Programme Structure

Sharda School of Basic Sciences \& Research Department of Mathematics

B.Sc. (Hons./ Hons. With Research) Mathematics

Programme Code: SBR0302

Batch 2023-27

Vision. Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit ofacademic excellence, innovation and nurturing entrepreneurship.

Mission of the University

M1. Transformative educational experience.

M2. Enrichment by educational initiatives that encourage global outlook.
M3. Develop research, support disruptive innovations and accelerateentrepreneurship.

M4. Seeking beyond boundaries.

Core Values

1. Integrity
2. Leadership
3. Diversity
4. Community

Vision and Mission of School

Vision of the School

Achieving excellence in the realm of science to address the challenges of evolving society.

Mission of the School

1. Equip the students with knowledge and skills.
2. Capacity building by providing academic flexibility to student and Faculty members.
3. To establish centre of excellence for innovative research.
4. Address the deficiencies of the society pertaining to environment
5. To strengthen academic- industry collaboration for better. Employability.
6. Developing a culture for continued betterment in all facets of life.

Vision and Mission of Department of Mathematics

Vision of the Department

To become a globally recognized destination for education in applied mathematics and research.

Mission of the Department

1. To develop mathematical skills in students and make them employable across a wide range of professions and promote interest in research.
2. To develop entrepreneurial skills in students to serve the society at large.
3. To develop skills for the applications of mathematics in the various fields.

B. Sc. (Hons./ Hons. With Research) Mathematics

Programme Educational Objectives (PEOs)

PEO1. Provide a solid foundation in mathematics, give a flavor of some very advanced modern branches of mathematics, and develop interdisciplinary skills.

PEO2. Develop critical thinking, creative thinking, self-confidence for eventual success in career
PEO3. To prepare the students to communicate mathematical ideas effectively and develop their ability to collaborate both intellectually and creatively in diverse contexts.

PEO4. Rewarding careers in private and government sectors such as Education, Industry, Banks, MNCs, and pursue higher studies.

Programme Outcomes

The graduates should be able to demonstrate the capability to

PO1. Complex Problem Solving: Solve different kinds of problems in familiar and non-familiar contexts and apply the learning to real-life situations.

PO2. Critical Thinking: Analyze and synthesize data from a variety of sources and draw valid conclusions and support them with evidence and examples.

PO3. Creativity: Demonstrate the ability to think 'out of the box' and generate solutions to complex problems in unfamiliar contexts by applying concepts of multidisciplinary and interdisciplinary.

PO4. Analytical reasoning/thinking: Evaluate the reliability and relevance of evidence.

PO5. Research-related skills: Demonstrate the ability to acquire the understanding of basic research ethics and skills in practicing/doing ethics in the field/ in personal research work, regardless of the funding authority or field of study.

PO6. Communication Skills: Demonstrate the skills that enable them to express thoughts and ideas effectively in writing and orally and communicate with others using appropriate media.

PO7. Coordinating/collaborating with others: Demonstrate the ability to work effectively and respectfully with diverse teams using management skills to guide people to the right destination.

PO8. Digital and technological skills: Demonstrate the capability to access, evaluate, and use a variety of relevant information sources, and use appropriate software for analysis of data.

PO9. Value Inculcation: Instill integrity and identify ethical issues related to work, and follow ethical practices with or understand the perspective, experiences, or points of view of another individual or group, and to identify and understand other people's emotions.

PO10. Sustainability Growth: Demonstrate the capability to lead a diverse team or individual to accomplish and participate in community-engaged services/ activities for promoting the well-being of society to mitigating the effects of environmental degradation, climate change, and pollution.

PO11. Multidisciplinary Life-long learning: Comprehensive knowledge and coherent understanding of the chosen disciplinary/interdisciplinary areas of study in a broad multidisciplinary context by inculcating a healthy attitude to be a lifelong learner,

Programme Specific Outcomes of B.Sc. (Hons./ Hons. With Research) Mathematics

PSO1. Select and use appropriate mathematical formulae or techniques in order to process the information and draw the relevant conclusion.

PSO2. Develop the ability to reflect on problems that are quite significant in the field of pure mathematics.

PSO3. Apply programming knowledge gained from MATLAB, Python, R, Excel through applied mathematics, and statistics as per the need of industry.

PEOs with Mission Statements

PEO	School	School	School	School	School	School
Statements	Mission1	Mission2	Mission3	Mission4	Mission5	Mission6
PEO1	3	2	3	1	2	3
PEO2	3	2	3	1	2	3
PEO3	3	3	3	3	3	3
PEO4	3	2	3	1	3	3

Mapping of Programme Outcomes Vs Programme Educational Objectives

	PEO1	PEO2	PEO3	PEO4
PO1	3	3	3	2
PO2	3	3	3	2
PO3	3	3	3	2
PO4	3	2	3	2
PO5	2	3	2	3
PO6	3	3	1	2
PO7	1	2	1	3
PO8	2	2	2	3
PO9	2	2	2	3
PO10	2	2	2	$\mathbf{3}$
PO11	3	3	1	2
PSO1	2	3	2	3

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

4-Year Course Structure of B. Sc. (Hons./ Hons. With Research) Mathematics

Department of Mathematics

		Subject 1	Subject 2	Subject 3		Subject4	Vocational	$\begin{gathered} \text { Co- } \\ \text { curricular } \end{gathered}$	Training/Survey/ Project/	\{Minimum Credits $\}$ For the year	\{Cumulative Minimum Credits $\}$ Required for Award of Certificate/ Diploma/ Degree
		Major 1	Major 2	Major 3		Minor/ Elective	Minor	Minor	Major		
		$\begin{aligned} & \text { Credits } \\ & (3 / 4 / / 5) \end{aligned}$	Credits (3/4/5)	Credits $(3 / 4 / / 5)$	Project	$\begin{aligned} & \text { Credits } \\ & (3 / 4 / 5) \end{aligned}$	Credits (3)	Credits (2)	Credits (2/3/4/8)		
		CC	CC	DSE		OPE	SEC	AEC	VAC		
Year	Sem.	Own Faculty	Own/inter or multidisciplinary Faculty			Other subject/ Faculty	Vocational/Skill Development Course	Co-curricular course	Inter/Intra Facult related to main Subject		
	I	Maths (3+1)	X	$\underset{(3+1)}{\text { Stats }}$	X	CS (3+1)	SEC (3)	SK (2)	VAC (3)	\{40\}	\{40\}
	II	Maths (3+1)	CS (3+1)	X	X	$\begin{aligned} & \text { Stats } \\ & (3+1) \end{aligned}$	SEC (3)	SK (2)	VAC (3)		Certificate in Faculty
2	III	Maths (3+1)	Maths (3+1)	$\begin{aligned} & \text { Stats } \\ & (3+1) \end{aligned}$	$\begin{gathered} \text { RBL-1** } \\ \text { (Audit) } \end{gathered}$	OPE-1 (3)	SEC (3)	SK (2)	X	\{40\}	\{80\}
	IV	Maths (3+1)	Maths (4+1)	$\begin{aligned} & \text { Stats } \\ & (4+1) \end{aligned}$	RBL-2** (Audit)	$\begin{gathered} \text { OPE-2 } \\ (3+1) \end{gathered}$	X	SK (2)	X		Diploma in Faculty
** Courses are the audit courses. However, evaluation shall be made as per rubrics.											

Summer Industry Internship (Industry Connect)
Course shall be conducted in the summer break of 04th Semester. However, evaluation will be made as per Rubrics in the 5th Semester "Industry Connect"

3	V	$\begin{aligned} & \text { Maths }(4+1) \\ & \text { Maths }(4+1) \end{aligned}$	$\begin{aligned} & \text { Maths } \\ & (3+1) \end{aligned}$	Stats (2+1)	RBL-3 (1)	X	X	X	Industry Connect (2)	\{40\}	\{120\} Bachelor Degree inFaculty
	VI	$\begin{aligned} & \text { Maths (4+1) } \\ & \text { Maths (4+1) } \end{aligned}$	Stat (3+1) Math (3)	X	$\begin{gathered} \text { RBL-4 } \\ \text { (1) } \end{gathered}$	X	X	X	Community Connect (2)		
	VII	$\begin{aligned} & \text { Maths }(3+1) \\ & \text { Maths }(3+1) \end{aligned}$	X	$\begin{array}{\|l} \text { Maths (3+1) } \\ \text { Maths (3+1) } \end{array}$	X	OPE-3 (4)	X	X	X	\{40\}	\{160\} Bachelor (Hons.) in Faculty
4	VIII	$\begin{aligned} & \hline \text { Maths (3+1) } \\ & \text { Maths (3+1) } \\ & \text { Maths (3+1) } \end{aligned}$	X	Maths (3+1)	X	OPE-4 (4)	X	X	X		
	VII	Maths (3+1)	X	$\begin{array}{\|l} \text { Maths (3+1) } \\ \text { Maths (3+1) } \end{array}$	X	OPE-3 (4)	X	X	Dissertation-1 (4)	\{40\}	\{160\} Bachelor (Hons. With Research) in Faculty
4	VIII	Maths (3+1)	X	Maths (3+1)	X	OPE-4 (4)	X	X	Dissertation-2 (8)		

\wedge Maths-Mathematics course; Stats-Statistics course; CS-Computer Science course; SK-Sharda Skills course; SEC-Skill Enhancement Course; AEC-Ability Enhancement Course; VAC-Value Added Course; OPE-Open Elective course.

Programme Structure
B. Sc. (Hons./ Hons. With Research) Mathematics

Batch: 2023-27
Term: 2301 (Semester-I)

S. No.	Course Code	Course Name	Teaching Load				Credits	Pre-Requisite/ Co-Requisite	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC;
	THEORY		L	T	P	$\underset{\text { (hrs) }}{\text { TOTAL }}$			
1.	MSM101	Foundation Course in Mathematics	4	0	0	4	4	Basic Mathematics up to $10+2$	CC
2.	CMS102	Descriptive Statistics	3	0	0	3	3	Basic Mathematics up to $10+2$	OPE
3.	CSE113	Programming for Problem Solving	3	0	0	3	3		DSE (Multi/Inter-discpli)
4.	VOM103	Essential Excel Skills for Business	0	0	6	6	3		SEC
5.	ARP101	Communicative English-1	1	0	2	3	2		AEC
6.	VAC103	Environmental Management	3	0	0	3	3		VAC
	PRACTICALS								
7.	CMS151	Foundation Course in Mathematics Lab	0	0	2	2	1	Co-requisite MSM101	CC
8.	CSP113	Programming for Problem Solving Lab	0	0	2	2	1	Co-requisite CSE113	DSE (Multi/Inter-discpli)
		TOTAL CREDITS					20		

At

Programme Structure
B. Sc. (Hons./ Hons. With Research) Mathematics

Batch: 2023-27
TERM: 2302 (Semester-II)

S. No.	Course Code	Course Name	Teaching Load				Credits	Pre-Requisite/ Co-Requisite	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC; 5. AEC; 6. VAC; 7.Project
	THEORY		L	T	P	$\begin{gathered} \hline \text { TOTAL } \\ \text { (hrs) } \end{gathered}$			
1.	CMS131	Matrix Analysis and Linear Algebra	4	0	0	4	4	Pre-requisite MSM101	CC
2.	CMS132	Mathematical Expectations \& Probability Distributions	3	0	0	3	3	Pre-requisite CMS102	OPE
3.	CSE242	Data Structures	3	0	0	3	3	Pre-requisite CSE113	CC
4.	VOM104	Advanced Excel Skills for Business	0	0	6	6	3	Pre-requisite VOM103	SEC
5.	ARP102	Communicative English-2	1	0	2	3	2	Pre-requisite ARP101	AEC
6.	VAC110	Yoga for Holistic Health	0	1	4	5	3		VAC
	PRACTICALS								
7.	CMS171	Matrix Analysis and Linear Algebra Lab	0	0	2	2	1	Co-requisite CMS131	CC
8.	CSP242	Data Structures Lab	0	0	2	2	1	Co-requisite CSE113	CC
		TOTAL CREDITS					20		

Programme Structure
B. Sc. (Hons./ Hons. With Research) Mathematics

Batch: 2023-27
TERM: 2401 (Semester-III)

S. No.	Course Code	Course Name	Teaching Load				Credits	Pre-Requisite/ Co-Requisite	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC; 5. AEC; 6. VAC; 7.Project
	THEORY		L	T	\mathbf{P}	$\underset{(\mathrm{hrs})}{\mathrm{TOTAL}}$			
1.	CMS201	Abstract Algebra	5	0	0	5	5	Pre-requisite MSM101	CC
2.	CMS202	Calculus	3	0	0	3	3	Pre-requisite MSM101	CC
3.	$\begin{aligned} & \text { BDA216/ } \\ & \text { BDA217 } \end{aligned}$	Statistical Inference/ Data Preparation and Data Cleaning	3	0	0	3	3	Pre-requisite CMS132	DSE
4.	OPE	Open Elective-1	3	0	0	3	3		OPE
5.	VOM203	Basic Excel Modelling	0	0	6	6	3	Pre-requisite VOM104	SEC
6.	ARP207	Logical Skills Building and Soft Skills	0	1	2	3	2	Pre-requisite ARP102	AEC
	PRACTICALS								
7.	CMS251	Calculus Lab	0	0	2	2	1	Co-requisite CMS202	CC
8.	$\begin{aligned} & \text { BDA261/ } \\ & \text { BDA262 } \end{aligned}$	Statistical Inference Lab/ Data Preparation and Data Cleaning Lab	0	0	2	2	1		DSE
9.	RBL001	Research Based Learning-I (RBL-1)	0	0	2	2	0	Pre-requisite ARP102	Project (Non-graded Qualifying)
		TOTAL CREDITS					21		

At

Programme Structure

B. Sc. (Hons./ Hons. With Research) Mathematics

TERM: 2402 (Semester-IV)

S. No.	Course Code	Course Name	Teaching Load				Credits	Pre-Requisite/ Co-Requisite	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC; 5. AEC; 6. VAC; 7.Project
	THEORY		L	T	P	$\underset{(\mathrm{hrs})}{\mathrm{TO}}$			
1.	CMS231	Real Analysis	4	0	0	4	4	Pre-requisite MSM101	CC
2.	CMS232	Ordinary Differential Equations and Laplace Transforms	4	0	0	4	4	Pre-requisite CMS 202	CC
3.	$\begin{aligned} & \text { BDA214/ } \\ & \text { BDA202 } \end{aligned}$	Sampling Theory/ Data Base Management Systems	4	0	0	4	4		DSE
4.	OPE	Open Elective-2	3	0	0	3	3		OPE
5.	ARP306	Campus to Corporate	0	1	2	3	2	AEC	AEC
	PRACTICALS								
6.	CMS271	Ordinary Differential Equations and Laplace Transforms Lab	0	0	2	2	1	$\begin{aligned} & \text { Co-requisite } \\ & \text { CMS232 } \end{aligned}$	CC
7.	$\begin{aligned} & \text { BDA272/ } \\ & \text { BDA271 } \end{aligned}$	Sampling Theory Lab/ Data Base Management Systems Lab	0	0	2	2	1		DSE
8.	RBL002	Research Based Learning-II (RBL-2)	0	0	2	2	0	Pre-requisite RBL001	Project
TOTAL CREDITS							19		

At

Programme Structure
B. Sc. (Hons./ Hons. With Research) Mathematics

Batch: 2023-27
TERM: 2501 (Semester-V)

S. No.	Course Code	Course Name	Teaching Load				Credits	Pre-Requisite/ Co-Requisite	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC; 5. AEC; 6. VAC; 7.Project
	THEORY		L	T	P	$\begin{gathered} \text { TOTAL } \\ \text { (hrs) } \end{gathered}$			
1.	CMS301	Complex Analysis	5	0	0	5	5	Pre-requisite CMS231	CC
2.	CMS302	Mathematical Modelling	4	0	0	4	4	Pre-requisite CMS232	CC
3.	CMS303	Discrete Mathematics	4	0	0	4	4	Pre-requisite MSM101	CC
4.	$\begin{aligned} & \text { BDA320/ } \\ & \text { BDA321 } \end{aligned}$	Advanced Statistical Analysis/ Experimental Design	2	0	0	2	2		DSE (Multi/Inter-discpli)
	PRACTICALS								
5.	CMS351	Mathematical Modelling Lab	0	0	2	2	1	Co-requisite CMS302	CC
6.	$\begin{aligned} & \text { BDA359/ } \\ & \text { BDA363 } \end{aligned}$	Advanced Statistical Analysis Lab/ Experimental Design Lab	0	0	2	2	1		DSE (Multi/Inter-discpli)
7.	INC001	Industry Connect	0	0	4	4	2		Project
8.	RBL003	Research Based Learning-III (RBL-3)	0	0	2	2	1	Pre-requisite RBL002	Project
	TOTAL CREDITS						20		

Programme Structure
B. Sc. (Hons./ Hons. With Research) Mathematics

Batch: 2023-27
TERM: 2502 (Semester-VI)

S. No.	Course Code THEORY	Course Name	Teaching Load				Credits	Pre-Requisite/ Co-Requisite	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC;
			L	T	P	$\begin{gathered} \text { TOTAL } \\ \text { (hrs) } \\ \hline \end{gathered}$			
1.	CMS331	Numerical Methods	4	0	0	4	4	Pre-requisite CMS202, 231	CC
2.	CMS332	Introduction to Partial Differential Equations	4	0	0	4	4	Pre-requisite CMS232	CC
3	CMS333	Graph Theory	3	0	0	3	3	Pre-requisite CMS303	OPE
4.	BDA323	Multivariate Data Analysis	3	0	0	3	3	Pre-requisite CMS132	CC
	PRACTICALS								
5.	CMS371	Numerical Methods Lab	0	0	2	2	1	Co-requisite CMS331	CC
6.	CMS372	Introduction to Partial Differential Equations Lab	0	0	2	2	1	Co-requisite CMS332	CC
7.	BDA361	Multivariate Data Analysis Lab	0	0	2	2	1	Co-requisite CMS323	CC
8.	RBL004	Research Based Learning-IV (RBL-4)	0	0	2	2	1	Pre-requisite RBL003	Project
9.	CCU108	Community Connect	0	0	4	4	2	Project	Project (Multi/Inter-discpli)
		TOTAL CREDITS					20		

Programme Structure
B. Sc. (Hons./ Hons. With Research) Mathematics

Batch: 2023-27
TERM: 2601 (Semester-VII)

S. No.	Course Code THEORY	Course Name	Teaching Load				Credits	PreRequisite/	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC;
			L	T	P	$\underset{\text { (hrs) }}{\text { TOTAL }}$			
1.	CMS401	Numerical Solution of Differential Equations	3	0	0	3	3	$\begin{gathered} \hline \text { Pre-requisite } \\ \text { CMS232, } \\ 331,332 \\ \hline \end{gathered}$	CC
2.	CMS403	Number Theory	4	0	0	4	4	Pre-requisite CMS303	CC
3.	$\begin{aligned} & \text { MDA110/ } \\ & \text { MDA112 } \end{aligned}$	Time Series, Forecasting and Index Number/ Econometrics	3	0	0	3	3		DSE/CC*
4.	MDA111/ MDA113/ MMT107/ MMT202/ CMS405/ CMS406/ CMS404/ CMS407		4	0	0	4	4		DSE/CC*
5.	OPE	Open Elective-3	4	0	0	4	4		OPE
	PRACTICALS								

6.	CMS451	Numerical Solution of Differential Equations Lab	0	0	2	2	1	Co-requisite CMS401	CC
7.	$\begin{aligned} & \text { MDA155/ } \\ & \text { MDA156 } \end{aligned}$	Time Series, Forecasting and Index Number Lab/ Econometrics Lab	0	0	2	2	1		DSE/CC*
TOTAL CREDITS							20		

*Credited Research Project/Dissertation: Students of B.Sc.Mathematics have the option to choose a research project/dissertation of worth 12 credits (However student has to take 23 credits courses including 3 credits project in $7^{\text {th }}$ semester and 17 credits courses including 9 credits project in $8^{\text {th }}$ semester). This can be undertaken for those who secure 75% and above marks in the first six semesters and wish to undertake research at the undergraduate level can choose a research stream in the fourth year. They should do a research project or dissertation under the guidance of a mathematics faculty member of the Sharda University. The students who secure 160 credits, including 12 credits from a research project/dissertation, are awarded B.Sc. (Hons. with Research) Mathematics.

Programme Structure
B. Sc. (Hons./ Hons. With Research) Mathematics

Batch: 2023-27

TERM: 2602 (Semester-VIII)

S. No.	Course Code	Course Name	Teaching Load				Credits	Pre-Requisite/ Co-Requisite	Type of Course: 1. CC; 2. DSE; 3. OPE; 4. SEC;
	THEORY		L	T	\mathbf{P}	$\underset{(\mathrm{hrs})}{\text { TOTAL }}$			
1.	CMS431	Finite Element Methods	4	0	0	4	4	Pre-requisite CMS401	CC
2.	CMS432	Optimization Techniques	4	0	0	4	4	Pre-requisite CMS131,202,232	CC
3.	CMS433	Integral Equations \& Calculus of Variations	4	0	0	4	4	Pre-requisite CMS131,202,232	CC
4.	MDA115/ MDA116/ MMT205/ CMS435/ CMS436/ CMS437	Demography/ Statistical Quality Control/ Functional Analysis/ Algebraic Combinatorics/ Fourier Analysis and its Applications/ Applied Linear Algebra in AI and ML	4	0	0	4	4		DSE/CC*
5.	OPE	Open Elective-4	4	0	0	4	4		OPE
	PRACTICALS								
		TOTAL CREDITS					20		

*Credited Research Project/Dissertation: Students of B.Sc. Mathematics have the option to choose a research project/dissertation of worth 12 credits (However student has to take 23 credits courses including 3 credits project in $7^{\text {th }}$ semester and 17 credits courses including 9 credits project in $8^{\text {th }}$ semester). This can be undertaken for those who secure 75% and above marks in the first six semesters and wish to undertake research at the undergraduate level can choose a research stream in the fourth year. They should do a research project or dissertation under the guidance of a mathematics faculty member of the Sharda University. The students who secure 160 credits, including 12 credits from a research project/dissertation, are awarded B.Sc. (Hons. with Research) Mathematics.
B. Sc. (Hons./ Hons. With Research) Mathematics Curriculum Credits Distribution

Sem	CC	DSE	OPE	SEC	AEC	VAC	Project	Mathematics	Computer Science	Statistics
1	4	4	4	3	2	3	0	4	4	4
2	8	0	4	3	2	3	0	4	4	4
3	8	4	3	3	2	0	0	8	0	4
4	9	5	4	0	2	0	0	9	0	5
5	14	3	0	0	0	0	3	14	0	3
6	17	0	0	0	0	0	3	13	0	4
Total:	60	16	15	9	8	6	6	52	8	24
\%	50	13.33	12.5	7.5	6.67	5	5	43.33	6.67	20
7	8	8	4	0	0	0	0	16	0	0
8	12	4	4	0	0	0	0	16	0	0
Total:	80	28	23	9	8	6	6	84	8	24
\%	50	17.5	14.38	5.63	5	3.75	3.75	52.5	5	15

List of Electives for B.Sc. (Hons./Hons. With Research) Mathematics Students

Course Code	Mathematics	Course Code	Statistics
	DSE-1\&2_7th sem (L-T-P:4-0-0)		3rd sem (3-0-0)+(0-0-2)
CMS402	Fluid Dynamics	$\begin{aligned} & \text { BDA216 } \\ & \text { BDA261 } \end{aligned}$	Statistical Inference Statistical Inference Lab
MMT107	Topology (https://nptel.ac.in/courses/111106159)	$\begin{aligned} & \text { BDA217 } \\ & \text { BDA262 } \end{aligned}$	Data Preparation and Data Cleaning Data Preparation and Data Cleaning Lab
MMT202	Measure Theory (https://nptel.ac.in/courses/111101100)		4th sem_Stat/CS (4-0-0)+(0-0-2)
CMS404	Introduction to Methods of Applied Mathematics (https://nptel.ac.in/courses/111102133)	$\begin{aligned} & \text { BDA214 } \\ & \text { BDA272 } \end{aligned}$	Sampling Theory Sampling Theory Lab
CMS405	Computational Commutative Algebra (https://nptel.ac.in/courses/111106138)	$\begin{aligned} & \text { BDA202 } \\ & \text { BDA271 } \end{aligned}$	Data Base Management Systems Data Base Management Systems Lab
CMS406	Measure and Integration (https://nptel.ac.in/courses/111106161)		5th sem (2-0-0)+(0-0-2)
CMS407	Competitive Mathematics: NPTEL-Advanced Engineering Mathematics (https://nptel.ac.in/courses/111107119)	$\begin{aligned} & \text { BDA320 } \\ & \text { BDA359 } \end{aligned}$	Advanced Statistical Analysis Advanced Statistical Analysis Lab
	DSE-3_8th sem	$\begin{aligned} & \hline \text { BDA321 } \\ & \text { BDA363 } \end{aligned}$	Experimental Design Experimental Design Lab
NPTEL	Foundations of Cryptography (https://nptel.ac.in/courses/106106221)		7th sem-1
MMT205	Functional Analysis (https://nptel.ac.in/courses/111106147)	MDA110	Time Series, Forecasting and Index Number (3-0-0)

COURSE MODULE

Detailed Syllabus for

CERTIFICATE COURSE IN

APPLIED MATHEMATICS

COURSE ARTICULATION MATRIX

COs	$\begin{gathered} \mathbf{P O} \\ 1 \end{gathered}$	$\begin{gathered} \text { PO } \\ 2 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \text { PO } \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\begin{gathered} \text { PO } \\ 7 \end{gathered}$	$\begin{gathered} \text { PO } \\ 8 \end{gathered}$	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	$\begin{gathered} \text { PO } \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 11 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 3 \end{gathered}$
MSM101	1.0	2.0		2.0							1.0			
CMS102	2.3	2.6	2.0	2.1		1.0					1.0			1.0
CSE113	1.0	2.0	2.0	3.0								1.0		
VOM103		2.0	1.0	2.0		1.0		3.0				1.0		1.0
ARP101						3.0		1.0	1.0	2.5	1.0			
VAC103	1.2	2.0			2.2	2.3			1.5	2.7	1.0			
CMS151	1.0	2.0	2.0	2.0		1.0	1.0	3.0	1.0		1.0	1.0		2.0
CSP113	2.2	3.0	2.2	2.7	2.2	2.5	2.5	2.5	2.3	2.0	1.0	1.0		1.0
CMS131	3.0	2.0	2.0	2.6		1.0					2.0	1.0	2.0	
CMS132		1.0		2.0							2.0	1.0	1.0	
CSE242	2.0	2.3	2.0	2.0							1.0			1.0
VOM104		3.0	1.0	2.0		1.0	1.0	3.0	1.0		2.0			1.0
ARP102						3.0	2.0	1.0	2.0		1.0			
CMS171	1.0	2.0	2.0	2.0		1.0	1.0	3.0	1.0		1.0	1.0		2.0
CSP242	1.0	2.0	2.0	2.0		1.0	1.0	3.0	1.0					1.0
CMS201	2.5	2.5	2.0	2.0		2.0							3.0	
CMS202	3.0	3.0	2.0	2.0		1.0					2.0	2.0	2.0	2.0
VOM207		2.0	1.0	2.0		1.0		3.0					1.0	1.0
ARP207	1.0	2.0	2.0	2.0		1.0	1.0	3.0	1.0			1.0	2.0	
CMS251	2.0	2.0	2.0	2.0		1.0	1.0	3.0	1.0	1.0	1.0	2.0	2.0	2.0
CMS231	1.0	3.0	2.0	3.0	3.0	1.0					1.0	1.0	3.0	
CMS232	2.0	3.0	2.5	2.6	2.0	1.0					2.0	2.0	2.0	
ARP306									1	2.5	1	2		
CMS271	3.0	3.0	2.0	3.0	1.0	1.0	1.0	3.0	1.0	1.0	2.0	1.0	2.0	
CMS301	2.0	3.0	2.0	3.0		1.0					2.5	2.0	2.0	
CMS302	3.0	3.0	3.0	3.0		1.0						1.0	1.0	3.0
CMS303		2.5	2.0	2.0		1.0					1.0	3.0	3.0	
RBL003		2.0	1.0	2.0		1.0		3.0					1.0	1.0
INC001		2.0	1.0	2.0		1.0		3.0				1.0		1.0

COs	PO $\mathbf{1}$	$\mathbf{P O}$ $\mathbf{2}$	$\mathbf{P O}$ $\mathbf{3}$	$\mathbf{P O}$ $\mathbf{4}$	$\mathbf{P O}$ $\mathbf{5}$	$\mathbf{P O}$ $\mathbf{6}$	$\mathbf{P O}$ $\mathbf{7}$	$\mathbf{P O}$ $\mathbf{8}$	$\mathbf{P O}$ $\mathbf{9}$	$\mathbf{P O}$ $\mathbf{1 0}$	PO $\mathbf{1 1}$	PSO $\mathbf{1}$	PSO $\mathbf{2}$	PSO $\mathbf{3}$
CMS351	3.0	3.0	3.0	3.0	2.0	2.0	1.0	3.0	2.0	1.0	2.0	2.0	2.0	2.0
CMS331	3.0	3.0	3.0	3.0	2.0	1.0					2.0	2.0	2.0	
CMS332	2.5	2.5	2.5	2.6		1.0						2.0	2.0	
CMS333	3.0	3.0	2.5	2.6		1.0					2.0	2.0	2.0	
BDA323	2.3	2.6	2.0	2.1		1.0					2.0		1.0	
RBL004		2.0	1.0	2.0		1.0		3.0				1.0	1.0	1.0
CCU108	1.0	2.0	2.0	3.0	2.0	2.0	3.0	3.0	3.0	2.0	1.0	2.0	2.0	3.0
CMS371	3.0	3.0	3.0	3.0	2.0	1.0	2.0	3.0	2.3	2.0	3.0	2.0	2.0	2.0
CMS372	3.0	3.0	3.0	3.0	2.0	1.0	2.0	3.0	2.3	2.0	3.0	2.0	2.0	2.0
BDA361	1.0	2.0	3.0	2.0	2.0	1.0	1.0	3.0	1.0		2.0		1.0	2.0
CMS401	3.0	3.0	3.0	3.0	2.0	1.0				2.0	3.0	3.0	2.0	3.0
CMS403	2.5	2.5	2.0	2.0		2.0							3.0	
CMS451	3.0	3.0	3.0	3.0	3.0	1.0	3.0	3.0	1.0	1.0	3.0	3.0	3.0	3.0
CMS431	3.0	3.0	2.0	2.0	2.0	1.0				1.0	3.0	3.0		
CMS432	3.0	3.0	3.0	3.0	2.0	1.0					3.0	3.0	3.0	
CMS433	3.0	3.0	3.0	3.0	2.0	1.0					2.0	2.0	2.0	

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High) *..........

C	Equation of ellipse, parabola and hyperbola	CO3, CO4
Unit 4	Set Theory	
A	Definition of set, types of sets, Union and intersection of sets, Venn diagram, De-Morgan's law.	CO5
B	Relation and functions.	CO5
C	Composite function and inverse function.	CO5
Unit 5	Vector Algebra	
A	Addition and subtraction of vectors and their geometric application.	CO6
B	Scalar and vector product, their physical application, Projection of vector on another vector, area of triangle.	CO6
C	Area of parallelogram and quadrilateral, Vector triple product.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Kreyszig, E., "Advanced Engineering Mathematics", John Wiley \& Sons Inc.	
Other References	1. Jain, M.K., and Iyengar, S.R.K., "Advanced Engineering Mathematics", Narosa Publications.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\begin{aligned} & \hline \mathbf{P O} \\ & \hline \mathbf{C O} \\ & \hline \end{aligned}$	PO	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \text { PO } \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \text { PO } \\ 4 \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ 6 \end{array}$	$\begin{gathered} \hline \text { PO } \\ 7 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ \mathbf{8} \end{gathered}$	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	$\begin{gathered} \text { PO } \\ 10 \end{gathered}$	$\begin{gathered} \text { PO } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ \hline 2 \end{array}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ \hline 3 \end{array}$
MSM101.1	1	2	-	2	-	-	-	-	-	-	1	-	-	-
MSM101.2	1	2	-	2	-	-	-	-	-	-	1	-	-	-
MSM101.3	1	2	-	2	-	-	-	-	-	-	1	-	-	-
MSM101.4	1	2	--	2	--	--	--	--	--	--	1	--	--	--
MSM101.5	1	2	-	2	-	-	-	-	-	-	1	-	-	-
MSM101.6	1	2	-	2	-	-	-	-	-	-	1	-	-	-
Average	1.0	2.0	-	2.0	-	-	-	-	-	-	1.0	-	-	-

	ol: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2023-24	
Branch: Mathematics		Semester: I	
1	Course Code	CMS102	
2	Course Title	Descriptive Statistics	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	DSE	
5	Course Objective	1.To introduce basic statistical concepts, logics and analytical tools, analyze and communicatequantitative data verbally, graphically, symbolically and numerically. 2.To make students familiar with the concept of Probability and Statistics and display data utilizingvarious tables, charts, and graphs.	
6	Course Outcomes	CO1: Describe the process and particular steps in designing studies and analyzing data, interpreting and presenting results; and develop presenting quantitative data using appropriate diagrams, tabul summaries. (K2, K5). CO 2 : Describe the properties of discrete and continuous distributio (K2). CO3: Calculate the measures of central tendency and dispersion of describe the method used for analysis, including a discussion of disadvantages, and necessary assumptions. (K2, K3) CO4: Calculate and interpret the correlation between two va Calculate the simple linearregression equation for a set of data an basic assumptions behind regression analysis. (K2,K3). CO5: Understand the line of best fit as a tool for summarizing relationship and predicting future observed values, develop the ab formal mathematical argument in the context of probability. (K2, K5) CO6: Develop the skills to interpret the results of statistical analysis. (collecting p skills in tions and functions. a data and dvantages, ables and know the a linear ity to use 2, K5).
7	Course Description	This is an introductory course in statistics. Students are introduced to the fundamental concepts involved in using sample data to make inferences about populations. Included are the study of measures of central tendency and dispersion, finite probability, statistical inferences from large and small samples, linear regression, and correlation.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Presentation of data	
	A	Classification, tabulation, diagrammatic \& graphical representation of groupeddata.	CO1
		Frequency distributions, cumulative frequency distributions	CO1

B		
C	Histogram, Ogives, frequency polygon, Tree and leaf diagram.	CO1
Unit 2	Descriptive statistics	CO2
A	Measures of central tendency - arithmetic mean, median, quartiles, mode, harmonic mean, geometric mean.	CO2
B	Their properties, merits, and demerits	CO2
C	Measures of dispersion, range, quartile deviation, mean deviation, standard deviation, and coefficient of variation.	
Unit 3	Moments	CO3
A	Moments, Skewness, Measures of skewness: Karl Pearson's coefficient ofskewness.	CO3
B	Quartile coefficient of skewness, Measure of skewness based on moments.	CO3
C	Kurtosis, measure of Kurtosis.	
Unit 4	Bi-variate data analysis	CO4
A	Bivariate data, principles of least squares, fitting of polynomial curves, and fitting ofcurves reducible to polynomial form.	CO4
B	Correlation: Spearman's rank correlation, Partial and Multiple Correlation (only two independent variables case).	CO4
C	Regression lines.	
Unit 5	Probability	CO5
A	Probability: Introduction, random experiment, outcomes, sample space, events, various definitions of probability, laws of total and compound probability.	CO5
B	Boole's inequality. Conditional probability, independence of events.	CO5
C	Bayes theorem and its applications in real life problmes.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Daniel, Wayne W., "Biostatistics": Basic concept and Methodology forHealth Science.	
Other References	1. Rohatgi, V.K. Introduction to Probability.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO													
$\mathbf{8}$														
$\mathbf{8}$	$\mathbf{P S O}$	PSO												
$\mathbf{C O}$	3	3	2	2	-	1	-	-	-	-	1	-	-	1
CMS102.1	2	3	3	2	-	1	-	-	-	-	1	-	-	1
CMS102.2	2	2	2	3	-	1	-	-	-	-	1	-	-	1
CMS102.3	2	$\mathbf{4}$	-	$\mathbf{1}$										
CMS102.4	2	3	2	2	--	1	--	--	--	--	1	-	-	1
CMS102.5	3	3	2	2	-	1	-	-	-	-	1	-	-	1
CMS102.6	3	3	2	3	-	1	-	-	-	-	1	-	-	1
Average	$\mathbf{2 . 3}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{2 . 1}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{1 . 0}$	-	-	$\mathbf{1 . 0}$

\(\left.\begin{array}{|l|l|l|l|}\hline School: SSBSR \& Batch: 2023-27 \&

\hline \begin{array}{l}Programme: B.Sc.

(Hons.)\end{array} \& Academic Year: 2023-2024\end{array}\right]\)| Branch:Mathematics |
| :--- | Semester: I | CSE113 |
| :--- | *..........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CSE113.1	1	2	2	3								1		
CSE113.2	1	-2	2	3								1		
CSE113.3	1	2	2	3								1		
CSE113.4	1	2	2	3								1		
CSE113.5	1	2	2	3								1		
CSE113.6	1	2	2	3								1		
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$								$\mathbf{1 . 0}$		

	I: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2023-24	
Branch: Mathematics		Semester: I	
1	Course Code	VOM103	
2	Course Title	Essential Excel Skills for Business	
3	Credits	3	
4	Contact Hours (L-T-P)	0-0-6	
	Course Status	SEC	
5	Course Objective	1. To be able to enter, edit, and format data with ease using the Excel user interface. 2. To do calculations on data, use formulae and functions. Utilize functions to automate selections and data searches.	
6	Course Outcomes	CO1: How to onerate essential navigational controls in Excel and how to perform basic data entry with Excel spreadsheets and understand the different cell references. CO 2 : Explain several formatting tools like font formatting. borders, alignment, number formatting, Excel styles, themes and printing options. CO3: Build charts to represent data visually using Pie, column and line charts and modify chart elements. CO4: Examine multiple sheets and workbooks to combine data, manage datasets and perform calculations across multiple sources. CO5: Decide wavs to extract information and manipulate data to fulfil specific business requirements using text and date functions. CO6: Create, manage and apply Named Ranges to enhance calculations.	
7	Course Description	In offices all throughout the world, spreadsheet software continues to be one of the most frequently used programs. A significant tool will be added to your employability profile after you learn to use this software with assurance. Every day, there are millions of job postings in India alone that mention having Excel abilities. Digital skills contribute to higher income and better employment chances.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Critical Core of Excel and Performing Calculations Introduction Takino Charge of Excel Navigatino and Selecting View Ontions. Data Entrv. Data Tvpes, Editing and Deleting, Fill Handle, Copy and Paste, Templates.	
	A		CO1
	B	Formulas. Formulas in Context, Functions I: SUM and AUTOSUM.	CO1
	C	Functions II: AVERAGE. MIN and MAX, Absolute Cell References, Calculations across sheets.	CO1

Unit 2	Formatting and Printing	
A	Formatting. Borders. Alignment Tools, Format Painter, Number Formats, Styles and Themes.	CO2
B	Managing Rows and Columns, Find and Replace, Filtering, Sorting, Conditional Formatting.	CO2
C	Print Preview. Orientation. Margins and Scale, Page Breaks, Print Titles, Headers and Footers	CO2
Unit 3	Charts	
A	Basic Chart Types: Pie, Column and Line Charts.	CO3
B	Move and Resize Charts, Change Chart Style \& Type.	CO3
C	Modify Chart Elements.	CO3C
Unit 4	Working with Multiple Worksheets \& Workbooks	
A	Multiple Worksheets, 3D Formulas, Linking Workbooks.	CO4
B	Consolidating by Position, Consolidating by Category (Reference).	CO4
C	Combining Text (CONCAT, \&), Changing Text Case (UPPER, LOWER, PROPER).	CO4
Unit 5	Named Ranges	
A	Extracting Text (LEFT, MID, RIGHT), Finding Text (FIND),	CO5
B	Date Calculations (NOW, TODAY, YEARFRAC).	CO5
C	Introducing Named Ranges, Creating Named Ranges, Managing Named Ranges, Named Ranges in Formulas, Apply Names.	CO6
Mode of examination	Practical Based	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Michael Alexander, ExceliR Dashboards \& Reports For Dummies, John Wiley \& Sons, Inc, ISBN: 978-1-119-07676-6, 2016.	
Other References	1. Michael Alexander and Dick Kusleika, Excel 2016 Formulas, John Wiley \& Sons, Inc, ISBN: 978-1-119-06786-3, 2016.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
VOM103.1		2	1	2		1		3				1		1
VOM103.2		2	1	2		1		3				1		1
VOM103.3		2	1	2		1		3				1		1
VOM103.4		2	1	2		1		3				1		1
VOM103.5		2	1	2		1		3				1		1
VOM103.6		2	1	2		1		3				1		1
Average		$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{3 . 0}$				$\mathbf{1 . 0}$		$\mathbf{1 . 0}$	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
CO						3		1	1	3	1			
ARP101.1					3		1	1	3	1				
ARP101.2						3		1	1	3	1			
ARP101.3						3		1	1	2	1			
ARP101.4						3		1	1	2	1			
ARP101.5						3		1	1	2	1			
ARP101.6							1							
Average						$\mathbf{3 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 5}$	$\mathbf{1 . 0}$			

B	Management of Land and Forest Resources	CO1
C	Water and Energy resource Management	CO1
Unit 2	Environmental Pollution Management	
A	Air pollution Control and Water Pollution treatment Methods	CO2, CO6
B	Soil and Noise Pollution Management	CO2, CO6
C	Solid waste management	CO2, CO6
Unit 3	Climate Change Mitigation	
A	Concept of Global Warming and greenhouse effect	CO3, CO6
B	Ozone layer Depletion and its consequences	CO3, CO6
C	Climate change, its effect on ecosystem and its mitigation. Kyoto protocol and IPCC concerns on changing climate.	CO3, CO6
Unit 4	Natural resource conservation and management	
A	Hot spots, Endangered and endemic species of India	CO4, CO6
B	Threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts, biological invasions	CO4, CO6
C	Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.	CO4, CO6
Unit 5	Sustainable practices and environmental management	
A	Sustainable development and sustainable consumption	CO5, CO6
B	Environmental Issues and Management in India	CO5,CO6
C	Environmental Management System (EMS)	C05,CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha, Pub: Orient Blackswan Pvt Ltd	

$\left.\begin{array}{|l|l|ll|l|}\hline \begin{array}{l}\text { Other } \\ \text { References }\end{array} & \text { 1. Environmental Management by G. Tyler Miller, JR. and } \\ \text { Scott E. Spoolman; Broks/Cole }\end{array}\right]$

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO $\mathbf{1}$	$\mathbf{P O}$ $\mathbf{2}$	$\mathbf{P O}$ $\mathbf{3}$	$\mathbf{P O}$ $\mathbf{4}$	$\mathbf{P O}$ $\mathbf{5}$	$\mathbf{P O}$ $\mathbf{6}$	$\mathbf{P O}$ $\mathbf{7}$	$\mathbf{P O}$ $\mathbf{8}$	$\mathbf{P O}$ $\mathbf{9}$	$\mathbf{P O}$ $\mathbf{1 0}$	$\mathbf{P O}$ $\mathbf{1 1}$	$\mathbf{P S O}$ $\mathbf{1}$	PSO $\mathbf{2}$	PSO $\mathbf{3}$
VAC103.1	1	2		-	1	2			2	3	1			
VAC103.2	1	3			2	2			2	3	1			
VAC103.3	2	1			3	3			1	3	-1			
VAC103.4	1	2			2	2			1	2	1			
VAC103.5	1	2			3	2			2	3	1			
VAC103.6	1	2			2	3			1	2	1			
Average	$\mathbf{1 . 2}$	$\mathbf{2 . 0}$			$\mathbf{2 . 2}$	$\mathbf{2 . 3}$			$\mathbf{1 . 5}$	$\mathbf{2 . 7}$	$\mathbf{1 . 0}$			

School: SSBSR Programme: B.Sc. (Hons.)		Batch: 2023-27 Academic Year: 2023-24	
Branch: Mathematics		Semester: I	
1	Course Code	CMS151	
2	Course Title	Foundation Course in Mathematics Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	CC	
5	Course Objective	1. To empower students with necessary analytic and technical skills to solve a variety of practical problems in science and engineering by plotting the graphs using different computer software such as Mathematica /MATLAB /Maple /Scilab/Maxima etc. 2. To make students appreciate the power and limitations of mathematics in solving practical real-life problems. 3. To equip students with the basic mathematical modelling skills.	
6	Course Outcomes	CO1: The main objective of the course is to equip the student to plo graph and solve the different types of equations by plotting the graph different computer software such as Mathematica /MATL Scilab/Maxima etc. (K1,K2,K3) CO2. After completion of this course student would be able convergence of sequences through plotting, verify Bolzano-Weierstras through plotting the sequence, Cauchy's root test by plotting nth ro test by plotting the ratio of nth and ($n+1$)th term. (K2,K3) CO3. Student would be able to plot Complex numbers and their re Operations like addition, substraction, Multiplication, Division, Modu Graphical representation of polar form. (K2,K3,K4) CO4: Student would be able to perform following task of matrix Multiplication, Inverse, Transpose, Determinant, Rank, Eigenvectors, Eigenvalues, Characteristic equation and verification of the Cay theorem, Solving the systems of linear equations. (K2,K3,K4) CO5: Develop program scripts and functions using the Mathematica Maple /Scilab/Maxima development environment. (K3,K4,K5) CO6: Write the program for evaluates linear system of equatio differential equations in Mathematica /MATLAB /Maple /Scilab/Maxi (K4,K5,K6).	the different sing AB /Maple know the theorem ts and Ratio resentations, us and as Addition, ey-Hamilton /MATLAB ns, ordinary na.
7	Course Description	This course provides the fundamental basics of MATLAB. The primary objective of the course is to develop basic mathematical modelling and to solve various equations using MATLAB.	
8	Outline syllabus		$\xrightarrow[\text { Mapping }]{\text { CO }}$
	Unit 1	List of the practicals to be done using Mathematica /MATLAB /Maple /Scilab/Maxima etc.	
	A	Plotting the graphs of the following functions: (i) ax (ii) $[x]$ (greatest integer function)	CO1

 UNIVERSITY

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS151.1	1	2	2	2		1	1	3	1		1	1		2
CMS151.2	1	2	3	2		1	1	3	1		1	1		2
CMS151.3	1	2	2	2		1	1	3	1		1	1		2
CMS151.4	1	2	2	2		1	1	3	1		1	1		2
CMS151.5	1	2	2	2		1	1	3	1		1	1		2
CMS151.6	1	2	2	2		1	1	3	1		1	1		2
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$		$\mathbf{2 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2023-2024	
Branch:Mathematics		Semester: I	
1	Course Code	CSP113	
2	Course Title	Programming for Problem Solving Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	OPE	
5	Course Objective	1.Learn basic programming constructs data types, decision structures, control structures in C 2.Learning logic aptitude programming in c language 3.Developing software in c programming	
6	Course Outcomes	Students will be able to: CO1: Implement core concept of c Programming CO2: Develop programs using Array and String CO3: Create Functions for any problem CO4: Use Union and Structure to write any programCO5: Implement concept of Pointers CO6: Design a real world problem with the help of c programming	
7	Course Description	Programming for problem solving gives the Understanding of C programming and implement code from flowchart or algorithm.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Logic Building	
	A	Draw flowchart for finding leap year	CO1
	B	Write a c Program to Add Two Integers	CO1
	C	Write a program to create a calculator	CO1
	Unit 2	Introduction to C Programming	

 *.........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CSP113.1	3	3	2	3	2	3	2	3	2	2	1	1	-	1
CSP113.2	2	3	3	3	3	2	3	2	2	2	1	1	-	1
CSP113.3	2	3	2	2	2	2	3	3	2	2	1	1	-	1
CSP113.4	2	3	2	3	2	3	2	2	3	2	1	1	-	1
CSP113.5	2	3	2	2	2	2	3	3	2	2	1	1	-	1
CSP113.6	2	3	2	3	2	3	2	2	3	2	1	1	-	1
Average	$\mathbf{2 . 2}$	$\mathbf{3 . 0}$	$\mathbf{2 . 2}$	$\mathbf{2 . 7}$	$\mathbf{2 . 2}$	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 3}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	-	$\mathbf{1 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2023-24	
Branch:Mathematics		Semester: II	
1	Course Code	CMS131	
2	Course Title	Matrix Analysis and Linear Algebra	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	CC	
5	Course Objective	1. To familiarize the students with basic concepts of matrices and its application in different prospects. 2. To understand the basic concept of linear algebra and inner product space.	
6	Course Outcomes	CO1: Describe the concept of algebra of matrices and elementary row operations and calculate the rank of matrix and analyse consistency of a linear system. (K1,K2,K3) CO2: Explain the concept of Eigenvalues and Eigenvectors; evaluate the diagonalization of matrices and quadratic \& bilinear form. (K1,K2,K3) CO3: Discuss the basic of Vector spaces. (K2,K3,K4) CO4: Describe and use the linear transformation and evaluate nullity and kernel. (K2,K3,K4) CO5: Explain about the range and kernel and the basic introduction of Inner product spaces and orthogonal and orthonormal vectors. (K4,K5) CO6: Describe the application of rank, Eigenvalues, Eigenvectors, GramSchmidt orthogonalization. (K4,K5,K6)	
7	Course Description	This course introduces basics algebra of matrices, and its applications, vector space, Linear transformation and its properties, matrix representation of a linear transformation.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Matrix Analysis -I	
	A	Course introduction and properties of Matrices, Elementary row operations, Echelon form of a matrix.	CO 1
	B	Rank of a Matrix, Normal form of a Matrix, Gauss-Jordan Method: Inverse of a Matrix by elementary operations.	CO 1
	C	Application of Rank: System of linear homogeneous and nonhomogeneous equations, Theorems on consistency of a system of linear equations.	$\mathrm{CO} 1, \mathrm{CO} 2$

Unit 2	Matrix Analysis -II	
A	Eigenvalues, Eigenvectors and characteristic equation of a matrix.	CO2, CO 6
B	Cayley Hamilton theorem and its application, Diagonalization.	CO 2
C	Quadratic forms, Matrix of a quadratic forms, Bilinear forms, Matrix of a bilinear forms.	CO 2
Unit 3	Vector space and Linear Transformations -I	
A	Vector Space, Vector Subspaces and Linear Span, Linear Independence and Linear Dependence, Basic Results on Linear Independence.	CO 3, CO 4
B	Basis of a Finite Dimensional Vector Space, Linear Transformations, Results on Linear Transformation.	CO 3, CO 4
C	Range and Kernel of a Linear Transformation, Rank and Nullity, Rank-Nullity Theorem.	CO 3, CO 4
Unit 4	Linear Transformations-II	
A	Linear operators, Invertible Linear Transformations.	CO 4, CO 5
B	Matrix of a Linear Transformation, Matrix of the sum and product of linear transformations.	CO 5
C	Linear transformation of a Quadratic Form and its theorems.	CO 4, CO 5
Unit 5	Orthogonality	
A	Inner Product Space (definition and examples), CauchySchwartz inequality.	CO 5, CO 6
B	Orthogonal and orthonormal vectors, Orthogonal and orthonormal bases	CO 5
C	Gram-Schmidt Process, Orthogonal and positive definite matrices.	CO 6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1.) Hoffman K \& Kunze R, Linear Algebra, $2^{\text {nd }}$ edition, Prentice Hall of India, 1975.	
Other References	1.) Lipshutz S, Lipson M, Linear Algebra, $3^{\text {rd }}$ edition, Schaum's Outline series, 2001.	

...... *..........

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS131.1	3	2	2	2	-	1	-	-	-	-	2	1	2	-
CMS131.2	3	2	2	2	-	1	-	-	-	-	2	1	2	-
CMS131.3	3	2	3	3	-	1	-	-	-	-	2	1	2	-
CMS131.4	3	2	2	3	-	1	-	-	-	-	2	1	2	-
CMS131.5	3	2	2	3	-	1	-	-	-	-	2	1	2	-
CMS131.6	3	2	2	3	-	1	-	-	-	-	2	1	2	-
Average	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 6}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2023-24	
Branch: Mathematics		Semester: II	
1	Course Code	CMS132	
2	Course Title	Mathematical Expectations \& Probability Distributions	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	OPE	
5	Course Objective	Uncertainty is ubiquitous and probability theory provides a rational description of uncertainty. There is a growing realization that randomness is an essential component in modelling and analysis of a variety of systems. Probability has become an important conceptual framework of computer science, engineering, and physical and biological sciences. Several problems in computer engineering and other disciplines arise, which require probabilistic modelling. The complete specification of the model enquires statistical tools for the analysis of data and inference	
6	Course Outcomes	CO1: Describe the basic concepts of probability and randomness with their applications. (K2, K5). CO2: Describe the properties of discrete and continuous random variables. (K2). CO3: Calculate the measures of central tendency and dispersion of data and describe the method used for analysis, including a discussion of advantages, disadvantages, and necessary assumptions. (K2, K3) CO4: Calculate and interpret the probability distributions and their applications in real life; and limit theorems. (K2,K3). CO5: Monte Carlo simulation of simple probability models, entropy, and mutual information. (K2, K5) CO6: Develop the skills to interpret the results of statistical analysis. (K2, K5).	
7	Course Description	This is an introductory course in probability. Axioms of probability, conditional probability and independence, Bayes theorem, and probability distributions.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Mathematical Expectation	
	A	Axioms of probability, conditional probability and independence, Bayes theorem,	CO1
	B	Random variables: discrete and continuous random variables, probability mass function (p.m.f), probability density function (p.d.f) and cumulative distribution function (c.d.f), Illustrations and properties of random variables.	CO1
	C	Mathematical Expectation: Expectation of single and bivariate random variables, properties of expectation, conditional expectation, and its properties. Moments and cumulants. Moment	CO1

	generating function, probability generating function.	
Unit 2	Discrete Random Variable	CO2
A	Random variables, distribution function, discrete random variable, expectation, variance	CO2
B	Discrete distributions: Bernoulli and Binomial random variable, Poisson random variable, demerits	CO 2
C	Negative binomial random variable, Geometric random variable, and their properties, merits, and demerits	
Unit 3		CO3
A	Continuous random variable: the expectation of random variable, variance	CO3
B	Continuous distributions: Uniform, Normal, Exponential, Gamma, and Cauchy, computing probabilities by conditioning, moment generating function, their properties, merits, and demerits.	CO3
C	Markov inequality and Chebyshev's inequality.	CO3
Unit 4		CO4
A	Jointly distributed random variables, Independent random variable, the sum of independent random variable	CO4, CO5
B	Central Limit Theorem, conditional distribution with example.	CO4, CO5
C	Joint probability distribution, covariance, correlation coefficient.	
Unit 5		CO5
A	Generation of random numbers and elements of Monte Carlo simulation.	C05, C06
B	Elements of information theory: entropy as a measure of randomness.	C05,CO6
C	Exploratory data analysis, types of data, frequency tables, descriptive measures, variability measures	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Daniel, Wayne W., "Biostatistics": Basic Concept and Methodology forHealth Science.	
Other References	1. Rohatgi, V.K. Introduction to Probability.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS132.1	-	1	-	2	-	-	-	-	-	-	2	1	1	-
CMS132.2	-	1	-	2	-	-	-	-	-	-	2	1	1	-
CMS132.3	-	1	-	2	-	-	-	-	-	-	2	1	1	-
CMS132.4	-	1	-	2	-	-	-	-	-	-	2	1	1	-
CMS132.5	-	1	-	2	-	-	-	-	-	-	2	1	1	-
CMS132.6	-	1	-	2	-	-	-	-	-	-	2	1	1	-
Average	-	$\mathbf{1 . 0}$	-	$\mathbf{2 . 0}$	-	-	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	-

School: SSBSR		Batch: 2023-27	
	ramme: B.Sc. s.)	Academic Year: 2023-2024	
Branch:Mathematics		Semester: II	
1	Course Code	CSE242	
2	Course Title	Data Structures	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	CC	
5	Course Objective	1. Learn the basic concepts of Data Structures. 2. Design and Implementation of Various Basic and Advanced Data Structures. 3. Learn the concepts of various searching, Sorting and Hashing Techniques. 4. Choose the appropriate data structures and algorithm design method for a specified application.	
6	Course Outcomes	CO1: Select appropriate data structures as applied to specified problem definition. CO2: Choose the suitable data structures like arrays, linked list, stacks and queues to solve real world problems efficiently. CO3 Represent and manipulate data using nonlinear data structures like trees and graphs to design algorithms for various applications. CO4: Compare various techniques for searching and sorting. CO5: Design and implement an appropriate hashing function for an application CO6: Formulate new solutions for programing problems or improve existing code using learned algorithms and data structures	
7	Course Description	This course starts with an introduction to data structures with its classification, efficiency of different algorithms, array and pointer based implementations and Recursive applications. As the course progresses the study of Linear and Non-Linear data structures are studied in details. The course talks primarily about Linked list, stacks, queue, Tree structure, Graphs etc. This Course also deals with the concept of searching, sorting and hashing methods	
8			$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Introduction	CO1
	A	Data Structure Definition, Operations and Applications, Abstract Data Types, Algorithm Definition, Introduction to Complexity, Big OH notation, Time and Space tradeoffs	
	B	Dynamic Memory Allocation(Malloc, calloc, realloc, free), Recursion Definition, Examples- Tower of Hanoi problem,Tail Recursion	CO1
	C	Arrays: Implementation of One Dimensional Arrays, Multidimensional Arrays, Applications of Arrays, Address Calculation, Matrix Operations, Sparse matrices	CO1
	Unit 2	Linked List	CO2
	A	Concept of Linked List, Garbage Collection, Overflow and Underflow, Array Implementation and Dynamic Implementation of Singly Linked Lists	
	B	Array Implementation and Dynamic Implementation of Doubly Linked List, Circularly Linked List	CO2
	C	Operations on a Linked List- Insertion, Deletion, Traversal, Polynomial Representation and Addition	CO2
	Unit 3	Stack and Queue	

	A	Stacks: Definitions, Primitive operations, Application of stacks Conversion of Infix Expression to Postfix form, Evaluation of Postfix Expressions	CO3
	B	Queues: Definition, Primitive Operations, Implementation of Circular Queues, Priority Queues	CO 3
	C	Deques, Application of Queues. Implementation - Linked Stacks, Linked Queues.	CO3
	Unit 4	Tree and Graphs	
	A	Trees: Terminologies, Binary tree, Representation, Applications, Binary search Tree Operations on Binary Search Trees (Traversing, Insertion, deletion etc.), Binary Search Algorithm, AVL Tree	CO4, CO6
	B	Graph: Terminology, Representation, Traversals- Depth First Search, Breadth First Search.	CO4, CO6
	C	Graph Applications Minimum Spanning Trees, Kruskal's Algorithms	CO4, CO6
	Unit 5	Searching, Sorting and Hashing	
	A	Implementation and Analysis - Linear search, Binary Search	CO5, CO6
	B	Implementation and Analysis- Bubble Sort, Insertion Sort, Selection Sort, Tree sort	CO5,CO6
	C	Hashing: Concepts and Applications, Hash Functions, Collisions, Methods of Resolving Collisions	CO5,CO6
	Mode of examination	Theory	
	Weightage Distribution	CA:25\%; ESE:75\%	
	Text book/s*	1. Lipschutz, Data Structures, Schaum's Outline series, TMH	
	Other References	1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CSE242.1	2	3	2	2	-	-	-	-	-	-	1	-	-	1
CSE242.2	2	3	2	2	-	-	-	-	-	-	1	-	-	1
CSE242.3	2	3	2	2	-	-	-	-	-	-	1	-	-	1
CSE242.4	2	3	2	2	-	-	-	-	-	-	1	-	-	1
CSE242.5	2	3	2	2	-	-	-	-	-	-	1	-	-	1
CSE242.6	2	3	2	2	-	-	-	-	-	-	1	-	-	1
Average	$\mathbf{2 . 0}$	$\mathbf{2 . 3}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	-	-	-	-	-	$\mathbf{1 . 0}$	-	-	$\mathbf{1 . 0}$

B	Value Field Settings, Sorting and Filtering a Pivot Table	CO2
C	Reporting Filter Pages, Pivoting Charts, Pivoting Slicers	CO2
Unit 3	Data Validation and Conditional Logic	
A	Data Validation. Creating Drop-down Lists, Using Formulas in Data Validation	CO3
B	Working with Data Validation, Advanced Conditional Formatting	CO3
C	Logical Functions I: IF. Logical Functions II: AND. OR. Combining Logical Functions I: IF. AND. OR. Combining Logical Functions II: Nested Ifs, Handling Errors: IFERROR, IFNA	CO3
Unit 4	Automating Lookups	
A	Introduction to Lookups: CHOOSE	CO4
B	Approximate Matches: Range VLOOKUP, Exact Matches: Exact Match VLOOKUP	CO4
C	Finding a Position: MATCH, Dynamic Lookups: INDEX, MATCH	CO4
Unit 5	Formula Auditing and Protection	
A	Error Checking. Formula Calculation Options, Trace Precedents and Dependents	CO5
B	Evaluate Formula, Watch Window	CO5
C	Protecting Workbooks and Worksheets	CO6
Mode of examination	Practical Based	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Michael Alexander, Excel® Dashboards \& Reports For Dummies, John Wiley \& Sons, Inc, ISBN: 978-1-119-07676-6, 2016.	
Other References	1. Michael Alexander and Dick Kusleika, Excel 2016 Formulas, John Wiley \& Sons, Inc, ISBN: 978-1-119-06786-3, 2016.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
VOM104.1	-	3	1	2	-	1	1	3	1	-	2	-	-	1
VOM104.2	-	3	1	2	-	1	1	3	1	-	2	-	-	1
VOM104.3	-	3	1	2	-	1	1	3	1	-	2	-	-	1
VOM104.4	-	3	1	2	-	1	1	3	1	-	2	-	-	1
VOM104.5	-	3	1	2	-	1	1	3	1	-	2	-	-	1
VOM104.6	-	3	1	2	-	1	1	3	1	-	2	-	-	1
Average	-	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	-	$\mathbf{2 . 0}$	-	-	$\mathbf{1 . 0}$

 ,..... :..........

	Topic 2	Vowel Sound drills , Consonant Sound drills, Affricates and Fricative Sounds							
	Topic 3	Speech Sounds \| Speech Music	Tone	Volume	Diction	Syntax Intonation	Syllable Stress		
	Unit E	Gauging MTI Reduction Effectiveness through Free Speech							
	Topic 1	Jam sessions							
	Topic 2	Extempore	CO 3						
	Topic 3	Situation-based Role Play							
	Unit F	Leadership and Management Skills							
	Topic 1	Innovative Leadership and Design Thinking	CO4						
	Topic 2	Ethics and Integrity	CO4						
	Unit F	Universal Human Values							
	Topic 1	Love \& Compassion, Non-Violence \& Truth	CO5						
	Topic 2	Righteousness, Peace	CO5						
	Topic 3	Service, Renunciation (Sacrifice)	CO5						
	Unit G	Introduction to Quantitative aptitude \& Logical Reasoning							
	Topic 1	Analytical Reasoning \& Puzzle Solving	CO6						
	Topic 2	Number Systems and its Application in Solving Problems	CO6						
10	Evaluations	1. Class Assignments/Free Speech Exercises / JAM Group Presentations/Problem Solving Scenarios/GD/Simulations (60\% CA and 40\% ETE	N/A						
11	Texts \& References Library Links	1. Comfort, Jeremy(et.al). Speaking Effectively. Cambridge University Press. The Luncheon by W.Somerset Maugham http://mistera.co.nf/files/sm luncheon.pdf							

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
ARP102.1	-	-	-	-	-	3	2	1	2	-	1	-	-	-
ARP102.2	-	-	-	-	-	3	2	1	2	-	1	-	-	-
ARP102.3	-	-	-	-	-	3	2	1	2	-	1	-	-	-
ARP102.4	-	-	-	-	-	3	2	1	2	-	1	-	-	-
ARP102.5	-	-	-	-	-	3	2	1	2	-	1	-	-	-
ARP102.6	-	-	-	-	-	3	2	1	2	-	1	-	-	-
Average	-	-	-	-	-	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	-	-

	Pragya Yoga (Shantikunj), Iyengar Yoga, Patanjali Yoga Peeth, Ashtanga Vinyasa Yoga	
C	Yoga Ahaara (Yogic diet), Yogic Attitudes - Maitri Karuna, Mudita, Upeksha, Sadhak Tatva Badhak Tatva (facilitating/helping factors and obstacles in Yoga sadhana)	$\begin{aligned} & \text { CO3, CO4, } \\ & \text { CO5, CO6 } \end{aligned}$
Unit 3	Beginner level practices - Sukshma Vyayama and Surya Namaskara	
A	Sukshma Vyayama and their benefits for health Part-1 (Bihar School of Yoga) Part-1	$\begin{aligned} & \text { CO4, CO5, } \\ & \text { CO6 } \end{aligned}$
B	Sukshma Vyayama \& their benefits for health (Swami Dhirendra Brahmachari) Part-1	$\begin{aligned} & \text { CO4, CO5, } \\ & \text { CO6 } \end{aligned}$
C	Surya Namaskara (Sun Salutation) with mantra chanting (12 steps) \& their benefits for health	$\begin{aligned} & \text { CO4, CO5, } \\ & \text { CO6 } \end{aligned}$
Unit 4	Asana - all categories	
A	Standing \& Sitting - Tadasana, Vrikshasana, Katichakrasana, Padmasana, Vajrasana, Ushtrasana, Paschimottanasana, Vakrasana	$\begin{aligned} & \text { CO4, CO5, } \\ & \text { CO6 } \end{aligned}$
B	Supine and Prone: Uttanapadasana, Pawanamuktasana, Shalabhasana, Bhujangasana	$\begin{aligned} & \text { CO4, CO5, } \\ & \text { C06 } \end{aligned}$
C	Balancing and Inverted: Trivikramasana, Sarvangasana, Viparitakarani mudra	$\begin{aligned} & \text { CO4, CO5, } \\ & \text { C06 } \end{aligned}$
Unit 5	Pre-practices of Pranayama, Pranayama and Dhyana	
A	Kapalabhati, Mukha dhauti, Vibhagiya pranayama (Sectional breathing)	$\begin{aligned} & \text { CO1, CO4, } \\ & \text { CO5, CO6 } \end{aligned}$
B	Anuloma - Viloma, Bhastrika, Shitali	$\begin{aligned} & \text { CO1, CO4, } \\ & \text { CO5, CO6 } \end{aligned}$
C	Om Dhyana, Aanapaanasati Dhyana (breath meditation)	$\begin{aligned} & \text { CO1, CO4, } \\ & \text { CO5, CO6 } \end{aligned}$
Mode of examinatio n	Theory and Practical	
Weightage Distributio	CA:60\%; ESE:40\%	

,...... :..........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
VAC110.1	1	3	3	3	2	1	2	3	2	3	2	1	3	3
VAC110.2	1	2	3	1	3	1	3	2	2	3	1	1	2	3
VAC110.3	1	1	3	3	3	3	2	3	2	3	2	1	1	3
VAC110.4	1	2	3	3	1	2	3	2	3	2	1	1	2	3
VAC110.5	2	2	3	3	1	3	3	2	3	1	2	2	2	3
VAC110.6	3	3	2	2	3	1	2	3	1	2	3	3	3	2
Average	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{2 . 8}$	$\mathbf{2 . 5}$	$\mathbf{2 . 2}$	$\mathbf{1 . 8}$	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 2}$	$\mathbf{2 . 3}$	$\mathbf{1 . 8}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{2 . 8}$

	Unit 3		
	A, B, C	Matrix of a Quadratic forms, Matrix of a Bilinear forms, Cayley Hamilton Theorem.	CO 3
Anit 4		B, C	Linear dependence and linear independence of vectors, Linear Transformation, Inner Product Space

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS171.1	1	2	2	2	-	1	1	3	1	-	1	1	-	2
CMS171.2	1	2	3	2	-	1	1	3	1	-	1	1	-	2
CMS171.3	1	2	2	2	-	1	1	3	1	-	1	1	-	2
CMS171.4	1	2	2	2	-	1	1	3	1	-	1	1	-	2
CMS171.5	1	2	2	2	-	1	1	3	1	-	1	1	-	2
CMS171.6	1	2	2	2	-	1	1	3	1	-	1	1	-	2
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	-	$\mathbf{2} .0$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2023-2024	
Branch:Mathematics		Semester: II	
1	Course Code	CSP242	
2	Course Title	Data Structures Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	CC	
5	Course Objective	1. Learn the basic concepts of Data Structures. 2. Design and Implementation of Various Basic and Advanced DataStructures. 3. Learn the concepts of various searching, Sorting and Hashing Techniques. 4. Choose the appropriate data structures and algorithm design methodfor a specified application	
6	Course Outcomes	CO1: Implement operation like traversing, insertion, deletion, searching etc.on various data structures. CO2 Apply linear data structure(s) to solve various problems CO3:D evelop the solution of any problem using non linear data structure(s) CO4: Create a solution of any problem using searching and sorting techniques CO5: Design a hash function using any programming language CO6: Choose the most appropriate data structure(s) for a given problem.	
7	Course Description	This course starts with an introduction to data structures with its classification, efficiency of different algorithms, array and pointer based implementations and Recursive applications. As the course progresses the study of Linear and Non-Linear data structures are studied in details. The course talks primarily about Linked list, stacks, queue, Tree structure, Graphs etc. This Course also deals with the concept of searching, sorting and hashing methods	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Introduction	
	A	Program to implement Operation on Array such as Traversing, Insertion \& Deletion operation	CO1
	B	Program based on Recursion such as Towers of Hanoi, Fibonacci series etc	CO1

Unit 2	Linked List	
A,B, C	Program to implement different operation on the following linked list: Singly, Doubly and circular linked list.	CO2
Unit 3	Stack \& Queue	
A	Program to Implement Stack operation using Array and Linked list	CO3
B	Program to convert infix expression to post fix expression Program on Evaluation of Post fix expression	CO3
C	Program to implement queue operation using array and linked list Program to implement circular queue and deque.	CO3
Unit 4	Tree \& Graph	
A	Program to implement binary tree and BST.	CO4, CO6
B	Program to implement MST and shortest path algorithm.	CO4, CO6
Unit 5	Searching, Sorting \& Hashing	
A, B	Program on Searching and Hashing Program on Sorting.	CO5
Mode of examination	Practical	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1. Lipschutz, Data Structures, Schaum's Outline series, TMH	
Other References	1. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with Applications", McGraw Hill	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CSP242.1	1	2	2	2	-	1	1	3	1	-	-	-	-	1
CSP242.2	1	2	3	2	-	1	1	3	1	-	-	-	-	1
CSP242.3	1	2	2	2	-	1	1	3	1	-	-	-	-	1
CSP242.4	1	2	2	2	-	1	1	3	1	-	-	-	-	1
CSP242.5	1	2	2	2	-	1	1	3	1	-	-	-	-	1
CSP242.6	1	2	2	2	-	1	1	3	1	-	-	-	-	1
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{1 . 0}$

Detailed Syllabus for

DIPLOMA IN

MATHEMATICS

B	Centre, stabilizer and orbits of groups	CO 2
C	Statement of Lagrange's theorem.	CO 2
Unit 3	Group theory-3	
A	Homomorphism of groups, kernel of homomorphism	CO3
B	Definition of isomorphism, automorphism,	CO3
C	Inner automorphism, Factor group.	CO3
Unit 4	Ring Theory -1	
A	Rings, Integral Domains and Fields	CO4
B	Ideal and quotient Rings	CO4
C	Prime and maximal ideals	CO4
Unit 5	Ring Theory -2	
A	Principal ideal domains	CO5
B	Polynomial Rings, Division algorithm	CO5, CO6
C	Euclidean Rings, The ring $\mathrm{Z}[\mathrm{i}]$	C06
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. J. B. Fraleigh, A first course in Abstract Algebra, Addison Weley.	
Other References	1. J. A. Gallian, Contemporary Abstract Algebra, $10^{\text {th }}$ edition, CRC. Press.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S}$	$\mathbf{P S O}$	PSO	PSO										
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS201.1	3	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS201.2	2	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS201.3	2	2	2	2	-	2	-	-	-	-	-	-	3	-
CMS201.4	2	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS201.5	3	2	2	2	-	2	-	-	-	-	-	-	3	-
CMS201.6	3	2	2	2	-	2	-	-	-	-	-	-	3	-
Average	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{2 . 0}$	-	-	-	-	-	-	$\mathbf{3 . 0}$	-

:..... *..........

B		CO1
C	Taylor's theorem, Maclauri's theorem, Maxima-minima, Points of inflexion	
Unit 2	PARTIAL DIFFERENTIATION	
A	Partial differentiation, homogeneous functions, Euler's theorem.	CO2
B	Jacobian of explicit and implicit functions and its applications, Taylor's expansion in two variables.	CO2
C	Maxima-minima in two variables, Lagrange's multipliers method	CO2
Unit 3	Tracing of Plane Curves	
A	Asymptotes of the algebraic curves, parallel asymptotes, Asymptotes parallel to x -axis and y -axis, Curvature: Polar coordinates	CO3
B	Equation of the tangent(s) at the origin and conjugate points.	CO3
C	Curve tracing-Cartesian curves and polar curves	CO3
Unit 4	DOUBLE INTEGRATION	
A	Evaluation of double integrals	CO4
B	Beta and Gamma functions, Change of order of integration, change of variables	CO4
C	Application of double integrals.	CO4
Unit 5	TRIPLE INTEGRATION	
A	Evaluation of triple integrals, Triple integrals in Rectangular, Cylindrical and Spherical coordinates.	CO5
B	Volume and Surfaces of solids of revolution for Cartesian, parametric and polar curves.	CO5
C	Applications of triple integrals	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. N. Piskunov: Differential and Integral Calculus.	
Other References	1. Thomas, B; G., and Finny R.L.,"Calculus and Analytical Geometry", Pearson education Asia, Adison Wesley.	

...... :.........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS202.1	3	3	2	2	-	1	-	-	-	-	2	2	2	2
CMS202.2	3	3	2	2	-	1	-	-	-	-	2	2	2	2
CMS202.3	3	3	2	2	-	1	-	-	-	-	2	2	2	2
CMS202.4	3	3	2	2	-	1	-	-	-	-	2	2	2	2
CMS202.5	3	3	2	2	-	1	-	-	-	-	2	2	2	2
CMS202.6	3	3	2	2	-	1	-	-	-	-	2	2	2	2
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$

School: SSBSR	Batch: 2023-27		
Programme: B.Sc. (Hons.)	Academic Year: 2023-24		
Branch: Mathematics	Semester: III		
1	Course Code	RBL001	
$\mathbf{2}$	Course Title	Research Based Learning-1	
3	Credits	0	
4	Contact Hours (L-T-P)	0-0-2	Course Status
5	Course Objective	Project 1. Deep knowledge of a specific area of specialization. 2. Develop communication skills, especially in project writing and oral	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analyzing background material, and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and a taste for	
research. (K5, K6)			

	Mode of examination		
	Weightage Distribution		
	Text book/s*		
	Other References		

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
RBL001.1	3	3	2	2	-	1	-	-	-	-	-	-	-	-
RBL001.2	2	3	3	2	-	1	-	-	-	-	-	-	-	-
RBL001.3	2	2	2	3	-	1	-	-	-	-	-	-	-	-
RBL001.4	2	3	2	2	-	1	-	-	-	-	-	-	-	-
RBL001.5	3	3	2	2	-	1	-	-	-	-	-	-	-	-
RBL001.6	3	3	2	3	-	1	-	-	-	-	-	-	-	-
Average	$\mathbf{2 . 3}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{2 . 1}$	-	$\mathbf{1 . 0}$	-	-	-	-	-	-	-	-

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)	Academic Year: 2024-25		
Branch: Mathematics	Semester: III		
1	Course Code	VOM203	
$\mathbf{2}$	Course Title	Basic Excel Modelling	
3	Credits	3	Contact Hours (L-T-P)
Course Status	0-0-6	SEC	
5	Course Objective	1.To use advanced formula techniques and sophisticated lookups 2.To distinguish between different functions, to understand the pitfalls and strengths of commonly used functions, and to apply correct functions to their Excel models.	
6	Course Outcomes	CO1: Select functionalities like Goal Seek. Data Tables and the Scenario Manager to make your models more robust and identify uses of macros. CO2: Explain creating and maintaining accurate, flexible, responsive and user-friendly spreadsheets. CO3: Construct automated tasks using functions, and make sure the data stays clean dynamically. CO4: Examine arrav capabilities and explores a range of functions to create dynamic lookup ranges. CO5: Explain data through graphs and charts, create data models, and add	
interactivity.			
CO6: Create visualizations to analyze and present data.			

UNIVERSIT

B	Calculations, Interface and Navigation	CO2
C	Tables and Structured Referencing. Using Functions to Sort Data. Introduction to Arrav Formulas. Working with an Arrav Function (TRANSPOSE), Solving Problems with Array Formulas.	CO2
Unit 3	Data Cleaning and Preparation	
A	Replace blanks with repeating values	CO3
B	Fix Dates (DATE, MONTH, YEAR, DAY, TEXT)	CO3
C	Remove Unwanted Spaces (TRIM. CLEAN). Diagnostic Tools (ISNUMBER. LEN. CODE). Remove Unwanted Characters (SUBSTITUTE, CHAR, VALUE)	CO3
Unit 4	Building Professional Dashboards using Functions and Advanced Lookups	CO4
A	Working with Dates (EOMONTH. EDATE. WORKDAY.INTL). Financial Functions (FV. PV. PMT). Loan Schedule (PMT. EDATE). Net Present Value and Internal Rate of Return (NPV, IRR), Depreciation Functions (SLN, SYD, DDB).	CO4
B	INDIRECT, ADDRESS, Introduction to OFFSET, Solving Problems with OFFSET.	CO4
C	Dashboard Design. Prepare Data. Construct Dashboard, Creative Charting, Interactive Dashboard	CO5
Unit 5	Data Analysis	
A	Correlation, Histogram, Multiple Correlation	CO5
B	Regression, ANOVA, Rank and Percentile	CO6
C	Sampling, t-test, z-test	CO6
Mode of examination	Practical Based	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Michael Alexander, Excel® Dashboards \& Reports For Dummies, John Wiley \& Sons, Inc, ISBN: 978 -1-119-07676-6, 2016.	
Other References	1. Michael Alexander and Dick Kusleika, Excel 2016 Formulas, John Wiley \& Sons, Inc, ISBN: 978-1-119-06786-3, 2016.	

...... *.........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
VOM203.1	-	2	1	2	-	1	-	3	-	-	-	-	1	1
VOM203.2	-	2	1	2	-	1	-	3	-	-	-	-	1	1
VOM203.3	-	2	1	2	-	1	-	3	-	-	-	-	1	1
VOM203.4	-	2	1	2	-	1	-	3	-	-	-	-	1	1
VOM203.5	-	2	1	2	-	1	-	3	-	-	-	-	1	1
VOM203.6	-	2	1	2	-	1	-	3	-	-	-	-	1	1
Average	-	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	-	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$

 UNIVERSITY

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
ARP207.1	1	2	2	2	-	1	1	3	1	-	-	1	2	-
ARP207.2	1	2	3	2	-	1	1	3	1	-	-	1	2	-
ARP207.3	1	2	2	2	-	1	1	3	1	-	-	1	2	-
ARP207.4	1	2	2	2	-	1	1	3	1	-	-	1	2	-
ARP207.5	1	2	2	2	-	1	1	3	1	-	-	1	2	-
ARP207.6	1	2	2	2	-	1	1	3	1	-	-	1	2	-
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	-	-	$\mathbf{1 . 0}$	$\mathbf{2} .0$	-

...... :..........
.

NIVERSIT

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS251.1	2	2	2	2	-	1	1	3	1	1	1	2	2	2
CMS251.2	2	2	3	2	-	1	1	3	1	1	1	2	2	2
CMS251.3	2	2	2	2	-	1	1	3	1	1	1	2	2	2
CMS2514	2	2	2	2	-	1	1	3	1	1	1	2	2	2
CMS251.5	2	2	2	2	-	1	1	3	1	1	1	2	2	2
CMS251.6	2	2	2	2	-	1	1	3	1	1	1	2	2	2
Average	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$

School: SSBSR \quad Batch: 2023-2027
Programme: \quad Academic Year: 2024-25
B.Sc(Hons)

Branch:
Mathematics

1	Course Code	CMS231
$\mathbf{2}$	Course Title	Real Analysis
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
	Course Status	CC
5	Course Objective	To make students familiar with the basic concepts of real analysis. The notion of limit, continuity, differentiability, sequences, infinite series \& their convergence has been also introduced.
6	Course Outcomes	CO1: Discuss the basic concepts of set theory on R, open \& closed sets, bounded \& unboundedsets, countable \& uncountable sets and calculate the limit points of sets. (K2, K3)

CO2: Describe the concept of Limit, Continuity, and Continuous \& Discontinuous functions, Uniform continuous functions and calculate same. (K2, K3)

CO3: Define the definition of derivatives, increasing \& decreasing functions, explain Darboux's theorem, Rolle's theorem, Mean Value Theorem \& its applications. (K1, K4)

CO4: Calculate and analyze the convergent sequences, limit point of sequence, non-convergentsequence, and monotonic sequences. (K3,K4)

CO5: Explain the concept of series and illustrate the test for series.(K2, K3, K4)

CO6: Evaluate Positive terms series, Alternating series, Series with arbitrary terms. (K6)

7	Course Description 8	Outline syllabus	This is an introductory course of real analysis. Students are introduced to the fundamental concepts of real analysis. The notion of limit, continuity, differentiability, sequences, infinite series \& their convergence has been also introduced.		
Unit 1	ELEMENTS OF POINTS SET THEORY ON R	CO Mapping			
A	Sets, Intervals: Open and closed, Bounded and unbounded sets, Supremumand infimum.	CO1			
B	Neighborhood of a point, Open and Closed sets, Limits points of a set,Bolzano - Weierstrass Theorem (statement)	CO1			

C	Countable and Uncountable sets	CO1
Unit 2	LIMIT \& CONTINUITY OF FUNCTIONS ON R	
A	Limit of a function, Theorems on algebra of limits, Limit or a function	CO 2
B	Sequential approach, Cauchy's criteria for finite limits	CO2
C	Continuous functions, Discontinuous functions, Properties of continuousfunctions on closed intervals, Uniform continuous functions and related Results	CO2
Unit 3	DIFFERENTIATION OF FUNCTIONS ON R	
A	Definitions of derivatives and related results, increasing and decreasingfunctions	CO3
B	Darboux's theorem, Rolle's Theorem,	CO3
C	Mean value theorems of differential calculus and their applications	CO3
Unit 4	SEQUENCES	
A	Sequences, Bounded and convergent sequences	CO4
B	Limit Points of a sequence, Bolzano - Weierstrass Theorem, Limit inferiorand superior,	CO4
C	Non-convergent (divergent) sequence, Cauchy's general principle ofconvergence, monotonic sequences.	CO4
Unit 5	INFINTE SERIES \& THEIR CONVERGENCE	
A	Series of positive terms: p- test, the comparison, Cauchy's root and D'Alembert ratio tests (without proof), Logarithmic and Integral test	CO5, CO6
B	Alternating series, Leibnitz test, absolute and conditional convergence	CO5, CO6
C	Series of arbitrary terms, Abel's and Dirichlet's tests.	CO5, CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Rudin, Walter, Principles of Mathematical Analysis, third edition, InternationalSeries in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-D usseldorf, 1976.	
Other References	1. T. M. Apostol, Mathematical Analysis, Narosa Publishing House, NewDelhi, 1985. 2. S.C. Malik and Savita Arora: Mathematical Analysis, Second Edition, Wiley Eastern Limited, New Age International Limited, New Delhi, 1994.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO CO	$\begin{gathered} \hline \mathrm{PO} \\ 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ 2 \end{array}$	$\begin{gathered} \hline \mathbf{P O} \\ 3 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 5 \end{array}$	$\begin{gathered} \hline \mathrm{PO} \\ 6 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 7 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 8 \\ \hline \end{array}$	$\begin{gathered} \hline \text { PO } \\ 9 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 10 \end{gathered}$	$\begin{gathered} \text { PO } \\ 11 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 3 \end{gathered}$
CMS231.1	1	3	2	3	3	1	-	-	-	-	1	1	3	-
CMS231.2	1	3	2	3	3	1	-	-	-	-	1	1	3	-
CMS231.3	1	3	2	3	3	1	-	-	-	-	1	1	3	-
CMS231.4	1	3	2	3	3	1	-	-	-	-	1	1	3	-
CMS231.5	1	3	2	3	3	1	-	-	-	-	1	1	3	-
CMS231.6	1	3	2	3	3	1	-	-	-	-	1	1	3	-
Average	1.0	3.0	2.0	3.0	3.0	1.0	-	-	-	-	1.0	1.0	3.0	-

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS232.1	3	3	2	2	2	1	-	-	-	-	2	2	2	-
CMS2321.2	2	3	2	2	2	1	-	-	-	-	2	2	2	-
CMS232.3	3	3	2	3	2	1	-	-	-	-	2	2	2	-
CMS232.4	2	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS232.5	2	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS232.6	3	3	3	3	2	1	-	-	-	-	2	2	2	-
Average	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 5}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2024-25	
Branch: Mathematics		Semester: IV	
1	Course Code	RBL002	
2	Course Title	Research-Based Learning-2	
3	Credits	0	
4	$\begin{aligned} & \hline \text { Contact Hours } \\ & \text { (L-T-P) } \end{aligned}$	0-0-2	
	Course Status	Project	
5	Course Objective	1. Deep knowledge of a specific area of specialization. 2. Develop communication skills, especially in project writing and oral presentation. Develop some time management skills.	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analyzing background material, and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and a taste for research. (K5, K6) CO3: Select and recommend activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5) CO5: Analyse the problem and summarize research findings. (K4,K5) CO6: Use research findings to develop education theory and practice. (K3,K6)	
7	Course Description	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.	
8			
	Unit 1	Introduction	CO1
	Unit 2	Case study	CO1,CO2
	Unit 3	Conceptual	CO2,CO3
	Unit 4	Development	CO3
	Unit 5	Finalisation	CO3,CO4

	Mode of examination		
	Weightage Distribution		
	Text book/s*		
	Other References		

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\begin{aligned} & \mathrm{PO} \\ & \hline \mathbf{C O} \end{aligned}$	$\begin{gathered} \text { PO } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { PO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PO } \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \text { PO } \\ 4 \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \end{gathered}$	$\begin{gathered} P O \\ 6 \end{gathered}$	$\begin{array}{\|c} \text { PO } \\ 7 \end{array}$	$\begin{array}{\|c} \text { PO } \\ 8 \end{array}$	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	$\begin{gathered} \text { PO } \\ 10 \end{gathered}$	$\begin{gathered} \text { PO } \\ \mathbf{1 1} \end{gathered}$	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{array}{c\|} \hline \text { PSO } \\ 2 \end{array}$	$\begin{gathered} \text { PSO } \\ 3 \end{gathered}$
RBL002.1	3	3	2	2	-	1	-	-	-	-	-	-	-	-
RBL002.2	2	3	3	2	-	1	-	-	-	-	-	-	-	-
RBL002.3	2	2	2	3	-	1	-	-	-	-	-	-	-	-
RBL002.4	2	3	2	2	-	1	-	-	-	-	-	-	-	-
RBL002.5	3	3	2	2	-	1	-	-	-	-	-	-	-	-
RBL002.6	3	3	2	3	-	1	-	-	-	-	-	-	-	-
Average	2.3	2.6	2.0	2.1	-	1.0	-	-	-	-	-	-	-	-

School: SSBSR			Batch: 2023-2027				
Program: B.Sc. (Hons.)			Academic Year: 2024-25				
Branch: Mathematics			Semester: IV				
1	Course Code		ARP306				
2	Course Title		Campus to Corporate				
3	Credits		2				
4	$\begin{aligned} & \text { Contact Hours } \\ & (\mathrm{L}-\mathrm{T}-\mathrm{P}) \end{aligned}$		0-1-2				
	Course Status		AEC				
5	Course Objective		To enhance holistic development of students and improve their employability skills. Provide a 360 degree exposure to learning elements of Business English readiness program, behavioural traits, achieve softer communication levels and a positive selfbranding along with augmenting numerical and altitudinal abilities. To up skill and upgrade students' across varied industry needs to enhance employability skills. By the end of this semester, a will have entered the threshold of his $/$ her $4^{\text {th }}$ phase of employability enhancement and skill building activity exercise.				
6	Course Outcomes		After completion of this course, students will be able to: CO1: Develop a creative resumes, cover letters, interpret job descriptions and interpret KRA and KPI statements and art of conflict management. CO2: Build negotiation skills to get maximum benefits from deals in practical life scenarios. CO3: Develop skills of personal branding to create a brand image and self-branding CO4: Acquire higher level competency in use of logical and analytical reasoning such as direction sense, strong and weak arguments CO5: Develop higher level strategic thinking and diverse mathematical concepts through building analogies, odd one out CO6: Demonstrate higher level quantitative aptitude such as average, ratio \& proportions, mixtures \& allegation for making business decisions.				
7	Course Description		This penultimate stage introduces the student to the basics of Human Resources. Allows the student to understand and interpret KRA \| KPI and understand Job descriptions. A student also understands how to manage conflicts, brand himself/herself, understand relations and empathise others with level-4 of quant, aptitude and logical reasoning				
8	Outline syllabus - ARP 306						
	Unit 1		Ace the Interview	CO MAPPING			
	A		Sensitization (Role Clarity \| KRA	KPI	Understanding JD)	Conflict Management	CO1
	B		Negotiation Skills \| Personal Branding	CO3, CO4			
	C		ding \& Curating Resumes in Job Portals, getting Your Resumes	CO1, CO3 *.........		

| | Noticed \| Writing Cover Letters | Relationship Management | |
| :---: | :---: | :---: |
| Unit 2 | Introduction to APTITUDE TRAINING- Reasoning- Logical/ Analytical | |
| A | Sitting Arrangement \& Venn Diagrams \|Puzzles \mid Distribution \mid Selection | CO4 |
| B | Direction Sense \| Statement \& Conclusion | Strong \& Weak Arguments | CO4 |
| C | Analogies, Odd One out \| Cause \& Effect | CO5 |
| Unit 3 | Quantitative Aptitude | |
| A | Average, Ratio \& Proportions, Mixtures \& Allegation | CO6 |
| B | Geometry-Lines, Angles \& Triangles | CO6 |
| C | Problem of Ages \| Data Sufficiency - L2 | CO6 |
| Unit 4 | Verbal Abilities-4 | |
| A | Antonyms and Synonyms | CO1 |
| B | Idioms and Phrases | CO 2 |
| Unit 5 | Problem Solving and Case Studies | |
| A | Real time Case Study Solving Exercises | CO 4 |
| B | Intra student Mock Situation Handling Exercises | CO4 |
| Evaluation Weightage | (CA)Class Assignment/Free Speech Exercises / JAM - 60\%\| (ETE) Group Presentations/Mock Interviews(MIP's)/GD/ Reasoning, Quant \& Aptitude- 40% | |
| Text book/s* | Wiley's Quantitative Aptitude-P Anand \mid Quantum CAT - Arihant Publications \mid Quicker Maths- M. Tyra \mid Power of Positive Action (English, Paperback, Napoleon Hill)\| Streets of Attitude (English, Paperback, Cary Fagan, Elizabeth Wilson) The 6 Pillars of self-esteem and awareness - Nathaniel Brandon | Goal Setting (English, Paperback, Wilson Dobson | |

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
ARP306.1	-	-	-	-	-	3	-	-	1	3	-	2	-	-
ARP306.2	-	-	-	-	-	3	-	-	1	3	-	2	-	-
ARP306.3	-	-	-	-	-	3	-	-	1	3	-	2	-	-
ARP306.4	-	-	-	-	-	3	-	-	1	2	1	2	-	-
ARP306.5	-	-	-	-	-	3	-	-	1	2	1	2	-	-
ARP306.6	-	-	-	-	-	3	-	-	1	2	1	2	-	-
Average	-	-	-	-	-	$\mathbf{3 . 0}$	-	-	$\mathbf{1}$	$\mathbf{2 . 5}$	$\mathbf{1}$	$\mathbf{2}$	-	-

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2024-25	
Branch: Mathematics		Semester: IV	
1	Course Code	CMS271	
2	Course Title	Ordinary Differential Equations and Laplace Transforms Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	CC	
5	Course Objective	1. To familiarize the student in introducing and exploring MATLAB software. 2. To enable the student on how to approach for solving problems of Differential Equations using MATLAB tools. 3. To understand the use of MATLAB in Laplace Transforms. 4. To prepare the students to use MATLAB in their project works. 5.To provide a foundation in use of this software for real time applications.	
6	Course Outcomes	The student will be able to write a code in Mathematica /MATLAB /Maple /Scilab/Maxima CO1: to find the solution of first order Differential Equations. (K1, K2, K3) CO2: to find the solution of higher order linear Differential Equations with constant coefficient. (K1, K2, K3) CO3: to solve the Differential Equations using method of variation of parameter, Cauchy-Euler form and also find the solution of ordinary simultaneous Differential Equations. (K2, K3) CO4: to explore the concept of Laplace Transforms with the help of MATLAB. (K3, K4, K5) CO5: to apply the concept of MATLAB for finding the Laplace Transform of derivatives and Integrals. (K4, K5, K6) CO6: to discuss the solution of Initial value problem using Laplace Transform. (K4, K5, K6)	
7	Course Description	The course is an introduction to the MATLAB in Differential Equations and Laplace Transforms. The primary objective of the course is to develop basic mathematical modelling and to solve various equations using MATLAB.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	First order Differential equation	
	A, B, C	1.) Solution of first order and first-degree Differential Equations, 2.) Solution of first order but not of first-degree Differential Equations.	CO 1
	Unit 2	Higher order ODE	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\begin{aligned} & \hline \text { PO } \\ & \hline \text { CO } \end{aligned}$	$\begin{aligned} & \text { PO } \end{aligned}$	$\begin{gathered} \text { PO } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 3 \end{gathered}$	$\stackrel{\mathrm{PO}}{4}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \text { PO } \\ 6 \end{gathered}$	$\begin{array}{\|c} \hline \text { PO } \\ 7 \end{array}$	$\begin{gathered} \mathbf{P O} \\ \mathbf{8} \end{gathered}$	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	PO	$\begin{gathered} \hline \text { PO } \\ 11 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 3 \end{gathered}$
CMS271.1	3	3	2	3	1	1	1	3	1	1	2	1	2	-
CMS271.2	3	3	2	3	1	1	1	3	1	1	2	1	2	-
CMS271.3	3	3	2	3	1	1	1	3	1	1	2	1	2	-
CMS271.4	3	3	2	3	1	1	1	3	1	1	2	1	2	
CMS271.5	3	3	2	3	1	1	1	3	1	1	2	1	2	-
CMS271.6	3	3	2	3	1	1	1	3	1	1	2	1	2	-
Average	3.0	3.0	2.0	3.0	1.0	1.0	1.0	3.0	1.0	1.0	2.0	1.0	2.0	

Detailed Syllabus for

DEGREE IN

MATHEMATICS

	differentiability and analyticity	
C	Harmonic functions and harmonic conjugates.	CO1
Unit 2	Cauchy's Theorems, Series and Singularities	
A	Cauchy's theorem (with proof), Cauchy's integral formula and its applications	CO 2
B	Taylor's series, Laurent expansion of functions	CO3
C	Singularities and its types, residues.	CO4
Unit 3	Residues, Definite and Indefinite Integral	
A	Residue theorem, applications of residue theorem	CO4
B	Evaluation of real definite integrals	CO4
C	Integration around the unit circle and evaluation of some infinite real integrals.	CO4
Unit 4	Mappings	
A	Transformations or mappings, some standard transformations	CO5
B	Bilinear transformation, fixed point of a transformation	CO5
C	Conformal transformation, Jacobian of a transformation and few special conformal mappings.	CO5
Unit 5	Flow Problems, Modelling and Applications	
A	Application of complex conjugate functions	CO6
B	Flow problems and modelling.	CO6
C	Flow problems and modelling.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Churchill, Ruel V. and Brown, JamesWard, Complex Book Co., New York, 1984.	
Other References	1. Schaum's Outline of Complex Variables, 2ed by By Murray Spiegel, Seymour Lipschutz, John Schiller, Dennis Spellman.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS301.1	2	3	2	3	-	1	-	-	-	-	3	2	2	-
CMS301.2	2	3	2	3	-	1	-	-	-	-	2	2	2	-
CMS301.3	2	3	2	3	-	1	-	-	-	-	2	2	2	-
CMS301.4	2	3	2	3	-	1	-	-	-	-	2	2	2	-
CMS301.5	2	3	2	3	-	1	-	-	-	-	3	2	2	-
CMS301.6	2	3	2	3	-	1	-	-	-	-	3	2	2	-
Average	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-

A	Linear functions with applications, Slope-intercept and pointslope forms	CO 2
B	Fitting linear models to data, Evaluating model error; the sum of squared errors	CO 2
C	Interpreting the correlation coefficient	CO2, CO6
Unit 3	Linear Regression; Modeling with Exponential Functions	
A	Fitting linear models to data	CO3
B	Exponential growth functions with applications	CO3
C	Exponential decay functions with applications	CO3,
Unit 4	Modeling with Polynomial Functions	
A	Quadratic functions with applications, Maxima and minima applications	CO 4
B	Fitting quadratic models to data	CO4
C	Polynomial functions of higher degree with applications	CO4, CO6
Unit 5	Compartmental Models	
A	Introduction to compartmental models	CO5
B	Exponential decay, formulating the differential equation	CO5, CO6
C	Lake pollution models, disease compartmental models	CO5
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Functions, Data, and Models, Gordon and Gordon, The Mathematical Association of America 2010 (ISBN-10: 0 -8838-5767-7; ISBN-13 978-0-88385-767-0).	
Other References	1. Daniel P. Maki, Maynard Thompson, Mathematical Modeling with Computer Simulation, India Edition, Cengage Learning, 2011 ISBN-13: 978-81-315-1286-9.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PSO	PSO	PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CMS302.1	3	3	3	3	-	1	-	-	-	-	-	1	1	3
CMS302.2	3	3	3	3	-	1	-	-	-	-	-	1	1	3
CMS302.3	3	3	3	3	-	1	-	-	-	-	-	1	1	3
CMS302.4	3	3	3	3	-	1	-	-	-	-	-	1	1	3
CMS302.5	3	3	3	3	-	1	-	-	-	-	-	1	1	3
CMS302.6	3	3	3	3	-	1	-	-	-	-	-	1	1	3
Average	3.0	3.0	3.0	3.0	-	1.0	-	-	-	-	-	1.0	1.0	3.0

	calculus,	
C	Universal and existential quantifiers, Normal forms, methods of proofs, Mathematical induction.	CO 2
Unit 2	Relations and Functions	
A	Functions, Composition of function, invertible functions, Discrete properties of binary relations, closure of relations	CO3
B	Warshall's algorithm, Equivalence relations and partitions, Ordered Sets and Lattices: Introduction, Ordered set,	CO3
C	Hasse diagram of partially ordered set, Consistent enumeration, Isomorphic ordered set, Well ordered set, Lattices, Properties of lattices, Bounded lattices, Distributive lattices, and Complemented lattices. Chains, and Anti-chains.	CO3
Unit 3	Number Theory	
A	Counting: Basic counting principles, factorial notation, Binomial coefficients, Ordered and unordered partitions.	CO4
B	Permutations and combinations: Rule of sum and Product, Permutations, Combination, Algorithms for Generation of Permutations and Combination,	CO4
C	The Pigeonhole principle, Fundamental theorem of arithmetic, Congruence relation, Congruence Equations.	CO4
Unit 4	Recurrence Relations and Algebraic Structures	
A	Discrete Numeric Functions and Generating functions,	CO5
B	Simple Recurrence relation with constant coefficients	CO5
C	Linear recurrence relations without constant coefficients, Asymptotic behavior of functions.	CO5
Unit 5	Algebraic Structures	
A	Algebraic systems, Group, Semi-groups, Monoid, Subgroups.	CO6
B	Cyclic group, Permutation groups, Homomorphism,	CO6
C	Isomorphism and Automorphism of groups.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Liu C.L. and Mohapatra, D.P., " Elements of Discrete Mathematics", SiE edition, TMH, 2008	

| Other
 References | 1. Kenneth H.R.,' Discrete Mathematics and its
 Applications", Mc-graw hill. | |
| :--- | :--- | :--- | :--- |

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS303.1	-	3	2	2	-	1	-	-	-	-	1	3	3	-
CMS303.2	-	3	2	2	-	1	-	-	-	-	1	3	3	-
CMS303.3	-	2	2	2	-	1	-	-	-	-	1	3	3	-
CMS303.4	-	3	2	2	-	1	-	-	-	-	1	3	3	-
CMS303.5	-	2	2	2	-	1	-	-	-	-	1	3	3	-
CMS303.6	-	2	2	2	-	1	-	-	-	-	1	3	3	-
Average	-	$\mathbf{2 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	-

 UNIVERSITY

	Weightage Distribution	
	Text book/s*	
	Other References	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	$\mathbf{P O}$	PSO	PSO	PSO										
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
RBL003.1	-	2	1	2	-	1	-	3	-	-	-	-	1	1
RBL003.2	-	2	1	2	-	1	-	3	-	-	-	-	1	1
RBL003.3	-	2	1	2	-	1	-	3	-	-	-	-	1	1
RBL003.4	-	2	1	2	-	1	-	3	-	-	-	-	1	1
RBL003.5	-	2	1	2	-	1	-	3	-	-	-	-	1	1
RBL003.6	-	2	1	2	-	1	-	3	-	-	-	-	1	1
Average	-	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	-	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$

	I: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2025-26	
Branch: Mathematics		Semester: V	
1	Course Code	INC001	
2	Course Title	Industry Connect	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-4	
	Course Status	Project	
5	Course Objective	This course will expose students to applying theories learned in the classroom and provides current technological developments relevant to the subject area of training. Students will be able to identify their career preferences and professional goals.	
6	Course Outcomes	Students will be able to: CO1: Get familiar with industry principles and practices. CO2: Identify and analyze an appropriate problem. CO3: Develop teamwork and apply prior acquired knowledge in problem-solving. CO4: Demonstrate effective verbal and written communication skills. CO5: Practice scientists' responsibilities, self-understanding, self-discipline, and ethical standards. CO6: Identify the career preferences and professional goals.	
7	Course Description	The Internship aims to offer students the opportunity to apply their prior acquired knowledge in problem-solving. Students will acquire skills important for time management, discipline, self-learning, effective communication, and so on.	
8			
	A, B, C	Define objectives and conditions for the internship, ensuring students that it is related to the study path carried out at the University	CO1
	Unit 2		
	A, B, C	Problem Definition and identification, Team/Group formation, and Project Assignment. Finalizing the problem statement, and resource	CO2,CO6,

		requirement, if any.	
	Unit 3		
	A, B, C	The internship work plan is drawn up by developing teamwork and applying prior acquired knowledge in problem-solving.	CO3,CO6,
	Unit 4		
A, B, C	Demonstrate and execute Project with the team. Submission of the evaluation form and final report completed by the intern.	CO4,CO6	
	Unit 5		
A, B, C	Final evaluation form completed by the supervisor at the Host Organization and final presentation before the departmental committee.	CO5,CO6	
	Other References		
	Mode of examination	Weightage Distribution	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
INC001.1	-	2	1	2	-	1	-	3	-	-	-	1	-	1
INC001.2	-	2	1	2	-	1	-	3	-	-	-	1	-	1
INC001.3	-	2	1	2	-	1	-	3	-	-	-	1	-	1
INC001.4	-	2	1	2	-	1	-	3	-	-	-	1	-	1
INC001.5	-	2	1	2	-	1	-	3	-	-	-	1	-	1
INC001.6	-	2	1	2	-	1	-	3	-	-	-	1	-	1
Average	-	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	-	$\mathbf{1 . 0}$	-	$\mathbf{1 . 0}$

	I: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2025-26	
Branch: Mathematics		Semester: V	
1	Course Code	CMS351	
2	Course Title	Mathematical Modelling Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	CC	
5	Course Objective	1. To familiarize the student in introducing and exploring MATLAB software. 2. To enable the student on how to approach for solving real life problems using different Mathematical perspectives.	
6	Course Outcomes	The student will be able to CO1: understand the basic concept of mathematical modelling in Matlab. CO : to find the solution of the linear functions and their applications in Matlab. CO3: learn the Linear regression; modeling with exponential function in Matlab. CO4: understand to analyze the polynomial function and their applications in Matlab. CO5: to the discuss the different compartmental models in Matlab. CO6: identify and develop research models from the verbal description of the real system in Matlab	
7	Course Description	This course is an introduction to Matlab in mathematical modeling in based on the use of elementary functions to describe and explore real-world phenomena and data. The primary objective of this course is to develop basic mathematical modelling and to solve various mathematical models in Matlab.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1		
	A, B, C	(1) Solution of mathematical models and simulation (2) Stochastic and deterministic models (3) Modelling for decision making	CO1
	Unit 2		
	A, B, C	(4) Linear functions, fitting linear models to data, Evaluating model error (5) Interpreting the correlation coefficient	CO2
	Unit 3		
	A, B, C	(6) Exponential growth functions with applications (7) Exponential decay functions with applications	CO3

Unit 4		
A, B, C	(8) Modeling with polynomial functions	CO4
Unit 5		
A	(9) Compartmental models and Exponential decay (10) Lake pollution models, disease compartmental models	C05, CO6
Mode of examination	Lab	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1.Sheldon Lee, La Crosse, WI, Megan Buzby, Juneau, AK, Mathematical Modeling and Simulation with MATLAB University of Alaska Southeast, 2011.	
Other References	1.Sandip Banerjee, Mathematical Modeling: Models, Analysis and Applications, Chapman and Hall/CRC. 2. Barnes and G R Fulford, Mathematical Modelling with Case Studies: A Differential Equations Approach using Maple and MATLAB.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$ $\mathbf{C O}$	$\begin{gathered} \mathrm{PO} \\ 1 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{P O} \\ 7 \end{array}$	$\begin{gathered} \mathbf{P O} \\ \mathbf{8} \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 10 \end{gathered}$	$\begin{gathered} \text { PO } \\ 11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ 2 \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ \mathbf{3} \\ \hline \end{array}$
CMS351.1	3	3	3	3	2	2	1	3	2	1	2	2	2	2
CMS351.2	3	3	3	3	2	2	1	3	2	1	2	2	2	2
CMS351.3	3	3	3	3	2	2	1	3	2	1	2	2	2	2
CMS351.4	3	3	3	3	2	2	1	3	2	1	2	2	2	2
CMS351.5	3	3	3	3	2	2	1	3	2	1	2	2	2	2
CMS351.6	3	3	3	3	2	2	1	3	2	1	2	2	2	2
Average	3.0	3.0	3.0	3.0	2.0	2.0	1.0	3.0	2.0	1.0	2.0	2.0	2.0	2.0

	false position	
B	Secant method, iteration method,	CO2
C	Newton-Raphson method and its convergence.	CO2
Unit 3	Finite differences and Interpolation	
A	Finite difference operators, their interrelations, finite difference tables.	CO3
B	Newton's forward and Newton's backward interpolation formula	CO3
C	Central difference formulae including Stirling's formula, Bessel's formula.	
Unit 4	Divided differences	
A	Operators and difference table	CO4
B	Newton's divided difference formula	CO4
C	Lagrange's interpolation formula.	CO4
Unit 5	Numerical differentiation and integration	
A	Differentiation using Newton's forward and backward formula	CO5
B	Newton-Cotes Quadrature formula - derivations \& comparison of Trapezoidal rule	CO6
C	Simpson's $1 / 3$ and $3 / 8$ rules..	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1) An Introduction to Numerical Analysis by EndreSuli, David F. Mayers, Cambridge University Press, 2003.	
Other References	1) Numerical methods for Scientific and Engineering Computation by Jain, Iyengar, Jain, New Age International Publishers, 2004.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	PSO											
$\mathbf{8} \mathbf{8}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
CMS331.1	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS331.2	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS331.3	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS331.4	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS331.5	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS331.6	3	3	3	3	2	1	-	-	-	-	2	2	2	-
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-

...... *..........

	elimination of arbitrary constants	
B	(b) by elimination of arbitrary function	CO1
C	Lagrange's method to solve linear PDEs.	CO1
Unit 2	Linear homogeneous PDE with constant coefficient:	
A	Rules for finding complementary function	CO2, CO3
B	shortcut methods to find particular integral for standard form of functions	CO3
C	few general methods for specific forms.	CO3
Unit 3	Linear non-homogeneous PDE with constant coefficient:	
A	Rules for finding complementary function,	CO4
B	few shortcut methods to find particular integral for standard form of functions, and few general methods for specific forms	CO4
C	equations reducible to PDEs with constant coefficients	CO4
Unit 4	Classification of PDEs, variable separable method and wave equation:	
A	Classification of PDEs of second order, Boundary value problems, the principle of superposition,	CO5
B	method of separation of variables, its application to solve wave equation	CO5
C	D'Alembert's solution of wave equation in various cases..	CO5
Unit 5	Heat equation and Laplace equation:	
A	Solution of heat equation in one dimension in various cases	CO6
B	solution of Laplace equation in Cartesian coordinates	CO6
C	its conversion into polar coordinates.	CO6
Mode of examination	Theory/Jury/Practical/Viva	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1) Schaum's Outline series of Partial Differential equations.	
Other References	1. Elements of Partial Differential Equations by Ian N. Sneddon, McGRA-HILL Book Company.	

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
CO	3	3	2	2	-	1	-	-	-	-	-	2	2	-
CMS332.1	2	2	2	2	-	1	-	-	-	-	-	2	2	-
CMS332.3	3	3	3	3	-	1	-	-	-	-	-	2	2	-
CMS332.4	2	2	2	3	-	1	-	-	-	-	-	2	2	-
CMS332.5	2	3	3	3	-	1	-	-	-	-	-	2	2	-
CMS332.6	3	2	3	3	-	1	-	-	-	-	-	2	2	-
Average	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 6}$	$\mathbf{-}$	$\mathbf{1 . 0}$	-	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS333.1	3	3	2	2	-	1	-	-	-	-	2	2	2	-
CMS333.2	3	3	2	2	-	1	-	-	-	-	2	2	2	-
CMS333.3	3	3	3	3	-	1	-	-	-	-	2	2	2	-
CMS333.4	3	3	2	3	-	1	-	-	-	-	2	2	2	-
CMS333.5	3	3	3	3	-	1	-	-	-	-	2	2	2	-
CMS333.6	3	3	3	3	-	1	-	-	-	-	2	2	2	-
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 5}$	$\mathbf{2 . 6}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-

	ol: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2025-26	
Branch: Mathematics		Semester: VI	
1	Course Code	BDA323	
2	Course Title	Multivariate Data Analysis	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	CC	
5	Course Objectiv e	Familiarise students with the multivariate normal distribution, estimation of the mean vector and the covariance matrix, the distributions and uses of sample correlation coefficients, classification of observations, the distribution of the sample covariance matrix, and the sample generalized variance.	
6	Course Outcome s	CO1: Demonstrate knowledge and understanding of the mult distribution. (K2, K3) CO2: Demonstrate knowledge and understanding of the concep of the mean vector and the covariance matrix. (K2, K3) CO3: Demonstrate advanced understanding of the concepts reduction technique. (K2, K3) CO4: Describe the concepts of how to use and apply depende in multivariate data analysis. (K2, K3) CO5: Describe the concepts of analysis of variance and multivariate data analysis. (K3, K4, K5) CO6: Apply the statistical tool and software in multivariate (K2, K6)	ate nor estima dimens techniq ariance analys
7	Course Descriptio n	This module aims to provide an understanding of the multivariate normal distribution, estimation of the mean vector and the covariance matrix, the distributions and uses of sample correlation coefficients, classification of observations, the distribution of the sample covariance matrix, and the sample generalized variance.	
8			
	Unit 1		
	A	A brief review of Univariate and Bivariate distribution with their properties.	CO1
	B	Basic Multivariate Distribution: mean, variance, Covariance, correlation, and the linear combination of variables.	CO1
	C	The multivariate normal distribution, Mean Vectors, and Covariance Matrices.	CO1

3UNIVERSITY

$$
2
$$

...... s.........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA323.1	3	3	2	2	-	1	-	-	-	-	2	-	1	-
BDA323.2	2	3	3	2	-	1	-	-	-	-	2	-	1	-
BDA323.3	2	2	2	3	-	1	-	-	-	-	2	-	1	-
BDA323.4	2	3	2	2	-	1	-	-	-	-	2	-	1	-
BDA323.5	3	3	2	2	-	1	-	-	-	-	2	-	1	-
BDA323.6	3	3	2	3	-	1	-	-	-	-	2	-	1	-
Average	$\mathbf{2 . 3}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{2 . 1}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-

School: SSBSR Programme: B.Sc. (Hons.)		Batch: 2023-27	
		Academic Yea	
Branch: Mathematics		Semester: VI	
1	Course Code	RBL004	
2	Course Title	Research Based Learning-4	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	Project	
5	Course Objectiv e	1. Deep knowledge of a specific area of specialization. 2. Develop communication skills, especially in project writing and oral presentation. Develop some time management skills.	
6	Course Outcome s	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analyzing background material, and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and a taste for research. (K5, K6) CO3: Select and recommend activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5) CO5: Analyse the problem and summarize research findings. (K4,K5) CO6: Use research findings to develop education theory and practice. (K3,K6)	
7	Course Descriptio n	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.	
8		-	
	Unit 1	Introduction	
	Unit 2	Case study	CO1,CO2
	Unit 3	Conceptual	CO3,CO4
	Unit 4	Development	CO4, CO5
	Unit 5	Finalisation	CO5, CO6
	Mode of examination		
	Weightage		

	Distribution	
	Text book/s*	
Other References		

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
RBL004.1	-	2	1	2	-	1	-	3	-	-	-	1	1	1
RBL004.2	-	2	1	2	-	1	-	3	-	-	-	1	1	1
RBL004.3	-	2	1	2	-	1	-	3	-	-	-	1	1	1
RBL004.4	-	2	1	2	-	1	-	3	-	-	-	1	1	1
RBL004.5	-	2	1	2	-	1	-	3	-	-	-	1	1	1
RBL004.6	-	2	1	2	-	1	-	3	-	-	-	1	1	1
Average	-	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$

School: SSBSR		Batch: 2023-27
	am: B.Sc. arch)	Academic Year: 2025-26
Branch: Mathematics		Semester: VI
1	Course Number	Course Code: CCU108
2	Course Title	Community Connect
3	Credits	2 Course Status: Training/Survey/Project
4	(L-T-P)	(0-0-4)
5	Learning Hours	Contact Hours 30 Project/Field Work 20 Assessment 00 Guided Study 10 Total hours 60
6	Course Objectives	1. Contribute to the holistic development of students by making them more aware of socially and economically disadvantaged communities and their specific issues 2. Provide richer context to classrooms, to make them more effective laboratories of learning by aligning them to social realities beyond textbooks 3. Provide scope to faculty members to align their teaching and research goals by giving them ample opportunity to carry out community-oriented projects 4. Ensure that the community connect programs provides benefits to communities in tangible ways so that they may feel perceptibly better off post the interaction and involvement of the Sharda academic community 5. Provide ample opportunity for Sharda University academic community to contribute effectively to society and nation building
7	Course Outcomes	After completion of this course, students will be able to: CO : Students learn to be sensitive to the living challenges of disadvantaged communities. CO2: Students learn to appreciate societal realities beyond textbooks and classrooms CO3: Students learn to apply their knowledge via research, and training for community benefit CO4: Students learn to work on socio-economic projects with teamwork and timely delivery CO5: Students learn to engage with communities for meaningful contributions to society.

		CO6: The survey will help to identify the gaps and create a plan to furthe improve the situation related to social problems prevailing in differen sections of society and find the solution in a sustainable manner.
8	Theme	Major research them
		1. Survey and self-learning: In this mode, students will make the survey, analyze data, and will extract results to correlate with their theoretical knowledge. E.g. Crops and animals, land holding, labor problems, medical problems of animals and humans, savage and sanitation situations, waste management, etc. 2. Survey and solution providing: In this mode, students will identify the common problems and will provide solutions/ educate the rural population. E.g. air and water pollution, the need for treatment, use of renewable (mainly solar) energy, electricity-saving devices, inefficiencies in the cropping system, animal husbandry, poultry, pest control, irrigation, machining in agriculture, etc. 3. Survey and reporting: In this mode, students will educate villagers and survey the ground-level status of various government schemes meant for rural development. The analyzed results will be reported to concerned agencies which will help them for taking necessary/corrective measures. E.g. Pradhan Mantri Jan Dhan Yojana, Pradhan Mantri MUDRA Yojana, Pradhan Mantri Jeevan Jyoti Bima Yojana, Atal pension Yojana, Pradhan Mantri Awas Yojana, Pradhan Mantri FasalBima Yojana, Swachh Bharat Abhiyan, Soil Health Card Scheme, Digital India, Skill India Program, BetiBachao, BetiPadhao Yojana, DeenDayal Upadhyaya Gram Jyoti Yojana, Shyama Prasad Mukherjee Rurban Mission, UJWAL Discom Assurance Yojana, PAHAL, Pradhan Mantri Awas Yojana-Gramin, Pradhan Mantri Yuva Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri KhanijKshetra Kalyan Yojana, Pradhan Mantri Suraksha Bima Yojana, UDAN scheme, DeenDayal Upadhyaya Grameen Kaushalya Yojana, Pradhan Mantri Sukanya Samriddhi Yojana, Sansad Adarsh Gram Yojana, Pradhan Mantri SurakshitMatritva Abhiyan, Pradhan Mantri RojgarProtsahan Yojana, Midday Meal Scheme, Pradhan Mantri Vaya Vandana Yojana, Pradhan Mantri Matritva Vandana Yojana, and Ayushman Bharat Yojana.
9.1	Guidelines for	It will be a group assignment.
	Faculty Members	There should be no more than 10 students in each group.
		The faculty guide will guide the students and approve the project title and help the student in preparing the questionnaire and final report.
		The questionnaire should be well-designed and it should carry at least 20 questions (Including demographic questions).
		The faculty will guide the student to prepare the PPT.
		The topic of the research should be related to social, economical, or

$\left.\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { environmental issues concerning the common man. } \\ \text { The report should contain 2,500 to 3,000 words and relevant charts, tables, and } \\ \text { photographs. }\end{array} \\ \text { A plagiarism check of the report must. } \\ \text { ETE will conduct out of 10, divided in three parts (i) 30 Marks for the report } \\ \text { (ii) } 30 \text { Marks for the presentation (iii) 40 Marks for knowledge. } \\ \text { The student should submit the report to CCC-Coordinator signed by the faculty } \\ \text { guide by } \\ \text { The students have to send the hard copy of the report and PPT, and then only } \\ \text { they will be allowed for ETE. }\end{array}\right\}$

		The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321-354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering - from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10-13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables: All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.
9.5	Format:	The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices
9.6	$\begin{aligned} & \hline \text { Important } \\ & \hline \text { Dates: } \\ & \hline \end{aligned}$	Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within \qquad to CCC-

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{1} \mathbf{\mathbf { 2 }}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$		
CCU108.1	1	2	2	3	2	2	3	3	3	2	1	2	2	3
CCU108.2	1	2	2	3	2	2	3	3	3	2	1	2	2	3
CCU108.3	1	2	2	3	2	2	3	3	3	2	1	2	2	3
CCU108.4	1	2	2	3	2	2	3	3	3	2	1	2	2	3
CCU108.5	1	2	2	3	2	2	3	3	3	2	1	2	2	3
CCU108.6	1	2	2	3	2	2	3	3	3	2	1	2	2	3
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$

School: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)	Academic Year: 2025-26 Branch: Mathematics	Semester: VI
1	Course Code	CMS371
$\mathbf{2}$	Course Title	Numerical Methods Lab
3	Credits	1
4	Contact Hours (L-T-P)	0-0-2
	Course Status	CC
Corse	Course Objectiv e	1. To provide the student with numerical methods of solving the non- linear equations, interpolation, differentiation, and integration. 2.To improve the student's skills in numerical methods by using the MATLAB. 3. To provide the students are able to formulate a real-world problem as a mathematical programming model, understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand, relationship betwen a linear program and its dual, including strong duality and complementary slackness and solve specialized linear programming problems like the transportation and assignment problems.
6	Course Outcome s	CO1: Understand the procedures, algorithms, and concepts require tosolve specific problems. CO2: Discuss and develop the algorithms to solve system of linear equations and measure the accuracy. CO3: Discuss and develop the algorithms to solve finite differences and interpolation and measure the accuracy. CO4: Discuss and develop the algorithms to solve system oftranscendental equations and measure the accuracy. CO5: Discuss and develop the algorithms to solve divided differencesand measure the accuracy. CO6: Discuss and develop the algorithms to solve numericaldifferentiation and integration and measure the accuracy.
	Unit 4	Unit 3

	A, B, C	i) Trapezoidal Rule ii) Simpson's one third rule iii) Weddle's Rule iv) Gauss Quadrature (iv) The method of successive approximations (Picard)	CO3, CO4
	Unit 5	Solution of ODE Method of finding Eigenvalue by Power method (up to 4 $\times 4$) Fitting a Polynomial Function (up to third degree) Solution of ordinary differential equations i) Euler method ii) Modified Euler method Runge Kutta method (order 4)	CO5,CO6
	Mode of examination	Practical	
Weightage Distributio n	CA:25\%; CE:25\%; ESE:50\%		
	Text book/s*	1.Applied Numerical Methods Using Matlab, Tae-Sang Chung, Wŏn-yŏng Yang, John Morris, Wenwu Cao, Wiley-India.	
	Other Reference s	López, Apress. 1. MATLAB Programming for Numerical Analysis, César Pérez	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS371.1	3	3	3	2	2	1	2	3	1	1	3	2	2	2
CMS371.2	3	3	3	2	2	1	2	3	1	1	3	2	2	2
CMS371.3	3	3	3	2	2	1	2	3	1	1	3	2	2	2
CMS371.4	3	3	3	2	2	1	2	3	1	1	3	2	2	2
CMS371.5	3	3	3	2	2	1	2	3	1	1	3	2	2	2
CMS371.6	3	3	3	2	2	1	2	3	1	1	3	2	2	2
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2025-26	
Branch: Mathematics		Semester: VI	
1	Course Code	CMS372	
2	Course Title	Introduction to Partial Differential Equations Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	CC	
5	Course Objective	1. To familiarize the student in introducing and exploring MATLAB software. 2. To enable the student on how to approach for solving problems of Partial Differential Equations using MATLAB tools. 3. To understand the use of MATLAB in Laplace Transforms. 4. To prepare the students to use MATLAB in their project works. 5.To provide a foundation in use of this software for real time applications.	
6	Course Outcomes	The student will be able to write a code in Mathematica /MATLAB /Maple /Scilab/Maxima CO1: to find the solution of first order Partial Differential Equations. (K1, K2, K3) CO 2: to find the solution of Linear homogeneous PDE with constant (K1, K2, K3) CO3: to solve the Linear non-homogeneous PDE with constant coefficient. (K2, K3) CO4: to explore the concept of Classification of PDEs of second order with help of MATLAB. (K3, K4, K5) CO5: to apply the concept of MATLAB for to discuss the solution of heat equation in one dimension. (K4, K5, K6) CO6: to discuss the Solution of Laplace equation in Cartesian coordinates (K4, K5, K6)	
7	Course Description	The course is an introduction to the MATLAB in Partial Differential Equations.The primary objective of the course is to develop basic mathematical modelling and to solve various equations using MATLAB.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1		
	A, B, C	11.) Solution of first order Partial Differential Equations 12.) Lagrange's method to solve linear PDEs.	CO 1

Unit 2		
A, B, C	13.) Linear homogeneous PDE with constant 14.)Particular integral for some specific cases	CO 2
Unit 3		
A, B, C	15.) Linear non-homogeneous PDE with constant coefficient. 16.) finding complementary function.	CO 3
Unit 4		
A, B, C	17.)Classification of PDEs of second order, 18.) method of separation of variables 19.) D'Alembert's solution of wave equation	CO 4
Unit 5		
A, B, C	20.) Solution of heat equation in one dimension, 21.) Solution of Laplace equation in Cartesian coordinates	CO 5, CO 6
Mode of examination	Practical + viva	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1. B.D. Hahn, Essential MATLAB for Scientists and Engineers, John Wiley \& Sons, New York, NY, 1997.	
Other References	1. Applied Numerical Methods with Matlab for engineering and Scientists by stevenchapra, Mcgraw Hill..	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS372.1	3	3	3	3	2	1	2	3	2	2	3	2	2	2
CMS372.2	3	3	3	3	2	1	2	3	2	2	3	2	2	2
CMS372.3	3	3	3	3	2	1	2	3	2	2	3	2	2	2
CMS372.4	3	3	3	3	2	1	2	3	3	2	3	2	2	2
CMS372.5	3	3	3	3	2	1	2	3	2	2	3	2	2	2
CMS372.6	3	3	3	3	2	1	2	3	3	2	3	2	2	2
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 3}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$

School: SSBSR	Batch: 2023-27		
Programme: B.Sc. (Hons.)	Academic Year: 2025-26		
Branch: Mathematics	Semester: VI		
1	Course Code	BDA361	
$\mathbf{2}$	Course Title	Multivariate Data Analysis Lab	
3	Credits	1	Contact Hours(L- T-P)
4	Course Status	CC O-0-2 Objective	Familiarise students with the multivariate normal distribution, estimation of the mean vector and the covariance matrix, the distributions and uses of sample correlation coefficients, classification of observations, the distribution of the sample covariance matrix, and the sample generalized variance.
5	Course Outcomes	CO1: Demonstrate knowledge and understanding of the multivariate normal distribution. (K2, K3) CO2: Demonstrate knowledge and understanding of the concept of estimation of	
Unit 2	the mean vector and the covariance matrix. (K2, K3) CO3: Demonstrate advanced understanding of the concepts of dimension reduction technique. (K2, K3)		
CO4: Describe the concepts of how to use and apply dependence techniques in			
multivariate data analysis. (K2, K3)			
CO5: Describe the concepts of analysis of variance and covariance in			
multivariate data analysis. (K3, K4, K5)			
CO6: Apply the statistical tool and software in multivariate data analysis. (K2,			
K6)			

...... :..........

A, B, C	Problem based on Multiple and Partial correlation	CO2, CO3
	Problem based on Canonical correlation	
Unit 3		
A, B, C	Problem based on Principal Component Analysis	CO3, CO4
	Problem based on Factor Analysis: Exploratory factor analysis	
	Problem based on Cluster Analysis: Hierarchal Cluster and Nonhierarchal Cluster	
Unit 4		
A, B, C	Problem based on Multiple regression analysis	$\begin{gathered} \text { CO4, CO5, } \\ \text { CO6 } \end{gathered}$
	Problem based on Logistic regression analysis	
	Problem based on Discriminant Analysis	
Unit 5		
A, B, C	Problem based on Analysis of Variance	CO5, CO6
	Problem based on Analysis of and Covariance	
	Problem based on Multivariate Analysis of Variance and Covariance	
Mode of examination	Practical+Viva	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1. Hardle, W.K. and Hlavka, Z. (2015): Multivariate Statistics, Springer.	
Other References	1.Anderson, T.W. (2003): An Introduction to Multivariate Statistical Analysis, Third Edition, Wiley.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PO	PSO	PSO	PSO										
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA361.1	1	2	3	2	2	1	1	3	1	-	2	-	1	2
BDA361.2	1	2	3	2	2	1	1	3	1	-	2	-	1	2
BDA361.3	1	2	3	2	2	1	1	3	1	-	2	-	1	2
BDA361.4	1	2	3	2	2	1	1	3	1	-	2	-	1	2
BDA361.5	1	2	3	2	2	1	1	3	1	-	2	-	1	2
BDA361.6	1	2	3	2	2	1	1	3	1	-	2	-	1	2
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	-	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$

Detailed Syllabus for

HONOURS

OR

HONOURS WITH RESEARCH

IN

MATHEMATICS

...... *..........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS401.1	3	3	3	3	2	1	-	-	-	2	3	3	2	-
CMS401.2	3	3	3	3	2	1	-	-	-	2	3	3	2	-
CMS401.3	3	3	3	3	2	1	-	-	-	2	3	3	2	-
CMS401.4	3	3	3	3	2	1	-	-	-	2	3	3	2	-
CMS401.5	3	3	3	3	2	1	-	-	-	2	3	3	2	-
CMS401.6	3	3	3	3	2	1	-	-	-	2	3	3	2	-
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	-	-	-	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	-

School: SSBSR	Batch: 2023-27		
Programme: B.Sc. (Hons.)	Academic Year: 2026-2027		
Branch:Mathematics	Semester: VII		
1	Course Code	CMS403	
$\mathbf{2}$	Course Title	Number Theory	
3	Credits	4	Contact Hours (L-T-P)
Course Status	4-0-0	CC	Course Objective
To make students familiar with the basic concepts of number theory,			
congruence. Also students are able to understand public \& private key			
cryptography.			

A	Definition, Residue system modulo m, Fermat's little theorem, Euler's generalization of Fermat's theorem.	CO2
B	Wilson's theorem, Solution of congruences, Chinese remainder theorem	CO2
C	Hansel's lemma, Prime power moduli, Primitive roots.	CO 2
Unit 3	CRYPTOGRAPHY	
A	Classical encryption techniques, Substitution ciphers and transposition ciphers, Modern block ciphers and Block ciphers principles	CO3
B	Public key Cryptography: Public keys , Encrypting the message	CO3
C	Private keys, decrypting and retrieval of the original message (RSA algorithm).	CO3
Unit 4	QUADRATIC RESIDUES	
A	Gauss lemma.	CO4
B	Legendre symbol, Jacobi symbol	CO4
C	Quadratic reciprocity law.	CO4
Unit 5	SOME STANDARD ARITHMETIC FUNCTIONS	
A	The greatest integer function, Euler's totient function.	CO5
B	The number of divisors function, The sum of divisors function	CO6
C	Mobius mu function, Mobius inversion formula.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery: An Introduction to the theory of numbers, John Wiley and Sons (Asia) Pvt. Ltd.	
Other References	G. H. Hardy \& E. M. Wright : An Introduction to the theory of Numbers	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PS	PSO	PSO	PSO										
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CMS403.1	3	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS403.2	2	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS403.3	2	2	2	2	-	2	-	-	-	-	-	-	3	-
CMS403.4	2	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS403.5	3	2	2	2	-	2	-	-	-	-	-	-	3	-
CMS403.6	3	2	2	2	-	2	-	-	-	-	-	-	3	-
Average	2.5	2.5	2.0	2.0	-	2.0	-	-	-	-	-	-	3.0	-

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2026-27	
Branch: Mathematics		Semester: VII	
1	Course Code	CMS451	
2	Course Title	Numerical Solution of Differential Equations Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	CC	
5	Course Objective	1.To familiarize the students with basic concepts of numerical methods to find the solution of ODE and PDE. 2.To appreciate the use of numerical methods to a range of Engineering Problems.	
6	Course Outcomes	CO1: Summarize the solution methods of IVPs using single methods. CO2: Write and execute a code on solving 1D BVPs using finite difference methods. CO3: Write and execute a code on solving 2D elliptic PDEs using finite difference methods. CO4: Write and execute a code on solving parabolic PDEs using finite difference methods. CO5: Write and execute a code on solving hyperbolic PDEs using finite difference methods. CO6: Implement convergence criteria within code to check tolerance and estimate error.	
7	Course Description	This course is an introduction to the fundamental of finite elements methods. The primary objective of the course is to develop the basic understanding finite element formulations to solve one dimensional problem, two-dimensional scalar problems, two-dimensional Vector problems and solve problems on iso parametric element and dynamic problems.	
8	Outline syllabus		$\begin{array}{c\|} \text { CO } \\ \text { Mapping } \\ \hline \end{array}$
	Unit 1	Lab. Experiment 1-2:	
		Introduction to numerical method to solve ODE. Solve using Picard's method, Euler's method and Runge Kutta method using software MATLAB.	CO1
	Unit 2	Lab. Experiment 3-5:	
		Consistency, Stability, Convergence, and Error Estimates of FD Methods, FD Methods for General 1D BVPs	CO2, CO6
	Unit 3	Lab. Experiment 6-8:	
		Boundary and Compatibility Conditions, The Central Finite Difference Method for Poisson Equations, Finite Difference Methods for General Second-order Elliptic PDEs	CO3, CO6
	Unit 4	Lab. Experiment 9-10:	
		The Crank-Nicolson scheme, Stability Analysis for Timedependent Problems, FD Methods and Analysis for 2D Parabolic Equations, The ADI Method	CO4, CO6
	Unit 5	Lab. Experiment 11-12:	
		The Lax-Wendroff Scheme and Other FD methods, Some Commonly Used FD Methods for Linear System of Hyperbolic PDEs	CO5, CO6
	Mode of examination	Lab	

	Weightage Distribution	CA: 25\%; CE:25\%; ETE:50\%		
	Text book/s*	1.Icha, A., 2015. The Numerical Solution of Ordinary and Partial Differential Equations by Granville Sewell, World Scientific.Other References	1. Fried, I., 2014. Numerical solution of differential equations. Academic Press.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS451.1	3	3	3	3	3	1	3	3	1	1	3	3	3	3
CMS451.2	3	3	3	3	3	1	3	3	1	1	3	3	3	3
CMS451.3	3	3	3	3	3	1	3	3	1	1	3	3	3	3
CMS451.4	3	3	3	3	3	1	3	3	1	1	3	3	3	3
CMS451.5	3	3	3	3	3	1	3	3	1	1	3	3	3	3
Average	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$				

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2026-27	
Branch: Mathematics		Semester: VIII	
1	Course Code	CMS431	
2	Course Title	Finite Element Methods	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	CC	
5	Course Objective	1.To familiarize the students with basic concepts of Mathematical Modelling of real-world problems. 2.To appreciate the use of FEM to a range of Engineering Problems.	
6	Course Outcomes	CO1: Summarize the basics of finite element formulation. CO2: Apply finite element formulations to solve one dimensional Problems. CO3: Apply finite element formulations to solve two-dimensional scalar Problems. CO4: Apply finite element method to solve two-dimensional Vector problems. CO5: Apply finite element method to solve problems on iso parametric element and dynamic Problems. CO6: Recognize the need for, and engage in life long learning	
7	Course Description	This course is an introduction to the fundamental of finite elements methods. The primary objective of thecourse is to develop the basic understanding finite element formulations to solve one dimensional problem, two-dimensional scalar problems, two-dimensional Vector problems and solve problems on iso parametric element and dynamic problems.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
Unit 1 INTRODUCTION		INTRODUCTION	
	A	Historical Background - Mathematical Modeling of field problems in Engineering - Governing Equations.	CO1
	B	Discrete and continuous models - Boundary, Initial and Eigen Value problems- Weighted Residual Methods	CO1
	C	Variational Formulation of Boundary Value Problems - Ritz Technique - Basic concepts of the Finite Element Method.	CO1
	Unit 2	ONE-DIMENSIONAL PROBLEMS	CO2
	A	One Dimensional Second Order Equations - Discretization - Element types- Linear and Higher order Elements.	
	B	Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid	CO 2

	mechanics and heat transfer.	
C	Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation -Transverse deflections and Natural frequencies of beams.	CO 2
Unit 3	TWO-DIMENSIONAL SCALAR VARIABLE PROBLEMS	
A	Second Order 2D Equations involving Scalar Variable Functions Variational formulation -Finite Element formulation Triangular elements - Shape functions and element matrices and vectors.	CO3
B	Application to Field Problems - Thermal problems - Torsion of Non circular shafts.	CO3
C	Quadrilateral elements - Higher Order Elements.	CO3
Unit 4	TWO-DIMENSIONAL VECTOR VARIABLE PROBLEMS	
A	Equations of elasticity - Plane stress, plane strain.	CO4
B	and axisymmetric problems - Body forces and temperature effects.	CO4
C	Stress calculations - Plate and shell elements.	CO4
Unit 5	ISOPARAMETRIC FORMULATION	
A	Natural co-ordinate systems - Isoparametric elements - Shape functions for iso parametric elements - One and two dimensions.	CO5, CO6
B	Serendipity elements - Numerical integration and application to plane stress problems - Matrix solution techniques.	CO5, CO6
C	Solutions Techniques to Dynamic problems - Introduction to Analysis Software.	CO5, CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005	
Other References	1. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO										
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS431.1	3	3	2	2	2	1	-	-	-	1	3	3	-
CMS431.2	3	3	2	2	2	1	-	-	-	1	3	3	-
CMS431.3	3	3	2	2	2	1	-	-	-	1	3	3	-
CMS431.4	3	3	2	2	2	1	-	-	-	1	3	3	-
CMS431.5	3	3	2	2	2	1	-	-	-	1	3	3	-
CMS431.6	3	3	2	2	2	1	-	-	-	1	3	3	-
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	-	-	-	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	-

	ol: SSBSR	Batch: 2023-27	
	ramme: B.Sc. s.)	Academic Year: 2026-27	
	ch:Mathematics	Semester: VIII	
1	Course Code	CMS432	
2	Course Title	Optimization Techniques	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	CC	
5	Course Objective	3. To familiarize the students with basic concepts of optimization and classification of optimization problems. 4. To understand the basic concept of Formulation simplex methods variable with upper bounds.	
6	Course Outcomes	Students will be able to: CO1: Explain the fundamental knowledge of Linear Programming problem and Duality problems. (K1,K2,K3). CO2: Use classical optimization techniques and numerical methods of optimization. (K2, K3, K4). CO3: Describe the basics of different NLPP and KKT conditions.(k3,k4). CO4: Enumerate fundamentals of Integer programming technique and apply different techniques to solve various optimization problems arising from engineering areas. (K2, K3, K4). CO5: Students will understand the concept of LPP and NLPP and will be able to solve some real life problems using optimization techniques. (K3,K4,K5) CO6: Explain the fundamental knowledge of Linear Programming and Dynamic Programming problems. (K4, K5, K6).	
7	Course Description	This course is an introduction to the basic understanding of with applications and scope of O.R. Formulation of linear programming problem and then different methods to solve them will be discussed. Duality in LPP will be introduced. Introduction to NLPP and some solving methods will be covered. At the end KKT Conditions, Unconstrained and constrained optimization techniques will be discussed.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Introduction to LPP, Graphical Method and Simplex Method	
	A	Introduction to Optimization, Assumptions \& Mathematical Modeling of LPP, Graphical solution of L.P.P., Graphical Solution of LPP-I, Graphical Solution of LPP- II.	CO1
		Solution of L.P.P.by Simplex method, Revised Simplex Method, Introduction of Big M method, Algorithm of BIG-M method.	CO1

B		
C	Problems on BIG-M Method, Two Phase Method: Introduction and Two Phase Method: Problem Solution.	CO1
Unit 2	Duality Theory and Integer programming	
A	Special Cases of LPP, Degeneracy in LPP, Sensitivity Analysis- I, Sensitivity Analysis- II and Problems on Sensitivity Analysis.	CO2
B	Introduction to Duality Theory- I, Introduction to Duality TheoryII, Dual Simplex Method and Examples on Dual Simplex Method.	CO2
C	Integer Linear Programming, IPP: Branch \& B-Bound Method and Mixed Integer Programming Problem.	CO2
Unit 3	Introduction to transportation problem and Some Solving Method	
A	Introduction to transportation problem-I, Transportation problem-II, Vogel Approximation method, optimal solution Generation for Transportation problem and Degeneracy in TP and problems.	CO3
B	Introduction to Nonlinear programming, Graphical Solution of NLP and Types of NLP.	CO3
C	One dimensional unconstrained optimization, Region Elimination Technique-1, Region Elimination Technique-2 and Region Elimination Technique-3.	CO3
Unit 4	NLP and Unconstrained optimization	
A	Multivariate Unconstrained Optimization-1, Multivariate Unconstrained Optimization-2.	CO4
B	NLP with Equality Constrained-1, NLP with Equality Constrained-2, Constrained NLP-1 and Constrained NLP 2.	CO4
C	Constrained Optimization, Constrained Optimization and KKT(Karush-Kuhn-Tucker conditions)	CO4
Unit 5	Constrained optimization and Dynamic programming of LPP	
A	Constrained Optimization, Constrained Optimization and Feasible Direction.	CO5
B	Penalty and barrier method, Penalty method and Penalty and barrier method.	CO5
C	Dynamic programming, Multi-Objective decision making and MultiAttribute decision making.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	

| Text book/s* | l. Hamdy A. Taha, Operations Research, An Introduction, 9th Edition,
 Pearson. | |
| :--- | :--- | :--- | :--- | :--- |
| Other
 References | 1. M.S. Bazarra, H.D. Sheral and C.M. Shetty, Nonlinear
 Programming theory and Algorithms. | |

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS432.1	3	3	3	3	2	1	-	-	-	-	3	3	3	-
CMS432.2	3	3	3	3	2	1	-	-	-	-	3	3	3	-
CMS432.3	3	3	3	3	2	1	-	-	-	-	3	3	3	-
CMS432.4	3	3	3	3	2	1	-	-	-	-	3	3	3	-
CMS432.5	3	3	3	3	2	1	-	-	-	-	3	3	3	-
CMS432.6	3	3	3	3	2	1	-	-	-	-	3	3	3	-
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	-

	I: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2026-27	
Branch: Mathematics		Semester: VIII	
1	Course Code	CMS433	
2	Course Title	Integral Equations \& Calculus of Variations	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	CC	
5	Course Objective	1. The main objectives of this course are to introduce the methods and concepts for solving linear integral equations, to study Laplace and Fourier transforms with their applications to DE. 2. Integral equations and to provide an understanding the problems through calculus of variations.	
6	Course Outcomes	The student will be able to CO1: understand the basic concept of integral equation Volteraa as well as Fredholm. CO2: understand the eigen values and eigen function of HFIE. CO3: to learn the solution of PDE by Laplace transform. CO4: understand to analyze the Fourier transform and their applications. CO5: to learn the extremal variational by Eulers equation. CO6: identify variation of a functional and its properties, extremum of functional, necessary condition for an extremum..	
7	Course Description	This course is determine the solutions to Volterra as well as Fredholm integral equations by method of resolvent kernel, method of successive approximations, method of integral transforms, understand with eigen values and eigen functions of homogeneous Fredholm integral equations, calculate the Laplace transform, Fourier transform and their inverse transforms of common functions and understand the formulation of variational problems, the variation of a functional and its properties, extremum of functional, necessary condition for an extremum.	
8	Outline syllabus	Mapping	
	Unit 1	Linear Integral Equations	
	A	Definition, examples and classification of integral equations,	CO1

	Relation between differential and integral equations.		
B	Solution of Volterra as well as Fredholm integral equations ofCO1 second kinds by the method of successive substitutions and successive approximations.		
C	Iterated and resolvent kernels.	CO1	
Anit 2	More on Fredholm Equations	CO2	
B	Solution of Fredholm integral equations with separable kernels.		

	Text book/s*	1.M. Gelfand and S. V. Fomin: Calculus of Variations, Dover Books, 2000. (For Unit 5)Other References	1.Pinkus Allan and Samy Zafrany: Fourier Series and Integral Transforms, Cambridge University Press, 1997. (For Unit 4). l

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$		
CMS433.1	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS433.2	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS433.3	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS433.4	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS433.5	3	3	3	3	2	1	-	-	-	-	2	2	2	-
CMS433.6	3	3	3	3	2	1	-	-	-	-	2	2	2	-
Average	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-

B	matrices and Jacobean, transformed version of governing equationparticularly suited for CFD.	CO4
C	Compressed grids, elliptic grid generation, adaptive grids.	CO4
Unit 4		
A	Introduction to finite element philosophy, Basics of finite elementmethod.	CO5
B	Stiffness matrix, Isoperimatric elements.	CO5
C	Formulation of finite elements for flow and heat transfer problems.	CO5
Unit 5		
A	Introduction to finite volume philosophy Integral approach.	CO6
B	Discretization and higher order schemes.	CO6
C	Application to complex geometry.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Computational Fluid Dynamics the Basics with Applications, John DAnderson, Jr., McGraw Hill Book Company.	
Other References	1. Principles of Computational Fluid dynamics, Pieter Wesseling, Springer International Edition	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS402.1	2	2	2	2	1	1	-	-	-	-	1	1	1	-
CMS402.2	2	2	2	2	1	1	-	-	-	-	1	1	1	-
CMS402.3	2	2	2	2	1	1	-	-	-	-	1	1	1	-
CMS402.4	2	2	2	2	1	1	-	-	-	-	1	1	1	-
CMS402.5	2	2	2	2	1	1	-	-	-	-	1	1	1	-
CMS402.6	2	2	2	2	1	1	-	-	-	-	1	1	1	-
Average	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	-

School: SSBSR	Batch : 2023-27
Programme: B.Sc(Hons)	Academic Year: 2026-27
Branch: Mathematics	Semester: VII
1 Course Code	MMT107
2 Course Title	TOPOLOGY
3 Credits	4
$4 \begin{aligned} & \text { Contact Hours(L- } \\ & \text { T-P) }\end{aligned}$	4-0-0
Course Status	DSE
$5 \quad$Course Objective	This course provides an introduction to topics involving concepts ofTopological space and separate axioms (Hausdorff space and base problems), Compactness (Urysohn's theorem), Connectedness WithNets(converge filter Zorn's lemma).
6 Course Outcomes	CO1: Explain the concept of Topological spaces and calculate interior, exterior limit point and boundary points. (K2, K3, K4) CO2: Describe the concept of separate axioms and evaluate T_{0}, T_{1}, T_{2} spaces, normal and completely normal spaces. (K1,K2, K5) CO3: Discuss the compactness (Urysohn's theorem) and evaluate cover, open cover, finite sub cover, compact sets. (K1, K2, K5) CO4: Explain Lindeloff space, locally compact, Map: continuous function and write Heine borel theorem, describe homeomorphism, open and closed map, compactness for continuous images. (K2,K4,K6) CO5: Explain about separated sets, disconnectedness, totally disconnectedness, maximal connected set and illustrate component and path, locally connected and write Urysohn's theorem. (K2, K3, K4, K6) CO6: Describe the concept of Nets and Filters and write zorn's lemma. (K1,K2, K6)
7Course Description	This course provides an introduction to topics involving concepts of Topological space and separate axioms (Hausdorff space and base problems), Compactness (Urysohn's theorem), Connectedness With Nets (converge filter Zorn's lemma). The primary objective of the course is to develop the advance understanding of Topology.
8 Outline syllabus	CO Mapping
Unit 1	Topological space
A	Topology, weaker and stronger topology, indiscreteand discrete topology CO1
B	Co-finite and usual topology, interior, exterior \quad CO1
C	limit point and boundary points. ${ }^{\text {a }}$ CO1
Unit 2	Separation axioms
A	Base, sub-base and countability (first countable andsecond countable)
B	$\begin{aligned} & \text { separation axioms: } T_{0}, T_{1}, T_{2} \text { spaces, normal and } \\ & \text { completely normal spaces }\end{aligned}$
C	regular and completely regular spaces, $\quad T_{3}, T_{4}$ and Tychnoff space, Hausdorff space and based problems\quad CO2

Unit 3	Compactness	
A	Cover, open cover, finite sub cover, compact sets, finite intersection property	CO3
C	Heine borel theorem, Lindeloff space, locally compact, Map: continuous function	CO3, CO4
Unit 4	homeomorphism, open and closed map, compactnessfor continuous images	CO3, CO4
A	Connectedness	CO5
B	Separated sets, disconnectedness, totally disconnectedness, maximal connected set	CO5
Unit 5	Component and path, locally connected and based examples	CO5
A	Nrysohn's theorem (proof).	CO6
B	Binary relation, Directed set, residual subset, sequence convergence of a set	CO6
C	cluster point, subnet. Filters: Filter, Cofinite filter, neighbourhood filter, filter base	CO6
Mode of		
examination	Theory	
Weightage Distribution	Therer\| Rext book/s* References	1. Dugundji, James, Topology, Allyn and BaconSeries in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978.

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
MMT107.1	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT107.2	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT107.3	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT107.4	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT107.5	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT107.6	1	3	2	3	3	1	-	-	-	-	1	1	3	-
Average	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	-

School: SSBSR		Batch : 2023-27	
Programme: B.Sc(Hons.)		Academic Year: 2026-27	
Branch: Mathematics		Semester: VII	
1	Course Code	MMT202	
2	Course Title	MEASURE THEORY	
3	Credits	4	
4	$\begin{aligned} & \text { Contact } \\ & \text { Hours } \\ & \text { (L-T-P) } \end{aligned}$	4-0-0	
	Course Status	DSE	
5	Course Objective	This course provides an introduction to topics involving concepts of Topological space, \square-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional.	
6	Course Outcomes	CO1: Explain the concept of Topological spaces and calculate interior, exterior limit point and boundary points. (K2, K3, K4) CO2: Describe the concept of approximation of measurable functions, explain Lebesgue's monotone convergence theorem and Fatou's lemma and evaluate integration of positive functions, term by term differentiation of a series of positive measurable functions. (K1,K2, K5) CO3: Discuss the integration of complex function.(K1, K2) CO4: Explain Lebesgue's dominated convergence theorem, role of sets of measure zero, write extension of a measure to a complete measure. (K2,K4,K6) CO5: Explain integration as linear functional, Topological ingredients and write positive Borel measure, Hausdorff spaces. (K2, K3, K4, K6) CO6: Describe the concept locally compact Hausdorff spaces, support of a complex function, vector space of continuous complex functions with compact support and write Urysohn's lemma, Riesz representation theorem. (K1,K2, K6)	
7	Course Description	This course provides an introduction to topics involving concepts of Topological space and separate axioms, \square-algebra of measurable sets,Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of thecourse is to develop the advance understanding of Measure Theory.	
8	Outline syllabus		CO Mapping
	Unit 1	Preliminaries:	
	A	Topological spaces, continuous functions	CO1
	B	\square-algebra of measurable sets, Borel sets, measurable functions	CO1
	C	lim sup and liminf of sequence of functions.	CO1

Unit 2	Lebesgue measure:	
A	Approximation of measurable functions by simple functions, positive measures	CO 2
B	Integration of positive functions, Lebesgue's monotone convergence theorem	CO 2
C	Term by term differentiation of a series of positive measurable functions, Fatou's lemma.	CO 2
Unit 3	Integration of complex functions:	
A	Complex measurable functions, integration of Complex measurable functions	CO3
B	Lebesgue's dominated convergence theorem, role of setsof measure zero	CO3, CO4
C	Extension of a measure to a complete measure.	CO3, CO4
Unit 4	Integration as a linear functional:	
A	Positive Borel measure, vector spaces	CO5
B	Integration as a linear functional, Topological ingredients	CO5
C	Definition of compactness and Hausdorff spaces.	CO5
Unit 5	Riesz representation theorem:	
A	Locally compact Hausdorff spaces, support of a complex function	CO6
B	Vector space of continuous complex functions with compact support	CO6
C	Urysohn's lemma, Riesz representation theorem.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1) Walter Rudin: Real and Complex analysis, Mc GRAW HILL, International student edition.	
Other References	1. H. L. Royden: Real Analysis, Amazon. Com.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO CO	$\begin{gathered} \hline \mathrm{PO} \\ 1 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 3 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 6 \end{array}$	$\begin{gathered} \hline \mathrm{PO} \\ 7 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ 9 \end{array}$	$\begin{array}{\|c\|} \hline \text { PO } \\ 10 \end{array}$	$\begin{gathered} \mathrm{PO} \\ 11 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PSO } \\ \mathbf{3} \end{gathered}$
MMT202.1	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT202.2	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT202.3	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT202.4	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT202.5	1	3	2	3	3	1	-	-	-	-	1	1	3	-
MMT202.6	1	3	2	3	3	1	-	-	-	-	1	1	3	-
Average	1.0	3.0	2.0	3.0	3.0	1.0	-	-	-	-	1.0	1.0	3.0	-

 *..... *..........

	Weightage Distribution	CA:25\%; ESE:75\%	
	Text book/s*	1.Thomas and Finney; Calculus and Analytical Geometry, Narosa Publishing House.	
Other References	1. Erwin Kreyszig; Advanced Engineering Mathematics, John Wiley \& Sons, INC		

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$										
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CMS404.1	3	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS404.2	2	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS404.3	2	2	2	2	-	2	-	-	-	-	-	-	3	-
CMS404.4	2	3	2	2	-	2	-	-	-	-	-	-	3	-
CMS404.5	3	2	2	2	-	2	-	-	-	-	-	-	3	-
CMS404.6	3	2	2	2	-	2	-	-	-	-	-	-	3	-
Average	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{2 . 0}$	-	-	-	-	-	-	$\mathbf{3 . 0}$	-

A	Buchberger criterion, Monomial basis, Elimination, Modules.	CO 2
B	Localisation, Nakayama Lemma, Spectrum.	CO2
C	Associated primes, Primary Decomposition, Support of a module, Prime avoidance	CO 2
Unit 3		
A	Saturation, Morphisms.	CO 3, CO 6
B	Integral extensions, Noether normalisation lemma.	CO 3
C	Polynomial rings, Going up theorem.	CO 3
Unit 4		
A	Artinian rings, Graded modules.	CO 4
B	Hilbert polynomial, Hilbert-Samuel polynomial, Artin Rees Lemma	CO 4, CO 5
C	Degree of Hilbert-Samuel polynomial, Dimension of noetherian local rings, Dimension of polynomial rings	CO 4, CO 5
Unit 5		
A	Algebras over a field, Graded rings, Polynomial rings over fields	CO 5, CO 6
B	Hilbert series, Proj of a graded ring, Homogenization,	CO 5, CO 6
C	Computing syzygies, Koszul complex, Castelnuovo Mumford regularity.	CO 5, CO 6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1.) W. Vasconcelos, D. Eisenbud, et al. , Computational Methods in Commutative Algebra and Algebraic Geometry: (Algorithms and Computation in Mathematics), Springer	
Other References	1.) M. Kreuzer and L. Robbiano, Computational Commutative	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO $\mathbf{C O}$	$\begin{gathered} \hline \text { PO } \\ 1 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \text { PO } \\ 6 \end{gathered}$	$\begin{gathered} \text { PO } \\ 7 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ \mathbf{8} \end{array}$	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	$\begin{gathered} \text { PO } \\ 10 \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 2 \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ 3 \end{array}$
CMS405.1	3	3	2	2		2					2	2	3	
CMS405.2	2	3	2	2		2					2	2	3	
CMS405.3	2	2	2	2		2					2	2	3	
CMS405.4	2	3	2	2		2					2	2	3	
CMS405.5	3	2	2	2		2					2	2	3	
CMS405.6	3	2	2	2		2					2	2	3	
Average	2.5	2.5	2.0	2.0		2.0					2.0	2.0	3.0	

Sch	l: SSBSR	Batch : 2023-27	
	ramme: (Hons)	Academic Year: 2026-27	
	ch: hematics	Semester: VIII	
1	Course Code	MMT205	
2	Course Title	FUNCTIONAL ANALYSIS	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	DSE	
5	Course Objective	To familiarize students with basic concepts of Functional analysis and given an idea of implemented the concepts of Elementary understanding of Normed linear spaces. Can perform basic Bounded linear operator and Know how to calculate system of Inner product spaces. Understand the basic concept of functional analysis and learn basic definitions and terminology associated with to functional analysis.	
6	Course Outcomes	CO1: Describe the basics of functional analysis, normed linear spaces, Holder's inequality, Minkowski's inequality and explain l^{p}-spaces, equivalence of norms and calculate banach spaces. (K2, K3, K4) CO2: Explain bounded linear spaces, finite dimensional normed space and compactness and evaluate dual of normed spaces $\square^{n} ; l^{p}$ also of $\mathrm{C}[\mathrm{a}, \mathrm{b}]$). (K2,K4,K5) CO3: Discuss the concept of open mapping and closed graph theorems, explain uniform boundedness principle and its applications.(K1,K2,K4) CO4: Write Hahn-Banach theorem and its consequence. (K6) CO5: Illustrate Inner product spaces, Hilbert spaces with examples andwrite Projection theorem, Bessel's inequality, existence of complete orthonormal basis of a Hilbert space Riesz representation theorem. (K3,K6) CO6: Describe the concept of bounded linear functional, Hilbert adjoint operator, self adjoint operator, Compact operators and write RieszSchauder theorem. (K1,K2,K6)	
7	Course Description	The primary objective of the course is to develop the understanding the normed linear spaces, bounded linear operator, open mapping and closedgraph theorems and Inner product spaces.	
8	Outline syllabus		CO Mapping
	Unit 1	Normed linear spaces	
	A	Normed linear spaces, Holder's inequality, Minkowski's inequality	CO1
	B	l^{p}-spaces, equivalence of norms, equivalence of normson a finite dimensional space, Riesz lemma,	CO1
	C	Banach spaces, examples	CO1

Unit 2	Bounded linear operator	
A	Bounded linear operator, spaces of bounded linearoperator	CO 2
B	Finite dimensional normed space and compactness	CO 2
C	Dual of normed spaces $\square^{n} ; l^{p}$ also of C $\left.[\mathrm{a}, \mathrm{b}]\right)$.	CO 2
Unit 3	Open mapping	
A	Open mapping and closed graph theorems	CO3
B	Uniform boundedness principle and its applications	CO3
C	Hahn-Banach theorem and its consequence.	CO3, CO4
Unit 4	Inner product spaces	
A	Inner product spaces, Hilbert spaces and examples	CO5
B	Projection theorem, Bessel's inequality, existence of complete orthonormal basis of a Hilbert space	CO5
C	Riesz representation theorem	CO5
Unit 5	Bounded linear functional	
A	Bounded linear functional.	CO6
B	Hilbert adjoint operator, self adjoint operator, Compact operators	CO6
C	Riesz-Schauder theorem, self-adjoint compact operators.	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1.Kreyszig, Erwin, Introductory Functional Analysis with Applications, Wiley Classics Library, John Wiley \&Sons, Inc., New York, 1989.	
Other References	1. J.B. Conway, " A course in Functional Analysis", SpringerVerlag, New York, 1990	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\begin{aligned} & \mathrm{PO} \\ & \hline \mathrm{CO} \end{aligned}$	$\begin{gathered} \hline \mathrm{PO} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 2 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ 4 \end{array}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ 6 \\ \hline \end{array}$	$\begin{gathered} \hline \text { PO } \\ 7 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 9 \end{gathered}$	$\begin{array}{\|r\|} \hline \mathrm{PO} \\ 10 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathbf{P O} \\ 11 \end{array}$	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PSO } \\ \mathbf{3} \end{gathered}$
MMT205.1	1	3	2	3	3	1					1	1	3	
MMT205.2	1	3	2	3	3	1					1	1	3	
MMT205.3	1	3	2	3	3	1					1	1	3	
MMT205.4	1	3	2	3	3	1					1	1	3	
MMT205.5	1	3	2	3	3	1					1	1	3	
MMT205.6	1	3	2	3	3	1					1	1	3	
Average	1.0	3.0	2.0	3.0	3.0	1.0					1.0	1.0	3.0	

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2026-27	
Branch: Mathematics		Semester: VIII	
1	Course Code	CMS435	
2	Course Title	Algebraic Combinatorics	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	DSE	
5	Course Objective	1.To familiarize the students with basic concepts of Algebraic Combinatorics and their applications. 2. To understand the basic and advance version of algebra.	
6	Course Outcomes	Students will be able to: CO1: Understand the basic of Mobius inversion, Hasse Diagrams, Posets, Incidence algebra, Lattice, Partition and Weisner's Theorem. (K1, K2, K3). CO2: Understand the ideals, Formal Power Series, Multisets, sequences and Regular expressions. (K1, K2, K3). CO3: Explain the theory of finite automata, Kleene-Rabin-Scott Theorem, orbits, cycle index, combinatorial species and visualization of species. (K3, K4). CO4: Explain the theoretical concept of Species, Cayley's theorem, Endofunctions and LGV lemma. (K3, K4, K5) CO5: Describe the symmetric polynomials, Labelled abaci and Pieri rule, Triangularity of Kostka matrix. (K4, K5, K6) CO6: Describe monomial expansion, RSK, application of LGV lemma, inner product and Cauchy identity and Skew Schur functions with LR rule. (K5, K6)	
7	Course Description	This course is an introduction to the fundamental of Algebraic Combinatorics. The primary objective of the course is to develop the basic understanding of Mobius inversion, Posets, Lattice, Multisets, sequences, finite automata, Combinatorial species, LGV lemma, RSK and application of LGV lemma.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1		
	A	Mobius Lnversion, Partially Ordered Sets, Hasse Diagrams, Isomorphisms of Posets, Maximal, Minimal, Greatest, Least, Induced Subposets, Incidence Algebras, Inversion in Incidence Algebras	CO 1
	B	Mobius Inversion, Product Posets and their Mobius Functions, Opposite of a Poset, The Poset of Set Partitions, Connected Structures, Lattices, Weisner's Theorem, The Lattice of NonCrossing Partitions	CO 1

	Distribution		
	Text book/s*	1. M. Lothaire, Algebraic Combinatorics on words, Cambridge University Press.	
	Other References	1.R. P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S}$	$\mathbf{P S O}$	$\mathbf{P S O}$	PSO										
$\mathbf{y y}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
CO	3	3	2	2		2					2	2	3	
CMS435.1	2	3	2	2		2					2	2	3	
CMS435.2	2	2	2	2		2					2	2	3	
CMS435.3	2	3	2	2		2					2	2	3	
CMS435.4	2	2	2	2		2					2	2	3	
CMS435.6	3	2	2	2		2					2	2	3	
Average	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{2 . 0}$					$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	

	ol: SSBSR	Batch: 2023-26
	ramme: B.Sc. s.)	Academic Year: 2024-25
	ch: hematics	Semester: VIII
1	Course Code	CMS437
2	Course Title	Applied Linear Algebra in AI and ML
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	DSE
5	Course Objective	1.To be familiarize students with the important concepts and computational techniques in linear algebra useful for AI and ML. 2.To understand the basic concept of Linear algebra, optimization techniques and statistical methods together form essential tools for most of the algorithms in artificial intelligence and machine learning.
6	Course Outcomes	Students will be able to: CO1: Explain the fundamental knowledge of Linear algebra and least squares solution, parameter estimation problems, concept of cost function. (K1,K2, K3). CO2: Explain the relation to parameter estimation, constrained least squares, multi-objective least squares, applications to portfolio optimization, (K2, K3, K4). CO3: Describe the sparse solutions to underdetermined systems of linear equations, applications to dictionary learning, eigenvalue eigenvector decomposition of square matrices, spectral theorem for symmetric matrices.(K3,K4,K5). CO4: Enumerate fundamentals of SVD, multicollinearity problem and applications to principal component analysis (PCA) and dimensionality reduction, power method, application to Google page ranking algorithm.(K2,K3,K4,K5) CO5: Describe the inverse eigenvalue problem, construction of Markov chains from the given stationary distribution, low rank approximation and structured low rank approximation problem (SLRA) (K3,K4,K5). CO6: Explain the fundamental knowledge of Autoregressive model order selection using Hankel SLRA. approximate GCD computation and apblication to image de- blurring. tensors and CP tensor decomposition. tensor decomposition based sparse learning in deep networks, matrix completion problems, application to collaborative filtering. (K4, K5, K6).
7	Course Description	In this course, we propose to build some background in these mathematical foundations and prepare students to take on advanced study or research in the field of AI and ML. The objective of this course is to familiarize

		students with the important concepts and computational techniques in linear algebra useful for AI and ML applications.	
8	Outline syllabus		$\begin{array}{\|c\|} \hline \text { CO } \\ \text { Mapping } \end{array}$
	Unit 1	Vector Space and Linear Algebra	
	A	Define the Vectors, operations on vectors, vector spaces and subspaces, inner product and vector norm.	CO1
	B	Find the linear dependence and independence, Matrices, linear transformations, orthogonal matrices.	CO1
	C	Solve the Svstem of linear equations. existence and uniaueness, left and right inverses, pseudo inverse, triangular systems	CO1
	Unit 2	Matrix LU Method and QR decomposition	
	A	LU decomposition and computational complexitv. rotators and reflectors. OR decomposition, Gram Schmidt Orthogonalization	CO2
	B	Condition number of a sauare matrix. geometric interbretation. norm of matrix, sensitivity analysis results for the system of linear equations.	CO2
	C	Linear least squares, existence and uniqueness, geometrical interpretation, data fitting with least squares.	CO2
	Unit 3	Vector Regression Models:	
	A	Find the Feature engineering. andlication to Vector autoregressive models. fitting with continuous and discontinuous piecewise linear function.	CO3
	B	Anvlication of least sauares to classification, two-class and multi-class least squares classifiers.	CO3
	C	Explain the Polynomial classifiers, application to MNIST data set.	CO3
	Unit 4	Least Square Method;	
	A	Explain the Multi-objective least squares, applications to estimation and regularized inversion, regularized data fitting and application to image de-blurring, constrained least squares, application to portfolio optimization.	CO4
	B	Define the Eigenvalue eigenvector decomposition of square matrices, spectral theorem for symmetric matrices.	CO4
	C	Describe the SVD. relation to condition number. sensitivity analvsis of least sauares problems, variation in parameter estimates in regression.	CO4
	Unit 5	PCA and application	
	A	Define the Multicollinearitv problem and apdlications to principal combonent analvsis (PCA) and dimensionalitv reduction, power method, application to Google page ranking	CO5, CO6

....... *..........

		algorithm.	
	B	Underdetermined svstems of linear eauations. least norm solutions. sparse solutions. andlications in dictionarv learning and sparse code recoverv. inverse eigenvalue problem. anplication in construction of Markov chains from the given stationary distribution	CO5, CO6
C	Explain the Low rank apbroximation (LRA) and structured low rank anproximation problem (SLRA). apllication to model order selection in time series, alternating projections for computing LRA and SLRA	CO5, CO6	
	Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%		
Text book/s*	1.Introduction to Applied Linear Algebra- Vectors, Matrices, and Least Squares, Stephen Boyd and Lieven Vandenberghe, Cambridge University Press, 2018		
Other References	1.Fundamentals of Matrix Computations, David Watkins, Wiley, 2010		

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO CO	$\begin{gathered} \hline \text { PO } \\ 1 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 3 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 6 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ 7 \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{P O} \\ \mathbf{8} \end{array}$	$\begin{gathered} \hline \text { PO } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 10 \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ 11 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 1 \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ 2 \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ 3 \end{array}$
CMS437.1	3	3	2	2		2				2	2	2	3	
CMS437.2	2	3	2	2		2				2	2	2	3	
CMS437.3	2	2	2	2		2				2	2	2	3	
CMS437.4	2	3	2	2		2				2	2	2	3	
CMS437.5	3	2	2	2		2				2	2	2	3	
CMS437.6	3	2	2	2		2				2	2	2	3	
Average	2.5	2.5	2.0	2.0		2.0				2.0	2.0	2.0	3.0	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\begin{aligned} & \hline \text { PO } \\ & \hline \text { CO } \end{aligned}$	$\begin{gathered} \hline \text { PO } \\ 1 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 3 \end{gathered}$	$\begin{gathered} \text { PO } \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 7 \end{gathered}$	$\left\lvert\, \begin{array}{c\|} \hline \mathbf{P O} \\ 8 \end{array}\right.$	$\begin{gathered} \hline \text { PO } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ \mathbf{1 1} \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 2 \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ 3 \end{array}$
CMS436.1	3	3	2	2	1	2				2	2	2	3	
CMS436.2	2	3	2	2	1	2				2	2	2	3	
CMS436.3	2	2	2	2	1	2				2	2	2	3	
CMS436.4	2	3	2	2	1	2				2	2	2	3	
CMS436.5	3	2	2	2	1	2				2	2	2	3	
CMS436.6	3	2	2	2	1	2				2	2	2	3	
Average	2.5	2.5	2.0	2.0	1.0	2.0				2.0	2.0	2.0	3.0	

School: SSBSR Programme: B.Sc. (Hons.)		Batch: 2023-27	
		Academic Year: 2024-25	
Branch: Mathematics		Semester: III	
1	Course Code	BDA216	
2	Course Title	Statistical Inference	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	DSE	
5	Course Objective	To introduce concepts of statistical analysis of descriptive statistics, logic, and analytical tools, analyze and communicate quantitative data verbally, graphically, symbolically, and numerically. To make students familiar with the concept of Probability and Statistics and hypothesis.	
6	Course Outcomes	CO1: Describe the process of statistical analysis of descriptive statistics, the principle of least square, lines of regression, simple linear regression, and evaluate multiple linear regression, coefficient of multiple determination. (K2, K5) CO2: Describe the process of fitting polynomials and exponential curves. (K2) CO3: Explain the criteria for obtaining a good estimator. (K2, K3) CO4: Calculate and interpret the point estimation, confidence interval, and construction of confidence intervals using a pivotal, shortest expected length confidence interval. (K2, K3) CO5: Understand the null hypothesis, alternative hypothesis, type I error, type II error, level of significance, p-value, and power of the test, and develop the ability to use a one-sample t-test, two-sample t-test, and paired-sample t-test. Variance tests based on normal distribution one-sample and two-sample problems. (K2, K5) CO6: Develop the skills to interpret the results of statistical analysis by using the Z-test, F-test, and chi-square test for goodness of fit. One-way and Two-way analysis of variance (ANOVA) techniques. (K2, K5)	
7	Course Description	This is an advanced course in statistics. Students are introduced to the f concepts involved in using sample data to make inferences about populations. Included are the study of measures of central tendency and dispersion, finite probability, statistical inferences from large and small samples, linear regression, and correlation and hypothesis.	
8	Outline syllabus		CO Mapping
	Unit 1		
	A	Statistical analysis of descriptive statistics, the principle of least square, lines of regression, simple linear regression	CO1
	B	Coefficient of determination. Multiple linear regression, coefficient of multiple determination.	CO2
	C	Fitting of polynomials and exponential curves.	CO2
	Unit 2		
	A	Criteria for obtaining a good estimator: unbiasedness, consistency, efficiency, and sufficiency.	CO3
	B	Minimal sufficient statistic.	CO3
	C	Uniformly minimum variance unbiased estimator, complete statistic.	CO3
	Unit 3		
	A	Method of point estimation: Method of moments, maximum likelihood estimator, and its properties mean square error (MSE).	CO4
	B	Method of minimum chi-square, method of moments, Least square and their properties.	CO4

C	Interval estimation: confidence intervals Confidence interval, construction of	CO4
Unit 4		
A	Null hypothesis, alternative hypothesis, type I error, type II error, level of significance, p-value, and power of the test.	CO5
B	Tests for mean based on normal distribution- one-sample t-test, two-sample t-test, paired-sample t-test.	CO5
C	Tests for variance based on normal distribution- one-sample and two-sample problem	CO5
Unit 5		
A	The large sample size test: Z-test, F-test, and Chi-square test for goodness of fit.	CO6
B	One-way and Two-way analysis of variance (ANOVA) techniques.	CO6
C	Statistical analysis of descriptive statistics, the principle of least square, lines of regression, simple linear regression	CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Daniel, Wayne W., "Biostatistics": Basic concept and Methodology for Health Science.	
Other References	1. Goon, A.M., Gupta, A.K. \& Das Gupta. Fundamental of Statistics.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
BDA216.1	3	3	2	2		1					2		1	
BDA216.2	2	3	3	2		1					3		1	
BDA216.3	2	2	2	3		1					2		1	
BDA216.4	2	3	2	2		1					2		1	
BDA216.5	3	3	2	2		1					2		1	
BDA216.6	3	3	2	3		1					2		1	
Average	$\mathbf{2 . 3}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{2 . 1}$		$\mathbf{1 . 0}$					$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	

	I: SSBSR	Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2024-25	
Branch: Mathematics		Semester: III	
1	Course Code	BDA217	
2	Course Title	Data Preparation and Data Cleaning	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	DSE	
5	Course Objective	To make students familiar with the concepts of preparing your data; Working with dates and times, Data Cleaning, Data Structure, and cleaning Text Data.	
6	Course Outcomes	CO1: Describe preparing data: Rearranging and removing variables, renaming variables, Variable classes, calculating new numeric variables, and explaining how to Dividing a continuous variable into categories, and working with factor variables. (K1, K3) CO2: Discuss how to work with dates and times, adding and removing observations and explain about removing duplicate observations, selecting a subset of the data, selecting a random sample from a dataset, and sorting a dataset. (K2, K3, K4) CO3: Explain the data cleaning and technical representation of data. (K2, K3, K4) CO4: Discuss the data structure. (K2, K6) CO5: Describe Character Normalization, Encoding Conversion and Unicode Normalization, Character Conversion, and Transliteration. (K1, K2) CO6: Discuss and evaluate Generating Regular Expressions in R, Common String Processing Tasks in R, Approximate Text Matching, String Metrics, String Metrics, and Approximate Text Matching in R.	
7	Course Description	This course introduces preparing your data; Working with dates and times, Data Cleaning, Data Structure, and cleaning Text Data.	
8			
	Unit 1	Summarizing Data and Tables Preparing your data: Rearranging and removing variables, renaming variables, Variable classes, Calculating new numeric variables,	CO1
	A		
	B	Dividing a continuous variable into categories, Working with factor variables,	CO1
	C	Manipulating character variables: Concatenating character strings, extracting a substring, Searching a character variable.	CO1
	Unit 2		CO 2
	A	Working with dates and times, Adding and removing observations,	
	B	Removing duplicate observations, Selecting a subset of the data,	CO2
	C	Selecting a random sample from a dataset, Sorting a dataset.	CO2
	Unit 3	(${ }^{\text {a }}$	
	A	Data Cleaning: The Statistical Value Chain, Raw Data, Input Data, Valid Data, Statistics, and Output.	CO3
	B	Technical Representation of Data: Numeric Data. Integers. Integers in R. Real Numbers. Double Precision Numbers. The Concent of Machine Precision. Conseauences of Working with Floating Point Numbers, Dealing with the Consequences,	CO3

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{1} \mathbf{\mathbf { 1 }}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
BDA217.1		2	1	2		1		3			1	1	1	
BDA217.2		2	1	2		1		3			1	1	1	
BDA217.3		2	1	2		1		3			1	1	1	
BDA217.4		2	1	2		1		3			1	1	1	
BDA217.5		2	1	2		1		3			1	1	1	
BDA217.6		2	1	2		1		3			1	1	1	
Average		$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$		$\mathbf{3 . 0}$			$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	

School: SSBSR Programme: B.Sc. (Hons.)		Batch: 2023-27	
		Academic Year: 2024-25	
Branch: Mathematics		Semester: III	
1	Course Code	BDA261	
2	Course Title	Statistical Inference Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	DSE	
5	Course Objective	To introduce concepts of statistical analysis of descriptive statistics, logics, and analytical tools, analyze and communicate quantitative data verbally, graphically, symbolically, and numerically. To make students familiar with the concept of Probability and Statistics and hypothesis.	
6	Course Outcomes	CO1: Describe the process of statistical analysis of descriptive statistics, the principle of least square, lines of regression, simple linear regression, and evaluate multiple linear regression, coefficient of multiple determination. (K2, K5) CO2: Describe the process of fitting of polynomials and exponential curves. (K2) CO3: Explain the criteria for obtaining a good estimator. (K2, K3) CO4: Calculate and interpret the point estimation, confidence interval, and construction of confidence intervals using a pivotal, shortest expected length confidence interval. (K2, K3) CO5: Understand the null hypothesis, alternative hypothesis, type I error, type II error, level of significance, p-value, and power of the test, and develop the ability to use a one-sample t-test, two-sample t-test, and paired-sample t-test. Tests for variance based on normal distribution - one-sample and two-sample problem. (K2, K5) CO6: Develop the skills to interpret the results of statistical analysis by using the Z-test, F-test, and Chi-square test for goodness of fit. One-way and Two-way analysis of variance (ANOVA) techniques. (K2, K5)	
7	Course Description	This is an advances course in statistics. Students are introduced to the f concepts involved in using sample data to make inferences about populations. Included are the study of measures of central tendency and dispersion, finite probability, statistical inferences from large and small samples, linear regression, and correlation and hypothesis.	
8	Outline syllabus		$\begin{gathered} \text { CO } \\ \text { Mapping } \\ \hline \end{gathered}$
	Unit 1	Lab. Experiment 1	
	A, B, C	Problem-based on the principle of least square, Simple linear regression, Multiple linear regression	CO1
	Unit 2	Lab. Experiment 2	
	A, B, C	Problem-based on obtaining a good estimator: Unbiasedness, Consistency, Efficiency, Sufficiency.	CO 2
	Unit 3	Lab. Experiment 3	
	A, B, C	Problem-based on Point and Interval Estimation.	CO3
	Unit 4	Lab. Experiment 4	
	A, B, C	Problem-based on Hypothesis Testing.	CO4
	Unit 5	Lab. Experiment 5	
	A, B, C	Problem-based on One-way and Two-way analysis of variance (ANOVA) techniques.	C05, CO6

Mode of examination	Practical+Viva
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%
Text book/s*	1. Goon A.M., Gupta M.K. and Dasgupta B. (2008):Fundamentals of Statistics, World Press.
Other References	1. Daniel, Wayne W., "Biostatistics": Basic Concept and Methodology forHealth Science.

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA261.1	1	2	2	2		1	1	3	1	2	2	1	2	2
BDA261.2	1	2	3	2		1	1	3	1	2	2	1	2	2
BDA261.3	1	2	2	2		1	1	3	1	2	2	1	2	2
BDA261.4	1	2	2	2		1	1	3	1	2	2	1	2	2
BDA261.5	1	2	2	2		1	1	3	1	2	2	1	2	2
BDA261.6	1	2	2	2		1	1	3	1	2	2	1	2	2
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2024-25	
Branch: Mathematics		Semester: IV	
1	Course Code	BDA202	
2	Course Title	Data Base Management Systems	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	DSE	
5	Course Objective	To make students familiar with the basic concepts of Databases and Transactions and Data Models, Database Design, ER-Diagram and Unified Modeling Language, Relational Algebra and Calculus, Constraints, Views and SQL, Transaction management, and Concurrency control.	
6	Course Outcomes	CO1: Discuss the basics of Databases and Transactions and Data Models. (K1, K2, K3) CO2: Discuss about Database Design, ER-Diagram, and Unified Modeling Language. (K1, K3) CO3: Explain relational algebra and calculus, describe Domain relational Calculus, calculus vs algebra, and computational capabilities. (K3, K4) CO4: Explain and illustrate Constraints, Views, and SQL. (K3, K6) CO5: Evaluate different types of transaction management. (K4, K5) CO6: Explain concurrency control, time stamping methods, optimistic methods, and database recovery management. (K2, K4, K5)	
7	Course Description	This course introduces the basic concepts of Databases and Transactions and Data Models, Database Design, ER-Diagram and Unified Modeling Language, Relational Algebra and Calculus, Constraints, Views and SQL, Transaction management, and Concurrency control.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Introduction to Databases and Transactions and Data Models	
	A	What is a database system, purpose of the database system, what view of data, relational databases, database architecture.	CO1
	B	Transaction management, The importance of data models, Basic building blocks,	CO1
	C	Business rules, The evolution of data models, Degrees of data abstraction.	CO1
	Unit 2	Database Design, ER-Diagram, and Unified Modeling Language	
	A	Database design and ER Model: overview, ER-Model, Constraints, ER-Diagrams, ERD Issues, weak entity sets, Codd's rules, Relational Schemas,	CO 2
	B	Introduction to UML Relational database model: Logical view of data, keys, integrity rules.	CO 2
	C	Relational Database design: features of good relational database design, atomic domain, and Normalization (1NF, 2NF, 3NF, BCNF).	CO 2
	Unit 3	Relational Algebra and Calculus	
	A	Relational algebra: introduction, Selection, and projection, set operations, renaming, Joins, Division, syntax, semantics.	CO3
	B	Operators, grouping and ungrouping, relational comparison.	CO3
	C	Calculus: Tuple relational calculus, Domain relational Calculus, calculus vs algebra, computational capabilities.	CO3
	Unit 4	Constraints, Views, and SQL	
	A	What are constraints, types of constraints, and Integrity constraints?	CO4
	B	Views: Introduction to views, data independence, security, updates on views, and comparison between tables.	CO4
	C	Views SQL: data definition, aggregate function, Null Values,	CO4

	nested subqueries, Joined relations. Triggers.	
Unit 5	Transaction management and Concurrency control	
A	Transaction management: ACID properties, serializability, and concurrency control,	CO5, CO6
B	Lock-based concurrency control (2PL, Deadlocks), Time stamping methods.	CO5, CO6
C	Optimistic methods, database recovery management.	CO5, C06
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. "Database System Concepts", 6thEdition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill	
Other References	1 "Principles of Database and Knowledge - Base Systems", Vol 1 by J. D. Ullman, Computer science Press.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA202.1	3	3	2	2		1					1			1
BDA202.2	2	3	3	2		1					1			1
BDA202.3	2	2	2	3		1					1			1
BDA202.4	2	3	2	2		1					1			1
BDA202.5	3	3	2	2		1					1			1
BDA202.6	3	3	2	3		1					1			1
Average	$\mathbf{2 . 3}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{2 . 1}$		$\mathbf{1 . 0}$					$\mathbf{1 . 0}$			$\mathbf{1 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2024-25	
Branch: Mathematics		Semester: IV	
1	Course Code	BDA214	
2	Course Title	Sampling Theory	
3	Credits	4	
4	$\begin{array}{\|l} \hline \begin{array}{l} \text { Contact Hours } \\ \text { (L-T-P) } \end{array} \\ \hline \end{array}$	4-0-0	
	Course Status	DSE	
5	Course Objective	To make students familiar with the concept of sample and population, complete enumeration versus sampling. The concept of Systematic Sampling, estimates of the population mean and total, variances of these estimates along with the brief of the present official statistical system in India, methods of collection of official statistics, their reliability, and limitations have been introduced.	
6	Course Outcomes	CO1: Explain and illustrate the concepts of sample and population. CO2: Describe the properties of complete enumeration versus sa random sampling with and without replacement. (K1, K2, K3) CO3: Describe estimates of the population mean, explain its estimates of these variances, and sample size determination. (K2, K3 CO4: Describe stratified random sampling, estimates of the popu total and explain its application, and illustrate systematic sampling. CO5: Describe the ratio and regression methods of estimatio variances in terms of the correlation coefficient between X and Y fo method and their comparison with SRS. (K2, K3, K6) CO6: Describe and analyze the basic concepts present official stati India, and methods of collection of official statistics. (K1, K2, K4)	K3, K4) ing; explain ication and 4) mean and , K3, K4) and evaluate e regression 1 system in
7	Course Description	This course initiates the advanced concept of sample and population, complete enumeration versus sampling. The concept of Systematic Sampling, estimates of the population mean and total, variances of these estimates along with the brief of the present official statistical system in India, methods of collection of official statistics, their reliability, and limitations have been introduced.	
	Unit 1		
	A	Concept of sample and population, complete enumeration versus sampling	CO1
	B	Sampling and non-sampling errors, requirements of a good sample,	CO1
	C	Simple random sampling with and without replacement.	CO2
	Unit 2		
	A	Estimates of the population mean, total, and proportion,	CO3
	B	Variances of these estimates	CO3
	C	Estimates of theses variances and sample size determination.	CO3
	Unit 3		
	A	Stratified random sampling, estimates of the population mean, and total variances of these estimates.	CO4
	B	Proportional and optimum allocations and their comparison with SRS.	CO4
	C	Systematic Sampling, estimates of the population mean and total, variances of these estimates.	CO4

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA214.1	3	3	2	2		1					1	1	1	
BDA214.2	2	3	3	2		1					1	1	1	
BDA214.3	2	2	2	3		1					1	1	1	
BDA214.4	2	3	2	2		1					1	1	1	
BDA214.5	3	3	2	2		1					1	1	1	
BDA214.6	3	3	2	3		1					1	1	1	
Average	$\mathbf{2 . 3}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{2 . 1}$		$\mathbf{1 . 0}$					$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	

A, B, C	Problem-based on quality control procedure, and data Integration.	CO4, CO5
Unit 5	Lab. Experiment 5	
A, B, C	Problem-based on tools and techniques for data cleaning.	CO5, CO6
Mode of examination	Practical + Viva	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1. Bad Data Handbook: Cleaning Up the Data So You Can Get Back to Work by Q. Ethan McCallum	
Other References	1. Data Wrangling with Python by Jacqueline Kazil	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA262.1	1	2	2	2		1	1	3	1	1	2	1	2	2
BDA262.2	1	2	3	2		1	1	3	1	1	2	1	2	2
BDA262.3	1	2	2	2		1	1	3	1	1	2	1	2	2
BDA262.4	1	2	2	2		1	1	3	1	1	2	1	2	2
BDA262.5	1	2	2	2		1	1	3	1	1	2	1	2	2
BDA262.6	1	2	2	2		1	1	3	1	1	2	1	2	2
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2024-25	
Branch: Mathematics		Semester: IV	
1	Course Code	BDA271	
2	Course Title	Data Base Management Systems Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	DSE	
5	Course Objective	To make students familiar with the data structure \& algorithms. The concept of data organizations, data structure operations; analysis of an algorithm; Stacks and Queues; Linked Lists; Sorting and Hashing; Graph.	
6	Course Outcomes	CO1: Explain and illustrate the concepts of basic terminologies: ele organizations, data structure operations: insertion, deletion, travers K3, K4) CO2: Describe the analysis of an algorithm, asymptotic; notations trade-off. (K1, K2, K3) CO3: Describe Linear Search and Binary Search Techniques and complexity analysis. (K2, K3, K4) CO4: Describe ADT Stack and its operations: Algorithms and their analysis, Applications of Stacks; Types of Queue; Algorithms and ther (K2, K3, K4) CO5: Describe the Singly-linked lists; trees; algorithms and analys K6) CO6: Describe and analyze the basic concepts of Sorting and Hash (K1,K2, K4)	entary data , etc. (K2, time-space xplain their complexity ir analysis. (K2, K3, g; Graphs.
7	Course Description	This course introduces data structure \& algorithms. The concept of data organizations, data structure operations; analysis of an algorithm; Stacks and Queues; Linked Lists; Sorting and Hashing; Graph.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1		
	A, B, C	Problem-based on uses functions to perform the following operations on a singly linked list i) Creation ii) Insertion iii) Deletion iv) Traversal. Problem-based on uses functions to perform the following operations on the doubly linked list i) Creation ii) Insertion iii) Deletion iv) Traversal.	CO1, CO2
	Unit 2		
	A, B, C	Problem-based on uses functions to perform the following operations on circular linked List i) Creation ii) Insertion iii) Deletion iv) Traversal. Problem-based on implement stack (its operations) using i) Arrays ii) Linked list(Pointers).	CO1, CO3
	Unit 3		

...... *..........

A, B, C	Problem-based on implementing Queue (its operations) using i) Arrays ii) Linked list (Pointers). Problem-based on implementing Circular Queue using arrays. Problem-based on both recursive and nonrecursive functions to perform the following searching operations for a Key value in a given list of integers: a) Linear search b) Binary search.	CO1, CO4
Unit 4		
A, B, C	Problem-based on implements the following sorting i) Bubble sort ii) Selection sort iii) Quick sort. Problem-based on implements the following i) Insertion sort ii) Merge sort iii) Heap sort. Problembased on implementing all the functions of a dictionary (ADT) using Linked List.	CO5
Unit 5		
A, B, C	Problem-based on performing the following operations: a) Insert an element into a binary search tree. b) Delete an element from a binary search tree. c) Search for a key element in a binary search tree. Problem-based on to implement the tree traversal methods. Problem-based on performing the following operations: a) Insert an element into an AVL tree. b) Delete an element from an AVL tree. c) Search for a key element in an AVL tree.	CO5, CO6
Mode of examination	Practical+Viva	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1. Fundamentals of Data Structures", Illustrated Edition by Ellis Horowitz, SartajSahni, Computer Science Press.	
Other References	1. Algorithms, Data Structures, and Problem-Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison-Wesley Publishing Company.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
BDA271.1	1	2	2	2		1	1	3	1	2	2	1		2
BDA271.2	1	2	3	2		1	1	3	1	2	2	1		2
BDA271.3	1	2	2	2		1	1	3	1	2	2	1		2
BDA271.4	1	2	2	2		1	1	3	1	2	2	1		2
BDA271.5	1	2	2	2		1	1	3	1	2	2	1		2
BDA271.6	1	2	2	2		1	1	3	1	2	2	1		2
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$		$\mathbf{2 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2024-25	
Branch: Mathematics		Semester: IV	
1	Course Code	BDA272	
2	Course Title	Sampling Theory Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	DSE	
5	Course Objective	This course initiates the advanced concept of sample and population, complete enumeration versus sampling. The concept of Systematic Sampling, estimates of the population mean and total, variances of these estimates along with the brief of the present official statistical system in India, methods of collection of official statistics, their reliability, and limitations have been introduced.	
6	Course Outcomes	CO1: Explain and illustrate the concepts of sample and population. (K2 CO2: Describe the properties of complete enumeration versus sampl random sampling with and without replacement. (K1, K2, K3) CO3: Describe estimates of the population mean, explain its appl estimates of these variances, and sample size determination. (K2, K3, K4) CO4: Describe stratified random sampling, estimates of the populatio total and explain its application, and illustrate systematic sampling. (K2 CO5: Describe the ratio and regression methods of estimation an variances in terms of the correlation coefficient between X and regression method and their comparison with SRS. (K2, K3, K6). CO6: Describe and analyze the basic concepts present official statistica India, and methods of collection of official statistics. (K1,K2, K4).	, K3, K4) ng; explain cation and 4) mean and , K3, K4). d evaluate Y for the 1 system in
7	Course Description	This is an advanced course in statistics. Students are introduced to the f concepts involved in using sample data to make inferences about populations. Included are the study of measures of central tendency and dispersion, finite probability, statistical inferences from large and small samples, linear regression, and correlation and hypothesis.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Lab. Experiment 1	
	A, B, C	Problem based on how to draw the sample from the population in SRSWR and SRSWOR	CO1, CO2
	Unit 2	Lab. Experiment 2	
	A, B, C	Problem-based on simple random sampling and find that SRSWOR performs better than SRSWR	CO1, CO3
	Unit 3	Lab. Experiment 3	
	A, B, C	Problem-based on stratified random sampling	CO1, CO4

	Unit 4	Lab. Experiment 4	
	A, B, C	Problem-based on systematic sampling	CO5
	Unit 5	Lab. Experiment 5	CO6
	A, B, C	Problem-based on ratio and regression type estimator.	
	Mode of examination	Practical+Viva	
	Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
	Text book/s*	1.Goon A.M., Gupta M.K. and Dasgupta B (2001): Fundamentals of Statistics (Vol.2), Word Press.	
	Other References	1. Cochran W.G (1984): Sampling Techniques (3rd Ed.), Wiley Eastern.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA272.1	1	2	2	2		1	1	3	1		2	1		2
BDA272.2	1	2	3	2		1	1	3	1		2	1		2
BDA272.3	1	2	2	2		1	1	3	1		2	1		2
BDA272.4	1	2	2	2		1	1	3	1		2	1		2
BDA272.5	1	2	2	2		1	1	3	1		2	1		2
BDA272.6	1	2	2	2		1	1	3	1		2	1		2
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$		$\mathbf{2 . 0}$	$\mathbf{1 . 0}$		$\mathbf{2 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2025-26	
Branch: Mathematics		Semester: V	
1	Course Code	BDA320	
2	Course Title	Advanced Statistical Analysis	
3	Credits	2	
4	Contact Hours (L-T-P)	2-0-0	
	Course Status	DSE	
5	Course Objective	After completing this course, students are expected to become a specialist to analyze the observed phenomena at in advanced statistical level. More importantly, students are expected to provide an analytical solution to a problem using appropriately selected models and data and discover meaningful knowledge from thesolution.	
6	Course Outcomes	CO1: Describe how to Differentiate various probability distributions. (K1, K2) CO2: Understand the concept of estimation. (K2, K3) CO3: Know how to recognize the sampling distributions. (K2, K3) CO4: Learn non-parametric tests such as the chi-Square test for Independence as well as Goodness of Fit. (K3, K4) CO5: Know how to apply various statistics and analyses. (K3, K4, K5) CO6: Able to know statistical technique implantation in a practical situation. (K3, K4, K5)	
7	Course Description	This course provides students with the statistical foundation of the various problems of real life. Students will learn to recognize the main features of the processes under investigation that could be analyzed in terms of advanced statistical approaches. Grading this course will help the future specialist to analyze the observed phenomena in advanced statistical level.	
8			$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1		
	A	Use of discrete distribution (Uniform, Binomial, and Poisson) in real-life problems.	CO1
	B	Use of continuous distribution (Normal, Exponential, and Gamma) in real-life problems.	CO1
	C	Its applications in Industrial work.	CO1
	Unit 2		
	A	Sampling Distributions.	CO 2

B	$\chi 2$ distribution properties and Interrelationships.	CO 2
C	t distribution properties and Interrelationships.	CO 2
Unit 3		
A	F distribution properties.	CO3
B	Interrelationship of $\chi 2, \mathrm{t}, \mathrm{F}$ distributions.	CO3, CO6
C	Point Estimation, Interval estimation for mean, the variance of normalpopulation, and proportion of the binomial population.	CO3, CO6
Unit 4		
A	Type I and Type II errors, Critical Region, Size of the test, P value,Power.	CO4, CO6
B	Large Sample test -Z test.	CO4, CO6
C	Large Sample test - Chi-Square test-goodness of fit, the test of independence.	CO4, CO6
Unit 5		
A	ANOVA,	CO5, CO6
B	Cluster and Principal Components Analysis (PCA).	CO5, CO6
C	Factor Analysis, Canonical Correlation	CO5, CO6
Mode of examination	Practical Based	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Westffall, P., \& Henning, K. S. (2013): Understanding advanced statistical methods. CRC Press.	
Other References	1. Croxton, Fredrick E., Cowden, Dudley J. and Klein, S. (1973): Applied General Statistics, 3rd Edition. Prentice Hall of India Pvt. Ltd.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA320.1		2	1	2		1		3		2	2		1	1
BDA320.2		2	1	2		1		3		2	2		1	1
BDA320.3		2	1	2		1		3		2	2		1	1
BDA320.4		2	1	2		1		3		2	2		1	1
BDA320.5		2	1	2		1		3		2	2		1	1
BDA320.6		2	1	2		1		3		2	2		1	1
Average		$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{3 . 0}$		$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	

	C	Randomization procedure, analysis and interpretation of results.	CO3
	Unit 4		CO4
	A	Factorial experiments,	CO4
	C	Confounding in factorial experiments-application in 2n and 3n factorial experiments.	Factorial experiments with extra treatment(s). Split plot and Strip plot designs
	Unit 5	CO4	
	A	Groups of experiments. Analysis of covariance.	CO5, CO6
	C	Missing plot technique and its application to RCBD, LSD. Cross- over design. Sampling in field experiments.	CO5, CO6
	Mode of examination	Transformation of data. Response surfaces. Experiments with mixtures.	CO5, CO6
	Weightage Distribution	Practical Based Text book/s*	1. Westfall. P., \& Henning, K. S. (2013): Understanding advanced statistical methods. CRC Press.
	Other References	1. Cochran,W.G.andCox,G.M.1957.ExperimentalDesigns.John WileyandSons.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA321.1		2	1	2		1		3			2		1	1
BDA321.2		2	1	2		1		3			2		1	1
BDA321.3		2	1	2		1		3			2		1	1
BDA321.4		2	1	2		1		3			2		1	1
BDA321.5		2	1	2		1		3			2		1	1
BDA321.6		2	1	2		1		3			2		1	1
Average		$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$		$\mathbf{3 . 0}$			$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2025-26	
Branch: Mathematics		Semester: V	
1	Course Code	BDA363	
2	Course Title	Experimental Design Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	DSE	
5	Course Objective	The course objective is to learn how to plan, design and conduct experiments efficiently and effectively, and analyze the resulting data to obtain objective conclusions.	
6	Course Outcomes	After the completion of this course, the student will be able to CO1: Build knowledge of basic principles of design of experiment. CO2: Make use of the concept to various simple types of experimental designs. CO3: Make use of the concept to f complex types of experimental designs. CO4: Evaluate the factorial experiment, confounding and split/strip plot design. CO5: Apply concept of missing-plot techniques, cross-over design, and transformation of data and response auestion. CO6: How to design and conduct experiments, and how to analyze them properly to answer various research questions	
7	Course Description	The course objective is to learn how to plan, design and conduct experiments efficiently and effectively, and analyze the resulting data to obtain objective conclusions.	
8	Outline syllabus		$\begin{gathered} \text { CO } \\ \text { Mapping } \end{gathered}$
	Unit 1		
	A, B, C	Problem based on uniformity trial data analysis, formation of plots and blocks.	CO1
	Unit 2		
	A, B, C	Problem based on Fair field Smith Law, Analysis of data obtained from CRD, RBD, LSD	CO2
	Unit 3		
	A, B, C	Problem based on analysis of factorial experiments without and with confounding.	CO3
	Unit 4		
	A, B, C	Problem based on Analysis of Covariance	CO4, CO5
	Unit 5		
	A, B, C	Analysis with missing data, Split plot and strip plot designs.	CO6
	Mode of examination	Practical+Viva	
	Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
	Text book/s*	1. Westfall, P., \& Henning, K. S. (2013): Understanding advanced statistical methods. CRC Press.	
	Other References	1.Gomez,K.A.andGomez,A.A.1984.StatisticalProceduresforAgricu lturalResearch.JohnWiley\&Sons.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
BDA363.1	1	2	2	2		1	1	3	1			1	2	
BDA363.2	1	2	3	2		1	1	3	1			1	2	
BDA363.3	1	2	2	2		1	1	3	1			1	2	
BDA363.4	1	2	2	2		1	1	3	1			1	2	
BDA363.5	1	2	2	2		1	1	3	1			1	2	
BDA363.6	1	2	2	2		1	1	3	1			1	2	
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$			$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	

	ol: SSBSR	Batch: 2023-27	
$\begin{aligned} & \hline \text { Pro } \\ & \mathbf{(H)} \end{aligned}$	ramme: B.Sc. s.)	Academic Year: 2025-26	
Bra	ch: Mathematics	Semester: V	
1	Course Code	BDA359	
2	Course Title	Advanced Statistical Analysis Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	DSE	
5	Course Objective	After completing this course, students are expected to become a specialist to analyze the observed phenomena at in advanced statistical level. More importantly, students are expected to provide an analytical solutions to a problem using appropriately selected models and data and discover meaningful knowledge from thesolution.	
6	Course Outcomes	CO1: How to read, understand and trace the execution of prog in C language. (K2,K3, K4). CO2: Apply c programming knowledge to convert the algorith program in C(K2, K3, K4). CO3: Maximize the knowledge of Array and String concepts programming language (K1, K2). CO4: Demonstrate the concept of function, pointers, and struc K5 (K2, K3,K4). CO5: Develop the uses of computers in the engineering indus (K4,K5,K6) CO6: Discuss about the more advanced features of the (K3,K4,K6).	ms written into the C re. (K3, K4, language
7	Course Description	This course provides students with the statistical foundation of the various problems of real life. Students will learn to recognize the main features of the processes under investigation that could be analyzed in terms of advanced statistical approaches. Grading this course will help the future specialist to analyze the observed phenomena in advanced statistical level.	
8	Outline syllabus		$\underset{\text { Mapping }}{\text { CO }}$
	Unit 1	Lab. Experiment 1:	
	A, B, C	Write a c program to swap two numbers with temporary variable. Write a c program to swap two numbers without temporary variable.	CO1, CO2
	Unit 2	Lab. Experiment 2:	
	A, B, C	Write a c Program to Add Two Integers. Write a program to	CO2, CO3

	check given year is leap year.	
Unit 3	Lab. Experiment 3:	
A, B, C	Write a c program to calculate the average using arrays. Write a c program to find the largest element of the array.	CO3, CO4
Unit 4	Lab. Experiment 4:	
A, B, C	Write a function to calculate the factorial of a number. Write a c program to store information about student using the structure.	$\begin{gathered} \mathrm{CO} 4, \mathrm{CO} 5, \\ \mathrm{CO} 6 \end{gathered}$
Unit 5	Lab. Experiment 5:	
A, B, C	Write a c program to store information of a student using union. Write a c program to swap two values using pointers.	CO5, CO6
Mode of examination	Practical+Viva	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1. Yashavant Kanetkar, "Let Us C", BPB.	
Other References	1. Byron Gottfried, "Programming with C", TMH.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
BDA359.1	1	2	2	2		1	1	3	1		2	1	2	
BDA359.2	1	2	3	2		1	1	3	1		2	1	2	
BDA359.3	1	2	2	2		1	1	3	1		2	1	2	
BDA359.4	1	2	2	2		1	1	3	1		2	1	2	
BDA359.5	1	2	2	2		1	1	3	1		2	1	2	
BDA359.6	1	2	2	2		1	1	3	1		2	1	2	
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$		$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$		$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	

A	Autoregressive Integrated Moving Average (ARIMA) Models: Linear Models for Stationary Time Series, Stationary Time Series, Finite Order Moving Average (MA) Processes.	CO5
B	The First-Order Moving Average Process, MA(1), The SecondOrder Moving Average Process, MA(2), Finite Order Autoregressive Processes, First -Order Autoregressive Process, $\operatorname{AR}(1)$, Second-Order Autoregressive Process, AR(2),	CO5
C	General Autoregressive Process, AR(p), Partial Autocorrelation Function, PACF, Mixed Autoregressive- Moving Average CARMA) Processes, Time Series Model Moving Average CARMA) Processes, Pame Series Model Building, Model Identification, Parameter Estimation, Examples of Building ARIMA Models, Forecasting ARIMA Processes.	CO5
Unit 5		
A	Index Numbers: Definition, construction of index numbers, and problems thereof for weighted and unweighted index numbers including	CO6
B	Laspeyre's, Paasche's, Edgeworth-Marshall, and Fisher's. Chain index numbers,	CO6
C	Conversion of fixed-based to chain-based index numbers and vice-versa. Consumer price index numbers.	CO6
Mode of examinatio n	Theory	
Weightage Distributio n	CA:25\%; ESE:75\%	
Text book/s*	1. Daniel, Wayne W., "Biostatistics": Basic concept and Methodology for Health'Science.	
Other Reference	1. Goon, A.M., Gupta, A.K. \& Das Gupta. Fundamental of Statistics.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PSO	PSO	PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3
MDA110.1	3	3	2	2		1					3		3	
MDA110.2	2	3	3	2		1					3		3	
MDA110.3	2	2	2	3		1					3		3	
MDA110.4	2	3	2	2		1					3		3	
MDA110.5	3	3	2	2		1					3		3	
MDA110.6	3	3	2	3		1					3		3	
Average	2.3	2.6	2.0	2.1		1.0					3.0		3.0	

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2026-27	
Branch: Mathematics		Semester: VII	
1	Course Code	MDA155	
2	Course Title	Time Series, Forecasting and Index Number Lab	
3	Credits		
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	DSE	
5	Course Objective	1.To provide students with hands-on experience in working with time series data. This includes exploring different types of time series data, understanding their characteristics, and learning how to preprocess and clean the data for analysis. 2.To familiarize the students with visualizing time series data using various techniques such as line plots, scatter plots, seasonal plots, and decomposition plots. 3.To help students gain insights into the patterns, trends, and seasonal variations present in the data. 4.To familiarize the students with different time series modelling techniques, such as autoregressive integrated moving average (ARIMA) models, exponential smoothing models, or state space models. 5.The aim is to equip students with the knowledge and skills to select and apply appropriate models to analyze and forecast time series data.	
6	Course Outcomes	The student will be able to select and apply appropriate models to analyze and forecast time series data. CO1: To familiarize the students to enter time series data in Excel/R and do some data transformation and adjustments. (K1, K2, K3) CO2: To find basic descriptive of the data and determining the trend by various time series methods. (K1, K2, K3) CO3: To find the least square estimates of the linear regression model and also enable the students to check the model's adequacy. (K2, K3) CO4:To find the seasonal and cyclic variations in time series data.(K3, K4, K5) CO5: to predict new observations by applying ARIMA model (K4, K5, K6) CO6: To enable students in employing Partial autocorrelation function and Mixed auto-regressive moving average processes. (K4, K5, K6)	
7	Course Description	This is an advances course in statistics. Students are introduced to the f concepts involved in using sample data to make inferences about populations. Included are the study of measures of central tendency and dispersion, finite probability, statistical inferences from large and small samples, linear regression, and correlation and hypothesis.	
8	Outline syllabus		$\begin{array}{\|l\|} \hline \text { CO } \\ \text { Mapping } \\ \hline \end{array}$
	Unit 1	Lab. Experiment 1 Problem-based how to enter time series data in a column, with each observation in a separate cell. Ensure the data is sorted in chronological order. Data transformation and adjustments.	CO1
	A, B, C		
	Unit 2	Lab. Experiment 2 Problem-based on how to calculate basic descriptive statistics such as mean, median, and standard deviation. Analyze the	
	A, B, C		CO 2

	data's trend by the method of the freehand curve, Moving average curve, semi-average curve, and least square method.	
Unit 3	Lab. Experiment 3	
A, B, C	Problem-based on Least square estimation in the linear regression model.Model Adequacy checking. Regression models for general time series data. Prediction of new observations in time series data.	CO3
Unit 4	Lab. Experiment 4	
A, B, C	Problem-based on how to d etermine if data exhibits seasonality by calculating the seasonal indices. Methods for measuring linear trend Methods for measuring seasonal variations. Methods for measuring cyclic variations.	CO4
Unit 5	Lab. Experiment 5	
A, B, C	Problem-based on how to use software to built-in forecasting functions to generate predictions. Linear models for stationary time series. Calculations of moving averages (first and second order). General auto-regressive process. Partial autocorrelation function. Mixed auto-regressive moving average processes.	C05, CO6
Mode of examination	Practical+Viva	
Weightage Distribution	CA:25\%; CE:25\%; ESE:50\%	
Text book/s*	1.Hyndman, R. J., \& Athanasopoulos, G. (2018). Forecasting: principles and practice.	
Other References	1.Time Series Modeling for Analysis and Control: Advanced Autoregressive Techniques" Dan L. Shunk	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P O}$	$\mathbf{P O}$	$\mathbf{P O}$											
$\mathbf{1}$	$\mathbf{P O}$	$\mathbf{P S O}$	PSO	PSO										
$\mathbf{C O}$				2	1	1	1	3	1	1	3	1	2	
MDA155.1				2	1	1	1	3	1	1	3	1	2	
MDA155.2				2	1	1	1	3	1	1	3	1	2	
MDA155.3				2	1	1	1	3	1	1	3	1	2	
MDA155.4				2	1	1								
MDA155.5				2	1	1	1	3	1	1	3	1	2	
MDA155.6				2	1	1	1	3	1	1	3	1	2	
Average				$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	

\(\left.\begin{array}{|l|l|l|l|}\hline School: SSBSR \& Batch: 2023-27

\hline \begin{array}{l}Programme: B.Sc.

(Hons.)\end{array} \& Academic Year: 2026-27\end{array}\right]\)| Branch: Mathematics |
| :--- | Semester: VII | MDA111 |
| :--- |

| | Text book/s* | 1.Gibbons, J.D. \& Chakraborti, S. (2010). Nonparametric
 Statistical Inference, 5th Edition. CRC Press. | |
| :--- | :--- | :--- | :--- | :--- |
| Other | References | Bonnini, S., Corain, L., Marozzi, M. \& Salmaso, L.
 (2014). Nonparametric Hypothesis Testing Rank and
 Permutation Methods with Applications in R. Wiley. | |

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
MDA111.1	3	3	2	2	-	1	-	-	-	-	3	-	3	-
MDA111.2	2	3	3	2	-	1	-	-	-	-	3	-	3	-
MDA111.3	2	2	2	3	-	1	-	-	-	-	3	-	3	-
MDA111.4	2	3	2	2	-	1	-	-	-	-	3	-	3	-
MDA111.5	3	3	2	2	-	1	-	-	-	-	3	-	3	-
MDA111.6	3	3	2	3	-	1	-	-	-	-	3	-	3	-
Average	$\mathbf{2 . 3}$	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{2 . 1}$	-	$\mathbf{1 . 0}$	-	-	-	-	$\mathbf{3 . 0}$	-	$\mathbf{3 . 0}$	-

School: SSBSR Batch: 2023-27

Programme: B.Sc. (Hons.)	Academic Year: 2026-27	
Branch: Mathematics	Semester: VII	
1	Course Code	MDA112
$\mathbf{2}$	Course Title	Econometrics
3	Credits	3
4	Contact Hours (L-T-P)	$3-0-0$
	Course Status	DSE
5	Course Objectiv e	The objective of this course is to introduce regression analysis to students so that understand its applications in different fields of economics.
6	Course Outcome s	CO1: Able to have concise knowledge of basic regression analysis of economic data and interpret and critically evaluate outcomes of empirical analysis. (K1, K2, K3).

CO2: Analyze the theoretical background for standard methods used in empirical analyses, like properties of least squares estimators and statistical testing of hypotheses. (K2, K3, K4).

CO3: Able to apply for modern computer programs in regression analyses of empirical data, including statistical testing to investigate whether the classical assumptions in regression analysis are satisfied. (K2, K3, K4).

CO4: Design and development of a real-life model based on econometric methods. (K4, K5, K6)
CO5: Develop and apply advance methods for the implementation of econometric techniques also various functions for economic analysis and future forecasting. (K5, K6).

CO6: Enable students to make use of econometric models in their academic work. (K4,K5)

7	Course Descriptio n	The purpose of this course is to give students a solid foundation in econometric techniques, various functions for economic analysis, and future forecasting. Many of the methods introduced in this course are also useful in business, finance, and many other disciplines.	
	Unit 1		
	A	Introduction to econometrics. A review of least squares and maximum likelihood estimation methods of parameters in the classical linear regression model and their properties.	CO1
	B	Generalized least squares estimation and prediction, construction of confidence regions.	CO1
	C	Tests of hypotheses, use of dummy variables, and seasonal adjustment.	CO1
	Unit 2		
	A	Regression analysis under linear restrictions, restricted least squares estimation method and its properties.	CO 2
	B	Problem of Multicollinearity, its implications, and tools for handling the problem.	CO2
	C	Ridge regression. Heteroscedasticity, consequences, and tests for it.	CO 2
	Unit 3		
	A	Estimation procedures under heteroscedastic disturbances, Bartlett's test, Breusch Pagan test, and Goldfelf Quandt test.	CO3

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
MDA112.1	2	2	1	2	-	1	-	3	-	-	3	1	1	-
MDA112.2	2	2	1	2	-	1	-	3	-	-	3	1	1	-
MDA112.3	2	2	1	2	-	1	-	3	-	-	3	1	1	-
MDA112.4	2	2	1	2	-	1	-	3	-	-	3	1	1	-
MDA112.5	2	2	1	2	-	1	-	3	-	-	3	1	1	-
MDA112.6	2	2	1	2	-	1	-	3	-	-	3	1	1	-
Average	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	-

School: SSBSR		Batch: 2023-27	
Programme: B.Sc. (Hons.)		Academic Year: 2026-27	
Branch: Mathematics		Semester: VII	
1	Course Code	Econometrics Lab	
2	Course Title	MDA156	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	DSE	
5	Course Objective	1. To enable the student in understanding and apply mathematical and statistical techniques to economic data in R/Excel 2. To enable students to identify the causal relationship and quantify the magnitude of these relationships. 3. To make Students learn how to specify appropriate econometric models to capture the relationships between economic variables 4. To enable Students how to collect, clean, and preprocess data, conduct exploratory data analysis, and apply econometric techniques to estimate and interpret the results. 5. To familiarize the students to assess the statistical significance of relationships and variables using Hypothesis testing.	
6	Course Outcomes	The student will be able to do exploratory data analysis of a time series data set. CO1: to find the estimates of the parameters using least square estimates and maximum likelihood estimates. (K1, K2, K3) CO 2 : to find the confidence interval and test for significance of the estimates of the parameters of classical linear regression. (K1, K2, K3) CO3: to solve the Linear non-homogeneous PDE with constant coefficient. (K2, K3) CO4: to employ Regression analysis under linear restriction and employ tests for Multicollinearity. (K3, K4, K5) CO5: to check whether data is having Heteroscedasticity by applying various methods. (K4, K5, K6) CO6: to determine whether there is autocorrelation in the data by using various tests. (K4, K5, K6)	
7	Course Description	The course is an introduction to R/Excel in Econometrics. The primary objective of the course is to develop basic knowledge of employing statistical techniques to economic data	
8	Outline syllab		CO Mapping
	Unit 1	Lab. Experiment 1	CO1, CO2
	A, B, C	Problem-based on estimation of parameters of classical linear regression by maximum likelihood estimation(MLEs), Least square estimation(LSE), Generalized least square estimation	
	Unit 2	Lab. Experiment 2	
	A, B, C	Problem-based on Confidence interval of parameters, Test for the significance of estimates of the parameters. Use of dummy variable and seasonal adjustment.	CO2, CO3
	Unit 3	Lab. Experiment 3	
	A, B, C	Problem-based on Regression analysis under linear restriction Restricted least square estimation. Multicollinearity: test and tools to handle this problem	CO3, CO4

	Unit 4	Lab. Experiment 4 Problem-based on Heteroscedastic disturbances tests; Bartlett's test, Breusch pagan Test, Goldfelf Quandt test.	CO5, CO6
	A, B, C	Lab. Experiment 5	
	Unit 5	Problem-based Autocorrelation sources; Autoregressive tests for autocorrelation. Durbin Watson test, Ordinary least square, indirect least square.	CO5, CO6
A, B, C	Practical + Viva		
	Mode of examination	CA:25\%; CE:25\%; ESE:50\%	
	Weightage Distribution	1. B.D. Hahn, Essential MATLAB for Scientists and Engineers, John Wiley \& Sons, New York, NY, 1997.	
	Text book/s*	Other References	1. Applied Numerical Methods with Matlab for engineering and Scientists by stevenchapra, Mcgraw Hill..

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
MDA156.1	3	2	2	2	-	1	1	3	1	-	3	1	2	-
MDA156.2	3	2	3	2	-	1	1	3	1	-	3	1	2	-
MDA156.3	3	2	2	2	-	1	1	3	1	-	3	1	2	-
MDA156.4	3	2	2	2	-	1	1	3	1	-	3	1	2	-
MDA156.5	3	2	2	2	-	1	1	3	1	-	3	1	2	-
MDA156.6	3	2	2	2	-	1	1	3	1	-	3	1	2	-
Average	$\mathbf{3 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-

School: SSBSR Programme: B.Sc. (Hons.)			
		Academic Year: 2026-27	
Branch: Mathematics		Semester: VII	
1	Course Code	MDA113	
2	Course Title	Survival Analysis	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	DSE	
5	Course Objective	To demonstrate and intended to verse students in the techniques necessary to understand and carry out methods of research in survival analysis.	
6	Course Outcomes	CO1: Explain the concept of survival data, and the roles played by censoring, and survival and hazard functions. CO 2 : Format data appropriately for analysis, and understanding. CO3: Apply and drew the graph of survival data, and the Kaplan - Meier curve. CO4: Explain the concept ofKernel smoothed distribution estimator and kernel smoothed hazard rate estimator CO5: Describe how to fit the Cox Proportional Hazards model. CO6: Apply models to the data analysis using the Cox proportional hazards model.	
7	Course Description	A UG-level course in survival analysis, intended to verse students in the techniques necessary to understand and carry out methods of research in survival analysis. Lectures study the large-sample properties of estimators based on one-sample, k -sample and partial likelihood inference, with proofs based on counting process and Martingale theory. The theory of competing risks is studied from several angles. Many extensions of the Cox model to more complex data structures are considered.	
8	Outline syllabus		$\begin{gathered} \text { CO } \\ \text { Mapping } \end{gathered}$
	Unit 1	Basic quantities. The survival functions. The hazard functions. The mean residual life time function and median life.	
	A		CO1
	B	Common parametric models for survival data. Models for competing risks.	CO1, CO2
	C	Right censoring. Left or interval censoring. Truncation. Likelihood construction for censored and truncated data. Basic ideas for counting processes and martingales.	CO1, CO2
	Unit 2		
	A	Nonparametric estimators of the survival and cumulative hazard functions. Kaplan-Meier estimator and Nelson-Allen estimator.	CO3
	B	Point wise confidence intervals for the survival and cumulative	CO3

	hazard functions.	
C	Confidence bands for the survival function. Point and interval estimates of the mean and median survival time, and quintiles.	CO3
Unit 3		
A	Estimators of the survival function for left-truncated and rightcensored data. Summary curves for competing risks.	CO2
B	Estimating the survival function for left, double and interval censoring.	CO2
C	Estimation of the survival functions for right-truncated data. Estimation in the cohort life table or grouped data.	CO2
Unit 4		
A	Kernel smoothed distribution estimator and kernel smoothed hazard rate estimator.	CO4
B	Hypothesis testing. One-sample tests. Tests for two samples and more than two samples. Tests for trend. Stratified log-rank test.	CO4
C	Parametric models with covariates. The accelerated failure time (AFT) model. Some popular AFT models. Diagnostic methods for parametric models.	CO4
Unit 5		
A	The Cox proportional hazards model. Partial likelihoods for distinct-event time data.	CO5, CO6
B	Partial likelihood when ties are present. Local tests. Estimation of the survival function.	CO5, CO6
C	Additional materials: Model building and high-dimensional data analysis using the Cox proportional hazards model.	CO5, CO6
Mode of examination	Theory	
Weightage Distribution	CA:25\%; ESE:75\%	
Text book/s*	1. Lee, E. T. and Wang, J. W. (2003).Statistical Methods for Survival Data Analysis, 3rdEdition. John Wiley.	
Other References	1. Liu, X. (2012). Survival Analysis: Models and Applications, Wiley, New York.	

...... *.........

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	PSO	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
MDA113.1	1	2	1	2	-	1	-	3	-	-	3	-	1	-
MDA113.2	1	2	1	2	-	1	-	3	-	-	3	-	1	-
MDA113.3	1	2	1	2	-	1	-	3	-	-	3	-	1	-
MDA113.4	1	2	1	2	-	1	-	3	-	-	3	-	1	-
MDA113.5	1	2	1	2	-	1	-	3	-	-	3	-	1	-
MDA113.6	1	2	1	2	-	1	-	3	-	-	3	-	1	-
Average	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	$\mathbf{3 . 0}$	-	$\mathbf{1 . 0}$	-

Programme: B.Sc. (Hons.)		Academic Year: 2026-27	
Branch: MathematicsSemester: VIII			
1	Course Code	MDA115	
2	Course Title	Demography	
3	Credits	4	
4	$\begin{aligned} & \text { Contact Hours } \\ & \text { (L-T-P) } \end{aligned}$	4-0-0	
	Course Status	DSE	
5	Course Objective	The course tends to develop a basic understanding of demographic theory and its application to various aspects of the economy. The course will also help in presenting an economic argument and develop analytical abilities of different demographic concepts in quantitative terms.	
6	Course Outcomes	CO1: Gain a sound command over the basic tenets of demography as well as key demographic issues and illustrations in the context of a large and diverse country like India. CO2: Grasp a clear understanding of the inter-relationship between demography and the process of economic development. CO3: Comprehend the basic components of population (fertility, mortality, migration) CO4: To study established theories of population CO5: To explore various aspects of the population policy and to study its impact on socio economic issues	
7	Course Description	This course provides an introduction to demography and population studies	
8			
	Unit 1	Introduction Demography- Its definition, nature and scope, its relation with other disciplines.	CO1
	A		
	B	Theories of population-Malthusian Theory, Optimum theory of population and theory of Demographic Transition.	CO1
	C	Population growth in India, Features of Indian Population.	CO1
	Unit 2	Sources of Demographic data in India	CO2
	A	Salient features of census- including 2011 census, Civil Registration System.	
	B	National Sample Survey	CO 2
	C	Demographic Survey- National Family Health Survey - 1, 2 and 3 Relative merits and demerits of these sources.	CO2
	Unit 3	Techniques of Analysis	CO3
	A	Crude birth rate and death rate, Age specific birth rate and death rate, standardized birth rate and death rate.	
	B	Study of fertility- Total Fertility Rate, Gross Reproduction Rate and Net Reproduction Rate	CO3

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	$\mathbf{P S O}$	$\mathbf{P S O}$	$\mathbf{P S O}$											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
MDA115.1	2	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA115.2	2	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA115.3	2	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA115.4	2	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA115.5	2	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA115.6	2	2	1	2	-	1	-	3	-	-	3	3	3	-
Average	$\mathbf{2 . 0}$	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	-

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PSO	PSO	PSO											
$\mathbf{C O}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
MDA116.1	-	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA116.2	-	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA116.3	-	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA116.4	-	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA116.5	-	2	1	2	-	1	-	3	-	-	3	3	3	-
MDA116.6	-	2	1	2	-	1	-	3	-	-	3	3	3	-
Average	-	$\mathbf{2 . 0}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	-	$\mathbf{1 . 0}$	-	$\mathbf{3 . 0}$	-	-	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	$\mathbf{3 . 0}$	-

