Master of Science

Mathematics

AY: 2018-19

Program and Course Structure

School of Basic Science and Research Department of Mathematics
M. Sc. (Mathematics)

SBR0301

Batch 2018-20

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

1. Transformative educational experience.
2. Enrichment by educational initiatives that encourage global outlook.
3. Develop research, support disruptive innovations and accelerate Entrepreneurship.
4. Seeking beyond boundaries.

Core Values

1.Integrity
2. Leadership
3.Diversity
4.Community

1.2 Vision and Mission of the School

Vision of the School

Achieving excellence in the realm of science to address the challenges of evolving society

Mission of the School

1. Equip the students with knowledge and skills
2. Capacity building by providing academic flexibility to student and faculty members
3. To establish centre of excellence for innovative research
4. Address the deficiencies of the society pertaining to environment
5. To strengthen academic- industry collaboration for better employability
6. Developing a culture for continued betterment in all facets of life

Core Values

1.Integrity
2. Leadership
3. Diversity
4. Community

1.3 Vision and Mission

Department of Mathematics

Vision of the Department

To become a globally recognized destination for education in applied mathematics and research.

Mission of the Department

1. To develop mathematical skills in students and make them employable across a wide range of professions and promote interest research.
2. To develop entrepreneurial skills in students to serve the society at large.
3. To develop skills for the applications of mathematics in the various fields.

Core Values

1. Integrity
2. Leadership
3. Diversity
4. Community

M. Sc. (Mathematics)

1.4 Programme Educational Objectives (PEO's)

PEO1: To deliver deep subject knowledge in the courses of study to enable students to shine in various fields such as sciences, engineering and technology, IT etc.
PEO2: To develop positive attitude and skills to enable the students to become a multi facet personality.
PEO3: To prepare students for entrance examinations conducted by IIT’s/Universities to pursue Ph. D. programs as well as NET, UGC-CSIR.
PEO4: To develop students to be excellent to be excellent communicators and team players.

1.4.1 Program Outcomes (PO's)

PO1:Mathematical knowledge:Application of Mathematical knowledge in various fields of science, engineering and management etc.
PO2:Nature of Mathematics: Understand the concise, precise and rigorous nature of Mathematics.
PO3: Critical thinking:Develop the skill to think critically on abstract concepts of Mathematics.
PO4:Problem analysis: Develop the ability to analyze a problem logically and dissect into micro-parts and thus resolving the problem to accessible components.

PO5: Mathematical logic and Ethics:Formulates and develops mathematical arguments in logical manner and Realize and understand professional, ethical and cultural responsibilities.

1.4.2 Programme Specific Outcomes (PSO's)

PSO1 : Scientific thinking and logical abilities.
PSO2 : Application of Mathematical principles in practical situations and software developments.

PSO3 : Analyze any problem to micro-levels and solve the problem step by step.
PSO4 : Owning up responsibility for logical comprehension and preparedness for constant improvement.
1.4.2 Map PEOs with Mission Statements:

PEO	School	School	School	School	School	School
Statements	Mission	Mission	Mission	Mission	Mission	Mission
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	$\mathbf{6}$
PEO1:	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
PEO2:	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
PEO3:	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$
PEO4:	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$

1.4.3 Mapping of Program Outcome (PO's)Vs Program Educational Objectives (PEO's)

	PEO1	PEO2	PEO3	PEO4
PO1	3	3	3	2
PO2	3	3	3	2
PO3	3	3	3	2
PO4	3	2	3	2
PO5	2	$\mathbf{3}$	2	3
PSO1	$\mathbf{2}$	2	2	3
PSO2	3	3	2	3
PSO4	3		2	3

1. Slight (Low)
2. Moderate (Medium) 3. Substantial (High)

1.3.5 Program Outcome (PO's)Vs Courses Mapping Table:

1.3.5.1 COURSE ARTICULATION MATRIX

Co's	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
MMT-101	3	2	2	3	2	3	3	2	2
MMT-102	3	2	2	3	3	3	2	2	2
MMT-104	3	2	2	3	2	3	3	2	2
MMT-105	3	2	2	3	2	3	3	2	2
MMT-119	3	2	2	3	2	3	3	2	2
MMT-151	3	3	2	3	3	3	3	3	3
MMT-113	3	2	2	3	2	3	3	2	2
MMT-106	3	2	3	3	2	3	3	2	2
MMT-107	3	2	2	3	2	3	3	2	2
MMT-108	3	2	3	3	3	3	3	2	2
MMT-152	3	3	2	2	3	3	3	3	3
MMT-201	3	2	2	3	3	3	2	2	2

MMT-203	3	2	2	3	2	3	3	2	2
MMT-209	3	3	3	3	2	3	2	2	2
MMT-204	3	2	2	3	3	3	3	2	2
MMT-206	3	2	2	3	2	3	2	2	2
MMT-251	3	3	2	2	3	3	3	2	3
MMT-252	2	3	2	2	3	3	3	3	2
MMT-205	3	2	2	3	3	3	3	2	2
MMT-202	3	2	2	3	2	3	2	2	2
MMT-208	3	3	2	3	2	3	3	2	2
MMT-253	2	3	2	2	3	3	3	3	3

1-Slight (Low)
2-Moderate (Medium)
3-Substantial (High)

Department of Mathematics

School of Basic Sciences \& Research

M. Sc. (Mathematics)

Batch: 2018-20

TERM: I

S. No.	SUBJECT	Title of Paper	HOURS				CREDITS	PRE-	Type of Course1:
	THEORY		L	T	P	TOTAL			
1.	MMT 101	REAL ANALYSIS	4	-	-	4	4	CO-REQUISITE	CC
2.	MMT 102	LINEAR ALGEBRA	4	-	-	4	4	CO-REQUISITE	CC
3.	MMT 105	ORDINARY \& PARTIAL DIFFERENTIAL EQUATIONS	4	-	-	4	4	CO-REQUISITE	CC
4.	MMT 104	STATISTICAL METHODS	4	-	-	4	4	CO-REQUISITE	CC
5.	MMT 119	INTRODUCTION to MATLAB AND ITS APPLICATIONS	3	-	-	3	2	CO-REQUISITE	AECC
	PRACTICALS								
6.	MMT 151	MATHEMATICS LAB- I	-	-	3	3	2	CO-REQUISITE	AECC
TOTAL			19	-	3	22			20

[^0]Department of Mathematics

School of Basic Sciences \& Research

M. Sc. (Mathematics)

Batch: 2018-2020
TERM: II

S. No.	$\begin{aligned} & \text { SUBJECT } \\ & \text { CODE } \end{aligned}$	Title of Paper	HOURS				CREDITS	PRE-REQUISITE/ CO-REQUISITE	Type of Course2: 5. CC 6. AECC 7. SEC DSE
	THEORY		L	T	P	TOTAL			
1.	MMT 113	NUMERICAL ANALYSIS WITH MATLAB	4	0	-	4	4	CO-REQUISITE	CC
2.	MMT 106	COMPLEX ANALYSIS	4	0	-	4	4	CO-REQUISITE	CC
3.	MMT 107	TOPOLOGY	4	0	-	4	4	CO-REQUISITE	CC
4.	MMT 108	DIFFERENTIAL GEOMETRY \& TENSOR ANALYSIS	4	0	-	4	4	CO-REQUISITE	CC
5.	ENP 601	TECHNICAL PRESENTATION	-	0	4	2	2	CO-REQUISITE	SEC
	PRACTICALS								
6.	MMT 152	MATHEMATICS LAB- II	-	-	3	3	2	CO-REQUISITE	AECC
TOTAL			16	-	7	21	20		

[^1]Department of Mathematics
School of Basic Sciences \& Research
M. Sc. (Mathematics)

Batch: 2018-2020

TERM: III

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	SUBJECT CODE	Title of Paper	HOURS				CREDITS	PRE- REQUISITE/ CO- REQUISITE	Type of Course3: 1. CC 2. AECC 3. SEC 4. DSE
	THEORY		L	T	P	TOTAL			
1.	MMT-201	ABSTRACT ALGEBRA	4	-	-	4	4	CO- REQUISITE	CC
2	MMT 203	LINEAR PROGRAMMING	4	-	-	4	4	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \\ \hline \end{gathered}$	CC
		SPECIALIZATION PAPERS COURSES (I \& II)(opt any two							
3.	MMT 209 / / MMT-206	Graph Theory and its Applications / FLUID DYNAMICS / NUMBER THEORY WITH CRYPTOGRAPHY	$\begin{gathered} 4+ \\ 4 \end{gathered}$	-	-	8	8	COREQUISITE	AECC
	PRACTICALS								
4.	MMT 251	MATHEMATICS LAB- III	-	-	3	3	2	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \end{gathered}$	AECC
	DISSERTATION								
5.	MMT 252	DISSERTATION-I (A topic from specialization papers)	-	-		2	2	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \end{gathered}$	AECC
TOTAL			16	-	3	21	20		

[^2]
Department of Mathematics

School of Basic Sciences \& Research
M. Sc. (Mathematics)

Batch: 2018-2020

TERM: IV

S. No.	$\begin{gathered} \text { SUBJECT } \\ \text { CODE } \end{gathered}$	Title of Paper	HOURS				CREDITS	PRE- REQUISITE/ CO- REQUISITE	Type of Course4 1. CC 2. AECC 3. SEC 4. DSE
	THEORY		L	T	P	TOTAL			
		SPECIALIZATION PAPERS (I \& II)(opt any two							
1.	$\begin{aligned} & \text { MST } 205 \text { / } \\ & \text { MMT202 / } \\ & \text { MMT } 208 \end{aligned}$	FUNCTIONAL ANALYSIS / Measure Theory/ DISCRETE MATHEMATICS	$\begin{gathered} 4+ \\ 4 \end{gathered}$	-	-	8	8	COREQUISITE	CC
	PRACTICALS	----	-	-	-	-----	-----	-----	----
	DISSERTATION								
2.	MMT 253	DISSERTATION-2 (A topic from specialization papers)	-	-		8	8	COREQUISITE	AECC
TOTAL			8	-	-	16	16		

[^3]| School: SBSR | | Batch : 2018-20 | |
| :---: | :---: | :---: | :---: |
| Program: M.Sc. | | Current Academic Year: 2018-19 | |
| Branch: Mathematics | | Semester: I | |
| 1 | Course Code | MMT 101 | |
| 2 | Course Title | Real Analysis | |
| 3 | Credits | 4 | |
| 4 | Contact Hours (L-T-P) | 4-0-0 | |
| | Course Status | Compulsory | |
| 5 | Course Objective | 1. The objective of this course is to develop the knowledge of various concepts of Real numbers and their properties.
 2. The objective of this course is to develop a deeper and more rigorous understanding of Calculus including defining terms and proving theorems about sequences, series, limits, continuity, derivatives, the Riemann integrals, and sequences of functions. | |
| 6 | Course Outcomes | CO1: Explain functions between sets; equivalent sets; finite, countable and uncountable sets and some operations on real numbers. (K2,K4) CO : Evaluate convergent, divergent, bounded, Cauchy and monotone sequences and series. (K2,K5)
 CO3: Explain and determine the continuity, discontinuity and uniform continuity of functions. (K2,K3,K4)
 CO4: Determine the uniform convergence of sequences and series. (K2,K3)
 CO5: Evaluate convergence and divergence of sequences and series of functions. (K2,K5)
 CO6: Describe and use the concepts of fundamental theorem of Integral calculus, Riemann Integral and Riemann - Stieltjes integral (K2,K3) | |
| 7 | Course Description | This course is an introduction to the fundamentals of Real analysis. This provides the understanding of convergence, divergence, uniform convergence and absolute convergence of sequences and series of Real numbers. It gives an idea about continuity, discontinuity and uniform continuity of functions. It will be helpful in solving Real integrals. | |
| 8 | Outine syllabus | Real analysis | CO Mapping |
| | Unit 1 | | |
| | A | Neighbourhoods of a point in Υ, open and closed intervals in Υ, neighbourhoods of points in Υ^{2} | CO1 |
| | B | limit points of sets, compact sets of R | CO1 |
| | C | Bolzano-Weierstrass theorem, Heine-Borel theorem | CO1 |
| | Unit 2 | | |
| | A | Sequence of real numbers, convergence of sequences | CO 2 |
| | B | Cauchy sequence, limit superior and limit inferior of sequences | CO 2 |

COURSE OUTCOMES (CO's) - PROGRAMME OUTCOMES (PO's) MAPPING

TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C101.1	3	3	3	3	3	3	3	2	1
C101.2	3	2	3	3	2	3	2	1	1
C101.3	2	2	2	2	2	2	2	1	1
C101.4	2	2	1	2	2	2	3	1	1
C101.5	3	2	2	3	2	3	2	2	2
C101.6	3	2	1	3	2	2	2	1	2

School: SBSR		Batch : 2018-20
Program: M.Sc.	Current Academic Year: 2018-19	
Branch: Mathematics		Semester: I
1	Course Code	MMT102
$\mathbf{2}$	Course Title	LINEAR ALGEBRA
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
5	Course Status	Compulsory
Course	1. To familiarise students with basic concept of determinants, properties of determinants, rank of a matrix, inverse of a non-singular square Matrix, solution of system of linear equations. Have an idea of the fields and vector spaces, linear transformations, null spaces, rank and nullity theorem, inner products and norms, orthogonal vectors, Cauchy-Schwarz inequality, Orthogonal bases, Gram- Schmidt process. 2. Have an understanding of Characteristic roots of real matrices, right and left characteristic vectors, independence of characteristic vectors corresponding to distinct characteristic roots. To know definiteness of a real quadratic form, simultaneous reduction of two quadratic forms, maxima and minima of ratio of two quadratic forms.	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C102.1	3	3	3	3	3	3	3	2	1
C102.2	3	2	3	3	2	3	2	1	2
C102.3	2	2	2	2	2	2	2	2	1
C102.4	2	2	1	2	2	2	3	1	2
C102.5	3	2	2	3	2	3	2	2	1
C102.6	3	2	1	3	3	2	2	1	1

School: SBSR	Batch : 2018-20					
Program: M. Sc.	Current Academic Year: 2018 - 19					
Branch: Mathematics	Semester: I	$	$	1	Course Code	MMT 105
:---	:---	:---	:---			

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C105.1	3	3	3	3	3	3	3	2	1
C105.2	3	2	3	3	2	3	2	1	2
C105.3	2	2	3	2	2	2	3	2	1
C105.4	2	2	1	2	2	2	3	1	2
C105.5	3	2	2	3	2	3	2	2	2
C105.6	3	2	1	3	2	2	2	2	2

School: SBSR	Batch : 2018-20	
Program: M. Sc.	Current Academic Year: 2018 - 19	
Branch: Mathematics	Semester: I	
1	Course Code.	MMT104
2	Course Title	STATISTICAL METHODS
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$

	distribution, and joint probability distribution and describe the properties of discrete and continuous distribution functions. (K1,K2,K4) CO3: Explain the fundamentals of measure theory and be acquainted with the proofs of the fundamental theorems underlying the theory of integration and illustrate measure theory random variables, independence, expectations and conditional expectations, product measures and discrete parameter martingales. (K2,K3,K4) CO4: Explain the concept of length, area, volume using lebesgue's theory. (K2,K4) CO5: Describe how these underpin the use of Mathematical concepts such as volume, area, and integration and evaluate the same. (K1,K2, K5) CO6: Explain and illustrate the general principles of measure theory and integration in such concrete subjects as the theory of probability. (K2,K3,K4)	
7	Course In this course we will explore the use of statistical met analyzing, interpreting, and presenting experiments an cover descriptive statistics, probability, discrete rando random variables, probability distributions and also le of Measure Theory, with related discussions on applic Description theory.	odology in designing, observations. We will variables, continuous n the basic elements ions in probability
8	Outline syllabus:	
$\begin{aligned} & \mathrm{UNIT} \\ & 1 \end{aligned}$	Descriptive Statistics and Probability	CO Mapping
A	Representation of data (measures of central tendency).	CO1
B	Dispersion \& other characteristics of data (mean deviation, variance, quartiles, Skewness and Kurtosis, Moments).	CO1
C	probability (elementary theorems, Baye's theorem).	CO1
UNIT 2	Random variable and Probability Distribution	
A	Random variables, expectation, variance, mean, median, mode, moments, moment generating function.	CO 2
B	Special discrete \& continuous distributions and their mean \& variance.	CO 2
C	Binomial, poisson, exponential, Gamma, normal, t, Chi-square, F distributions, simple applications.	CO 2
UNIT 3	Probability measure	
A	Classes of sets, fields, sigma fields, lim sup, liminf of sequences of sets.	CO3
B	Measure, probability measure, properties of measure.	CO3
C	Caratheodory extension theorem (only statement), Lebesgue measure.	CO3, CO4
UNIT 4	Measurable functions	
A	Measurable functions, sequence of random variables.	CO3, CO5
B	Almost sure convergence.	CO5,CO6
C	Convergence in probability and measure.	CO5,CO6
UNIT 5	Integration	
A	Integration of a measurable function with respect to a measure.	CO5,CO6

B	Monotone convergence theorem.			CO5,CO6
C	Fatou's lemma, dominated convergence theorem.	CO5,CO6		
	Mode of Examination	Theory	MTE	ETE
	Weightage distribution	CA	30%	50%
	Text books	1. Gupta,S.C and Kapoor,V.K, "Fundamental of Mathematical Statistics". Sultan Chand \& sons.		

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C104.1	3	3	3	3	3	3	3	2	1
C104.2	3	2	3	3	2	3	2	1	2
C104.3	2	2	2	2	2	2	2	2	1
C104.4	2	2	1	2	2	2	3	1	1
C104.5	3	2	2	3	2	3	2	2	2
C104.6	3	2	1	3	2	2	2	1	2

School: SBSR		Batch : 2018-20	
Program: M.Sc.		Current Academic Year: 2018-19	
Branch: Mathematics		Semester: I	
1	Course Code	MMT-119	
2	Course Title	INTRODUCTION TO MATLAB AND ITS APPLICATIONS	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	Compulsory	
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts for MATLAB and cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific programming problems including curve fitting, ODE solving etc.	
6	Course Outcomes	CO1: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop program scripts and functions using the MATLAB development environment. (K4, K5) CO6: Write the program for evaluates linear system of equations, ordinary differential equations in MATLAB. (K5,K6)	
7	Course Description	The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Syntax and interactive computations, programming in MATLAB using scripts and functions, rudimentary algebra and analysis. One- and twodimensional graphical presentations. Examples on engineering applications.	
8	Outline syllabus	Introduction to MATLAB	CO Mapping
	Unit 1	Introduction	
	A	Vector and matrix generation, Subscripting and the colon notation.	CO1
	B	Matrix and array operations and their manipulations,	CO1
	C	Introduction to some inbuilt functions.	CO1
	Unit 2	Relational and Logical Operators	
	A	Flow control using various statement and loops including If-End statement, If-Else -End statement	CO1, CO3
	B	Nested If-Else-End Statement,	CO3
	C	For - End and While-End loops with break commands.	CO3

Unit 3	m-files			
A	Scripts and functions			CO2,CO5
B	concept of local and global variable			CO2,CO5
C	Few examples of in-built functions, editing, saving mfiles.			CO2,CO5
Unit 4	Two dimensional Graphics			
A	Basic Plots, Change in axes and annotation in a figure			CO4
B	multiple plots in a figure			CO4
C	saving and printing figures			CO4
Unit 5	Applications of MATLAB			
A	Solving a linear system of equations,			C05, CO6
B	Curve fitting with polynomials using inbuilt function such as polyfit, solving equations in one variable,			C05, CO6
C	Solving ordinary differential equations using inbuilt functions			CO5, CO6
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	30\%	20\%	50\%	
Text book	An introduction to MATLAB : Amos Gilat			
Other References	1. Applied Numerical Methods with Matlab for engineering and Scientists by stevenchapra, Mcgraw Hill. 2. Getting started with Matlab: RudraPratap			

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C119.1	3	3	3	3	3	3	3	2	1
C119.2	3	2	3	3	2	3	2	1	2
C119.3	2	2	2	2	2	2	2	1	1
C119.4	2	2	1	2	2	2	3	1	1
C119.5	3	2	2	3	2	3	2	2	2
C119.6	3	2	1	3	2	2	2	1	2

School: SBSR		Batch : 2018-20	
Program: M.Sc.		Current Academic Year: 2018-19	
Branch: Mathematics		Semester: II	
1	Course Code	MMT-123	
2	Course Title	NUMERICAL ANALYSIS WITH MATLAB	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Course Objective	- To provide the student with numerical methods of solving the non-linear equations, interpolation, differentiation, and integration. - To improve the student's skills in numerical methods by using the MATLAB	
6	Course Outcomes	CO1: Calculate the error and evaluate the floating point and develop the algorithm in MATLAB. (K1,K3,K5,K6) CO2: Solve a linear system of equations using an appropriation method and develop the algorithm in MATLAB. (K1,K,K5,K6) CO3: Solve the algebraic or transcendental equations using numerical methods and develop the algorithm in MATLAB. (K1,K3,K5,K6) CO4: Calculate a definite integral using an appropriation method and develop the algorithm in MATLAB. (K1,K3,K5,K6) CO5: Derivations and stability analysis for Taylor series method. CO6: Evaluate differential equation by Euler's method and its variants, Runge- Kutta second order and fourth order methods and develop the algorithm in MATLAB. (K1,K3,K5,K6)	
7	Course Description	This course is an introduction to the numerical analysis. The primary objective of the course is to develop the basic understanding of numerical algorithms and skills to implement algorithms to solve mathematical problems in MATLAB.	
8	Outline syllabus		CO Mapping
	Unit 1	Error Analysis:	
	A	Definition and sources of errors, Propagation of errors	CO1
	B	Sensitivity and conditioning, Stability and accuracy,	CO1
	C	Floating-point arithmetic and rounding errors.	CO1
	Unit 2	Solution of system of linear equations:	
	A	Direct methods: Cramer's rule, Matrix inverse method,	CO 2
	B	Gauss elimination and Gauss-Jordan method	CO 2
	C	Iterative methods: Jacobi's method, Gauss-Seidal method	CO 2

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C123.1	3	3	3	3	3	3	3	2	1
C123.2	3	2	3	3	2	3	2	1	1
C123.3	2	2	2	3	2	2	2	2	2
C123.4	2	2	2	3	2	2	3	1	1
C123.5	3	2	2	3	2	3	2	2	2
C123.6	3	2	1	3	2	2	2	1	2

School: SBSR	Batch : 2018-20					
Program: M.Sc.	Current Academic Year: 2018-2019					
Branch: Mathematics	Semester: II	$	$	1	Course Code	MMT-106
:---	:---	:---				
2	Course Title	Complex Analysis				
3	Credits	4				
4	Contact Hours (L-T-P)	$4-0-0$				
5	Course Status	Compulsory				
Course Objective	This course is aimed to provide an introduction to the theories for functions of a complex variable. The concepts of analyticity, Cauchy-Riemann relations and harmonic functions, Complex integration and complex power series are presented. Discuss the classification of isolated singularities and examine the theory and illustrate the applications of the calculus of residues in the evaluation of integrals. Students will study geometric properties of conformal mappings in the plane and their relations with analytic functions					
6	Course Outcomes	CO1: Discuss the concept of complex number and its algebra calculates continuity, differentiability, analyticity of a function and analyse the derivative of a function. (K2,K3, K4) CO2: Describe the concept of analytic function and check the analyticity of the functions. (K3, K6) CO 3: Explain the concept of harmonic function and evaluate				

		harmonic conjugates and discuss about series and their convergence, power series, radius of convergence. (K2, K4,K5) CO 4: Illustrate the concept of complex integration, write the Green's theorem, anti-derivative theorem, Cauchy-Goursat theorem, Cauchy's integral formula, Liouville theorem, Morera's theorem and evaluate derivative of analytic functions. (K3, K5,K6) CO 5: Discuss the concept of singularities and its types; write Taylor and Laurent series, Cauchy's residue theorem, evaluate the definite integrals using Cauchy's residue theorem.(K1,K2,K5,K6) CO6: Demonstrate the understanding of conformal mappings and Construct conformal mappings between many kinds of domain. (K2, K5)	
7	Course Description	This course is an introduce the theories for functions of variable. The concepts of analyticity, Cauchy-Riemann harmonic functions, Complex integration and complex are presented. Discuss the classification of isolated sin examine the theory and illustrate the applications of the residues in the evaluation of integrals.	a complex relations and power series ularities and calculus of
8	Outline syllabus		CO Mapping
	Unit 1		
	A	Complex numbers, their representation in Argand's plane and the algebra of complex numbers,	CO1
	B	The complex plane and open set, domain and region in a complex plane	CO1
	C	Complex functions and their limits, continuity, differentiability.	CO1
	Unit 2		
	A	Analytic function, The C-R equations and sufficient conditions for differentiability and analyticity	CO 2
	B	Harmonic functions and harmonic conjugates, Sequences,	CO3
	C	Series and their convergence, power series, radius of convergence.	CO3
	Unit 3		
	A	Complex integration: Line integration, path independence,	CO4
	B	Green's theorem, anti-derivative theorem, CauchyGoursat theorem, Cauchy's integral formula,	CO4
	C	Derivative of analytic functions, Liouville theorem, Morera's theorem.	CO4
	Unit 4		
	A	Singularities and its types; Taylor and Laurent series	CO5
	B	Cauchy's residue theorem,	CO5
	C	Evaluation of definite integrals using Cauchy's residue theorem.	CO5
	Unit 5		

A	Transformations or mappings, some standard transformations,					CO6
B	Bilinear transformation, fixed point of a transformation,					CO6
C	Conformal transformation, jacobian of a transformation and few special conformal mappings					CO6
Mode of examination	Theory					
Weightage Distribution	CA	MTE	ETE			
	30\%	20\%	50\%			
Text book/s*	1) Churchill, Ruel V. and Brown, JamesWard, Complex Variables and Applications, fourth edition, McGraw-Hill Book Co., New York, 1984. 2) Conway, John B., Functions of One Complex Variable, II, Graduate Texts inMathematics, 159, Springer-Verlag, New York, 1995.					
Other References	1) Schaum's Outline of Complex Variables, 2ed by By Murray Spiegel, Seymour Lipschutz, John Schiller, Dennis Spellman 2) Ahlfors, Lars V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, third edition. International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978.					

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C106.1	3	3	3	3	3	3	3	2	1
C106.2	3	2	3	3	2	3	2	1	1
C106.3	2	2	3	2	2	2	3	2	2
C106.4	2	2	2	2	2	2	3	1	1
C106.5	3	2	2	3	2	3	2	2	2
C106.6	3	2	1	3	2	2	2	1	2

School: SBSR		Batch : 2018-20	
Program: M.Sc.		Current Academic Year: 2018-2019	
Branch: Mathematics		Semester: II	
1	Course Code	MMT 107	
2	Course Title	TOPOLOGY	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Course Objective	This course provides an introduction to topics involving concepts of Topological space and separate axioms (Hausdorff space and base problems),Compactness (Urysohn's theorem), Connectedness With Nets(converge filter Zorn's lemma).	
6	Course Outcomes	CO1: Explain the concept of Topological spaces and ca exterior limit point and boundary points. (K2, K3, K4) CO2: Describe the concept of separate axioms and eva spaces, normal and completely normal spaces. (K1,K2, CO3: Discuss the compactness (Urysohn's theorem) and open cover, finite sub cover, compact sets. (K1, K2, K5 CO4: Explain Lindeloff space, locally compact, Map: function and write Heine borel theorem, describe ho open and closed map, compactness for continu (K2,K4,K6) CO5: Explain about separated sets, disconnecte disconnectedness, maximal connected set and illustrate and path, locally connected and write Urysohn's theo K4, K6) CO6: Describe the concept of Nets and Filters and write (K1,K2, K6)	culate interior, ate T_{0}, T_{1}, T_{2} 5) valuate cover, : continuous meomorphism, ous images. ness, totally e component m. (K2, K3, zorn's lemma.
7	Course Description	This course provides an introduction to topics involving concepts of Topological space and separate axioms (Hausdorff space and base problems), Compactness (Urysohn's theorem), Connectedness With Nets (converge filter Zorn's lemma). The primary objective of the course is to develop the advance understanding of Topology.	
8	Outline syllabus		CO Mapping
	Unit 1	Topological space	
	A	Topology, weaker and stronger topology, indiscrete and discrete topology	CO1
	B	Co-finite and usual topology, interior, exterior	CO1
	C	limit point and boundary points.	CO1
	Unit 2	Separation axioms	
	A	Base, sub-base and countability (first countable and second countable)	CO 2

	SHARDA UNIVERSITY			
B	separation axioms: T_{0}, T_{1}, T_{2} spaces, normal and completely normal spaces			CO 2
C	regular and completely regular spaces, T_{3}, T_{4} and Tychnoff space, Hausdorff space and based problems			CO 2
Unit 3	Compactness			
A	Cover, open cover, finite sub cover, compact sets, finite intersection property			CO 3
B	Heine borel theorem, Lindeloff space, locally compact, Map: continuous function			CO3, CO4
C	homeomorphism, open and closed map, compactness for continuous images			CO3, CO4
Unit 4	Connectedness			
A	Separated sets, disconnectedness, totally disconnectedness, maximal connected set			CO5
B	component and path, locally connected and based examples			CO5
C	Urysohn's theorem (proof).			CO5
Unit 5	Nets			
A	Binary relation, Directed set, residual subset, sequence convergence of a set			CO6
B	cluster point, subnet. Filters: Filter, Cofinite filter, neighbourhood filter, filter base			CO6
C	convergent filter and Zorn's lemma			CO6
Mode of examination	Theory			
Weightage Distribution	CA	MTE	ETE	
	30\%	20\%	50\%	
Text book/s*	1. S. Kumaresan, Topology of Metric Spaces, 2nd Ed., Narosa Publishing House, 2011. 2. Dugundji, James, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978.			
Other References	1. Munkres, James R, Topology: A First Course, Prentice-Hall, Inc., Englewood Cli_s, N.J., 1975. 2. Kelley, John L., General Topology, Graduate Texts in Mathematics, No. 27, Springer-Verlag, New York-Berlin, 1975.			

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C107.1	3	3	3	3	2	3	3	2	1
C107.2	3	2	3	3	3	3	2	1	2
C107.3	2	2	2	3	2	2	2	1	1
C107.4	2	2	1	2	2	2	3	1	1
C107.5	3	2	2	3	2	3	2	2	2
C107.6	3	2	1	3	2	2	2	1	2

School: SBSR	Batch : 2018-20	
Program: M. Sc.	Current Academic Year: 2018 - 19	
Branch: Mathematics	Semester: II	
1	Course Code	MMT 108
2	Course Title	DIFFERENTIAL GEOMETRY \& TENSOR ANALYSIS
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
	Course Status	Compulsory
5	Course Objective	1. Familiarise students with basic concept of local theory of curves: space curves, e.g., plane curves, tangent and normal and binormal; Osculating plane, normal lines and normal plane, curvature and torsion, rectifying plane; Helices, arc length, Serret-Frenet formulae. Have an idea of Bertrand curves and its properties, Contact between curve and surfaces, tangent surfaces, tangent vectors and vector fields, Fundamental theorems for space curves, involutes and evolutes of curves, Metric-first fundamental form and second fundamental form. 2. Have an understanding of Normal curvature, quadratic form of normal curvature, mean curvature, Gaussian curvature and minimal surface, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, lines of curvature, Rodrigue's formula. Know about Tensor calculus, Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, inner product and outer
product of two tensor. To know Contra variant and covariant tensors, mixed tensors of		
higher order, symmetric and skew-symmetric tensors, Quotient theorem, Reciprocal		
tensors, metric tensor, conjugate metric tensor with examples. Christoffel's symbols,		
covariant differentiation and Riemannian curvature tensor.		

	Outcomes	normal lines and normal plane and explain curvature and torsion rectifying plane; Helices, arc length, Serret-Frenet formulae. (K1,K2,K4) CO2: Explain the theory of curves: Bertrand curves, Contact between curve and surfaces, tangent surfaces, tangent vectors and vector fields and write Fundamental theorems for space curves, involutes and evolutes of curves describe Metric-first fundamental form and second fundamental form. (K2,K4,K6) CO3: Discuss the concept of curvature and evaluate normal curvature, quadratic form of normal curvature, mean curvature, Gaussian curvature and minimal surface, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, lines of curvature, Rodrigue's formula. (K1,K2,K5) CO4: Explain Tensor calculus, Vector spaces, and the dual spaces, tensor product of vector spaces, transformation formulae, and contraction; evaluate inner product and outer product of two tensor. (K2,K4,K5)			
CO5: Describe the concept of contra variant and covariant tensors, mixed tensors of					
higher order, symmetric and skew-symmetric tensors. (K1,K2)					
CO6: Write the Quotient theorem, Reciprocal tensors, metric tensor, illustrate conjugate					
metric tensor with examples. Christoffel's symbols, covariant differentiation and					
Riemannian curvature tensor.(K3,K6)			$	$	7
:---					

B	Tensor product of vector spaces, transformation formulae, contraction			CO4
C	Inner product and outer product of two tensor			CO4
Unit 5	Contra variant and covariant tensors			
A	Contra variant and covariant tensors, mixed tensors of higher order, symmetric and skew-symmetric tensors			CO5
B	Quotient theorem, Reciprocal tensors, metric tensor, conjugate metric tensor with examples			CO6
C	Christoffel's symbols, covariant differentiation and Riemannian curvature tensor.			CO6
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	30\%	20\%	50\%	
Text book/s*	1. Elementary Differential Geometry, Revised $2^{\text {nd }}$ Edition, by Barrett O'Neill 2. Differential Geometry by J.J Stoker, John Wiley and Sons.			
Other References	1. Schaum's Outline Series of Differential Geometry			

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C108.1	3	3	3	3	3	3	3	2	1
C108.2	3	2	3	3	2	3	2	1	2
C108.3	2	2	3	2	3	2	2	2	1
C108.4	2	2	1	2	2	2	3	1	2
C108.5	3	2	2	3	2	3	2	2	2
C108.6	3	2	1	3	2	2	2	1	2

School: SBSR		Batch : 2018-20	
Program: M. Sc.		Current Academic Year: 2019-20	
Branch: Mathematics		Semester: III	
1	Course Code.	MMT-201	
2	Course Title	ABSTRACT ALGEBRA	
3	Credits		
4	Contact Hours (L-T-P)	4-0-0	
	Course status	Compulsory	
5	Course Objective	1. To familiarise students with basic concepts of group, subgroup, quotient group and permutation groups, and given an idea of the normal subgroup, sylow groups, internal and external direct product. 2. To make students familiar with the concept of homomorphism, isomorphism, automorphism and inner- automorphism, different algebraic structures ring, integral domain, field, ideal and quotient ring, prime and maximal ideal, Irreducible polynomials, principal ideal domains and unique factorization domains. Know about Extension of fields: algebraic extensions, roots of polynomials and splitting fields.	
6	Course Outcomes	CO1: Explain and illustrate the concept of group, subgroup, quotient group and permutation groups. (K2,K3,K4) CO2: Describe the normal subgroup, sylow groups and evaluate internal and external direct product. (K1,K2,K5) CO3: Explain the concepts of homomorphism, isomorphism and analysis automorphism and inner- automorphism. (K2,K4) CO4: Discuss about ring integral domain, field ideal and quotient ring, prime and maximal ideal. (K2) CO5: Evaluate irreducible polynomials, principal ideal domains and unique factorization domains. (K5) CO6: Explain about Extension of fields: algebraic extensions and evaluate roots of polynomials and splitting fields. (K2,K4,K5)	
7	Course Description	This course is an introduction to concept of groups, normal subgroups. The primary objective of the course is to develop the understanding of rings and fields.	
8	Outline syllabus		CO Mapping
8	Unit 1	Review of Groups	
	A	Subgroups, quotient groups,	CO1
	B	Permutation group,	CO1
	C	Lagrange's theorem and the result about its converse.	CO1
	Unit 2	Normal Subgroups and Sylow theorem	
	A	Normal subgroups and factor groups and applications.	CO2
	B	Cauchy's and Sylow's theorems and applications,	CO2
	C	Finitely generated Abelian groups, internal and external direct products. Examples.	CO2

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C201.1	3	3	3	3	3	3	3	2	1
C201.2	3	2	3	3	2	3	2	1	2
C201.3	2	2	2	3	3	2	2	1	1
C201.4	2	2	2	3	2	2	3	2	2
C201.5	3	2	2	3	2	3	2	2	2
C201.6	3	2	1	3	2	2	2	1	2

School: SBSR	Batch : 2018-20	
Program: M.Sc.	Current Academic Year: 2019-2020	
Branch: Mathematics	Semester: III	
1	Course Code	MMT 203
2	Course Title	LINEAR PROGRAMMING
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
5	Course Status	Course Objective
Compulsory To make students familiar with the concepts of simple analytical Methods to solve L.P.P., queuing theory with kendall's notations, PERT).		
6	Course Outcomes	CO1: Discuss the origins of Operation Research, formulate the problems in L.P. and solve it by graphical. (K1, K3, K6) CO2: Explain analytical Methods: Simplex, Big M, Primal and Dual problems and discuss about economic interpretation of dual. (K2,K3, K4) CO3: Describe queuing theory and Kendall's Notations and formulate

SHARDA UNIVERSITY Beyond Boundaries

		M/M/1:m/FCFS model illustrate with example. (K2, K3, K6) CO4: Explain inventory classifications and develop economic order quantity models. (K2, K4, K6) CO5: Explain ABC analysis. (K2,K4) CO6: Describe the concept of CPM and PERT and calculate float calculation and Cost reduction by Crashing of activities. (K1, K2,K3)	
7	Course Description	This course is an introduction to concept of linear programming problems. The primary objective of the course is to develop the understanding of queuing theory with kendall's notations, inventory control with ABC analysis, Project Management (CPM \& PERT).	
8	Outline syllabus	CO Mapping	
	Unit 1	Origin of Operation Research	CO1
A	Origin of Operation Research, Historical Standpoint, Methodology, Different Phases.	COtion of Operations	CO1
B	Characteristics, Scope and Application Research. Introduction.	Requirement of LP, Basic Assumptions, Formulation of LP, General Statement of LP, Solution techniques of LP: Graphical Methods.	CO1
	C	Analytical Methods	Analytical Methods: Simplex.

| | | 2.KantiSwarup, P. K. Gupta and Man Mohan:
 Operation Research; S. Chand \& Sons, New delhi. | |
| :--- | :--- | :--- | :--- | :--- |
| Other
 References | 1.Hadley, G., Linear Programming, Addison
 -Wesley, 1962.2.Hillier, F.S. and G.J. Lieberman, Introduction to
 Operations Research-concept and cases, Asian Ed.,
 Tata McGraw-Hill. | | |

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C203.1	3	3	3	3	3	3	3	2	1
C203.2	3	2	3	3	2	3	2	1	2
C203.3	2	2	2	2	2	1	2	2	1
C203.4	2	2	1	3	2	2	3	1	1
C203.5	3	1	2	3	2	3	2	2	2
C203.6	3	2	1	3	2	2	2	1	1

School: SBSR	Batch : 2018-20	
Program: M.Sc.	Current Academic Year: 2019-20	
Branch: Mathematics	Semester: III	
1	Course Code	MMT-209
$\mathbf{2}$	Course Title	Graph Theory and its Application
3	Credits	$\mathbf{4}$
4	Contact Hours (L-T-P)	$4-0-0$
5	Course Status	Compulsory
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts of relevant vocabulary from graph theory and combinatory, and know the statements and proofs of many of the important theorems in the subject, and be able to perform related calculations.
6	Course Outcomes	CO1: Describe the basic concept of graphs and evaluate distances, radius, diameter, centre of a graph, the number of distinct spanning trees in a complete graph. (K2,K4,K5) CO2: Explain the concept of tree and write Kruskal and Prim algorithms, Huffman's algorithm. (K2,K4,K6) CO3: Discuss about matching of graphs and write the theorems

SHARDA UNIVERSITY

		related to matching. (K1,K2,K6) CO4: Describe graph colouring, chromatic number, bounds on chromatic numbers and write Greedy algorithm. (K2,K6) CO5: Discuss interval graphs and chordal graphs, chromatic polynomials and write Brook's theorem. (K1, K2, K6) CO6: Explain Hamilton property, Non-Hamiltonian graphs, Nonplanarity of K5 and K3,3, classification of regular polytopes and write 5 -colour theorem. Ramsey theory. (K2,K4,K6)	
7	Course Description	This course covers the theory of graphs and networks for directed and undirected graphs. Topics include graph is Eulerian and Hamiltonian graphs, matching, covers, co coloring, and planarity. There is an emphasis on applic world problems and on graph algorithms such as those trees, shortest paths, and network flows.	both morphism, nectivity, tions to real or spanning
8	Outline syllabus	Graph Theory and its Application	CO Mapping
	Unit 1	Basic Concepts.	
	A	Various kinds of graphs, simple graphs, complete graph, walk, tour, path and cycle, Eulerian graph, bipartite graph (characterization).	CO1
	B	Havel-Hakimi theorem and Erdos-Gallai theorem (statement only), hypercube graph, Petersen graph, trees, forests and spanning subgraphs.	CO1
	C	Distances, radius, diameter, center of a graph, the number of distinct spanning trees in a complete graph.	CO1
	Unit 2	Trees:	
	A	Kruskal and Prim algorithms with proofs of correctness, Dijkstra'sa algorithm,	CO 2
	B	Breadth first and Depth first search trees	CO 2
	C	Rooted and binary trees, Huffman's algorithm.	CO 2
	Unit 3	Matching:	
	A	Augmenting path, Hall's matching theorem, vertex and edge cover, independence number and their connections, Tutte's theorem for the existence of a 1factor in a graph.	CO3
	B	Connectivity k-vertex and edge connectivity, blocks, characterizations of 2- connected graphs, Menger'stheorem and applications	CO 3
	C	Network flows, Ford- Fulkerson algorithm, Supplydemand theorem and the Gale-Ryser theorem on degree sequences of bipartite graphs.	CO3
	Unit 4	Graph Colourings:	
	A	chromatic number, Greedy algorithm, bounds on chromatic numbers	CO4
	B	interval graphs and chordal graphs (with simplicial	CO5

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C209.1	3	3	3	3	3	3	3	2	1
C209.2	3	2	3	3	2	3	2	1	2
C209.3	2	2	3	2	3	2	2	1	2
C209.4	2	3	2	2	2	2	3	3	2
C209.5	3	2	2	3	2	3	2	2	2
C209.6	3	2	2	3	2	2	2	2	2

School: SBSR	Batch : 2018-20	
Program: M.Sc.	Current Academic Year: 2019-20	
Branch: Mathematics	Semester: III	
1	Course Code	MMT-204
$\mathbf{2}$	Course Title	FLUID DYNAMICS
3	Credits	$\mathbf{4}$
4	Contact Hours (L-T-P)	$4-0-0$
5	Course Status	Compulsory
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts for analysing fluid dynamics. Learn to perform integral analyses and overall balances from conservation laws and differential equations analyses for fields. Understand modelling approximations such as inviscid, incompressible, and turbulent for different types of flows.
6	CO1: Explain the definition, properties and classification of fluid; define Pascal's law and write basic hydrostatic equation, Buoyancy and Archimedes' principle. (K1, K2,K4,K6) CO2: Describe the streamlines, path lines and streak lines, steady/unsteady, uniform/non-uniform, one-two dimensional flows and evaluate velocity and acceleration in an Eulerian flow field. (K1,K2,K5) CO3: Explain equations for stream function, velocity potential function in rectangular and cylindrical co-ordinates and discuss the concept of equations for source, sink, irrotational vortex, circulation.(K1,K2,K4) CO4: Explain and apply Integral equations for the control volume: using Reynold's Transport theorem. (K2,K3,K4) CO5: Explain equations for conservation of mass, energy and momentum and write Bernoulli's equation and its application. (K2,K4,K6) CO6: Apply Mass conservation in 2 dimension in rectangular co-ordinates, Euler's equations in 2,3 dimensions and subsequent derivation of Bernoulli's equation and write Navier-Stokes equations.(K3,K4,K6)	
7	Course Description	

Unit 1		
A	Fluid Definition and properties, Newton's law of viscosity concept of continuum, Classification of fluids.	CO1
B	Definition of body and surface forces, Pascal's law, Basic hydrostatic equation,	CO1
C	Forces on surfaces due to hydrostatic pressure, Buoyancy and Archimedes' principle.	CO1
Unit 2		
A	Eulerian and Lagrangian approach to solutions; Velocity and acceleration in an Eulerian flow field;	CO 2
B	Definition of streamlines, path lines and streak lines; Definition of steady/unsteady, uniform/non-uniform, one-two dimensional flows;	CO2
C	Definition of control volume and control surface, Understanding of differential and integral methods of analysis	CO2
Unit 3		
A	Definition and equations for stream function, velocity potential function in rectangular and cylindrical coordinates	CO3
B	Rotational and irrotational flows;	CO3
C	Definition and equations for source, sink, irrotational vortex, circulation.	CO3
Unit 4		
A	Integral equations for the control volume: Reynold's Transport theorem (without proof),	CO 4
B	Equations for conservation of mass, energy and momentum,	CO5
C	Bernoulli's equation and its application	CO5
Unit 5		
A	Differential equations for the control volume: Mass conservation in 2 dimension in rectangular coordinates,	CO6
B	Euler's equations in 2,3 dimensions and subsequent derivation of Bernoulli's equation;	CO6
C	Navier-Stokes equations (without proof) in rectangular Cartesian co-ordinates	CO6
Mode of examination	Theory	
Weightage	CA ${ }^{\text {C }}$ MTE ${ }^{\text {a }}$	
Distribution	30% 20% 50%	
Text book	1. Fluid Mechanics : Streeter and Wylie, McGraw Hill	
Other References	1. Fluid Mechanics : F.M.White, McGraw Hill	

| | 2. Fluid Dynamics, M. D. Raisinghania, S Chand
 Group | |
| :--- | :--- | :--- | :--- |

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C204.1	3	3	3	3	3	3	3	2	1
C204.2	3	2	3	3	2	3	2	1	2
C204.3	2	3	2	2	3	2	2	1	2
C204.4	2	2	1	3	2	2	3	2	1
C204.5	3	2	2	3	2	3	2	2	2
C204.6	3	2	2	3	2	2	2	2	2

School: SBSR	Batch : 2018-20	
Program: M.Sc.	Current Academic Year: 2019-20	
Branch: Mathematics	Semester: III	
1	Course Code	MMT 206
2	Course Title	Number Theory with Cryptography
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
	Course Status	Compulsory
5	Course Objective	To make students familiar with the basic concepts of number theory, congruence. Also students are able to understand public \& private key cryptography.

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C206.1	3	3	3	3	3	3	3	2	1
C206.2	3	2	3	3	2	3	2	1	1
C206.3	2	2	2	2	2	2	2	1	2
C206.4	2	2	1	2	2	2	3	1	1
C206.5	3	2	2	3	3	3	2	2	2
C206.6	3	2	1	3	2	2	2	1	2

School: SBSR	Batch : 2018-20	
Program: M.Sc.	Current Academic Year: 2019-20	
Branch: Mathematics	Semester: IV	
1	Course Code	MMT 205
2	Course Title	FUNCTIONAL ANALYSIS
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
5	Course Status	Compulsory
Objective	To familiarise students with basic concepts of Functional analysis and given an idea of implemented the concepts of Elementary understanding of Normed linear spaces. Can perform basic Bounded linear operator and Know how to calculate system of Inner product spaces. Understand the basic concept of functional analysis and learn basic definitions and terminology associated with to functional analysis.	
6	Course Outcomes	CO1: Describe the basics of functional analysis, normed linear spaces, Holder's inequality, Minkowski's inequality and explain l^{p}-spaces, equivalence of norms and calculate banach spaces. (K2, K3, K4) CO2: Explain bounded linear spaces, finite dimensional normed space and compactness and evaluate dual of normed spaces $\Re^{n} ; l^{p}$ also of C[a, b]). (K2,K4,K5) CO3: Discuss the concept of open mapping and closed graph theorems, explain uniform boundedness principle and its applications.(K1,K2,K4) CO4: Write Hahn-Banach theorem and its consequence. (K6) CO5: Illustrate Inner product spaces, Hilbert spaces with examples and

		write Projection theorem, Bessel's inequality, existence of complete orthonormal basis of a Hilbert space Riesz representation theorem. (K3,K6) CO6: Describe the concept of bounded linear functional, Hilbert adjoint operator, self adjoint operator, Compact operators and write Riesz- Schauder theorem. (K1,K2,K6)	
7	Course Description	The primary objective of the course is to develop the understanding the normed linear spaces, bounded linear operator, open mapping and closed graph theorems and Inner product spaces.	
8	Outline syllabus	Foundation course in Mathematics	CO Mapping
	Unit 1	Normed linear spaces	

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C205.1	3	3	3	3	3	3	3	2	2
C205.2	3	2	3	3	2	3	3	1	1
C205.3	2	2	2	2	2	2	2	2	2
C205.4	2	2	1	2	3	2	3	1	1
C205.5	3	2	2	3	2	3	2	2	2
C205.6	3	2	1	3	2	2	2	1	2

School: SBSR	Batch : 2018-20	
Program: B.SC	Current Academic Year: 2019-2020	
Branch: Mathematics	Semester: IV	
1	Course Code	MMT 202
2	Course Title	MEASURE THEORY
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
5	Course Status	Course Objective
Compulsory This course provides an introduction to topics involving concepts of space, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional.		
6	Course Outcomes	CO1: Explain the concept of Topological spaces and calculate interior, exterior limit point and boundary points. (K2, K3, K4) CO2: Describe the concept of approximation of measurable functions, explain Lebesgue's monotone convergence theorem and Fatou's lemma and evaluate integration of positive functions, term by term differentiation of a series of positive measurable functions. (K1,K2, K5) CO3: Discuss the integration of complex function.(K1, K2) CO4: Explain Lebesgue's dominated convergence theorem, role of sets of measure zero, write extension of a measure to a complete measure. (K2,K4,K6)

		CO5: Explain integration as linear functional, Topological ingredients and write positive Borel measure, Hausdorff spaces. (K2, K3, K4, K6) CO6: Describe the concept locally compact Hausdorff spaces, support of a complex function, vector space of continuous complex functions with compact support and write Urysohn's lemma, Riesz representation theorem. (K1,K2, K6)			
7	Course Description	This course provides an introduction to topics involving concepts of Topological space and separate axioms, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory.			
8	Outline syllabus				CO Mapping
	Unit 1	Preliminaries:			
	A	Topological spaces, continuous functions			CO1
	B	σ-algebra of measurable sets, Borel sets, measurable functions			CO1
	C	lim sup and liminf of sequence of functions.			CO1
	Unit 2	Lebesgue measure:			
	A	Approximation of measurable functions by simple functions, positive measures			CO2
	B	Integration of positive functions, Lebesgue's monotone convergence theorem			CO 2
	C	Term by term differentiation of a series of positive measurable functions, Fatou's lemma.			CO 2
	Unit 3	Integration of complex functions:			
	A	Complex measurable functions, integration of Complex measurable functions			CO3
	B	Lebesgue's dominated convergence theorem, role of sets of measure zero			CO3, CO4
	C	Extension of a measure to a complete measure.			CO3, CO4
	Unit 4	Integration as a linear functional:			
	A	Positive Borel measure, vector spaces			CO5
	B	Integration as a linear functional, Topological ingredients			CO5
	C	Definition of compactness and Hausdorff spaces.			CO5
	Unit 5	Riesz representation theorem:			
	A	Locally compact Hausdorff spaces, support of a complex function			CO6
	B	Vector space of continuous complex functions with compact support			CO6
	C	Urysohn's lemma, Riesz representation theorem.			CO6
	Mode of examination	Theory			
	Weightage Distribution	CA	MTE	ETE	
		30\%	20\%	50\%	
	Text book/s*	1) Walter Rudin: Real and Complex analysis, Mc			

		GRAW HILL, International student edition.	
	Other		
References	1) Walter Rudin: Real and Complex analysis, Mc		
GRAW HILL, International student edition.			
2) Walter Rudin: Principles of Mathematical			
analysis, Mc GRAW HILL, International series in Pure			
and Applies Mathematics.			
H. L. Royden: Real Analysis, Amazon. Com.			

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C202.1	3	3	3	3	3	3	3	2	1
C202.2	3	2	3	3	2	3	2	1	1
C202.3	2	2	2	2	2	2	2	1	1
C202.4	2	2	1	2	2	2	3	1	1
C202.5	3	2	2	3	3	3	2	2	2
C202.6	3	2	1	3	2	3	2	2	2

School: SBSR		Batch : 2018-20
Program: M.Sc.	Current Academic Year: 2019-2020	
Branch: Mathematics		Semester: IV
1	Course Code	MMT-208
2	Course Title	DISCRETE MATHEMATICS
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$
	Course Status	Compulsory
5	Course Objective	This course is aimed to provide an advance understanding to the sets and propositions, relations and functions, permutation and combination, graphs, groups and rings.
6	Course Outcomes	CO1: Discuss the concept of sets, un-countably infinite sets, principle of inclusion and exclusion, multisets, propositions, conditional propositions and evaluate normal forms, Mathematical induction.(K2,K3, K4,K5) CO2: Describe the concept functions, composition of function, invertible functions, discrete properties of binary relations and check the closure of relations. (K3, K6)

		CO 3: Explain the concept of POSET and lattices, Warshall's algorithm, Equivalence relations and partitions and evaluate Chains, and Anti-chains. Generating Functions, Recurrence relations and discuss linear recurrence relations with constant coefficient, homogeneous solution, total solutions, solutions by method of Generating function. (K2, K4,K5) CO 4: Illustrate the concept permutations and combinations: rule of sum and product, write the algorithms for generation of permutations and combination. (K3, K5,K6) CO 5: Discuss the concept graph, sub-graph, Walks, Path and circuits, Connected graphs, Disconnected graphs and component, evaluate the fundamental circuits, distance, diameters, radius and pendant vertices, rooted and binary trees (K1,K2,K5,K6) CO6: Demonstrate the understanding of Algebraic systems, Group and evaluate Semi-groups, Monoid, Subgroups, Isomorphism and Automorphism. (K2, K5)	
7	Course Description	This course is given the deep knowledge of sets and propositions, relations and functions, permutation and combination, graphs, groups and rings.	
8	Outline syllabus		CO Mapping
	Unit 1	Sets and Propositions:	
	A	Sets, Un-countably infinite sets, Principle of inclusion and exclusion, multisets, propositions, conditional propositions.	CO1
	B	Logical connectivity, Propositional, calculus, Universal and existential quantifiers	CO1
	C	Normal forms, methods of proofs, Mathematical induction.	CO1
	Unit 2	Relations and Functions:	
	A	Functions , Composition of function , invertible functions, Discrete properties of binary relations, closure of relations	CO 2
	B	Warshall's algorithm, Equivalence relations and partitions, POSET and lattices, Chains, and Antichains. Generating Functions, Recurrence relations	CO 3
	C	Linear Recurrence relations with constant coefficient, Homogeneous solution, Total Solutions, Solutions by method of Generating function.	CO 3
	Unit 3	Permutation and Combination:	
	A	Permutations and combinations : Rule of sum and Product	CO4
	B	Permutations, Combination	CO4
	C	Algorithms for Generation of Permutations and Combination.	CO4
	Unit 4	Graphs:	
	A	Graph, Sub-graph, Various examples of graph and	CO5

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C208.1	3	3	3	3	3	3	3	2	1
C208.2	3	2	3	3	2	3	2	1	2
C208.3	2	3	2	3	2	2	2	2	1
C208.4	2	2	1	2	2	2	3	2	2
C208.5	3	2	2	3	2	3	2	2	2
C208.6	3	2	2	3	2	2	2	1	2

Syllabus of MMT-151 (Practical)

School: SBSR		Batch : 2018-20	
Program: M.Sc.		Current Academic Year: 2018-19	
Branch: Mathematics		Semester: I	
1	Course Code	MMT-151	
2	Course Title	Mathematics Lab I	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-3	
	Course Status	Compulsory	
5	Course Objective	The goal of this course is to introduce students to the fundamental mathematical concepts for MATLAB. The course will cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific programming problems including curve fitting, ODE solving etc	
6	Course Outcomes	CO1: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop program scripts and functions using the MATLAB development environment. (K4, K5)	
7	Course Description	The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Syntax and interactive computations, programming in MATLAB using scripts and functions, rudimentary algebra and analysis. One- and twodimensional graphical presentations. Examples on engineering applications.	
8	Outline syllabus		CO Mapping
	Unit 1	Practical based MATLAB as a calculator.	CO1
		Creating an Array in MATLAB	CO1
	Unit 2	Practical related to -- Mathematical Operations with Arrays	CO3
	Unit 3	Practical related to--- How to make scripts files in MATLAB and do some examples.	$\mathrm{CO5}$
	Unit 4	Practical related to--- Make some function files in MATLAB. Basic two-dimensional and three-dimensional plotting, change in axes and annotation in a figure.	CO4,CO5

	Unit 5	Practical related to--- If-End statement, If-Else-End statement, nested If-Else-End statement Solving a system of linear equations, curve fitting with polynomials using inbuilt functions such as polyfit.	CO2,CO5	
	Mode of examination	Practical \&Viva		
	Weightage Distribution	CA \quad MTE	ETE	
	Text book	1. An introduction to MATLAB : Amos Gilat		
	Other References	1. Applied Numerical Methods with Matlab for engineering and Scientists by stevenchapra, Mcgraw Hill. 2. Getting started with Matlab: RudraPratap		

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C151.1	3	3	2	2	2	3	2	2	3
C151.2	2	3	3	3	3	2	3	3	2
C151.3	2	3	2	2	3	3	3	3	3
C151.4	2	3	2	3	2	2	2	3	2
C151.5	3	3	2	3	2	2	3	2	3

Syllabus of MMT-152 (Practical)

School: SBSR		Batch : 2018-20	
Program: M.Sc.		Current Academic Year: 2018-19	
Branch: Mathematics		Semester: II	
1	Course Code	MSM 152	
2	Course Title	Mathematics Lab II	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-3	
	Course Status	Compulsory	
5	Course Objective	- To enable the student on how to approach for solving problems using MATLAB tools. - To prepare the students to use MATLAB in their project works. - To provide a foundation in use of this software for real time applications.	
6	Course Outcomes	CO1: Understand the procedures, algorithms, and concepts require to solve specific problems. (K2) CO2: Discuss and develop the algorithms to solve system of linear equations and measure the accuracy. (K2, K5, K6) CO3: Discuss and develop the algorithms to solve finite differences and interpolation and measure the accuracy. (K2, K5, K6) CO4: Discuss and develop the algorithms to solve system of transcendental equations and measure the accuracy. (K2, K5, K6) CO5: Discuss and develop the algorithms to solve divided differences and measure the accuracy. (K2, K5, K6) CO6: Discuss and develop the algorithms to solve numerical differentiation and integration and measure the accuracy. (K2, K5, K6)	
7	Course Description	This course teaches computer programming to those with little to no previous experience. It uses the programming system and language called MATLAB to do so because it is easy to learn, versatile and very useful for engineers and other professionals. MATLAB is a special-purpose language that is an excellent choice for writing moderate-size programs that solve problems involving the manipulation of numbers.	
8	Outline syllabus		CO Mapping
	Unit 1	Lab. Experiment 1:	
		Solution of system of linear equations:	CO1, CO2
	Unit 2	Lab. Experiment 2:	
		System of Transcendental equations	CO1, CO3
	Unit 3	Lab. Experiment 3:	

	Finite differences and interpolation:			CO1, CO4
Unit 4	Lab. Experiment 4:			
	Divided differences:			CO1,CO5
Unit 5	Lab. Experiment 5:			
	Numerical differentiation and integration			CO1, CO6
Mode of examination	Practical			
Weightage	CA	MTE	ETE	
Distribution	60\%	0\%	40\%	
Text book/s*	Amos Gilot			
Other References				

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C152.1	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$
C152.2	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$
C152.3	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{C} 152.4$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$
$\mathbf{C} 152.5$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$

Syllabus of MMT-251 (Practical)

School: SBSR		Batch : 2018-20	
	ram: M.Sc.	Current Academic Year: 2019-20	
Branch: Mathematics		Semester: III	
1	Course Code	MMT-251	
2	Course Title	Mathematics Lab III	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-3	
	Course Status	Compulsory	
5	Course Objective	- To create understanding of the LaTeX and enable the students how to write resume, write question paper, write articles/ research papers.	
6	Course Outcomes	CO1: Understand the procedures installation of the software LaTeX. (K2) CO2: Discuss and explain Latex basic syntax and write equations, matrix, and tables. (K2, K4, K6) CO3: Explain and write page layout, equation references citation tables of contents list of figures etc. (K2, K4, K6) CO4: Describe how to write Geometry, Hyperref, amsmath, amssymb, algorithms in Latex. (K1, K2, K6) CO5: Discuss the classes and explain how to write article, book, report, beamer, slides. IEEtran. . (K2,K4, K6) CO6: Write resume, question paper, research paper, project in Latex . (K2, K5, K6)	
7	Course Description	This course teaches the LaTeXTo and describes how to write resume, write question paper, and write articles / research papers.	
8	Outline syllabus		CO Mapping
	Unit 1		
		Installation of the software LaTeX	CO1, CO2
		Understanding Latex compilation: Basic Syntex, Writing equations, Matrix, Tables	
	Unit 2	Lab. Experiment 2:	
		Page Layout - Titles, Abstract Chapters, Sections, References, Equation references, citation. List making environments Table of contents, Generating new commands, Figure handling numbering, List of figures, List of tables, Generating index.	CO 3
	Unit 3	Lab. Experiment 3:	
		Packages: Geometry, Hyperref, amsmath, amssymb,	CO 4

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C251.1	3	3	2	2	2	3	2	2	3
C251.2	2	3	3	2	3	2	3	2	2
C251.3	2	3	2	2	3	3	3	2	2
C251.4	2	3	2	2	2	2	2	2	2
C251.5	3	3	2	2	2	2	3	3	3

Syllabus of Project I

School: SBSR		Batch : 2018-20			
Branch: Mathematics		Current Academic Year: 2019-20			
		Semester: III			
1	Course Code	MMT 252			
2	Course Title	DISSERTATION-I			
3	Credits	2			
4	Contact Hours (L-T-P)	0-0-3			
	Course Status	Compulsory/Elective			
5	Course Objective	- Deep knowledge of a specific area of specialization. - Develop communication skills especially in project writing and oral presentation. Develop some time management skills.			
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analysing background material and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and taste for research. (K5, K6) CO3: Select and recommend the activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5)			
7	Course Description	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.			
8	Outline syllabus				CO Achievement
	Unit 1	Introduction			CO1
	Unit 2	Case study			CO1,CO2
	Unit 3	Conceptual			CO2,CO3
	Unit 4	Development			CO3
	Unit 5	Finalisation			CO3,CO4
	Mode of examination	Jury/Practical/Viva			
	Weightage Distribution	CA	MTE	ETE	
		60\%	0\%	40\%	
	Text book/s*	-			
	Other References				

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C252.1	3	3	2	2	2	3	2	3	3
C252.2	2	3	3	2	3	2	3	3	2
C252.3	2	3	2	2	3	3	3	3	3
C252.4	2	3	2	2	2	3	2	3	2

Syllabus of Project II

School: SBSR		Batch : 2018-20	
Program: B.Sc.		Current Academic Year: 2019-20	
Branch: Mathematics		Semester: IV	
1	Course Code	MMT 253	
2	Course Title	DISSERTATION-2	
3	Credits	8	
4	Contact Hours (L-T-P)	0-0-8	
	Course Status	Compulsory/Elective	
5	Course Objective	- Deep knowledge of a specific area of specialization. - Develop communication skills especially in project writing and oral presentation. Develop some time management skills.	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analysing background material and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and taste for research. (K5, K6) CO3: Select and recommend the activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5)	
7	Course Description	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.	

8	Outline syllabus				
	Unit 1	Introduction			CO1
	Unit 2	Case study			CO1,CO2
	Unit 3	Conceptual			CO2, CO 3
	Unit 4	Development			CO 3
	Unit 5	Finalisation			CO3,CO4
	Mode of examination	Jury/Practical/Viva			
	Weightage Distribution	CA	MTE	ETE	
		60\%	0\%	40\%	
	Text book/s*	-			
	Other References				

COURSE OUTCOMES - PROGRAMME OUTCOMES MAPPING TABLE

$\mathbf{P O}$	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
C253.1	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$
C253.2	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$
C253.3	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$
$\mathbf{C 2 5 3 . 4}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$

[^4]
[^0]: ${ }^{1}$ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

[^1]: ${ }^{2}$ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

[^2]: ${ }^{3}$ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

[^3]: ${ }^{4}$ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

[^4]: ---- THE END -----

