

Master of Science

Mathematics

AY: 2018-19

Program and Course Structure

School of Basic Science and Research Department of Mathematics

M. Sc. (Mathematics)

SBR0301

Batch 2018-20

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience.
- 2. Enrichment by educational initiatives that encourage global outlook.
- 3. Develop research, support disruptive innovations and accelerate Entrepreneurship.
- 4. Seeking beyond boundaries.

Core Values

- 1.Integrity
- 2. Leadership
- 3. Diversity
- 4.Community

1.2 Vision and Mission of the School

Vision of the School

Achieving excellence in the realm of science to address the challenges of evolving society

Mission of the School

- 1. Equip the students with knowledge and skills
- 2. Capacity building by providing academic flexibility to student and faculty members
- 3. To establish centre of excellence for innovative research
- 4. Address the deficiencies of the society pertaining to environment
- 5. To strengthen academic- industry collaboration for better employability
- 6. Developing a culture for continued betterment in all facets of life

Core Values

- 1.Integrity
- 2. Leadership
- 3. Diversity
- 4. Community

1.3 Vision and Mission

Department of Mathematics

Vision of the Department

To become a globally recognized destination for education in applied mathematics and research.

Mission of the Department

- 1. To develop mathematical skills in students and make them employable across a wide range of professions and promote interest research.
- 2. To develop entrepreneurial skills in students to serve the society at large.
- 3. To develop skills for the applications of mathematics in the various fields.

Core Values

- 1. Integrity
- 2. Leadership
- 3. Diversity
- 4. Community

M. Sc. (Mathematics)

1.4 Programme Educational Objectives (PEO's)

PEO1: To deliver deep subject knowledge in the courses of study to enable students to shine in various fields such as sciences, engineering and technology, IT etc.

PEO2: To develop positive attitude and skills to enable the students to become a multi facet personality.

PEO3: To prepare students for entrance examinations conducted by IIT's/Universities to pursue Ph. D. programs as well as NET, UGC-CSIR.

PEO4: To develop students to be excellent to be excellent communicators and team players.

1.4.1 Program Outcomes (PO's)

PO1:Mathematical knowledge: Application of Mathematical knowledge in various fields of science, engineering and management etc.

PO2:Nature of Mathematics:Understand the concise, precise and rigorous nature of Mathematics.

PO3: Critical thinking: Develop the skill to think critically on abstract concepts of Mathematics.

PO4:Problem analysis: Develop the ability to analyze a problem logically and dissect into micro-parts and thus resolving the problem to accessible components.

PO5: Mathematical logic and Ethics: Formulates and develops mathematical arguments in logical manner and Realize and understand professional, ethical and cultural responsibilities.

1.4.2 Programme Specific Outcomes (PSO's)

PSO1: Scientific thinking and logical abilities.

PSO2: Application of Mathematical principles in practical situations and software developments.

PSO3: Analyze any problem to micro-levels and solve the problem step by step.

PSO4: Owning up responsibility for logical comprehension and preparedness for constant improvement.

1.4.2 Map PEOs with Mission Statements:

PEO	School	School	School	School	School	School
Statements	Mission	Mission	Mission	Mission	Mission	Mission
	1	2	3	4	5	6
PEO1:	3	2	3	1	2	3
PEO2:	3	2	3	1	2	3
PEO3:	3	3	3	3	3	3
PEO4:	3	2	3	1	3	3

1.4.3 Mapping of Program Outcome (PO's)Vs Program Educational Objectives (PEO's)

	PEO1	PEO2	PEO3	PEO4
PO1	3	3	3	2
PO2	3	3	3	2
PO3	3	3	3	2
PO4	3	2	3	2
PO5	2	3	2	3
PSO1	2	2	3	2
PSO2	3	2	2	3
PSO3	3	3	2	3
PSO4	3	2	3	3

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

1.3.5 Program Outcome (PO's)Vs Courses Mapping Table:

1.3.5.1 COURSE ARTICULATION MATRIX

Co's	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
MMT-101	3	2	2	3	2	3	3	2	2
MMT-102	3	2	2	3	3	3	2	2	2
MMT-104	3	2	2	3	2	3	3	2	2
MMT-105	3	2	2	3	2	3	3	2	2
MMT-119	3	2	2	3	2	3	3	2	2
MMT-151	3	3	2	3	3	3	3	3	3
MMT-113	3	2	2	3	2	3	3	2	2
MMT-106	3	2	3	3	2	3	3	2	2
MMT-107	3	2	2	3	2	3	3	2	2
MMT-108	3	2	3	3	3	3	3	2	2
MMT-152	3	3	2	2	3	3	3	3	3
MMT-201	3	2	2	3	3	3	2	2	2

MMT-203	3	2	2	3	2	3	3	2	2
MMT-209	3	3	3	3	2	3	2	2	2
MMT-204	3	2	2	3	3	3	3	2	2
MMT-206	3	2	2	3	2	3	2	2	2
MMT-251	3	3	2	2	3	3	3	2	3
MMT-252	2	3	2	2	3	3	3	3	2
MMT-205	3	2	2	3	3	3	3	2	2
MMT-202	3	2	2	3	2	3	2	2	2
MMT-208	3	3	2	3	2	3	3	2	2
MMT-253	2	3	2	2	3	3	3	3	3

- 1-Slight (Low)
- 2-Moderate (Medium)
- 3-Substantial (High)

Department of Mathematics School of Basic Sciences & Research M. Sc. (Mathematics)

Batch: 2018-20

TERM: I

S. No.	SUBJECT CODE	Title of Paper		H	IOURS		CREDITS	PRE- REQUISITE/ CO-REQUISITE	Type of Course1: 1. CC 2. AECC 3. SEC 4. DSE
	THEORY		L	Т	P	TOTAL			
1.	MMT 101	REAL ANALYSIS	4	-	-	4	4	CO-REQUISITE	CC
2.	MMT 102	LINEAR ALGEBRA	4	-	-	4	4	CO-REQUISITE	CC
3.	MMT 105	ORDINARY & PARTIAL DIFFERENTIAL EQUATIONS	4	-	-	4	4	CO-REQUISITE	CC
4.	MMT 104	STATISTICAL METHODS	4	-	-	4	4	CO-REQUISITE	CC
5.	MMT 119	INTRODUCTION to MATLAB AND ITS APPLICATIONS	3	-	-	3	2	CO-REQUISITE	AECC
	PRACTICALS								
	MMT 151	MATHEMATICS LAB- I					2	CO-REQUISITE	
6.			-	-	3	3			AECC
	T	OTAL	19	-	3	22			20

¹ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

Department of Mathematics

School of Basic Sciences & Research

M. Sc. (Mathematics) Batch: 2018-2020 TERM: II

S. No.	SUBJECT CODE	Title of Paper			HOU	RS	CREDITS	PRE-REQUISITE/ CO-REQUISITE	Type of Course2: 5. CC 6. AECC 7. SEC
	THEORY		L	Т	P	TOTAL			DSE
1.	MMT 113	NUMERICAL ANALYSIS WITH MATLAB	4	0	-	4	4	CO-REQUISITE	CC
2.	MMT 106	COMPLEX ANALYSIS	4	0	-	4	4	CO-REQUISITE	CC
3.	MMT 107	TOPOLOGY	4	0	-	4	4	CO-REQUISITE	CC
4.	MMT 108	DIFFERENTIAL GEOMETRY & TENSOR ANALYSIS	4	0	-	4	4	CO-REQUISITE	CC
5.	ENP 601	TECHNICAL PRESENTATION	-	0	4	2	2	CO-REQUISITE	SEC
	PRACTICALS								
6.	MMT 152	MATHEMATICS LAB- II	-	-	3	3	2	CO-REQUISITE	AECC
	TOTA	AL .	16	-	7	21	20		

² CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

Department of Mathematics

School of Basic Sciences & Research M. Sc. (Mathematics) Batch: 2018-2020

TERM: III

S. No.	SUBJECT CODE	Title of Paper	HOURS				CREDITS	PRE- REQUISITE/ CO- REQUISITE	Type of Course3: 1. CC 2. AECC 3. SEC 4. DSE
	THEORY		L	T	P	TOTAL			
1.	MMT-201	ABSTRACT ALGEBRA	4	-	I	4	4	CO- REQUISITE	CC
2	MMT 203	LINEAR PROGRAMMING	4	-	I	4	4	CO- REQUISITE	CC
		SPECIALIZATION PAPERS (I & II)(OPT ANY TWO COURSES)							
3.	MMT 209 / MMT 204 / MMT-206	Graph Theory and its Applications / FLUID DYNAMICS / NUMBER THEORY WITH CRYPTOGRAPHY	4+ 4	-	-	8	8	CO- REQUISITE	AECC
	PRACTICALS								
4.	MMT 251	MATHEMATICS LAB- III	-	-	3	3	2	CO- REQUISITE	AECC
	DISSERTATION								
5.	MMT 252	DISSERTATION-I (A topic from specialization papers)	-	-		2	2	CO- REQUISITE	AECC
	TOT	AL	16	-	3	21	20		

³ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

Department of Mathematics School of Basic Sciences & Research M. Sc. (Mathematics)

Batch: 2018-2020

TERM: IV

S. No.	SUBJECT CODE	Title of Paper			НО	URS	CREDITS	PRE- REQUISITE/ CO- REQUISITE	Type of Course4: 1. CC 2. AECC 3. SEC 4. DSE
	THEORY		L	T	P	TOTAL			
		SPECIALIZATION PAPERS (I & II)(OPT ANY TWO COURSES)							
1.	MST 205 / MMT202 / MMT 208	FUNCTIONAL ANALYSIS / Measure Theory/ DISCRETE MATHEMATICS	4+ 4	1	-	8	8	CO- REQUISITE	CC
	PRACTICALS		-	1	-				
	DISSERTATION								
2.	MMT 253	DISSERTATION-2 (A topic from specialization papers)	ı	ı		8	8	CO- REQUISITE	AECC
	TOTAL		8	-	-	16	16		

⁴ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

Sch	ool: SBSR	Batch: 2018-20						
	gram: M.Sc.	Current Academic Year: 2018-19						
	nch: Mathematics	Semester: I						
1	Course Code	MMT 101						
2	Course Title	Real Analysis						
3	Credits	4						
4	Contact Hours	4-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course Objective	 The objective of this course is to develop the knowledge of various concepts of Real numbers and their properties. The objective of this course is to develop a deeper and more rigorous understanding of Calculus including defining terms and proving theorems about sequences, series, limits, continuity, derivatives, the Riemann 						
6	Course Outcomes	integrals, and sequences of functions. CO1: Explain functions between sets; equivalent sets; fit and uncountable sets and some operations on real numbers. CO2: Evaluate convergent, divergent, bounded, Cauchy an sequences and series. (K2,K5) CO3: Explain and determine the continuity, discontinuity a continuity of functions. (K2,K3,K4) CO4: Determine the uniform convergence of sequences are series. (K2,K3)	d monotone and uniform					
		CO5: Evaluate convergence and divergence of sequences functions. (K2,K5)	s and series of					
		CO6: Describe and use the concepts of fundamental theoretical calculus, Riemann Integral and Riemann – Stieltjes integra	1 (K2,K3)					
7	Course Description	This course is an introduction to the fundamentals of Real a provides the understanding of convergence, divergence, un convergence and absolute convergence of sequences and se numbers. It gives an idea about continuity, discontinuity are continuity of functions. It will be helpful in solving Real in	iform eries of Real ad uniform tegrals.					
8	Outline syllabus	Real analysis	CO Mapping					
	Unit 1							
	A	Neighbourhoods of a point in Y, open and closed	CO1					
		intervals in Υ , neighbourhoods of points in Υ^2						
	В	limit points of sets, compact sets of R	CO1					
	С	Bolzano-Weierstrass theorem, Heine-Borel theorem	CO1					
	Unit 2							
	A	Sequence of real numbers, convergence of sequences	CO2					
	В	Cauchy sequence, limit superior and limit inferior of sequences	CO2					

*	SHARDA	4
	UNIVERSIT	_

		leyond Boundaries
С	Series – convergence, tests of convergence, conditional and absolute convergence	CO2
Unit 3		
A	Continuous functions, uniform and absolute continuity	CO3
В	uniform convergence of sequences and series	CO4
С	Term by term differentiation, power series	CO4
Unit 4		
A	Sequences and series of functions, point-wise and uniform convergence, Cauchy criterion for uniform convergence	CO5
В	Weierstrass M test, Abel's and Dirichlet's test for uniform convergence and differentiation, uniform convergence and integration, Weierstrass approximation theorem	CO5
С	Power series, uniqueness theorem of power series, Abel's and Taylor's theorem, rearrangement of terms of series, Riemann's theorem	CO5
Unit 5		
A	The fundamental theorem of integral calculus, definition of Riemann integral, refinement of partitions, Dorboux's theorem	CO6
В	Properties and some important theorems on Riemann integral, integration of vector valued functions,	CO6
С	Riemann – Stieltjes integral, refinement of partitions, properties and some important theorems on Riemann – Stieltjes integration	CO6
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	 Jain P. K. and Gupta V. P.: Lebesgue measure and integration, Wiley Eastern Ltd., New Age Int. Ltd., New Delhi, (1994). Rudin W.: Principles of Mathematical Analysis 	
Other References	 (i) Malik S. C. and SavitaArora; Mathematical Analysis, second ed., Wiley Eastern Ltd., New Age Int. Ltd., New Delhi, (1994). (ii) Somasundaram D. and Chaudhary B.: A first course of Mathematical Analysis, Narosa publishing house, New Delhi, 1987. 	

COURSE OUTCOMES (CO's) – PROGRAMME OUTCOMES (PO's) MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C101.1	3	3	3	3	3	3	3	2	1
C101.2	3	2	3	3	2	3	2	1	1
C101.3	2	2	2	2	2	2	2	1	1
C101.4	2	2	1	2	2	2	3	1	1
C101.5	3	2	2	3	2	3	2	2	2
C101.6	3	2	1	3	2	2	2	1	2

Scho	ool: SBSR	Batch: 2018-20				
Prog	gram: M.Sc.	Current Academic Year: 2018-19				
Bran	ch: Mathematics	Semester: I				
1	Course Code	MMT102				
2	Course Title	LINEAR ALGEBRA				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Compulsory				
5	Course Objective	1. To familiarise students with basic concept of determinants, properties of determinants, rank of a matrix, inverse of a non-singular square Matrix, solution of system of linear equations. Have an idea of the fields and vector spaces, linear transformations, null spaces, rank and nullity theorem, inner products and norms, orthogonal vectors, Cauchy-Schwarz inequality, Orthogonal bases, Gram - Schmidt process. 2. Have an understanding of Characteristic roots of real matrices, right and left characteristic vectors, independence of characteristic vectors corresponding to distinct characteristic roots. To know definiteness of a real quadratic form, simultaneous reduction of two quadratic forms, maxima and minima of ratio of two quadratic forms.				

		CO1: Describe the basic concept of determinants, properties of	eyond Boundaries					
6	Course							
	Outcomes	and solve rank of a matrix, inverse of a non-singular square mat solution of system of linear equations. (K1,K2,K3,K5)	rix and evaluate					
		CO2: Describe the concept of fields and vector spaces, linear training						
	null spaces, explain rank and nullity theorem. (K1,K2, K4)							
	CO3: Explain the concept of inner products and norms, orthogonal vector							
		Cauchy-Schwarz inequality and evaluate orthogonal bases,	define Gram -					
		Schmidt process. (K1, K2, K4, K5)						
		CO4: Explain characteristic roots of real matrices, right and le						
		vectors and evaluate independence of characteristic vectors of	orresponding to					
		distinct characteristic roots. (K2, K4, K5)	aht invance and					
		CO5: Illustrate generalized inverse of a matrix, left inverse, ripseudo inverse and compose Spectral decomposition theorem. (F						
		CO6: Explain Definiteness of a real quadratic form, simultaneously						
		two quadratic forms and evaluate maxima and minima of ratio of						
		forms. (K2, K4, K5)	r two quadratic					
7	Course	This course is an introduction to Linear Algebra. The prima	rv objective					
	Description	of the course is to develop the advance understanding of lin						
8	Outline syllabu		CO					
			Mapping					
	Unit 1	Review of Matrix Algebra						
	A	Determinants, properties of determinants	CO1					
	В	rank of a matrix, inverse of a non-singular square Matrix	CO1					
	C	Solution of system of linear equations.	CO1					
	Unit 2	Vector Spaces						
	A	Fields and vector spaces, linear transformations, null spaces,	CO2,					
		rank and nullity theorem,						
	В	Inner products and norms, orthogonal vectors, Cauchy-Schwarz inequality,	CO2, CO3					
	С	Orthogonal bases, Gram - Schmidt process	CO2, CO3					
	Unit 3	1	CO2, CO3					
		Characteristic roots and Characteristic Vectors	CO4					
	A B	Characteristic roots of real matrices	CO4 CO4					
		Right and left characteristic vectors,						
	С	Independence of characteristic vectors corresponding to distinct characteristic roots	CO4					
	Unit 4	Generalized Inverse						
	A	Generalized inverse of a matrix	CO5					
	В	Left inverse, right inverse and pseudo inverse	CO5					
	С	Applications, Spectral decomposition theorem.	CO5					
	Unit 5	Quadratic Forms						
	A	Definiteness of a real quadratic form	CO6					
	В	Simultaneous reduction of two quadratic forms,	CO6					
	C	Maxima and minima of ratio of two quadratic forms.	CO6					

*	SHARDA
	UNIVERSITY

Mode of examination	Theory			y on a boundaries
Weightage Distribution	CA 30%	MTE 20%	ETE 50%	
Text book/s*	2.	statistics, 2nd Ed. Rao C. R. &Mita	Matrix with applications in , Wadsworth (1983). ra S. K.: Generalized inverse of application. John Wiley & Sons	,
Other References	4. 5.	EEE, PHI learnin Hohn F. E.: Macmillan, (1973	atrix Algebra useful to statistics,	

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C102.1	3	3	3	3	3	3	3	2	1
C102.2	3	2	3	3	2	3	2	1	2
C102.3	2	2	2	2	2	2	2	2	1
C102.4	2	2	1	2	2	2	3	1	2
C102.5	3	2	2	3	2	3	2	2	1
C102.6	3	2	1	3	3	2	2	1	1

School: SBSR		Batch: 2018-20						
	am: M. Sc.	Current Academic Year: 2018 - 19						
	h: Mathematics	Semester: I						
1	Course Code	MMT 105						
2	Course Title	ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS						
3	Credits	4						
4	Contact	4-0-0						
	Hours							
	(L-T-P)							
	Course Status	Compulsory						
5	Course Objective	 Familiarise students with basic concepts of ordinary and partial differential equations and learn to solve first-order ordinary differential equations and formation of ODEs. Explore the methods to solve Linear differential equation of nth order with constant coefficients and variable coefficients. Students will also master the technique of separation of variables to solve PDEs and able to derive heat and wave equations 						
6	Course Outcomes	CO1: Explain and illustrate how to form the ordinary differential equations and solve the equations of first order and first degree. (K2,K3,K4) CO2: Describe and solve the linear differential equation of nth order with constant coefficients. (K1, K2, K3) CO3: Explain Cauchy Euler's equations and solve the same, evaluate simultaneous linear differential equations by method of variation of parameters. (K2,K3,K4,K5) CO4: Describe the classification of PDEs of second order and evaluate the wave equation by using method of separation of variable. (K1,K2,K5) CO5: Evaluate the heat equation in one dimension in various cases. (K5)						
7	Course Description	CO6: Explain and then evaluate Laplace equation. (K2, K4, K5) This course is an introduction to ordinary and partial different primary objective of the course is to develop the advance undordinary and partial differential equations.						
8	Outline syllabu	, , , , , , , , , , , , , , , , , , ,	CO Mapping					
	Unit 1							
	A	Basics of differential equations including order, degree, type of differential equation and formation of differential equations.	CO1					
	В	Equations of first order and first degree including separation of variables, homogeneous and exact differential equations (including integrating factor).	CO1					
	С	Linear differential equations.	CO1					
	Unit 2							
	A	Linear differential equation of nth order with constant coefficients, auxiliary equations	CO2					
	В	auxiliary equations, complementary functions	CO2					

			Beyond Boundaries						
С		particular inte combinations	grals for vario	us standard functions and their	CO2				
Uni	it 3								
A		Cauchy Euler	Cauchy Euler's equations and equations reducible to						
		homogeneous	form	-					
В			linear differen	tial equations	CO3				
С		method of var	iation of paran	neters	CO3				
Uni	it 4								
A			of PDEs of sec principle of su	cond order, Boundary value perposition	CO4				
В		_	aration of vari	ables, its application to solve	CO4				
С		D'Alembert's	solution of wa	ve equation in various cases	CO4				
Uni	it 5								
A		Solution of he	CO5						
В		solution of La	place equation	in Cartesian coordinates	CO6				
С			into polar coo		CO6				
Mod	de of	Theory/Jury/F	ractical/Viva						
exai	mination								
Wei	ightage	CA	MTE	ETE					
Dist	tribution	30%	20%	50%					
Tex	t book/s*	D. Rai 2. Schau equation	 Ordinary and Partial Differential equations by M. D. Raisinghania, S Chand and Company Ltd. Schaum's Outline Series of Partial Differential equations 						
		3. Schau equation		eries of Ordinary Differential					
Othe Refe	erences	Earl. A New Y	. Codington, Dork.	inary Differential Equations by OVER PUBLICATIONS, INC.					
				fferential Equations by Ian N. LL Book Company.					

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C105.1	3	3	3	3	3	3	3	2	1
C105.2	3	2	3	3	2	3	2	1	2
C105.3	2	2	3	2	2	2	3	2	1
C105.4	2	2	1	2	2	2	3	1	2
C105.5	3	2	2	3	2	3	2	2	2
C105.6	3	2	1	3	2	2	2	2	2

School: SBSR		Batch : 2018-20
Prog	ram: M. Sc.	Current Academic Year: 2018 - 19
Branc	h: Mathematics	Semester: I
1	Course Code.	MMT104
2	Course Title	STATISTICAL METHODS
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course status	Compulsory
5	Course Objectives	 To familiarise the students how to calculate and apply measures of location and measures of dispersiongrouped and ungrouped data cases and communicate quantitative data verbally, graphically, symbolically and numerically. To make students familiar with the concept of Probability and Statistics, discrete and continuous probability distributions to various business problems and theory of measure theory and integration of a measurable function with respect to a measure
6	Course Outcomes	CO1: Describe the overall process and particular steps in designing studies, collecting and analyzing data, interpreting and presenting results; Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries. (K1, K2, K6) CO2: Explain the basic concepts of probability, random variables, probability

		distribution, and joint probability distribution and describe the properties of discrete and continuous distribution functions. (K1,K2,K4) CO3: Explain the fundamentals of measure theory and be acquainted with the proofs of the fundamental theorems underlying the theory of integration and illustrate measure theory random variables, independence, expectations and conditional expectations, product measures and discrete parameter martingales. (K2,K3,K4) CO4: Explain the concept of length, area, volume using lebesgue's theory. (K2,K4) CO5: Describe how these underpin the use of Mathematical concepts such as volume, area, and integration and evaluate the same. (K1,K2,K5) CO6: Explain and illustrate the general principles of measure theory and integration in such concrete subjects as the theory of probability. (K2,K3,K4)							
7	Course Description	1 /1 //							
8	Outline syllabus:								
UNIT 1	Descriptive Statist	tics and Probability	CO Mapping						
A	Representation of	data (measures of central tendency).	CO1						
В		ner characteristics of data (mean deviation, variance, ss and Kurtosis, Moments).	CO1						
С	probability (eleme	entary theorems, Baye's theorem).	CO1						
UNIT 2	Random variable	and Probability Distribution							
A		es, expectation, variance, mean, median, mode, t generating function.	CO2						
В	Special discrete &	c continuous distributions and their mean & variance.	CO2						
С	Binomial, poisso distributions, simp	n, exponential, Gamma, normal, t, Chi-square, F ble applications.	CO2						
UNIT 3	Probability measu	ire							
A	Classes of sets, fie	elds, sigma fields, lim sup, liminf of sequences of sets.	CO3						
В	Measure, probabil	lity measure, properties of measure.	CO3						
С	Caratheodory exte	ension theorem (only statement), Lebesgue measure.	CO3, CO4						
UNIT 4	Measurable functi	ions							
A	Measurable functi	Measurable functions, sequence of random variables. CO3, CO5							
В	Almost sure conve	ergence.	CO5,CO6						
С	Convergence in pr	robability and measure.	CO5,CO6						
UNIT 5	Integration								
A	Integration of a m	easurable function with respect to a measure.	CO5,CO6						
	T. C.								

					Seyond Boundaries				
В	Monotone conv	Monotone convergence theorem.							
С	Fatou's lemma,	dominated co	onvergence theorem.		CO5,CO6				
	Mode of Exami	ination	Theory						
		Weightage distribution		MTE	ETE				
	Weightage distr			20%	50%				
	Text books	1. Gupta,S.C and Kapoor,V.K, "Fundamental of Mathematical Statistics". Sultan Chand & sons.							
	Other references	2. BILLI 3. KING	NGSLY P.: Probability MAN JF. C. & TA	 ROBERT A.: Real analysis and probability, Academic Press (1972). BILLINGSLY P.: Probability and measure, Willey (1989). KINGMAN JF. C. & TAYLOR S. J.: Introduction to measure and probability, Cambridge university press. 					

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C104.1	3	3	3	3	3	3	3	2	1
C104.2	3	2	3	3	2	3	2	1	2
C104.3	2	2	2	2	2	2	2	2	1
C104.4	2	2	1	2	2	2	3	1	1
C104.5	3	2	2	3	2	3	2	2	2
C104.6	3	2	1	3	2	2	2	1	2

Scho	ool: SBSR	Batch: 2018-20	Beyond Boundaries					
Prog	gram: M.Sc.	Current Academic Year: 2018-19						
	nch: Mathematics	Semester: I						
1	Course Code	MMT-119						
2	Course Title	INTRODUCTION TO MATLAB AND ITS APPLICATIONS						
3	Credits	3						
4	Contact Hours	3-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	The goal of this course is to introduce the necessary mather						
	Objective	concepts for MATLAB and cover the syntax and semantics						
		including control structures, comments, variables, function						
		foundations of the language have been established students	-					
		different types of scientific programming problems including	ng curve					
	C	fitting, ODE solving etc.	TI AD C					
6	Course Outcomes	CO1: Describe the fundamentals of MATLAB and use MA interactive computations. (K2, K3)	ALLAB for					
		CO2: Demonstrate with strings and matrices and their uses	. (K2, K3)					
		CO3: Illustrate basic flow controls (if-else, for, while). (K3	3)					
		CO4: Create plots and export this for use in reports and pre	esentations.					
		(K3, K5)						
		CO5: Develop program scripts and functions using the MA	TLAB					
		development environment. (K4, K5)						
		CO6: Write the program for evaluates linear system of equ	ations,					
		ordinary differential equations in MATLAB. (K5,K6)						
	C		. 1 1 1114					
7	Course	The course will give the fundamental knowledge and pract						
	Description	MATLAB required to effectively utilize this tool in technic computations and visualisation in other courses.	cai numericai					
		Syntax and interactive computations, programming in MA	TI AR using					
		scripts and functions, rudimentary algebra and analysis. Or	_					
		dimensional graphical presentations. Examples on engineer						
		applications.	ing					
		applications.						
8	Outline syllabus		CO Mapping					
	Unit 1	Introduction						
	A	Vector and matrix generation, Subscripting and the colon	CO1					
		notation.						
	В	Matrix and array operations and their manipulations,	CO1					
	С	Introduction to some inbuilt functions.	CO1					
	Unit 2	Relational and Logical Operators						
	A	Flow control using various statement and loops including	CO1, CO3					
		If-End statement, If-Else –End statement						
	В	Nested If-Else-End Statement,	CO3					
	С	For – End and While-End loops with break commands.	CO3					

TI:4 2	files			Beyond Boundaries		
Unit 3	m-files	0		G02 G05		
A	Scripts and			CO2,CO5 CO2,CO5		
В		concept of local and global variable				
C	Few exampl	es of in-built f	functions, editing, saving m-	CO2,CO5		
	files.					
Unit 4	Two dimen	sional Graphi	ics			
A	Basic Plots,	Change in axe	es and annotation in a figure	CO4		
В	multiple plo	ts in a figure	-	CO4		
С	saving and p	orinting figures	S	CO4		
Unit 5						
A	Solving a lin	Solving a linear system of equations,				
В	Curve fitting	g with polynor	nials using inbuilt function	CO5, CO6		
	such as poly	fit, solving eq	uations in one variable,			
С	Solving ordi	Solving ordinary differential equations using inbuilt				
	functions					
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book	An introduc	tion to MATL	AB : Amos Gilat			
Other	1. App	lied Numerica	l Methods with Matlab for			
References			cientists by stevenchapra,			
		raw Hill.	•			
			h Matlab: RudraPratap			
			1			

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C119.1	3	3	3	3	3	3	3	2	1
C119.2	3	2	3	3	2	3	2	1	2
C119.3	2	2	2	2	2	2	2	1	1
C119.4	2	2	1	2	2	2	3	1	1
C119.5	3	2	2	3	2	3	2	2	2
C119.6	3	2	1	3	2	2	2	1	2

Scho	ool: SBSR	Batch: 2018-20						
	gram: M.Sc.	Current Academic Year: 2018-19						
	nch: Mathematics	Semester: II						
1	Course Code	ode MMT-123						
2	Course Title	NUMERICAL ANALYSIS WITH MATLAB						
3	Credits	4						
4	Contact Hours	4-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course Objective	 To provide the student with numerical methods of solving the non-linear equations, interpolation, differentiation, and integration. To improve the student's skills in numerical methods by using the MATLAB 						
6	Course Outcomes	CO1: Calculate the error and evaluate the floating point at algorithm in MATLAB. (K1,K3,K5,K6) CO2: Solve a linear system of equations using an appropriate and develop the algorithm in MATLAB. (K1,K,K5,K6) CO3: Solve the algebraic or transcendental equations us methods and develop the algorithm in MATLAB. (K1,K3,K6) CO4: Calculate a definite integral using an appropriation develop the algorithm in MATLAB. (K1,K3,K5,K6) CO5: Derivations and stability analysis for Taylor series methods. Evaluate differential equation by Euler's method at Runge- Kutta second order and fourth order methods are algorithm in MATLAB. (K1,K3,K5,K6)	riation method sing numerical (X5, K6) n method and ethod. nd its variants,					
7	Course Description	This course is an introduction to the numerical analysis. The objective of the course is to develop the basic understanding algorithms and skills to implement algorithms to solve mather problems in MATLAB.	g of numerical					
8	Outline syllabus		CO Mapping					
	Unit 1	Error Analysis:						
	A	Definition and sources of errors, Propagation of errors	CO1					
	В	Sensitivity and conditioning, Stability and accuracy,	CO1					
	С	Floating-point arithmetic and rounding errors.	CO1					
	Unit 2	Solution of system of linear equations:	000					
	A	Direct methods: Cramer's rule, Matrix inverse method,	CO2					
	В	Gauss elimination and Gauss-Jordan method	CO2					
	С	Iterative methods: Jacobi's method, Gauss-Seidal method	CO2					

			****	Beyond Boundaries
Unit 3	System of Tr		equations	
A	Initial approx	imation of the	roots, Bisection method,	CO3
В	Method of fal	CO3		
С	Newton-Raph	CO3		
Unit 4	Numerical di	ifferentiation	and integration:	
A	Differentiatio	n using Newto	on's forward and backward	CO4
	formula			
В			ormula - derivations	CO4
С		of Trapezoida	1 rule, Simpson's 1/3 and 3/8	CO4
	rules.			
Unit 5	Initial value			
A			al definitions and Lipschitz	CO5
	condition, De series method		stability analysis for Taylor	
В		<u> </u>	ants, Runge- Kutta second	CO6
В		rth order meth	•	200
С			ethods for various test	CO6
C	problems usin		orious for various test	
Mode of	Theory	8		
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1) An I Endre Unive 2) Applie Pearso 3) Eleme Macm			
Other References	B. S. G 2) Nume Comp	Grewal, Khanr rical methods	in Engineering & Science by na Publishers, 2013. for Scientific and Engineering nin, Iyengar, Jain, New Age hers, 2004.	

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C123.1	3	3	3	3	3	3	3	2	1
C123.2	3	2	3	3	2	3	2	1	1
C123.3	2	2	2	3	2	2	2	2	2
C123.4	2	2	2	3	2	2	3	1	1
C123.5	3	2	2	3	2	3	2	2	2
C123.6	3	2	1	3	2	2	2	1	2

School: SBSR		Batch: 2018-20					
Prog	gram: M.Sc.	Current Academic Year: 2018-2019					
Bran	nch: Mathematics	Semester: II					
1	Course Code	MMT-106					
2	Course Title	Complex Analysis					
3	Credits	4					
4	Contact Hours (L-T-P)	4-0-0					
	Course Status	Compulsory					
5	Course Objective	 This course is aimed to provide an introduction to the theories for functions of a complex variable. The concepts of analyticity, Cauchy-Riemann relations and harmonic functions, Complex integration and complex power series are presented. Discuss the classification of isolated singularities and examine the theory and illustrate the applications of the calculus of residues in the evaluation of integrals. Students will study geometric properties of conformal mappings in the plane and their relations with analytic functions 					
6	Course Outcomes	CO1: Discuss the concept of complex number and its algebra calculates continuity, differentiability, analyticity of a function and analyse the derivative of a function. (K2,K3, K4) CO2: Describe the concept of analytic function and check the analyticity of the functions. (K3, K6) CO 3: Explain the concept of harmonic function and evaluate					

		harmonic conjugates and discuss about series and their convergence, power series, radius of convergence. (K2, K4,K5) CO 4: Illustrate the concept of complex integration, write the Green's theorem, anti-derivative theorem, Cauchy-Goursat theorem, Cauchy's integral formula, Liouville theorem, Morera's theorem and evaluate derivative of analytic functions. (K3, K5,K6) CO 5: Discuss the concept of singularities and its types; write Taylor and Laurent series, Cauchy's residue theorem, evaluate the definite						
		integrals using Cauchy's residue theorem.(K1,K2,K5,K6) CO6: Demonstrate the understanding of conformal map Construct conformal mappings between many kinds of K5)	pings and					
7	Course Description	,						
8	Outline syllabus		CO Mapping					
	Unit 1		G 0.1					
	A	Complex numbers, their representation in Argand's plane and the algebra of complex numbers,	CO1					
	В	The complex plane and open set, domain and region in a complex plane	CO1					
	С	Complex functions and their limits, continuity, differentiability.	CO1					
	Unit 2							
	A	Analytic function, The C-R equations and sufficient conditions for differentiability and analyticity	CO2					
	В	Harmonic functions and harmonic conjugates, Sequences,	CO3					
	С	Series and their convergence, power series, radius of convergence.	CO3					
	Unit 3							
	A	Complex integration: Line integration, path independence,	CO4					
	В	Green's theorem, anti-derivative theorem, Cauchy-Goursat theorem, Cauchy's integral formula,	CO4					
	С	Derivative of analytic functions, Liouville theorem, Morera's theorem.	CO4					
	Unit 4							
	A	Singularities and its types; Taylor and Laurent series	CO5					
	В	Cauchy's residue theorem,	CO5					
	С	Evaluation of definite integrals using Cauchy's residue theorem.	CO5					
	Unit 5							

*	SHARDA
	UNIVERSITY

				<u>▼</u> > B	eyond Boundaries		
A		rmations or	mappings, some	standard	CO6		
	transfori	ransformations,					
В			, fixed point of a		CO6		
	transfori	mation,					
С	Conforn	nal transformati	on, jacobian of a		CO6		
	transfori	mation and few	special conformal m	appings			
Mode of	Theory		•				
examination							
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	1) (Churchill, Ruel	V. and Brown, James	sWard,			
	,		oles and Applications				
		-	v-Hill Book Co., Nev				
		1984.	, 11111 20011 001, 110	. 10111,			
			3., Functions of One	Complex			
		•	iduate Texts inMathe	-			
			erlag, New York, 19				
	_	is), springer v	enag, ivew fork, is	,,,,			
Other References	1) \$	Schaum's Outlin	e of Complex Varial	oles 2ed			
Chief References			piegel, Seymour Lip				
			ennis Spellman	sciiutz,			
			., Complex Analysis:	Δn			
			the Theory of Analytic				
			e Complex Variable, ional Series in Pure a				
			natics, McGraw-Hill	DOOK			
		Co., New York,	19/8.				

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C106.1	3	3	3	3	3	3	3	2	1
C106.2	3	2	3	3	2	3	2	1	1
C106.3	2	2	3	2	2	2	3	2	2
C106.4	2	2	2	2	2	2	3	1	1
C106.5	3	2	2	3	2	3	2	2	2
C106.6	3	2	1	3	2	2	2	1	2

Sch	ool: SBSR	Batch: 2018-20						
Pro	gram: M.Sc.	Current Academic Year: 2018-2019						
Bra	nch: Mathematics	Semester: II						
1	Course Code							
2	Course Title	TOPOLOGY						
3	Credits	4						
4	Contact Hours	4-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course Objective	Topological space and separate axioms (Hausdorff space	This course provides an introduction to topics involving concepts of Topological space and separate axioms (Hausdorff space and base problems), Compactness (Urysohn's theorem), Connectedness With Nets(converge filter Zorn's lemma).					
6	Course Outcomes	CO1: Explain the concept of Topological spaces and cal exterior limit point and boundary points. (K2, K3, K4)	lculate interior,					
		CO2: Describe the concept of separate axioms and eval	uate T_0, T_1, T_2					
7	Course	spaces, normal and completely normal spaces. (K1,K2, I CO3: Discuss the compactness (Urysohn's theorem) and open cover, finite sub cover, compact sets. (K1, K2, K5) CO4: Explain Lindeloff space, locally compact, Ma function and write Heine borel theorem, describe hor open and closed map, compactness for continu (K2,K4,K6) CO5: Explain about separated sets, disconnected disconnectedness, maximal connected set and illustrated and path, locally connected and write Urysohn's theorem (K4, K6) CO6: Describe the concept of Nets and Filters and write (K1,K2, K6)	p: continuous neomorphism, nous images. lness, totally te component rem. (K2, K3, zorn's lemma.					
/	Course Description	This course provides an introduction to topics involving Topological space and separate axioms (Hausdorff space problems), Compactness (Urysohn's theorem), Connecte Nets (converge filter Zorn's lemma). The primary object course is to develop the advance understanding of Topological Space (Propole Propole Prop	e and base edness With tive of the					
8	Outline syllabus	1 3 3 3 3 7 3 7	CO Mapping					
	Unit 1	Topological space	11 8					
	A	Topology, weaker and stronger topology, indiscrete and discrete topology	CO1					
	B Co-finite and usual topology, interior, exterior							
	С	limit point and boundary points.	CO1					
	Unit 2	Separation axioms						
	A	Base, sub-base and countability (first countable and second countable)	CO2					

				🏲 🥭 Beyond Boundarie				
В	separation as	xioms: T_0	T_1, T_2 spaces, normal ar	nd CO2				
	completely no	rmal spaces	S					
C	regular and	d CO2						
	Tychnoff spac	e, Hausdor	ff space and based problems					
Unit 3	Compactness							
A	Cover, open	s, CO3						
	finite intersect	ion propert	У					
В	Heine borel th	eorem, Lin	deloff space, locally	CO3, CO4				
	compact, Map							
C			nd closed map, compactness	CO3, CO4				
	for continuous							
Unit 4	Connectednes			CO5				
A		ated sets, disconnectedness, totally						
		nectedness, maximal connected set nent and path, locally connected and based						
В	-	omponent and path, locally connected and based						
	examples	1						
С	Urysohn's theo	CO5						
Unit 5	Nets			e CO6				
A		, , , , , , , , , , , , , , , , , , , ,						
		nvergence of a set ster point, subnet. Filters: Filter, Cofinite filter,						
В	-	CO6						
	neighbourhood	go (
C	convergent filt	CO6						
Mode of	Theory							
examination	CA DA	TO D	EMP					
Weightage		TE	ETE					
Distribution								
Text book/s*		id						
		Ed., Narosa Publishing House, 2011.						
	_	2. Dugundji, James, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and						
	Bacon,							
Other		 1978. Munkres, James R, Topology: A First Course, 						
References	Prentic							
References	Cli_s, 1							
	CII_8, I							
	0 17-11	2. Kelley, John L., General Topology, Graduate						
	2. Kelley, Texts i							
	Spring							

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C107.1	3	3	3	3	2	3	3	2	1
C107.2	3	2	3	3	3	3	2	1	2
C107.3	2	2	2	3	2	2	2	1	1
C107.4	2	2	1	2	2	2	3	1	1
C107.5	3	2	2	3	2	3	2	2	2
C107.6	3	2	1	3	2	2	2	1	2

School: SBSR		Batch: 2018-20					
Program: M. Sc.		Current Academic Year: 2018 - 19					
Branch: Mathematics		Semester: II					
1	Course Code	MMT 108					
	Course Title	DIFFERENTIAL GEOMETRY & TENSOR ANALYSIS					
3	Credits	4					
4	Contact	4-0-0					
	Hours						
	(L-T-P)						
	Course Status	Compulsory					
5	Course	1. Familiarise students with basic concept of local theory of curves: space curves, e.g.,					
	Objective	plane curves, tangent and normal and binormal; Osculating plane, normal lines and normal plane, curvature and torsion, rectifying plane; Helices, arc length, Serret-Frenet formulae. Have an idea of Bertrand curves and its properties, Contact between curve and surfaces, tangent surfaces, tangent vectors and vector fields, Fundamental theorems for space curves, involutes and evolutes of curves, Metric-first fundamental form and second fundamental form. 2. Have an understanding of Normal curvature, quadratic form of normal curvature, mean curvature, Gaussian curvature and minimal surface, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, lines of curvature, Rodrigue's formula. Know about Tensor calculus, Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, inner product and outer product of two tensor. To know Contra variant and covariant tensors, mixed tensors of higher order, symmetric and skew-symmetric tensors, Quotient theorem, Reciprocal tensors, metric tensor, conjugate metric tensor with examples. Christoffel's symbols, covariant differentiation and Riemannian curvature tensor.					
6	Course	CO1: Describe the concept of local theory of curves: space curves, Osculating plane,					

	Outcomes normal lines and normal plane and explain curvature and torsion rectifying plane: Helic							
	Outcomes	normal lines and normal plane and explain curvature and torsion rectifying plane; Helices,						
	arc length, Serret-Frenet formulae. (K1,K2,K4) CO2: Explain the theory of curves: Bertrand curves, Contact between cur							
		tangent surfaces, tangent vectors and vector fields and write Fundamental theorems space curves, involutes and evolutes of curves describe Metric-first fundamental form						
		second fundamental form. (K2,K4,K6)						
		ture, quadratic form of						
	normal curvature, mean curvature, Gaussian curvature and minimal surface, ge							
		canonical geodesic equations, normal properties of geodesics, geodesics curvature, lines of curvature, Rodrigue's formula. (K1,K2,K5)						
	CO4: Explain Tensor calculus, Vector spaces, and the dual spaces, tens							
		vector spaces, transformation formulae, and contraction; evaluate product of two tensor. (K2,K4,K5)	milei product and outer					
		CO5: Describe the concept of contra variant and covariant ter	nsors, mixed tensors of					
		higher order, symmetric and skew-symmetric tensors. (K1,K2)						
		CO6: Write the Quotient theorem, Reciprocal tensors, metric ten	tensor, illustrate conjugate					
		metric tensor with examples. Christoffel's symbols, covaria	ant differentiation and					
		Riemannian curvature tensor.(K3,K6)						
			1 ' 79					
7	Course	This course is an introduction to differential geometry and te	•					
	Description	primary objective of the course is to develop the advance und	derstanding of					
0	0 11 11 1	differential geometry and tensor analysis.	00.16					
8	Outline syllabu		CO Mapping					
	Unit 1	Review of local theory of curves						
	A	Space curves, e.g., plane curves, tangent and normal and	CO1					
		binormal						
	B Osculating plane, normal lines and normal plane, curvature		CO1					
		torsion	G0.1					
	C Rectifying plane; Helices, arc length, Serret-Frenet formulae.		CO1					
	Unit 2	Theory of Curves						
	A	Bertrand curves and its properties, Contact between curve and surfaces, tangent surfaces, tangent vectors and vector fields	CO2					
	В	Fundamental theorems for space curves, involutes and evolutes of curves	CO2					
	С	Metric-first fundamental form and second fundamental form.	CO2					
	Unit 3	Curvature						
	A	Normal curvature, quadratic form of normal curvature, mean curvature	CO3					
	В	Gaussian curvature and minimal surface, geodesics, canonical geodesic equations	CO3					
	С	Normal properties of geodesics, geodesics curvature, lines of curvature, Rodrigue's formula	CO3					
—	TT .*4 4							
	Unit 4							
	A	Tensor calculus Tensor calculus, Vector spaces, the dual spaces	CO4					

 		Beyond Boundaries							
В	Tensor production	Tensor product of vector spaces, transformation formulae, contraction							
С	Inner product a	CO4							
Unit 5	Contra varian	t and covariant	tensors						
A		Contra variant and covariant tensors, mixed tensors of higher order, symmetric and skew-symmetric tensors							
В	Quotient theoremetric tensor v		ensors, metric tensor, conjugate	CO6					
С	Christoffel's sy		nt differentiation and Riemannian	CO6					
Mode of examination	Theory								
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	Elemen by Barr Differe								
Other	Sons.								
Other References	1. Schaum								

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C108.1	3	3	3	3	3	3	3	2	1
C108.2	3	2	3	3	2	3	2	1	2
C108.3	2	2	3	2	3	2	2	2	1
C108.4	2	2	1	2	2	2	3	1	2
C108.5	3	2	2	3	2	3	2	2	2
C108.6	3	2	1	3	2	2	2	1	2

Scho	ool: SBSR	Batch: 2018-20	Beyond Boundarie
Prog	gram: M. Sc.	Current Academic Year: 2019-20	
Bran	nch: Mathematics	Semester: III	
1	Course Code.	MMT-201	
2	Course Title	ABSTRACT ALGEBRA	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course status	Compulsory	
5	Course Objective	1. To familiarise students with basic concepts of group quotient group and permutation groups, and given a normal subgroup, sylow groups, internal and external dir 2. To make students familiar with the concept of he isomorphism, automorphism and inner- automorphism algebraic structures ring, integral domain, field, ideal and prime and maximal ideal, Irreducible polynomials, domains and unique factorization domains. Know about fields: algebraic extensions, roots of polynomials and spl	n idea of the ect product. comomorphism, sm, different d quotient ring, principal ideal at Extension of
6	Course Outcomes	CO1: Explain and illustrate the concept of group, subggroup and permutation groups.(K2,K3,K4) CO2: Describe the normal subgroup, sylow groups internal and external direct product. (K1,K2,K5) CO3: Explain the concepts of homomorphism, ison analysis automorphism and inner- automorphism. (K2,K-CO4: Discuss about ring integral domain, field ideal and quot and maximal ideal. (K2) CO5: Evaluate irreducible polynomials, principal ideal unique factorization domains. (K5) CO6: Explain about Extension of fields: algebraic evaluate roots of polynomials and splitting fields. (K2,K4)	and evaluate morphism and 4) tient ring, prime 1 domains and extensions and 4,K5)
7	Course Description	This course is an introduction to concept of groups, norm. The primary objective of the course is to develop the underings and fields.	
8	Outline syllabus	1 6	CO Mapping
	Unit 1	Review of Groups	71 8
	A	Subgroups, quotient groups,	CO1
	В	Permutation group,	CO1
	C	Lagrange's theorem and the result about its converse.	CO1
	Unit 2	Normal Subgroups and Sylow theorem	
	A	Normal subgroups and factor groups and applications.	CO2
	В	Cauchy's and Sylow's theorems and applications,	CO2
	С	Finitely generated Abelian groups, internal and external direct products. Examples.	CO2

				•	Beyond Bounda		
Unit 3	Homomorphi	sm and Isom	orphism				
A			kernel of a homomor	ohism	CO3		
В	-		Automorphism,	Jindin,	CO3		
С	Inner automorp		ratomorphism,		CO3		
Unit 4	Ring Theory						
A	Rings, Integral	Domains and	l Fields: Ideal and qu	otient Rings,	CO4		
В	Prime and max polynomials,	timal ideals, p	polynomial rings, irre	ducible	CO4, CO5		
С			al ideal domains and	unique	CO4, CO5		
Unit 5	Extension of f	Extension of fields					
A	Algebraic exte	CO6					
В	Roots of polynomials			CO6			
С	Splitting fields				CO6		
Mode of examination	Theory						
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	sevent 2. P. B. F Abstra	 Joseph Gallian, contemporary Abstract algebra, seventh edition USA. P. B. Bhatacharya, S. K. Jain and S. R. Nagpal, Basic Abstract Algebra (2nd Edition) Cambridge University Press, Indian Edition, 1977. 					
Other References	New D 2. N. Jaco Freem Publis 3. V. K. Algebra	Delhi, 1975. obson, Basic an, 1980 (also hing Compan Khanna and S ra, 3 rd .Ed. 200	. K. Bhamri, A cours	W.H. stan e in abstract			

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C201.1	3	3	3	3	3	3	3	2	1
C201.2	3	2	3	3	2	3	2	1	2
C201.3	2	2	2	3	3	2	2	1	1
C201.4	2	2	2	3	2	2	3	2	2
C201.5	3	2	2	3	2	3	2	2	2
C201.6	3	2	1	3	2	2	2	1	2

Scho	ool: SBSR	Batch: 2018-20
Prog	gram: M.Sc.	Current Academic Year: 2019-2020
Brai	nch:	Semester: III
Mat	hematics	
1	Course Code	MMT 203
2	Course Title	LINEAR PROGRAMMING
3	Credits	4
4	Contact	4-0-0
	Hours	
	(L-T-P)	
	Course Status	Compulsory
5	Course	To make students familiar with the concepts of simple analytical
	Objective	Methods to solve L.P.P., queuing theory with kendall's notations,
	-	inventory control with ABC analysis, Project Management (CPM &
		PERT).
6	Course	CO1: Discuss the origins of Operation Research, formulate the problems
	Outcomes	in L.P. and solve it by graphical. (K1, K3, K6)
		CO2: Explain analytical Methods: Simplex, Big M, Primal and Dual
		problems and discuss about economic interpretation of dual. (K2,K3,
		K4)
		CO3: Describe queuing theory and Kendall's Notations and formulate

	T				Beyond Boundar			
			M/M/1:∞/FCFS model illustrate with example. (K2, K3, K6)					
				lassifications and develop	economic order			
		quantity mode	, ,					
			CO5: Explain ABC analysis. (K2,K4)					
			CO6: Describe the concept of CPM and PERT and calcula					
				ction by Crashing of activi				
7	Course			tion to concept of linear pr				
	Description			jective of the course is to				
				theory with kendall's nota				
-	0 11 11 1	•	ABC analysi	s, Project Management (Cl				
8	Outline syllabu				CO Mapping			
	Unit 1	Origin of Op						
	A			arch, Historical Standpoint	, CO1			
	-	Methodology			G01			
	В			d Application of Operation	s CO1			
		Research. Inti						
	С	1 -		Assumptions, Formulatio				
				LP, Solution techniques of	LP:			
	T1 14 0	Graphical Me						
	Unit 2	Analytical M		1	G02			
	A	Analytical Mo			CO2			
	В	Big M, Prima			CO2			
	С		_	and Dual Simplex Method.	CO2			
	Unit 3	Queuing The		1	902			
	A			elements of queuing theory				
	В			ating characteristics of a	CO3			
				ation of Queuing models.				
	C			M/M/1:∞/FCFS.	CO3			
	Unit 4	Inventory Co						
	A		ssification, L	Different cost associated to	CO4			
	D.	Inventory.	1	T . 1.1 U.1	GO 4			
	В			Inventory models with	CO4			
	C	deterministic			GO4 GO5			
	C	ABC analysis			CO4, CO5			
	Unit 5	Project Man		CDM 'c' 1D d 1 1	.:			
	A			CPM, critical Path calcula				
	В	Float calculat			CO6 CO6			
	C		Cost reduction by Crashing of activity.					
	Mode of	Theory						
	examination	CA	MTDE	PTP				
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text book/s*			tions Research-An				
		introd	uction, New	York: MacMillan, 1992.				
<u> </u>								

*	SHARDA
	UNIVERSITY

	2.	KantiSwarup, P. K. Gupta and Man Mohan:	
		Operation Research; S. Chand & Sons, New delhi.	
Other	1.	Hadley, G., Linear Programming, Addison	
References		-Wesley, 1962.	
	2.	Hillier, F.S. and G.J. Lieberman, Introduction to	
		Operations Research-concept and cases, Asian Ed., Tata McGraw-Hill.	

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C203.1	3	3	3	3	3	3	3	2	1
C203.2	3	2	3	3	2	3	2	1	2
C203.3	2	2	2	2	2	1	2	2	1
C203.4	2	2	1	3	2	2	3	1	1
C203.5	3	1	2	3	2	3	2	2	2
C203.6	3	2	1	3	2	2	2	1	1

Scho	ool: SBSR	Batch: 2018-20		
Prog	gram: M.Sc.	Current Academic Year: 2019-20		
Brai	nch: Mathematics	Semester: III		
1	Course Code	MMT-209		
2	Course Title	Graph Theory and its Application		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Compulsory		
5	Course Objective	The goal of this course is to introduce the necessary mathematical		
		concepts of relevant vocabulary from graph theory and combinatory,		
		and know the statements and proofs of many of the important		
		theorems in the subject, and be able to perform related calculations.		
6	Course Outcomes	CO1: Describe the basic concept of graphs and evaluate distances,		
		radius, diameter, centre of a graph, the number of distinct spanning		
		trees in a complete graph. (K2,K4,K5)		
		CO2: Explain the concept of tree and write Kruskal and Prim		
		algorithms, Huffman's algorithm. (K2,K4,K6)		
		CO3: Discuss about matching of graphs and write the theorems		

	T		Beyond Boundaries			
		related to matching. (K1,K2,K6) CO4: Describe graph colouring, chromatic number, bounds on chromatic numbers and write Greedy algorithm. (K2,K6) CO5: Discuss interval graphs and chordal graphs, chromatic polynomials and write Brook's theorem. (K1, K2, K6) CO6: Explain Hamilton property, Non-Hamiltonian graphs, Non-planarity of K5 and K3,3, classification of regular polytopes and write 5-colour theorem. Ramsey theory. (K2,K4,K6)				
7	Course Description	This course covers the theory of graphs and networks for both directed and undirected graphs. Topics include graph isomorphism, Eulerian and Hamiltonian graphs, matching, covers, connectivity, coloring, and planarity. There is an emphasis on applications to real world problems and on graph algorithms such as those for spanning trees, shortest paths, and network flows.				
8	Outline syllabus	Graph Theory and its Application	CO Mapping			
	Unit 1	Basic Concepts.				
	A	Various kinds of graphs, simple graphs, complete graph, walk, tour, path and cycle, Eulerian graph, bipartite graph (characterization).	CO1			
	В	Havel-Hakimi theorem and Erdos-Gallai theorem (statement only), hypercube graph, Petersen graph, trees, forests and spanning subgraphs.	CO1			
	С	Distances, radius, diameter, center of a graph, the number of distinct spanning trees in a complete graph.	CO1			
	Unit 2	Trees:				
	A	Kruskal and Prim algorithms with proofs of correctness, Dijkstra'sa algorithm,	CO2			
	В	Breadth first and Depth first search trees	CO2			
	С	Rooted and binary trees, Huffman's algorithm.	CO2			
	Unit 3	Matching:				
	A	Augmenting path, Hall's matching theorem, vertex and edge cover, independence number and their connections, Tutte's theorem for the existence of a 1-factor in a graph.	CO3			
	В	Connectivity k-vertex and edge connectivity, blocks, characterizations of 2- connected graphs, Menger'stheorem and applications	CO3			
	С	Network flows, Ford- Fulkerson algorithm, Supply- demand theorem and the Gale-Ryser theorem on degree sequences of bipartite graphs.	CO3			
	Unit 4	Graph Colourings:				
	A	chromatic number, Greedy algorithm, bounds on chromatic numbers	CO4			
	В	interval graphs and chordal graphs (with simplicial	CO5			
	·					

*	SHA	RD	A
	UNIV	ERSIT	

	eyond Boundaries					
	eliminati	on ordering),				
С	Brook's 1	theorem and gr	aphs with no triangles but	CO5		
	large chr	large chromatic number, chromatic polynomials.				
Unit 5	Hamilton	n property:				
A	Necessar	Necessary conditions, Theorems of Dirac and Ore,				
	Chvatal's	Chvatal's theorem and toughness of a graph.				
В	Non-Han	niltonian graph	s with large vertex degrees.	CO6		
	Planar gr	aphs Embeddir	ng a graph on plane, Euler's			
	formula.					
С	Non-plan	narity of K5 and	d K3,3, classification of	CO6		
	regular p	olytopes, Kura	towski's theorem (no proof),			
	5-colour	theorem. Rams	sey theory.			
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book	1. B	. West, Introduc	ction to Graph Theory, Prentice			
	Н	all of India, 200	01.			
Other References		1. J. A. Bondy and U. S. R. Murty, Graph Theory with				
		ons, Springer-V				
			tion to Graph Theory, Springer-			
	Verlag, 2	010.				

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C209.1	3	3	3	3	3	3	3	2	1
C209.2	3	2	3	3	2	3	2	1	2
C209.3	2	2	3	2	3	2	2	1	2
C209.4	2	3	2	2	2	2	3	3	2
C209.5	3	2	2	3	2	3	2	2	2
C209.6	3	2	2	3	2	2	2	2	2

Scho	ool: SBSR	Batch: 2018-20					
Prog	gram: M.Sc.	Current Academic Year: 2019-20					
Brai	nch: Mathematics	Semester: III					
1	Course Code	MMT-204					
2	Course Title	FLUID DYNAMICS					
3	Credits	4					
4	Contact Hours (L-T-P)	4-0-0					
	Course Status	Compulsory					
5	Course Objective	The goal of this course is to introduce the necessary mat concepts for analysing fluid dynamics. Learn to perform analyses and overall balances from conservation laws ar equations analyses for fields. Understand modelling app such as inviscid, incompressible, and turbulent for differ flows.	n integral nd differential proximations				
6	Course Outcomes	CO1: Explain the definition, properties and classification of Pascal's law and write basic hydrostatic equation, Buoyancy Archimedes' principle. (K1, K2,K4,K6) CO2: Describe the streamlines, path lines and streak lines, ste uniform/non-uniform, one-two dimensional flows and evalua acceleration in an Eulerian flow field. (K1,K2,K5) CO3: Explain equations for stream function, velocity potentia rectangular and cylindrical co-ordinates and discuss the concequations for source, sink, irrotational vortex, circulation.(K1 CO4: Explain and apply Integral equations for the control vortex (CO5: Explain equations for conservation of mass, energy and and write Bernoulli's equation and its application. (K2,K4,K6 CO6: Apply Mass conservation in 2 dimension in rectangular Euler's equations in 2,3 dimensions and subsequent derivation Bernoulli's equation and write Navier-Stokes equations.(K3,F)	eady/unsteady, the velocity and al function in ept of 1,K2,K4) olume: using d momentum 6) r co-ordinates, on of				
7	Course Description	This course is an introduction to basics concept of veloc statics, basic conservation laws for systems and control dimensional analysis and similitude, Euler and Bernoull NavierStokes equations, viscous flows, boundary-layer channels and around submerged bodies, applications.	volumes, i equations,				
8	Outline syllabus	FLUID DYNAMICS	CO Mapping				

*	SH	IAF	\mathbb{I})A
		IVEI		

Unit 1							
A	Fluid De	efinition and	properties, Newton's law of	CO1			
	viscosity	concept of	continuum, Classification of				
	fluids.						
В			surface forces, Pascal's law,	CO1			
	Basic hyd	drostatic equati	on,				
C	Forces of	on surfaces d	lue to hydrostatic pressure,	CO1			
	Buoyanc	y and Archime	des' principle.				
Unit 2							
A	Eulerian	and Lagrang	gian approach to solutions;	CO2			
	Velocity	and acceleration	on in an Eulerian flow field;				
В	Definition	n of streamline	s, path lines and streak lines;	CO2			
			teady, uniform/non-uniform,				
	one-two	dimensional flo	ows;				
С	Definitio	n of control	volume and control surface,	CO2			
	Understa	nding of differ	ential and integral methods of				
	analysis						
Unit 3							
A	Definitio	n and equation	s for stream function, velocity	CO3			
	potential	function in rec	tangular and cylindrical co-				
	ordinates	ordinates					
В	Rotationa	CO3					
С	Definition	CO3					
	vortex, ci						
Unit 4							
A	Integral e	equations for th	e control volume: Reynold's	CO4			
	Transpor						
В	Equation	CO5					
	momentu						
C	Bernoulli	Bernoulli's equation and its application					
Unit 5							
A	Different	ial equations f	for the control volume: Mass	CO6			
	conservat	tion in 2 di	mension in rectangular co-				
	ordinates	,					
В	Euler's e	quations in 2,3	dimensions and subsequent	CO6			
	derivation	n of Bernoulli's	s equation;				
С	Navier-S	tokes equations	s (without proof) in	CO6			
		rectangular Cartesian co-ordinates					
Mode of	Theory						
examination	<u> </u>						
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
		1. Fluid Mechanics : Streeter and Wylie, McGraw					
Text book	1. Fluid N	Mechanics : Str	reeter and Wylie, McGraw				
Text book	1. Fluid M Hill	Mechanics : Sti	reeter and Wylie, McGraw				
Mode of examination Weightage	Navier-S rectangul Theory CA 30%	tokes equations dar Cartesian co	es (without proof) in o-ordinates ETE 50%	CO6			

2. Fluid Dynamics, M. D. Raisinghania, S Chand
Group

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C204.1	3	3	3	3	3	3	3	2	1
C204.2	3	2	3	3	2	3	2	1	2
C204.3	2	3	2	2	3	2	2	1	2
C204.4	2	2	1	3	2	2	3	2	1
C204.5	3	2	2	3	2	3	2	2	2
C204.6	3	2	2	3	2	2	2	2	2

Scho	ool: SBSR	Batch : 2018-20					
Prog	gram: M.Sc.	Current Academic Year: 2019-20					
Brai	nch: Mathematics	Semester: III					
1	Course Code	MMT 206					
2	Course Title	Number Theory with Cryptography					
3	Credits	4					
4	Contact Hours (L-T-P)	4-0-0					
	Course Status	Compulsory					
5	Course Objective	To make students familiar with the basic concepts of number theory, congruence. Also students are able to understand public & private key cryptography.					

			Beyond Boundaries					
6	Course Outcomes	CO1: Explain the basic concepts of number theory and calculate C factorization theorem, Euclid theorem, and Prime nu (K2,K3,K4,K6)	GCD, LCM; write umber theorem.					
		CO2: Discuss about congruences along with solutions, residu Fermat's little theorem, Wilson theorem, Chinese remainder lemma and calculate Primitive roots. (K1,K2,K5,K6)						
		CO3: Describe classical encryption techniques, Substitution transposition ciphers, modern block ciphers principles, public cryptography, write RSA algorithm. (K2,K6)						
		CO4: Discuss and write Gauss lemma, Legendre symbol, quadreciprocity law, Jacobi symbol.(K2,K6) CO5: Explain the greatest integer function, Euler's totient functionmeter of divisors function.(K2,K4) CO6: Discuss and evaluate the sum of divisors function, Mobius function, Mobius inversion formula. (K1,K2,K5)						
7	Course Description	This course is an introduction to basics of number theory with cryptography, congruences, quadratic residues, some standard arithmetic functions.						
8	Outline syllabus : N	Number theory with Cryptography (MMT-206)	CO Mapping					
	Unit 1	BASICS						
	A	Primes, Divisibility, Euclid's algorithm, GCD, LCM, expressing.	CO1					
	В	GCD as a linear combination of the numbers, Unique factorization theorem, Euclid's theorem on infinitude of primes.	CO1					
	С	Idea of existence of large gaps between primes, Statement of prime number theorem.	CO1					
	Unit 2	CONGRUENCES						
	A	Definition, Residue system modulo m, Fermat's little theorem, Euler's generalization of Fermat's theorem.	CO2					
	В	Wilson's theorem, Solution of congruences, Chinese remainder theorem.	CO2					
	С	CO2						
	Unit 3	CRYPTOGRAPHY						
	A Classical encryption techniques, Substitution ciphers and transposition ciphers, Modern block ciphers and Block ciphers principles.							
	1							

				Beyond Boundaries			
В	Public key message.	Public key Cryptography: Public keys, Encrypting the message.					
С		Private keys, decrypting and retrieval of the original message (RSA algorithm).					
Unit 4	QUADRA'	TIC RESIDUES					
A	Gauss lem	ma.		CO4			
В	Legendre	symbol, Jacobi s	symbol.	CO4			
С	Quadratic	reciprocity law		CO4			
Unit 5	SOME ST.	ANDARD ARIT	HMETIC FUNCTIONS				
A	The greate	CO5					
В	The numb function.	CO6					
C	Mobius m	u function, Mob	ius inversion formula.	CO6			
Mode of examination	Theory						
Weightage	CA	MTE	ЕТЕ				
Distribution	30%	20%	50%				
Text book/s*	Ivan Ni Montgo number: G. H. H theory of						
Other References							

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C206.1	3	3	3	3	3	3	3	2	1
C206.2	3	2	3	3	2	3	2	1	1
C206.3	2	2	2	2	2	2	2	1	2
C206.4	2	2	1	2	2	2	3	1	1
C206.5	3	2	2	3	3	3	2	2	2
C206.6	3	2	1	3	2	2	2	1	2

Scho	ool: SBSR	Batch: 2018-20					
Prog	gram: M.Sc.	Current Academic Year: 2019-20					
Brai	nch:	Semester: IV					
Mat	hematics						
1	Course Code	MMT 205					
2	Course Title	FUNCTIONAL ANALYSIS					
3	Credits	4					
4	Contact Hours	4-0-0					
	(L-T-P)						
	Course Status	Compulsory					
5	Course Objective	To familiarise students with basic concepts of Functional analysis and given an idea of implemented the concepts of Elementary understanding of Normed linear spaces. Can perform basic Bounded linear operator and Know how to calculate system of Inner product spaces. Understand the basic concept of functional analysis and learn basic definitions and terminology associated with to functional analysis.					
6	Course Outcomes	CO1: Describe the basics of functional analysis, normed linear spaces, Holder's inequality, Minkowski's inequality and explain l^p -spaces, equivalence of norms and calculate banach spaces. (K2, K3, K4) CO2: Explain bounded linear spaces, finite dimensional normed space and compactness and evaluate dual of normed spaces \Re^n ; l^p also of C[a, b]). (K2,K4,K5) CO3: Discuss the concept of open mapping and closed graph theorems, explain uniform boundedness principle and its applications.(K1,K2,K4) CO4: Write Hahn-Banach theorem and its consequence. (K6) CO5: Illustrate Inner product spaces, Hilbert spaces with examples and					

					eyond Boundaries				
				essel's inequality, existence of c					
		orthonormal basis of a Hilbert space Riesz representation theorem.							
		(K3,K6)							
		CO6: Describe	•						
		operator, self a	e Riesz-						
		Schauder theor			. 11				
7	Course			course is to develop the under					
	Description			led linear operator, open mappi	ng and closed				
	0 11 11 1	graph theorems			COM:				
8	Outline syllabus	Foundation co		nematics	CO Mapping				
	Unit 1	Normed linear		1 1 2 12 34 1 12	GO1				
	A		spaces, Hole	der's inequality, Minkowski's	CO1				
		inequality			GO 1				
	D	• •		norms, equivalence of norms	CO1				
	В			e, Riesz lemma,					
	С	Banach spaces,			CO1				
	Unit 2	Bounded linea							
	A	Bounded lines	ar operator,	spaces of bounded linear	CO2				
		operator							
	В	Finite dimension	onal normed s	space and compactness	CO2 CO2				
	С	Dual of normed	Dual of normed spaces \Re^n ; l^p also of C[a, b]).						
	Unit 3	Open mapping	g						
	A	Open mapping	and closed gr	raph theorems	CO3				
	В	Uniform bound	dedness princi	iple and its applications	CO3				
	С	Hahn-Banach t	theorem and i	ts consequence.	CO3, CO4				
	Unit 4	Inner product	spaces	-					
	A	Inner product s	spaces, Hilber	t spaces and examples	CO5				
	В	Projection theo	orem, Bessel's	inequality, existence of	CO5				
		complete ortho	normal basis	of a Hilbert space					
	С	Riesz represent	tation theoren	n	CO5				
	Unit 5	Bounded linea	ar functional						
	A	Bounded linear	r functional.		CO6				
	В	Hilbert adjoint	operator, self	f adjoint operator, Compact	CO6				
		operators							
	С	Riesz-Schaude	r theorem, se	If-adjoint compact operators.	CO6				
	Mode of	Theory							
	examination	·							
	Weightage	CA N	MTE	ETE					
	Distribution	30% 2	20%	50%					
	Text book/s*	[1] Kreyszig, Erwin, Introductory Functional Analysis							
		with Applications, Wiley Classics Library, John Wiley &							
		Sons, Inc., Nev	•	•					
				., Functional Analysis,					
		second edition,	, New Age In	ternational Publishers					
		Limited,							

Other	.,
References	

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C205.1	3	3	3	3	3	3	3	2	2
C205.2	3	2	3	3	2	3	3	1	1
C205.3	2	2	2	2	2	2	2	2	2
C205.4	2	2	1	2	3	2	3	1	1
C205.5	3	2	2	3	2	3	2	2	2
C205.6	3	2	1	3	2	2	2	1	2

Sch	ool: SBSR	Batch: 2018-20			
	gram: B.SC	Current Academic Year: 2019-2020			
Bra		Semester: IV			
		Semester: 1v			
	hematics				
1	Course Code	MMT 202			
2	Course Title	MEASURE THEORY			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course Status	Compulsory			
5	Course	This course provides an introduction to topics involving concepts of			
	Objective	Topological space, σ -algebra of measurable sets, Borel sets, measurable			
		functions, Lebesgue measure, integration of complex functions and			
		linear functional.			
6	Course	CO1: Explain the concept of Topological spaces and calculate interior, exterior			
	Outcomes	limit point and boundary points. (K2, K3, K4)			
		CO2: Describe the concept of approximation of measurable functions, explain			
		Lebesgue's monotone convergence theorem and Fatou's lemma and evaluate			
		integration of positive functions, term by term differentiation of a series of			
		positive measurable functions. (K1,K2, K5)			
		CO3: Discuss the integration of complex function.(K1, K2)			
		CO4: Explain Lebesgue's dominated convergence theorem, role of sets			
		of measure zero, write extension of a measure to a complete measure.			
		(K2,K4,K6)			
L	l .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

CO5: Explain integration as linear functional, Topological ingredients and write positive Borel measure, Hausdorff spaces. (K2, K3, K4, K6) CO6: Describe the concept locally compact Hausdorff spaces, support of a complex function, vector space of continuous complex functions with compact support and write Urysohn's lemma, Riesz representation theorem. (K1, K2, K6) 7 Course Description D						Beyond Boundarie				
CO6: Describe the concept locally compact Hausdorff spaces, support of a complex function, vector space of continuous complex functions with compact support and write Urysohn's lemma, Riesz representation theorem. (K1,K2, K6) 7 Course This course provides an introduction to topics involving concepts of Topological space and separate axioms, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory. 8 Outline syllabus CO Mapping										
complex function, vector space of continuous complex functions with compact support and write Urysohn's lemma, Riesz representation theorem. (K1, K2, K6) 7 Course Description Descri										
Compact support and write Urysohn's lemma, Riesz representation theorem. (R1.K2, K6) This course provides an introduction to topics involving concepts of Topological space and separate axioms, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory. Variable Preliminaries:										
theorem. (K1,K2, K6) Course Description Description This course provides an introduction to topics involving concepts of Topological space and separate axioms, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory. 8 Outline syllabus CO Mapping Unit 1 Preliminaries: A Topological spaces, continuous functions Coll Gralgebra of measurable sets, Borel sets, measurable functions Coll Unit 2 Lebesgue measure: A Approximation of sequence of functions. COl Unit 2 Lebesgue measures B Integration of positive functions, Lebesgue's monotone convergence theorem Convergence theorem, convergence theorem, role of sets of measure zero Convergence theorem, role of sets of the development zero zero zero zero zero zero zero zero			•							
This course provides an introduction to topics involving concepts of Description Description Description Description Description Description Description Description Description Topological space and separate axioms, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory. 8 Outline syllabus CO Mapping Unit 1 Preliminaries: A Topological spaces, continuous functions B σ-algebra of measurable sets, Lebesgue measurable functions C lim sup and liminf of sequence of functions. CO1 Unit 2 Lebesgue measure: A Approximation of measurable functions by simple functions, positive measures B Integration of positive functions, Lebesgue's monotone convergence theorem C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces B Integration as a linear functional, Topological ingredients C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of Theory examination Weightage Distribution 30% 20% 50%					e Urysohn's lemma, Riesz	representation				
Description Topological space and separate axioms, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory. Number Preliminaries:										
Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory. Outline syllabus	7									
complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory. Voit 1		Description								
Course is to develop the advance understanding of Measure Theory. Outline syllabus										
Solutine syllabus CO Mapping										
Unit 1 Preliminaries: A Topological spaces, continuous functions B	0	Outling syllohy	•	evelop the adva	ance understanding of Measure					
A Topological spaces, continuous functions B σ-algebra of measurable sets, Borel sets, measurable functions C lim sup and liminf of sequence of functions. CO1 Unit 2 Lebesgue measure: A Approximation of measurable functions by simple functions, positive measures B Integration of positive functions, Lebesgue's monotone convergence theorem C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%	0					CO Mapping				
B σ-algebra of measurable sets, Borel sets, measurable functions C lim sup and liminf of sequence of functions. CO1 Unit 2 Lebesgue measure: A Approximation of measurable functions by simple functions, positive measures B Integration of positive functions, Lebesgue's monotone convergence theorem C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution CO1 CO2 CO2 CO2 CO3 CO4 CO5 CO5 CO6 A MTE ETE CO7 CO6 CO7 CO7 CO7 CO7 CO7 CO7					ous functions	CO1				
Functions C										
C lim sup and liminf of sequence of functions. CO1 Unit 2 Lebesgue measure: A Approximation of measurable functions by simple functions, positive measures B Integration of positive functions, Lebesgue's monotone convergence theorem C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces B Integration as a linear functional, Topological ingredients CO5 C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		D	_	measurable set	s, Borer sets, measurable	COI				
Unit 2		C		minf of soquer	age of functions	CO1				
A Approximation of measurable functions by simple functions, positive measures B Integration of positive functions, Lebesgue's monotone convergence theorem C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage Distribution 30% 20% 50%		_	_		ice of functions.	COI				
functions, positive measures B					rable functions by simple	CO2				
B Integration of positive functions, Lebesgue's monotone convergence theorem C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces B Integration as a linear functional, Topological ingredients C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage Distribution 30% 20% 50%		A				CO2				
C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution CO3 CO3 CO3 CO3 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO6 CO6		R				CO2				
C Term by term differentiation of a series of positive measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		B	_	_	tions, Leoesgue's monotone	CO2				
measurable functions, Fatou's lemma. Unit 3 Integration of complex functions: A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces B Integration as a linear functional, Topological ingredients C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		С			of a series of positive	CO2				
Unit 3						CO2				
A Complex measurable functions, integration of Complex measurable functions B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces C Definition of compactness and Hausdorff spaces. C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage Distribution 30% 20% 50%		Unit 3								
measurable functions B						CO3				
B Lebesgue's dominated convergence theorem, role of sets of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces B Integration as a linear functional, Topological ingredients CO5 B Integration of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of compact support Weightage CA MTE ETE Distribution CO3, CO4 CO5 CO5 CO5 Definition of compactness and Hausdorff spaces. CO6 CO6 CO6 Mode of Theory ETE Distribution CO3, CO4 CO5 CO5 CO5 B Integration as a linear functional: CO6 CO6 CO6 CO6 CO6 CO6 CO6 CO					one, modernien er eempren					
Of measure zero C Extension of a measure to a complete measure. CO3, CO4 Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces CO5 B Integration as a linear functional, Topological ingredients C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		В			ergence theorem, role of sets	CO3, CO4				
Unit 4 Integration as a linear functional: A Positive Borel measure, vector spaces CO5 B Integration as a linear functional, Topological ingredients CO5 C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with CO6 compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%					,	,				
A Positive Borel measure, vector spaces B Integration as a linear functional, Topological ingredients C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		С	Extension of a	a measure to a	complete measure.	CO3, CO4				
A Positive Borel measure, vector spaces B Integration as a linear functional, Topological ingredients C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		Unit 4	Integration a	s a linear fun	ctional:					
B Integration as a linear functional, Topological ingredients C Definition of compactness and Hausdorff spaces. CO5 Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		A				CO5				
C Definition of compactness and Hausdorff spaces. Unit 5 Riesz representation theorem: A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. Mode of Examination Weightage CA MTE ETE Distribution 30% 20% 50%		В			1	CO5				
A Locally compact Hausdorff spaces, support of a complex function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		С	Definition of	compactness a	nd Hausdorff spaces.	CO5				
function B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of Examination Weightage CA MTE ETE Distribution 30% 20% 50%		Unit 5	Riesz represer	ntation theorer	n:					
B Vector space of continuous complex functions with compact support C Urysohn's lemma, Riesz representation theorem. Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		A	Locally comp	act Hausdorff	spaces, support of a complex	CO6				
compact support C Urysohn's lemma, Riesz representation theorem. CO6 Mode of Examination Weightage CA MTE ETE Distribution 30% 20% 50%			function							
C Urysohn's lemma, Riesz representation theorem. CO6 Mode of examination Weightage CA MTE ETE Distribution 30% 20% 50%		В	Vector space	CO6						
Mode of Examination Weightage CA MTE ETE Distribution 30% 20% 50%										
examination Weightage CA MTE ETE Distribution 30% 20% 50%			Urysohn's lemma, Riesz representation theorem. CO6							
Weightage DistributionCAMTEETE20%50%			Theory							
Distribution 30% 20% 50%										
Text book/s* 1) Walter Rudin: Real and Complex analysis, Mc										
		Text book/s*	1) Walter	Rudin: Real an	d Complex analysis, Mc					

	GRAW HILL, International student edition.	
Other	1) Walter Rudin: Real and Complex analysis, Mc	
References	GRAW HILL, International student edition.	
	2) Walter Rudin: Principles of Mathematical	
	analysis, Mc GRAW HILL, International series in Pure	
	and Applies Mathematics.	
	H. L. Royden: Real Analysis, Amazon. Com.	

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C202.1	3	3	3	3	3	3	3	2	1
C202.2	3	2	3	3	2	3	2	1	1
C202.3	2	2	2	2	2	2	2	1	1
C202.4	2	2	1	2	2	2	3	1	1
C202.5	3	2	2	3	3	3	2	2	2
C202.6	3	2	1	3	2	3	2	2	2

Scho	ool: SBSR	Batch: 2018-20			
Prog	gram: M.Sc.	Current Academic Year: 2019-2020			
Brai	nch: Mathematics	Semester: IV			
1	Course Code	MMT-208			
2	Course Title	DISCRETE MATHEMATICS			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective	This course is aimed to provide an advance understanding to the sets			
		and propositions, relations and functions, permutation and			
		combination, graphs, groups and rings.			
6	Course Outcomes	CO1: Discuss the concept of sets, un-countably infinite sets, principle			
		of inclusion and exclusion, multisets, propositions, conditional			
		propositions and evaluate normal forms, Mathematical			
		induction.(K2,K3, K4,K5)			
		CO2: Describe the concept functions, composition of function,			
		invertible functions, discrete properties of binary relations and check			
		the closure of relations. (K3, K6)			

			eyond Boundaries					
		CO 3: Explain the concept of POSET and lattices, Wars	shall's					
		algorithm, Equivalence relations and partitions and evaluate Chains,						
		and Anti-chains. Generating Functions, Recurrence rela	tions and					
		discuss linear recurrence relations with constant coefficient, homogeneous solution, total solutions, solutions by method of						
		1	1100 01					
		Generating function. (K2, K4,K5)						
		CO 4: Illustrate the concept permutations and combinat						
		sum and product, write the algorithms for generation of	permutations					
		and combination. (K3, K5,K6)						
		CO 5: Discuss the concept graph, sub-graph, Walks, Pa	th and					
		circuits, Connected graphs, Disconnected graphs and co	mponent,					
		evaluate the fundamental circuits, distance, diameters, r	adius and					
		pendant vertices, rooted and binary trees (K1,K2,K5,K6						
		CO6: Demonstrate the understanding of Algebraic syste						
		and evaluate Semi-groups, Monoid, Subgroups, Isomor						
		Automorphism. (K2, K5)	pinsin una					
7	Course Description	This course is given the deep knowledge of sets and pro	nocitions					
′	Course Description	relations and functions, permutation and combination, g	-					
		1	graphs, groups					
	0 11 11 1	and rings.	G0.14 :					
8	Outline syllabus		CO Mapping					
	Unit 1	Sets and Propositions:						
	A	Sets, Un-countably infinite sets, Principle of inclusion	CO1					
		and exclusion, multisets, propositions, conditional						
		propositions.						
	В	Logical connectivity, Propositional, calculus,	CO1					
		Universal and existential quantifiers						
	С	Normal forms, methods of proofs, Mathematical	CO1					
		induction.						
	Unit 2	Relations and Functions:						
	A	Functions, Composition of function, invertible	CO2					
		functions, Discrete properties of binary relations,						
		closure of relations						
	В	Warshall's algorithm, Equivalence relations and	CO3					
	ע	_	203					
		partitions, POSET and lattices, Chains, and Anti-						
	C	chains. Generating Functions, Recurrence relations	CO3					
	С	Linear Recurrence relations with constant coefficient,	COS					
		Homogeneous solution, Total Solutions, Solutions by						
		method of Generating function.						
	Unit 3	Permutation and Combination:						
	A	Permutations and combinations : Rule of sum and	CO4					
		Product						
	В	Permutations, Combination	CO4					
	C	Algorithms for Generation of Permutations and	CO4					
		Combination.						
	Unit 4	Graphs:						
	A	Graph, Sub-graph, Various examples of graph and	CO5					
	1		1					

			- B	eyond Boundaries
		-	Path and circuits, Connected	
	graphs, I	Disconnected gr	raphs and componant	
В	Euler's g	graphs, various	operation on graphs,	CO5
	Hamilton	nian Paths and	circuits. Trees and	
	fundame	ntal circuits, di	stance, diameters, radius and	
	pendant	vertices, rooted	l and binary trees	
C	Counting	g tree, Spannir	ng tree, Fundamental circuits,	CO5
	Finding	all spanning tre	es, Fundamental circuits.	
Unit 5	Groups	and Rings:		
A	Algebrai	c systems, Gro	up	CO6
В	Semi-gro	oups, Monoid, S	Subgroups	CO6
С	Isomorp	hism and Autor	norphism.	CO6
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1. L	iu C.L. and M	Iohapatra, D.P., " Elements of	
			nematics", SiE edition,	
		MH, 2008		
Other References	,		Discrete Mathematics and its	
		applications", M		
			rete Mathematics", 3rd edition,	
		Oxford University	y	

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C208.1	3	3	3	3	3	3	3	2	1
C208.2	3	2	3	3	2	3	2	1	2
C208.3	2	3	2	3	2	2	2	2	1
C208.4	2	2	1	2	2	2	3	2	2
C208.5	3	2	2	3	2	3	2	2	2
C208.6	3	2	2	3	2	2	2	1	2

Syllabus of MMT-151 (Practical)

Scho	ool: SBSR	Batch: 2018-20					
Prog	gram: M.Sc.	Current Academic Year: 2018-19					
Bran	nch: Mathematics	Semester: I					
1	Course Code	MMT-151	MMT-151				
2	Course Title	Mathematics Lab I					
3	Credits	2					
4	Contact Hours	0-0-3					
	(L-T-P)						
	Course Status	Compulsory					
5	Course	The goal of this course is to introduce students to the fund					
	Objective	mathematical concepts for MATLAB. The course will cov	•				
		and semantics of MATLAB including control structures, c	· ·				
		variables, functions etc. Once the foundations of the langu					
		established students will explore different types of scientif					
		programming problems including curve fitting, ODE solvi					
6	Course	CO1: Describe the fundamentals of MATLAB and use M	ATLAB for				
	Outcomes	interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses	(V2 V2)				
		CO3: Illustrate basic flow controls (if-else, for, while). (K					
		CO4: Create plots and export this for use in reports and pr	*				
		(K3, K5)	esentations.				
		CO5: Develop program scripts and functions using the MA	ATLAB				
		development environment. (K4, K5)					
7	Course	The course will give the fundamental knowledge and prac-	tical abilities				
	Description	in MATLAB required to effectively utilize this tool in tecl					
		numerical computations and visualisation in other courses.					
		Syntax and interactive computations, programming in MATLAB using					
		scripts and functions, rudimentary algebra and analysis. One- and two-					
		dimensional graphical presentations. Examples on enginee	ering				
		applications.					
8	Outline syllabus		CO Mapping				
	Unit 1	Practical based MATLAB as a calculator.	CO1				
		Creating an Array in MATLAB	CO1				
	Unit 2	Practical related to Mathematical Operations with	CO3				
		Arrays					
	Unit 3	Practical related to How to make scripts files in CO5					
		MATLAB and do some examples.					
	Unit 4	Practical related to Make some function files in	CO4,CO5				
		MATLAB. Basic two-dimensional and three-dimensional					
		plotting, change in axes and annotation in a figure.					

				Beyond Boundaries		
Unit 5	statement, Solving a	Practical related to If-End statement, If-Else-End statement, nested If-Else-End statement Solving a system of linear equations, curve fitting with polynomials using inbuilt functions such as polyfit.				
Mode of examination	1 0	Practical &Viva				
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text book	1. An intro	1. An introduction to MATLAB : Amos Gilat				
Other References	enginee	 Applied Numerical Methods with Matlab for engineering and Scientists by stevenchapra, Mcgraw Hill. Getting started with Matlab: RudraPratap 				

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C151.1	3	3	2	2	2	3	2	2	3
C151.2	2	3	3	3	3	2	3	3	2
C151.3	2	3	2	2	3	3	3	3	3
C151.4	2	3	2	3	2	2	2	3	2
C151.5	3	3	2	3	2	2	3	2	3

Syllabus of MMT-152 (Practical)

Scho	ool: SBSR	Batch: 2018-20					
Prog	gram: M.Sc.	Current Academic Year: 2018-19					
Brai	nch:	Semester: II					
Mat	hematics						
1	Course Code	MSM 152					
2	Course Title	Mathematics Lab II					
3	Credits	2					
4	Contact Hours	0-0-3					
	(L-T-P)						
	Course Status	Compulsory					
5	Course	To familiarize the student in introducing and explore	ring MATLAB				
	Objective	software.					
		To enable the student on how to approach for sol	ving problems				
		using MATLAB tools.	iving problems				
			1				
		To prepare the students to use MATLAB in their prepare the students to use MATLAB.	J.				
		To provide a foundation in use of this software	for real time				
		applications.					
6	Course	CO1: Understand the procedures, algorithms, and concepts require to					
	Outcomes	solve specific problems. (K2)	C 1:				
		CO2: Discuss and develop the algorithms to solve system of linear					
		equations and measure the accuracy. (K2, K5, K6)					
		CO3: Discuss and develop the algorithms to solve finite d	ifferences and				
		interpolation and measure the accuracy. (K2, K5, K6)	. c				
		CO4: Discuss and develop the algorithms to solve system of					
		transcendental equations and measure the accuracy. (K2, K					
		CO5: Discuss and develop the algorithms to solve divided of measure the accuracy. (K2, K5, K6)	inferences and				
		CO6: Discuss and develop the algorithms to solve numerical	. 1				
		differentiation and integration and measure the accuracy. (
		differentiation and integration and measure the accuracy.	K2, K3, K0)				
7	Course	This course teaches computer programming to those with li	ttle to no				
	Description	previous experience. It uses the programming system and la					
		MATLAB to do so because it is easy to learn, versatile and					
		for engineers and other professionals. MATLAB is a special	-				
language that is an excellent choice for writing moderate-size program							
		that solve problems involving the manipulation of numbers					
8	Outline syllabus		CO Mapping				
	Unit 1	Lab. Experiment 1:					
		Solution of system of linear equations:	CO1, CO2				
	Unit 2	Lab. Experiment 2:					
		System of Transcendental equations	CO1, CO3				
	Unit 3	Lab. Experiment 3:					
			·				

*	SHARDA
	UNIVERSITY

					Seyond Boundaries			
		Finite differen	Finite differences and interpolation:					
Unit	t 4	Lab. Experii	ment 4:					
		Divided diffe	rences:		CO1,CO5			
Unit	t 5	Lab. Experii	Lab. Experiment 5:					
		Numerical di	Numerical differentiation and integration					
Mod	de of	Practical						
exar	nination							
Wei	ghtage	CA	MTE	ETE				
Dist	ribution	60%	0%	40%				
Text	t book/s*	Amos Gilot						
Othe	er							
Refe	erences							

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C152.1	3	3	2	2	2	3	2	2	3
C152.2	2	3	3	2	3	2	3	3	2
C152.3	2	3	2	2	3	3	3	2	3
C152.4	2	3	2	3	2	2	2	2	2
C152.5	3	3	2	3	2	2	3	3	3

Syllabus of MMT-251 (Practical)

Scho	ool: SBSR	Batch: 2018-20							
Prog	gram: M.Sc.	Current Academic Year: 2019-20							
Brar	nch:	Semester: III							
Mat	hematics								
1	Course Code	MMT-251							
2	Course Title	Mathematics Lab III							
3	Credits	2							
4	Contact Hours)-0-3							
	(L-T-P)								
	Course Status	Compulsory							
5	Course	To create understanding of the LaTeX and enable	e the students						
	Objective	how to write resume, write question paper, write ar	ticles/ research						
	-	papers.	10000						
		pupers.							
6	Course	CO1: Understand the procedures installation of the software	e LaTeX. (K2)						
	Outcomes	CO2: Discuss and explain Latex basic syntax and write equ	, ,						
		and tables. (K2, K4, K6)	, ,						
		CO3: Explain and write page layout, equation references of	citation tables						
		of contents list of figures etc. (K2, K4, K6)							
		CO4: Describe how to write Geometry, Hyperref, amsmath, amssymb,							
		algorithms in Latex. (K1, K2, K6)							
		CO5: Discuss the classes and explain how to write article, book, report,							
		beamer, slides. IEEtran (K2,K4, K6)							
		CO6: Write resume, question paper, research paper, project in Latex.							
		(K2, K5, K6)							
7	Course	This course teaches the LaTeXTo and describes how to wri	te resume,						
	Description	write question paper, and write articles / research papers.							
8	Outline syllabus		CO Mapping						
	Unit 1	Lab. Experiment 1:							
		Installation of the software LaTeX	CO1, CO2						
		Understanding Latex compilation:							
		Basic Syntex, Writing equations, Matrix, Tables							
	Unit 2	Lab. Experiment 2:							
		Page Layout – Titles, Abstract Chapters, Sections,	CO3						
		References,							
		Equation references, citation.							
		List making environments							
		Table of contents, Generating new commands, Figure							
		handling numbering, List of figures, List of tables,							
		Generating index.							
	Unit 3	Lab. Experiment 3:							
		Packages: Geometry, Hyperref, amsmath, amssymb,	CO4						

				Beyond Boundaries
	algorithms,			
	algorithmic g	raphic, color, t	ilez listing.	
Unit 4	Lab. Experin	ment 4:		
	Classes: artic	le, book, report	t, beamer, slides. IEEtran.	CO5
Unit 5	Lab. Experii	ment 5:		
	Applications	to:		CO6
	Writing resur	ne		
	Writing quest	tion paper		
	Writing articl	les/ research pa	pers	
Mode of	Practical			
examination				
Weightage	CA	MTE	ETE	
Distribution	60%			
Text book/s*	LATEX for E			
Other				
References				

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО									
C251.1	3	3	2	2	2	3	2	2	3
C251.2	2	3	3	2	3	2	3	2	2
C251.3	2	3	2	2	3	3	3	2	2
C251.4	2	3	2	2	2	2	2	2	2
C251.5	3	3	2	2	2	2	3	3	3

Syllabus of Project I

Scho	ool: SBSR	Batch : 2	2018-20						
Prog	gram: M.Sc.	Current A							
	nch: Mathematics	Semester	: III						
1	Course Code	MMT 252							
2	Course Title	DISSERT	ATION-I						
3	Credits	2	2						
4	Contact Hours (L-T-P)	0-0-3	0-0-3						
	Course Status		ory/Elective						
5	Course Objective	• D	pecialization Develop co roject writi		of in op				
6	Course Outcomes	5)							
7	Course Description	that is ada	aptable to cl	athematical and technical knowledgnanging technologies and provides a cuture learning.					
8	Outline syllabus				CO Achievement				
	Unit 1	Introduction	on		CO1				
	3								
	Unit 2	Case study	,		CO1,CO2				
	Unit 3	Conceptua	.1		CO2,CO3				
	OIIIt J	Сопсериа			002,003				
	Unit 4	Developme	ent		CO3				
	TT *4 F	TO: 3: 4:			002.004				
	Unit 5	Finalisatio	<u>n</u>		CO3,CO4				
	Mode of examination	Jury/Praction	cal/Viva						
	Weightage	CA	MTE	ETE					
	Distribution	60%	0%	40%					
	Text book/s*	-							
	Other References								

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C252.1	3	3	2	2	2	3	2	3	3
C252.2	2	3	3	2	3	2	3	3	2
C252.3	2	3	2	2	3	3	3	3	3
C252.4	2	3	2	2	2	3	2	3	2

Syllabus of Project II

Scho	ol: SBSR	Batch: 2018-20	
Prog	gram: B.Sc.	Current Academic Year: 2019-20	
Bran	nch: Mathematics	Semester: IV	
1	Course Code	MMT 253	
2	Course Title	DISSERTATION-2	
3	Credits	8	
4	Contact Hours (L-T-P)	0-0-8	
	Course Status	Compulsory/Elective	
5	Course Objective	 Deep knowledge of a specific area of specialization. Develop communication skills especially in project writing and oral presentation. Develop some time management skills. 	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analysing background material and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and taste for research. (K5, K6) CO3: Select and recommend the activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5)	
7	Course Description	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.	

					🤝 🎾 Beyond Boundaries			
8	Outline syllabus							
		_			Achievement			
	Unit 1	Introduc	Introduction					
	Unit 2	Case stu	dy		CO1,CO2			
	Unit 3	Concept	ual		CO2,CO3			
					CO3			
	Unit 4	Develop	Development					
	Unit 5	Finalisat	ion		CO3,CO4			
	Mode of	Jury/Prac	ctical/Viva					
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	60%	0%	40%				
	Text book/s*	-						
	Other References							

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C253.1	3	3	2	2	2	3	2	3	3
C253.2	2	3	3	2	3	2	3	3	2
C253.3	2	3	2	2	3	3	3	3	3
C253.4	2	3	2	2	2	3	2	3	2

