system interfaces, Data flow, Data Ingest with	
	CO2,CO4
Fluence and Congressed Understanding	n CO1,
Flume and Scoop and Hadoop archives,	CO2,CO4
C Hadoop I/O: Compression, Serialization, Avro and File-	CO1,
Based Data structures	CO2,CO4
Unit 3 Map Reduce	
A Anatomy of a Map Reduce Job Run, Failures, Job	CO1,CO2,CO3
Scheduling	
B Shuffle and Sort, Task Execution,	CO1,CO2,CO3
C Map Reduce Types and Formats, Map Reduce Features.	CO4
Unit 4 Hadoop Eco System	
A Pig: Introduction to PIG, Execution Modes of Pi	, ,
Comparison of Pig with Databases, Grunt, Pig Latin, Us	er
Defined Functions, Data Processing operators.	
B Hive: Hive Shell, Hive Services, Hive Metastor	, ,
Comparison with Traditional Databases, HiveQL, Table	≥S ,
Querying Data and User Defined Functions.	- CO1 CO2 CO2
C Hbase: HBasics, Concepts, Clients, Example, Hbase Versu	us CO1,CO2,CO3
RDBMS. Big SQL : Introduction Unit 5 Data Analytics with R:	
·	CO1 CO2 CO2
A Introduction, Supervised Learning, Unsupervised Learning B Collaborative Filtering	CO1,CO2,CO3 CO1,CO2,CO3
	CO1,CO2,CO3
C Big Data Analytics with BigR. Mode of Theory	(01,002,003
examination	
Weightage CA MTE ETE Distribution 30% 20% 50%	
Text book/s* 17. Tom White "Hadoop: The Definitive Guide" Third Education on, O'reily Media, 2012.	uit
18. Seema Acharya, Subhasini Chellappan, "Big Da	ata
Analytics" Wiley 2015	
Other 25. Michael Berthold, David J. Hand, "Intellige	nt
References Data Analysis", Springer, 2007.	
26. Jay Liebowitz, "Big Data and Busine	ess

*	SHARDA
	UNIVERSITY

	Beyond Boundarie
Analytics" Auerbach Publications, CRC press	
(2013)	
27. Tom Plunkett, Mark Hornick, "Using R to	
Unlock the Value of Big Data: Big Data	
Analytics with Oracle R Enterprise and Oracle	
R Connector for Hadoop", McGraw-	
Hill/Osborne Media (2013), Oracle press.	
28. Anand Rajaraman and Jef rey David Ulman,	
"Mining of Massive Datasets", Cambridge	
University Press, 2012.	
, , ,	

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1 Identify Big Data and its Business Implications.	PO1,PO2,PO3,PO4,PSO1
2.	CO2: List the components of Hadoop and Hadoop Eco-	PO1, PO3, PO4, PSO2
	System	
3.	CO3: Access and Process Data on Distributed File System	PO2,PO3,PO4,PSO3
4.	CO4: Manage Job Execution in Hadoop Environment	PO7, PO10,PO11, PSO5
5	CO5: Develop Big Data Solutions using Hadoop Eco System	PO4,PO8

PO and PSO mapping with level of strength for Course Name Big data Analytics (Course Code MCA 366)

COs	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	3	3	3	3				2	2	1	2	1	3	2	2	1	2
CO2	3	2	3	3				2	2	2	1	1	2	3	2	1	2
CO3	3	3	3	3				1	1	1	3	2	3	2	1	1	1
CO4	2	2	2	2	1	-		2	3	3	3	1	2	2	2	1	3
CO5	3	2	3	3	1	1	1	3	2	2	2	2	2	2	2	1	1

1

Sch	ool: SET	Batch :2018	Beyond Boundari				
	gram: MCA	Current Academic Year: 2018-19					
	nch:	Semester: V					
1	Course Code	MCA367 Course Name: MCA					
2	Course Title	Cyber Law					
3	Credits	3					
4	Contact	3-0-0					
-	Hours						
	(L-T-P)						
	Course Status	Elective					
5	Course Objective	 Enable learner to understand, explore, and acquir understanding Cyber Law. Develop competencies for dealing with frauds an (confidence tricks, scams) and other cyber crimes child pornography etc. that are taking place via the Make learner conversant with the social and intellissues emerging from 'Cyberspace; Explore the legal and policy developments in var regulate Cyberspace; Develop the understanding of relationship between and cyberspace; and Give learners in depth knowledge of Information Act and legal frame work of Right to Privacy, Da Data Protection 	d deceptions for example, he Internet; hectual property hous countries to en commerce				
6	Course Outcomes	Students will be able to: CO1: Develop competencies for dealing with frauds (confidence tricks, scams) and other cyber crimes for pornography etc. that are taking place via the Internet CO2: Explore the legal and policy developments in var regulate Cyberspace	example, child				
7	Course	This course introduces aspects of cyber security, encompassi					
	Description	to analyze the data, identify the problems, and choose the re	levant				
	0 11 11 1	countermeasures to apply.	COM				
8	Outline syllabu		CO Mapping				
	Unit 1	Introduction to Cyber Security	CO1 CO2				
		Understanding Computers, Internet and Cyber Laws, intellectual property, defamation, privacy concerns,	CO1, CO2				
		censorship, cyber fraud, e – commerce law,					
		information security legal liabilities, insurance law, the					
		clash of laws, cyber law dispute resolution, the law of					
		linking, cyber crime					
	Unit 2	Protection of Intellectual Property Rights in	CO1,CO2				
		CyberSpace in India, Compensation and Adjudication	201,002				
		of Violations of Provisions of It Act and Judicial					
Ī	1	Review, Some important Offeneces under the					

*	SHARDA
	UNIVERSITY

					Seyona Boundari					
		CyberSpace	Law and the	Internet in India, Other						
		Offences un	Offences under the Information Technology Act in							
		India								
	Unit 3	Role of Evide	nces and Rule	es						
		The Role of	Electronic E	vidence and the	CO1,CO2					
		Miscellaneo	us Provisions	s of the IT Act, Legal Aspects						
		of Electronic	Records/Di	gital Signatures, The Rules						
		and Regulati	ons of Certif	ying Authorities in India						
	Unit 4	Cyber Space	Laws							
		International	Efforts Rela	ated to CyberSpace Laws,	CO1,CO2					
		Fundamenta	l Jurisdiction	Principles Under						
		International	l Law, Classi	c U.S. Jurisdiction Principles,						
		Council of E	urope conve	ntion on cyber crimes						
	Unit 5	Tools								
		Tools: Cybe	er Check, Tr	rueBack, Hasher,	CO1,CO2					
		EmailTrace	r, Pasco, Nr	nap, BinText						
	Mode of	Theory								
	examination									
	Weightage	CA	MTE	ETE						
	Distribution	30%	20%	50%						
	Text book/s*	19. Cybe								
		20. Hand	20. Handbook of Information Security,							
		Hoss	einBidgol	•						
Ì			-							

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	co1 :Develop competencies for dealing with frauds and	PO1,PO2,PO3,PO4,PSO1
	deceptions (confidence tricks, scams) and other cyber	
	crimes for example, child pornography etc. that are	
	taking place via the Internet	
2.	CO2:Explore the legal and policy developments in	PO1, PO3, PO4, PSO2
	various countries to regulate Cyberspace	

PO and PSO mapping with level of strength for Course Name Cyber Law (Course Code MCA 367)

Cos	PO1	РО	PO3	PO4	PO5	РО	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO2	PSO3	PSO4	PSO5
		2				6					11		01				
CO1	2	3	1	1	1	1	2	2	1	1	1	1	2	1	2	2	1
CO2	3	1	1	2			3	3	2	3	1	1	2	2	2	2	1
CO3	3	1	3	3		1	1	1	1	2	2	1	1	2	1	2	2
CO4	2	2	2	2	2	1	-	1	2	1	3	1	1	3	1	2	2

Sch	ool: SET	Batch: 2018											
	gram: MCA	Current Academic Year: 2018-19											
	nch:	Semester: V											
1	Course Code	MCA368 Course Name: MCA											
2	Course Title	Software Testing											
3	Credits	3											
4	Contact	3-0-0											
	Hours												
	(L-T-P)												
	Course Status	Elective											
5	Course	4. This course provides an introduction to the	4. This course provides an introduction to the fundamentals of										
	Objective	distributed computer systems,											
		5. Designing Algorithms used in Distributed system.											
		6. Various issues and challenges used in Distributed System.											
6	Course Outcomes	Students will be able to: CO1: apply software testing knowledge and engineering met CO2:design and conduct a software test process for a softwa CO3:identify the needs of software test automation, and def test tool to support test automation. CO4:Have an ability understand and identify various software problems, and solve these problems by designing and selecti models, criteria, strategies, and methods.	re testing project. ine and develop a e testing										
7 Course Description		This course introduces the concepts of System Analysis, algorithms, design issues and challenges in Distributed system, dentify the problems, and choose the relevant models and algorithms to apply.											
8	Outline syllabu		CO Mapping										
	Unit 1	Fundamental of System Development:											
	A	Overview of software evolution, SDLC, Testing Process,	CO1, CO2										
		Terminologies in Testing: Error, Fault, Failure,											
	В	Verification, Validation, Difference between Verification	CO1, CO2										

		Beyond Boundari									
	and Validation, Test Cases,	201 202									
C	Testing Suite, Test Oracles, Impracticality of Testing All	CO1, CO3									
TT 14 0	data; Impracticality of testing AllPaths.										
Unit 2											
A	Boundary Value Analysis, Equivalence Class Testing,	CO1,									
	Decision Table Based Testing,	CO2,CO4									
В	Cause Effect Graphing Technique. Structural Testing:	CO1,									
	Control flow testing,	CO2,CO4									
C	Path testing, Independent paths, Generation of graph from	CO1, CO2,CO4									
	program, Identification of independent paths.										
Unit 3	Regression Testing:										
A	Regression Test cases selection, Reducing the number of	CO1,CO2,CO3									
	test cases,.										
В	Code coverage prioritization technique	CO1,CO2,CO3									
С	Reducing the number of test cases: Prioritization	CO4									
	guidelines, Priority category, Scheme, Risk Analysis.										
Unit 4	Documentation										
A	Software Testing Activities: Levels of Testing, Debugging,	CO1,CO2,CO3									
	Testing techniques and their Applicability,										
В	Exploratory Testing Automated Test Data Generation: Test	CO1,CO2,CO3									
	Data, Approaches to test data generation,										
С	test data generation using genetic algorithm, Test Data	CO1,CO2,CO3									
	Generation Tools, Software Testing Tools, and Software										
	test Plan.										
Unit 5	Object Oriented Testing:										
A	Object oriented Testing: Definition, Issues, Class Testing,	CO1,CO2,CO3									
	Object Oriented Integration and System Testing.										
В	Testing Web Applications: What is Web testing?, User	CO1,CO2,CO3									
	interface Testing,										
C	Usability Testing, Security Testing, Performance Testing.	CO1,CO2,CO3									
Mode of	Theory										
examination											
Weightage	CA MTE ETE										
Distribution	<u> </u>										
Text book/s*	Yogesh Singh, "Software Testing", Cambridge University										
	Press, New York, 2012										
Other	5. Naresh Chauhan, "Software Testing : Principles and										
References	practices", Oxford university press, Latest Edition										
	6. KK. Aggarwal&Yogesh Singh, "Software Engineering",										
	New Age International Publishers, New Delhi, 2003.										
	7. Roger S. Pressman, "Software Engineering – A										
	Practitioner's Approach", Fifth Edition, McGraw-Hill										
	International Edition, New Delhi,2001.										
	8. Marc Roper, "Software Testing", McGraw-Hill Book Co.,										
	London, 1994.										
	9. Boris Beizer, "Software System Testing and Quality										
	3. Bons beizer, Software System resume and Quality										

			Beyond	<u>Boundari</u> es
	Assurance", Van NostrandReinhold, New York, 1984.			

S.	Course Outcome	Program Outcomes (PO)
No.		& Program Specific
		Outcomes (PSO)
1.	CO1: apply software testing knowledge and engineering methods.	PO1,PO2,PO3,PO4,PSO1
2.	CO2 :design and conduct a software test process for a software testing project.	PO1, PO3, PO4, PSO2
3.	CO3 :identify the needs of software test automation, and define and develop a test tool to support test automation.	PO1,PO2,PO3,PO4
4.	CO4: Have an ability understand and identify various software testing problems, and solve these problems by designing and selecting software test models, criteria, strategies, and methods.	PO9, PO10,PO11, PSO5

PO and PSO mapping with level of strength for Course Name Software Testing (Course MCA 368)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	PSO	PSO
										0	1	2	1	2	3	4	5
	3	3	3	3				2	2	1	2	1	3	2	2	1	2
CO																	
1																	
	3	2	3	3				2	2	2	1	1	2	3	2	1	2
CO																	
2																	
	3	3	3	3				1	1	1	3	2	3	2	1	1	1
CO																	
3																	
CO	2	2	2	2	1			2	3	3	3	1	2	2	2	1	3
4																	