Programme Structure

Sharda School of Basic Sciences and Research
 Department of Mathematics

M.Sc. (Mathematics)

Programme Code: SBR0301

Batch: 2023-25

Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

1. Transformative educational experience.
2. Enrichment by educational initiatives that encourage global outlook.
3. Develop research, support disruptive innovations and accelerate

Core Values

1.Integrity
2. Leadership
3.Diversity
4.Community

Vision and Mission of the School

Vision of the School

Achieving excellence in the realm of science to address the challenges of evolving society.

Mission of the School

1. Equip the students with knowledge and skills
2. Capacity building by providing academic flexibility to student and faculty members
3. To establish centre of excellence for innovative research
4. Address the deficiencies of the society pertaining to environment
5. To strengthen academic- industry collaboration for better employability
6. Developing a culture for continued betterment in all facets of life

Vision and Mission Department of Mathematics

Vision of the Department

To become a globally recognized destination for education in applied mathematics and research.

Mission of the Department

1. To develop mathematical skills in students and make them employable across a wide range of professions and promote interest research.
2. To develop entrepreneurial skills in students to serve the society at large.
3. To develop skills for the applications of mathematics in the various fields.

M. Sc. (Mathematics)

1.4 Programmeme Educational Objectives (PEO's)

PEO1: To deliver deep subject knowledge in the courses of study to enable students to shine in various fields such as sciences, engineering and technology, IT etc.

PEO2: To develop positive attitude and skills to enable the students to become a multi facet personality.

PEO3: To prepare students for entrance examinations conducted by IIT's/Universities to pursue Ph . D. Programmes as well as NET, UGC-CSIR.

PEO4: To develop students to be excellent to be excellent communicators and team players.

1.4.1 Programme Outcomes (PO's)

PO1: Mathematical knowledge: Application of Mathematical knowledge in various fields of science, engineering and management etc.

PO2: Nature of Mathematics: Understand the concise, precise and rigorous nature of Mathematics.

PO3: Critical thinking: Develop the skill to think critically on abstract concepts of Mathematics.

PO4: Problem analysis: Develop the ability to analyze a problem logically and dissect into micro-parts and thus resolving the problem to accessible components.

PO5: Mathematical logic and Ethics: Formulates and develops mathematical arguments in logical manner and Realize and understand professional, ethical and cultural responsibilities.

1.4.2 Programmeme Specific Outcomes (PSO's)

PSO1 : Scientific thinking and logical abilities.
PSO2 : Application of Mathematical principles in practical situations and software developments.

PSO3 : Analyze any problem to micro-levels and solve the problem step by step.
PSO4 : Owning up responsibility for logical comprehension and preparedness for constant improvement.

Mapping of PEOs with Mission Statements:

PEO	School	School	School	School	School	School
Statements	Mission	Mission	Mission	Mission	Mission	Mission
1	2	3	4	5	6	
PEO1:	3	2	3	1	2	3
PEO2:	3	2	3	1	2	3
PEO3:	3	3	3	3	3	3
PEO4:	3	2	3	1	3	3

UNIVERSITY
Programme Outcome (PO's)Vs Programme Educational Objectives (PEO's)

	PEO1	PEO2	PEO3	PEO4
PO1	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	2
PO2	3	3	3	2
PO3	3	3	3	2
PO4	$\mathbf{3}$	2	3	2
PO5	2	3	2	3
PSO1	2	2	$\mathbf{3}$	2
PSO2	3	2	2	3
PSO4	3	2	3	3

1. Slight (Low)
2. Moderate (Medium)
3. Substantial (High)

Programme Outcome (PO's)Vs Courses Mapping Table:

COURSE ARTICULATION MATRIX

Co's	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
MMT-101	3	2	2	3	2	3	3	2	2
MMT-102	3	2	2	3	3	3	2	2	2
MMT-104	3	2	2	3	2	3	3	2	2
MMT-105	3	2	2	3	2	3	3	2	2
MMT-129	3	2	2	3	2	3	3	2	2
MMT-151	3	3	2	3	3	3	3	3	3
MMT-152	2	3	2	3	3	2	3	3	3
MMT-130	3	2	2	3	2	3	3	2	2
MMT-106	3	2	3	3	2	3	3	2	2
MMT-107	3	2	2	3	2	3	3	2	2
MMT-108	3	2	3	3	3	3	3	2	2
ENP-601	2	1	1	2	1	1	2	1	1
CCU-401	--	-	-	-	-	-	-	-	-
MMT-155	3	3	2	2	3	3	3	3	3
MMT-154	3	2	3	3	2	3	3	2	3
MMT-201	3	2	2	3	3	3	2	2	2
MMT-205	3	2	2	3	2	3	3	2	2
MMT-209	3	3	3	3	2	3	2	2	2

, N.... :.........

MMT-204	3	2	2	3	3	3	3	2	2
MMT-206	3	2	2	3	2	3	2	2	2
MMT-221	3	3	2	3	2	3	2	3	3
MMT-222	3	2	3	3	2	3	3	2	3
MMT-250	3	3	2	2	3	3	3	2	3
MMT-261	2	3	2	2	3	3	3	3	2
MMT-202	3	2	2	3	3	3	3	2	2
MMT-203	3	2	2	3	2	3	2	2	2
MMT-208	3	3	2	3	2	3	3	2	2
MMT-210	3	3	2	3	2	3	3	3	2
MMT-262	3	3	2	2	3	3	3	3	3

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

Department of Mathematics

M. Sc. (Mathematics)

[^0]
Department of Mathematics

M. Sc. (Mathematics)

TERM: 2302 (Semester-II)

S. No.	SUBJECT CODE	Title of Paper	Teaching Load				CREDITS	PRE-REQUISITE/CO-REQUISITE	Type of Course: 1. CC 2. AECC 3. SEC 4. DSE
	THEORY								
			L	T	\mathbf{P}	TOTAL			
1.	MMT130	NUMERICAL ANALYSIS	4	0	0	4	4	CO-REQUISITE	CC
2.	MMT 106	COMPLEX ANALYSIS (REVISED)	4	0	0	4	4	CO-REQUISITE	CC
3.	MMT 107	TOPOLOGY	4	0	0	4	4	CO-REQUISITE	CC
4.	MMT 108	DIFFERENTIAL GEOMETRY\& TENSOR ANALYSIS (REVISED)	4	0	0	4	4	CO-REQUISITE	CC
	PRACTICALS								
5.	MMT 155	NUMERICAL ANALYSIS LAB	0	0	4	4	2	CO-REQUISITE	CC
6.	MMT 154	MATHEMATICS LAB- IV	0	0	4	4	2	CO-REQUISITE	CC
7.	ENP 601	TECHNICAL PRESENTATION	0	0	4	4	2	CO-REQUISITE	SEC
8.	CCU 401	COMMUNITY CONNECT COURSE	0	0	4	4	2	CO-REQUISITE	AECC
9	RBL 002	Research Based Learning-2	0	0	4	0	0		Project
		TAL					24		

Department of Mathematics

M. Sc. (Mathematics)

TERM: 2401 (Semester-III)

S. No.	SUBJECT	Title of Paper	Teaching Load				CREDITS	PRE-	Type of Course2:
	THEORY		L	T	P	TOTAL			
1.	MMT 201	ABSTRACT ALGEBRA (Revised)	4	0	0	4	4	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \end{gathered}$	CC
2	MMT 205	FUNCTIONAL ANALYSIS	4	0	0	4	4	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \end{gathered}$	CC
		SPECIALIZATION PAPERS(I\&II) (OPT ANY TWO COURSES FROM3, 4, 5)						COREQUISITE	AECC
$\begin{aligned} & 3 . \\ & 4 . \\ & 5 . \end{aligned}$	MMT 209 MMT 204 MMT 206	GRAPH THEORY AND ITS APPLICATIONS FLUID DYNAMICS NUMBER THEORY WITH CRYPTOGRAPHY APPLICATIONS	4+4	0	0	8	8	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \end{gathered}$	AECC
		ELECTIVE ANY ONE FROM 1, 2 \& 3							
$\begin{aligned} & 6 . \\ & 7 . \\ & 8 . \end{aligned}$	$\begin{aligned} & \text { MMT } 220 \\ & \text { MMT 221/ } \\ & \text { MMT } 222 \end{aligned}$	AN INTRODUCTION TO PYTHON(E) BIG DATA SCIENCE (E)/ MACHINE LEARNING (E)	3	0	0	3	3	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \end{gathered}$	DSE
	PRACTICALS								
9.	MMT 250	MATHEMATICS LAB- V	0	0	4	4	2	$\begin{gathered} \text { CO- } \\ \text { REQUISITE } \end{gathered}$	CC
10.	MMT 261	DISSERTATION-I	0	0	8	8	4		AECC
		TOTAL					25		

[^1]Department of Mathematics
Sharda School of Basic Sciences \& Research
M. Sc. (Mathematics)

[^2]COURSE STRUCTURE

Real Analysis (MMT 101)

	ol: SSBSR	Batch: 2023-25
	gramme: M.Sc.	Academic Year: 2023-24
	ch: hematics	Semester: I
1	Course Code	MMT 101
2	Course Title	Real Analysis
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	1. The objective of this course is to develop the knowledge of various concepts of Real numbers and their properties. 2. The objective of this course is to develop a deeper and more rigorous understanding of Calculus including defining terms and proving theorems about sequences, series, limits, continuity, derivatives, the Riemann integrals, and sequences of functions.
6	Course Outcomes	CO1: Explain functions between sets; equivalent sets; finite, countable and uncountable sets and some operations on real numbers. (K2,K4) CO2: Evaluate convergent, divergent, bounded, Cauchy and monotone sequences and series. (K2,K5) CO3: Explain and determine the continuity, discontinuity and uniform continuity of functions. (K2,K3,K4) CO4: Determine the uniform convergence of sequences and series. (K2,K3) CO5: Evaluate convergence and divergence of sequences and series of functions. (K2,K5) CO6: Describe and use the concepts of fundamental theorem of Integral calculus, Riemann Integral and Riemann - Stieltjes integral (K2,K3)
7	Course Description	This course is an introduction to the fundamentals of Real analysis. This provides the understanding of convergence, divergence, uniform convergence and absolute convergence of sequences and series of Real numbers. It gives an idea about continuity, discontinuity and uniform continuity of functions. It will be helpful in solving Real integrals.

	C	Riemann - Stieltjes integral, refinement of partitions, properties and some important theorems on Riemann - Stieltjes integration	CO6		
Mode of examination	Theory	MTE	ETE		
Weightage Distribution	CA	25%	25%	50%	
Text book/s*	1. Jain P. K. and Gupta V. P.: Lebesgue measure and integration, Wiley Eastern Ltd., New Age Int. Ltd., New Delhi, (1994).				
Other Rudin W.: Principles of Mathematical Analysis References	(i)Malik S. C. and SavitaArora; Mathematical Analysis, second ed., Wiley Eastern Ltd., New Age Int. Ltd., New Delhi, (1994). Somasundaram D. and Chaudhary B.: A first course of Mathematical Analysis, Narosa publishing house, New Delhi, 1987.				

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT101.1	3	3	3	3	3	3	3	2	1
MMT101.2	3	2	3	3	2	3	2	1	1
MMT101.3	2	2	2	2	2	2	2	1	1
MMT101.4	2	2	1	2	2	2	3	1	1
MMT101.5	3	2	2	3	2	3	2	2	2
MMT101.6	3	2	1	3	2	2	2	1	2

At

LINEAR ALGEBRA (MMT 102)

School: SSBSR	Batch: 2023-25	
Programme: M.Sc.	Academic Year: 2023-24	
Branch: Mathematics	Semester: I	
1	Course Code	MMT102
$\mathbf{2}$	Course Title	LINEAR ALGEBRA
3	Credits	4
4	Contact Hours	4-0-0
(L-T-P)	Course Status	Compulsory 5 Course Objective 1. To familiarise students with basic concept of determinants, properties of determinants, rank of a matrix, inverse of a non-singular square Matrix, solution of system of linear equations. Have an idea of the fields and vector spaces, linear transformations, null spaces, rank and nullity theorem, inner products and norms, orthogonal vectors, Cauchy-Schwarz inequality, Orthogonal bases, Gram - Schmidt process. 2. Have an understanding of Characteristic roots of real matrices, right and left characteristic vectors, independence of characteristic vectors corresponding to distinct characteristic roots. To know definiteness of a real quadratic form, simultaneous reduction of two quadratic forms, maxima and minima of ratio of two quadratic forms.
6	Course Outcomes	CO1: Describe the basic concept of determinants, properties of determinants, and solve rank of a matrix, inverse of a non-singular square matrix and evaluate solution of system of linear equations. (K1,K2,K3,K5) CO2: Describe the concept of fields and vector spaces, linear transformations, null spaces, explain rank and nullity theorem. (K1,K2, K4) CO3: Explain the concept of inner products and norms, orthogonal vectors, Cauchy-Schwarz inequality and evaluate orthogonal bases, define Gram - Schmidt process. (K1, K2, K4, K5) CO4: Explain characteristic roots of real matrices, right and left
characteristic vectors and evaluate independence of characteristic vectors		
corresponding to distinct characteristic roots. (K2, K4, K5)		
CO5: Illustrate generalized inverse of a matrix, left inverse, right inverse and		
pseudo inverse and compose Spectral decomposition theorem. (K3, K6)		
CO6: Explain Definiteness of a real quadratic form, simultaneous reduction		
of two quadratic forms and evaluate maxima and minima of ratio of two		
quadratic forms. (K2, K4, K5)		

\(\left.$$
\begin{array}{|l|l|l|l|}\hline 7 & \begin{array}{l}\text { Course } \\
\text { Description }\end{array} & \begin{array}{l}\text { This course is an introduction to Linear Algebra. The primary } \\
\text { objective of the course is to develop the advance understanding of } \\
\text { linear algebra. }\end{array} \\
\hline 8 & \text { Outline syllabus } & \text { LINEAR ALGEBRA } & \begin{array}{l}\text { CO } \\
\text { Mapping }\end{array}
$$

\hline \& Unit 1 \& Review of Matrix Algebra \&

\hline A \& Determinants, properties of determinants \& CO1

\hline \& rank of a matrix, inverse of a non-singular square Matrix\end{array}\right]\)| CO1 |
| :--- |
| C |
| Unit 2 |

INIVERSITY

| Text book/s* | 1.Graybill F.A.: Matrix with applications in
 statistics, 2nd Ed., Wadsworth (1983).
 Rao C. R. \&Mitra S. K.: Generalized inverse of
 matrices and its application. John Wiley \& Sons
 Inc. (1971) | |
| :--- | :--- | :--- | :--- |
| Other | 2. | Kenneth Hoffman \& Ray Kunze: Linear
 Algebra, EEE, PHI learning (Indian Ed.), 2012. |

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT102.1	3	3	3	3	3	3	3	2	1
MMT102.2	3	2	3	3	2	3	2	1	2
MMT102.3	2	2	2	2	2	2	2	2	1
MMT102.4	2	2	1	2	2	2	3	1	2
MMT102.5	3	2	2	3	2	3	2	2	1
MMT102.6	3	2	1	3	3	2	2	1	1

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS (MMT 105)

School: SSBSR		Batch: 2023-25
Programme: M. Sc.		Academic Year: 2023-24
Branch: Mathematics		Semester: I
1	Course Code	MMT 105
2	Course Title	ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS
3	Credits	4
4	Contact Hours (L-T-P)	$4-0-0$

(A)

(A)

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT105.1	3	3	3	3	3	3	3	2	1
MMT105.2	3	2	3	3	2	3	2	1	2
MMT105.3	2	2	3	2	2	2	3	2	1
MMT105.4	2	2	1	2	2	2	3	1	2
MMT105.5	3	2	2	3	2	3	2	2	2
MMT105.6	3	2	1	3	2	2	2	2	2

STATISTICAL METHODS (MMT 104)

School: SSBSR		Batch: 2023-25
Programme: M. Sc.		Academic Year: 2023-24
Branch: Mathematics		Semester: I
1	Course Code.	MMT104
2	Course Title	STATISTICAL METHODS
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course status	Compulsory
5	Course Objectives	- To familiarise the students how to calculate and apply measures of location and measures of dispersion --grouped and ungrouped data cases and communicate quantitative data verbally, graphically, symbolically and numerically. - To make students familiar with the concept of Probability and Statistics, discrete and continuous probability distributions to various business problems and theory of measure theory and integration of a measurable function with respect to a measure
6	Course Outcomes	CO1: Describe the overall process and particular steps in designing studies, collecting and analyzing data, interpreting and presenting results; Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries. (K1, K2, K6) CO2: Explain the basic concepts of probability, random variables, probability distribution, and joint probability distribution and describe the properties of discrete and continuous distribution functions. (K1,K2,K4) CO3: Explain the fundamentals of measure theory and be acquainted with the proofs of the fundamental theorems underlying the theory of integration and illustrate measure theory random variables, independence, expectations and conditional expectations, product measures and discrete parameter martingales. (K2,K3,K4) CO4: Explain the concept of length, area, volume using lebesgue's theory. (K2,K4) CO5: Describe how these underpin the use of Mathematical concepts such as volume, area, and integration and evaluate the same. (K1,K2, K5) CO6: Explain and illustrate the general principles of measure theory and integration in such concrete subjects as the theory of probability. (K2,K3,K4)
7	Course Description	In this course we will explore the use of statistical methodology in designing, analyzing, interpreting, and presenting experiments and observations. We will

UNIVERSITY

	1. ROBERT A.: Real analysis and probability, Academic Press (1972). Other references
2. BILLINGSLY P.: Probability and measure, Willey (1989). 3. KINGMAN J.-F. C. \& TAYLOR S. J.: Introduction to measure and probability, Cambridge university press.	

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT104.1	3	3	3	3	3	3	3	2	1
MMT104.2	3	2	3	3	2	3	2	1	2
MMT104.3	2	2	2	2	2	2	2	2	1
MMT104.4	2	2	1	2	2	2	3	1	1
MMT104.5	3	2	2	3	2	3	2	2	2
MMT104.6	3	2	1	3	2	2	2	1	2

INTRODUCTION TO MATLAB AND ITS APPLICATIONS (MMT 129)

School: SSBSR		Batch: 2023-25			
Programme: M.Sc.	Academic Year: 2023-24				
Branch: Mathematics	Semester: I				
1	Course Code	MMT-129			
$\mathbf{2}$	Course Title	INTRODUCTION TO MATLAB AND ITS APPLICATIONS			
3	Credits	$\mathbf{3}$			
4	Contact Hours (L-T-P)	3-0-0			
5	Course Status Objective	Compulsory The goal of this course is to introduce the necessary mathematical concepts for MATLAB and cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific Programmeming problems including curve fitting, ODE solving etc.			
6	Course Outcomes	CO1: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop Programme scripts and functions using the MATLAB development environment. (K4, K5) CO6: Write the Programme for evaluates linear system of equations, ordinary differential equations in MATLAB. (K5,K6)			
7	Course Description	The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Synax and interactive computations, Programmeming in MATLAB			
Outline syllabus					
using scripts and functions, rudimentary algebra and analysis. One-					
and two-dimensional graphical presentations. Examples on					
engineering applications.			$	$	Introduction
:---	:---	:---			

A	Vector and matrix generation, Subscripting and the colon notation.			CO1
B	Matrix and array operations and their manipulations,			CO1
C	Introduction to some inbuilt functions.			CO1
Unit 2	Relational and Logical Operators			
A	Flow control using various statement and loops including If-End statement, If-Else -End statement			CO1, CO3
B	Nested If-Else-End Statement,			CO3
C	For - End and While-End loops with break commands			CO3
Unit 3	m-files			
A	Scripts and functions			CO2,CO5
B	concept of local and global variable			CO2,CO5
C	Few examples of in-built functions, editing, saving mfiles.			CO2,CO5
Unit 4	Two dimensional Graphics			
A	Basic Plots, Change in axes and annotation in a figure			CO4
B	multiple plots in a figure			CO4
C	saving and printing figures			CO4
Unit 5	Applications of MATLAB			
A	Solving a linear system of equations,			CO5, CO6
B	Curve fitting with polynomials using inbuilt function such as polyfit, solving equations in one variable,			CO5, CO6
C	Solving ordinary differential equations using inbuilt functions			CO5, CO6
Mode of examination	Theory			
Weightage Distribution	CA	MTE	ETE	
	25\%	25\%	50\%	
Text book	An introduction to MATLAB : Amos Gilat			
Other References	1. Applied Numerical Methods with Matlab for engineering and Scientists by stevenchapra, Mcgraw Hill. 2. Getting started with Matlab: RudraPratap			

\square

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT129.1	3	3	3	3	3	3	3	2	1
MMT129.2	3	2	3	3	2	3	2	1	2
MMT129.3	2	2	2	2	2	2	2	1	1
MMT129.4	2	2	1	2	2	2	3	1	1
MMT129.5	3	2	2	3	2	3	2	2	2
MMT129.6	3	2	1	3	2	2	2	1	2

NUMERICAL ANALYSIS (MMT 130)

| | Methods for Engineers, Tata McGraw Hill Education Pvt.,
 Ltd., 5 ed, 2007. | |
| :--- | :--- | :--- | :--- |

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT130.1	3	3	3	3	3	3	3	2	1
MMT130.2	3	2	3	3	2	3	2	1	1
MMT130.3	2	2	2	3	2	2	2	2	2
MMT130.4	2	2	2	3	2	2	3	1	1
MMT130.5	3	2	2	3	2	3	2	2	2
MMT130.6	3	2	1	3	2	2	2	1	2

Complex Analysis(MMT 106)

School: SSBSR	Batch: 2023-25	
Programme: M.Sc.	Academic Year: 2023-24	
Branch: Mathematics	Semester: II	
1	Course Code	MMT-106
2	Course Title	Complex Analysis
3	Credits	M 4 Contact Hours (L-T-P)Course Status 5 Course Objective 6 4-0-0 Course Outcomes for functions of a complex variable. The concepts of theories analyticity, Cauchy-Riemann relations and harmonic functions, Complex integration and complex power series are presented. Discuss the classification of isolated singularities and examine the theory and illustrate the applications of the calculus of residues in the evaluation of integrals. Students will study geometric properties of conformal mappings in the plane and their relations with analytic functions

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT106.1	3	3	3	3	3	3	3	2	1
MMT106.2	3	2	3	3	2	3	2	1	1
MMT106.3	2	2	3	2	2	2	3	2	2
MMT106.4	2	2	2	2	2	2	3	1	1
MMT106.5	3	2	2	3	2	3	2	2	2
MMT106.6	3	2	1	3	2	2	2	1	2

(a)

TOPOLOGY (MMT 107)

School: SSBSR		Batch: 2023-25
	ramme: M.Sc.	Academic Year: 2023-24
Branch: Mathematics		Semester: II
1	Course Code	MMT 107
2	Course Title	TOPOLOGY
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	This course provides an introduction to topics involving concepts of Topological space and separate axioms (Hausdorff space and base problems), Compactness (Urysohn's theorem), Connectedness With Nets(converge filter Zorn's lemma).
6	Course Outcomes	CO1: Explain the concept of Topological spaces and calculate interior, exterior limit point and boundary points. (K2, K3, K4) CO2: Describe the concept of separate axioms and evaluate T_{0}, T_{1}, T_{2} spaces, normal and completely normal spaces. (K1,K2, K5) CO3: Discuss the compactness (Urysohn's theorem) and evaluate cover, open cover, finite sub cover, compact sets. (K1, K2, K5) CO4: Explain Lindeloff space, locally compact, Map: continuous function and write Heine borel theorem, describe homeomorphism, open and closed map, compactness for continuous images. (K2,K4,K6) CO5: Explain about separated sets, disconnectedness, totally disconnectedness, maximal connected set and illustrate component and path, locally connected and write Urysohn's theorem. (K2, K3, K4, K6) CO6: Describe the concept of Nets and Filters and write zorn's lemma. (K1,K2, K6)
7	Course Description	This course provides an introduction to topics involving concepts of Topological space and separate axioms (Hausdorff space and base problems), Compactness (Urysohn's theorem), Connectedness With Nets (converge filter Zorn's lemma). The primary objective of the course is to develop the advance understanding of Topology.
8	Outline syllabus	CO Mapping

Unit 1	Topological space		
A	Topology, weaker and stronger topology, indiscrete and discrete topology		CO1
B	Co-finite and usual topology, interior, exterior		CO1
C	limit point and boundary points.		CO1
Unit 2	Separation axioms		
A	Base, sub-base and countability (first countable and second countable)		CO 2
B	separation axioms: T_{0}, T_{1}, T_{2} spaces, normal and completely normal spaces		CO 2
C	regular and completely regular spaces, T_{3}, T_{4} and Tychnoff space, Hausdorff space and based problems		CO 2
Unit 3	Compactness		
A	Cover, open cover, finite sub cover, compact sets, finite intersection property		CO3
B	Heine borel theorem, Lindeloff space, locally compact, Map: continuous function		CO3, CO4
C	homeomorphism, open and closed map, compactness for continuous images		CO3, CO4
Unit 4	Connectedness		
A	Separated sets, disconnectedness, totally disconnectedness, maximal connected set		CO5
B	component and path, locally connected and based examples		CO5
C	Urysohn's theorem (proof).		CO5
Unit 5	Nets		
A	Binary relation, Directed set, residual subset, sequence convergence of a set		CO6
B	cluster point, subnet. Filters: Filter, Cofinite filter, neighbourhood filter, filter base		CO6
C	convergent filter and Zorn's lemma		CO6
Mode of examination	Theory		
Weightage	CA ${ }^{\text {C }}$	ETE	

...... *..........

	Distribution	25%	25%	50%
	Text book/s*	1. S. Kumaresan, Topology of Metric Spaces, 2nd Ed., Narosa Publishing House, 2011.		
2.Dugundji, James, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978.				
References	1. Munkres, James R, Topology: A First Course, Prentice-Hall, Inc., Englewood Cli_s, N.J., 1975.			

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT107.1	3	3	3	3	2	3	3	2	1
MMT107.2	3	2	3	3	3	3	2	1	2
MMT107.3	2	2	2	3	2	2	2	1	1
MMT107.4	2	2	1	2	2	2	3	1	1
MMT107.5	3	2	2	3	2	3	2	2	2
MMT107.6	3	2	1	3	2	2	2	1	2

DIFFERENTIAL GEOMETRY \& TENSOR ANALYSIS (MMT 108)

School: SSBSR		Batch: 2023-25
Programme: M. Sc.		Academic Year: 2023-24
Branch: Mathematics		Semester: II
1	Course Code	MMT 108
2	Course Title	DIFFERENTIAL GEOMETRY \& TENSOR ANALYSIS
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	1. Familiarise students with basic concept of local theory of curves: space curves, e.g., plane curves, tangent and normal and binormal; Osculating plane, normal lines and normal plane, curvature and torsion, rectifying plane; Helices, arc length, Serret-Frenet formulae. Have an idea of Bertrand curves and its properties, Contact between curve and surfaces, tangent surfaces, tangent vectors and vector fields, Fundamental theorems for space curves, involutes and evolutes of curves, Metric-first fundamental form and second fundamental form. 2. Have an understanding of Normal curvature, quadratic form of normal curvature, mean curvature, Gaussian curvature and minimal surface, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, lines of curvature, Rodrigue's formula. Know about Tensor calculus, Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, inner product and outer product of two tensor. To know Contra variant and covariant tensors, mixed tensors of higher order, symmetric and skew-symmetric tensors, Quotient theorem, Reciprocal tensors, metric tensor, conjugate metric tensor with examples. Christoffel's symbols, covariant differentiation and Riemannian curvature tensor.
6	Course Outcomes	CO1: Describe the concept of local theory of curves: space curves, Osculating plane, normal lines and normal plane and explain curvature and torsion rectifying plane; Helices, arc length, Serret-Frenet formulae. (K1,K2,K4) CO2: Explain the theory of curves: Bertrand curves, Contact between curve and surfaces, tangent surfaces, tangent vectors and vector fields and write Fundamental theorems for space curves, involutes and evolutes of curves describe Metric-first fundamental form and second fundamental form. (K2,K4,K6) CO3: Discuss the concept of curvature and evaluate normal curvature, quadratic form of normal curvature, mean curvature, Gaussian curvature and minimal surface, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, lines of curvature, Rodrigue's formula. (K1,K2,K5) CO4: Explain Tensor calculus, Vector spaces, and the dual spaces, tensor product of

		vector spaces, transformation formulae, and contraction; evaluate inner product and outer product of two tensor. (K2,K4,K5) CO5: Describe the concept of contra variant and covariant tensors, mixed tensors of higher order, symmetric and skew-symmetric tensors. (K1,K2) CO6: Write the Quotient theorem, Reciprocal tensors, metric tensor, illustrate conjugate metric tensor with examples. Christoffel's symbols, covariant differentiation and Riemannian curvature tensor.(K3,K6)	
7	Course Description	This course is an introduction to differential geometry and tensor analysis. The primary objective of the course is to develop the advance understanding of differential geometry and tensor analysis.	
Outline syllabus	CO Mapping		
	Unit 1	Review of local theory of curves	C

		order, symmetric and skew-symmetric tensors		
	B	Quotient theorem, Reciprocal tensors, metric tensor, conjugate metric tensor with examples	CO6	
	C Mode of examination	Thristoffel's symbols, covariant differentiation and Riemannian curvature tensor.	CO6	
	Weightage Distribution	CA	MTE	ETE

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT108.1	3	3	3	3	3	3	3	2	1
MMT108.2	3	2	3	3	2	3	2	1	2
MMT108.3	2	2	3	2	3	2	2	2	1
MMT108.4	2	2	1	2	2	2	3	1	2
MMT108.5	3	2	2	3	2	3	2	2	2
MMT108.6	3	2	1	3	2	2	2	1	2

Community Connect (CCU 401)

$\begin{array}{\|l\|} \hline \text { SCH } \\ \text { Scho } \\ \text { Sciel } \\ \text { Rese } \end{array}$	OOL: ol of Basic aces and arch	TEACHING DEPARTMENT: Community Connect		Academic Year: 2023-24	FOR STUDENTS of M.Sc. Batch: 2023-25
1	Course Number	Course Code: CCU401/ Course ID: 30804			
2	Course Title	Community Connect			
3	Credits	2			
$\begin{aligned} & \hline 3.0 \\ & 1 \end{aligned}$	(L-T-P)	(0-0-2)			
4	Learning Hours	Contact Hours 30 Project/Field Work 20 Assessment 00 Guided Study 10 Total hours 60			
5	Course Objectives	1. To expose our students to different social issues faced by the people in different sections of society. 2. To connect their class-room learning with problem solving skills in real life scenario.			
6	Course Outcomes	After completion of this course students will be able to: CO1. Recognise social problems prevailing in different sections of society and finding the solution in sustainable manner. CO2. Get practical exposure of all round development which complements their class room learning CO3. These activities will add value to students, faculty members, school and university. CO4. Apply their knowledge via research, and training for community benefit. CO5. Analyze work on socio-economic projects with teamwork and timely delivery. CO6. Survey will help to identify the gaps and create a plan to further improve the situation related to social problems prevailing in different sections of society and finding the solution in sustainable manner.			

At

7	Theme	Major themes for research: 1. Survey and self-learning: In this mode, students will make survey, analyse data and will extract results out of it to correlate with their theoretical knowledge. E.g. Crops and animals, land holding, labour problems, medical problems of animals and humans, savage and sanitation situation, waste management etc. 2. Survey and solution providing: In this mode, students will identify the common problems and will provide solution/ educate rural population. E.g. air and water pollution, need of after treatment, use of renewable (mainly solar) energy, electricity saving devices, inefficiencies in cropping system, animal husbandry, poultry, pest control, irrigation, machining in agriculture etc. 3. Survey and reporting: In this mode students will educate villagers and survey the ground level status of various government schemes meant for rural development. The analysed results will be reported to concerned agencies which will help them for taking necessary/corrective measures. E.g. Pradhan Mantri Jan Dhan Yojana, Pradhan Mantri MUDRA Yojana, Pradhan Mantri Jeevan Jyoti Bima Yojana, Atal pension Yojana, Pradhan Mantri Awas Yojana, Pradhan Mantri FasalBima Yojana, Swachh Bharat Abhiyan, Soil Health Card Scheme, Digital India, Skill India Programme, Beti Bachao, Beti Padhao Yojana, DeenDayal Upadhyaya Gram Jyoti Yojana, Shyama Prasad Mukherjee Rurban Mission, UJWAL Discom Assurance Yojana, PAHAL,Pradhan Mantri Awas Yojana-Gramin, Pradhan Mantri Yuva Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri KhanijKshetra Kalyan Yojana, Pradhan Mantri Suraksha Bima Yojana, UDAN scheme, DeenDayal Upadhyaya Grameen Kaushalya Yojana, Pradhan Mantri Sukanya Samriddhi Yojana, Sansad Adarsh Gram Yojana, Pradhan Mantri SurakshitMatritva Abhiyan, Pradhan Mantri RojgarProtsahan Yojana, Midday Meal Scheme, Pradhan Mantri Vaya Vandana Yojana, Pradhan Mantri Matritva Vandana Yojana, and Ayushman Bharat Yojana.
8.1	Guideline s for Faculty Members	It will be a group assignment. There should be not more than 10 students in each group. The faculty guide will guide the students and approve the project title and help the student in preparing the questionnaire and final report. The questionnaire should be well design and it should carry at least 20 questions (Including demographic questions). The faculty will guide the student to prepare the PPT. The topic of the research should be related to social, economical or environmental issues concerning the common man. The report should contain 2,500 to 3,000 words and relevant charts, tables and photographs. The student should submit the report to CCC-Coordinator signed by the faculty

		guide by 15 April 2019. The students have to send the hard copy of the report and PPT, and then only they will be allowed for ETE.
8.2	Role of CCCCoordinat or	The CCC Coordinator will supervise the whole process and assign students to faculty members. 1. PG-M.Sc.-Semester II - the students will be allocated to faculty member (mentors/faculty member) in even term. 2. UG- B.Sc.-Semester III - the students will be allocated to faculty member (mentors/faculty member) in odd term.
8.3	Layout of the Report	Abstract(250 words) a. Introduction b. Literature review(optional) c. Objective of the research d. Research Methodology e. Finding and discussion f. Conclusion and recommendation g. References Note: Research report should base on primary data.
8.4	Guideline for Report Writing	Title Page: The following elements must be included: - Title of the article; - Name(s) and initial(s) of author(s), preferably with first names spelled out; - Affiliation(s) of author(s); - Name of the faculty guide and Co-guide Abstract: Each article is to be preceded by a succinct abstract, of up to 250 words, that highlights the objectives, methods, results, and conclusions of the paper. Text:Manuscripts should be submitted in Word. - Use a normal, plain font (e.g., 12-point Times Roman) for text. - Use italics for emphasis. - Use the automatic page numbering function to number the pages. - Save your file in docx format (Word 2007 or higher) or doc format (older Word versions) Reference list: The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems

		of partial differential equations. Ann. Mat. Pura Appl. 169, 321-354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering - from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10-13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering:All figures are to be numbered using Arabic numerals. The soft copy of final report should be submitted by email to Dr. PialiHaldar(piali.haldar@sharda.ac.in)within $16^{\text {th }}$ April2019 along with hard copy signed by faculty guide.
8.5	Format:	The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Coverpage Acknowledgement Content Project report Appendices

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
CCU401.1	2	2	3	3	3	3	3	2	1
CCU401.2	2	2	3	3	2	3	2	1	2
CCU401.3	2	2	3	2	3	2	2	2	1
CCU401.4	2	2	1	2	2	2	3	1	2
CCU401.5	2	2	2	3	2	3	2	2	2
CCU401.6	2	2	1	3	2	2	2	1	2

Technical Presentation (ENP 601)

School: SSBSR		Batch: 2023-25	
Programme: M. Sc.		Academic Year: 2023-24	
Branch: Mathematics		Semester: II	
1	Course Code	ENP 601	
2	Course Title	Technical Presentation	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-4	
	Course Status	Compulsory	
5	Course Objective	To make effective presentations and to develop a range of writing processes appropriate to various writing tasks. Observe appropriate generic conventions and formats for technical documents.	
6	Course Outcomes	CO1: Describe the concept how to write effective reports and effective proposals. CO2: Explain the how to implement the basics of Presentation. Practise the general guidelines of technical presentation. Practise use of graphics in data presentation. . CO3: Discuss how to prepare effective technical documentation. Practise various research techniques using internet. CO4: Demonstrate the structure and content of synopsis and dissertation. CO5: Describe how to write bibliographies. CO6: Write various kinds of business letters and emails effectively. Practice oral presentation skills through public speaking and oral presentation of reports. Present a research topic effectively	
7	Course Description		
8	Outline syllabus		CO Mapping
	Unit 1	Technical Documentation	
	A	Report Writing	CO1
	B	Writing proposals	CO1
	C	Studying Samples of Reports and Proposals	CO1

:..... t..........

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
ENP601.1	1	1	2	1	1	1	2	1	1
ENP601.2	1	1	1	2	1	2	1	1	1
ENP601.3	1	2	1	1	1	2	1	1	1
ENP601.4	1	1	1	1	2	1	1	1	2
ENP601.5	1	1	2	1	1	1	1	1	1
ENP601.6	2	1	1	1	1	1	2	1	1

ABSTRACT ALGEBRA (MMT 201)

School: SSBSR	Batch: 2023-25	
Programme: M. Sc.	Academic Year: 2023-24	
Branch: Mathematics	Semester: III	
1	Course Code.	MMT-201
2	Course Title	ABSTRACT ALGEBRA
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0 5Course status Objective
Compulsory1. To familiarise students with basic concepts of group, subgroup, quotient group and permutation groups, and given an idea of the normal subgroup, sylow groups, internal and external direct product. 2. To make students familiar with the concept of homomorphism, isomorphism, automorphism and inner- automorphism, different algebraic structures ring, integral domain, field, ideal and quotient ring, prime and maximal ideal, Irreducible polynomials, principal ideal domains and unique factorization domains. Know about Extension of fields: algebraic extensions, roots of polynomials and splitting fields.		
6	Course Outcomes	CO1: Explain and illustrate the concept of group, subgroup, quotient group and permutation groups.(K2,K3,K4) CO2: Describe the normal subgroup, sylow groups and evaluate internal and external direct product. (K1,K2,K5) Description CO3: Explain the concepts of homomorphism, isomorphism and analysis automorphism and inner- automorphism. (K2,K4) CO4: Discuss about ring integral domain, field ideal and quotient ring, prime and maximal ideal. (K2) CO5: Evaluate irreducible polynomials, principal ideal domains and unique factorization domains. (K5) CO6: Explain about Extension of fields: algebraic extensions and evaluate roots of polynomials and splitting fields. (K2,K4,K5)
	This course is an introduction to concept of groups, normal subgroups. The primary objective of the course is to develop the understanding of rings and fields.	

	Cambridge University Press, Indian Edition, 1977.
Other References	1. I. N. Herstain, Topics in Algebra, Wiley Eastern Ltd., New Delhi, 1975. 2. N. Jacobson, Basic Algebra, Vol I \& II, W.H. Freeman, 1980 (also published by Hindustan Publishing Company). 3. V. K. Khanna and S. K. Bhamri, A course in abstract Algebra, $3^{\text {rd }}$.Ed. 2008. 4. N.S. Gopalakrishnan: University Algebra.

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT201.1	3	3	3	3	3	3	3	2	1
MMT201.2	3	2	3	3	2	3	2	1	2
MMT201.3	2	2	2	3	3	2	2	1	1
MMT201.4	2	2	2	3	2	2	3	2	2
MMT201.5	3	2	2	3	2	3	2	2	2
MMT201.6	3	2	1	3	2	2	2	1	2

FUNCTIONAL ANALYSIS (MMT 205)

	ol: SSBSR	Batch: 2023-25
	ramme: M.Sc.	Academic Year: 2023-24
	ch: hematics	Semester: III
1	Course Code	MMT 205
2	Course Title	FUNCTIONAL ANALYSIS
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	To familiarise students with basic concepts of Functional analysis and given an idea of implemented the concepts of Elementary understanding of Normed linear spaces. Can perform basic Bounded linear operator and Know how to calculate system of Inner product spaces. Understand the basic concept of functional analysis and learn basic definitions and terminology associated with to functional analysis.
6	Course Outcomes	CO1: Describe the basics of functional analysis, normed linear spaces, Holder's inequality, Minkowski's inequality and explain l^{p} spaces, equivalence of norms and calculate banach spaces. (K2, K3, K4) CO2: Explain bounded linear spaces, finite dimensional normed space and compactness and evaluate dual of normed spaces $\mathfrak{R}^{n} ; l^{p}$ also of C[a, b]). (K2,K4,K5) CO3: Discuss the concept of open mapping and closed graph theorems, explain uniform boundedness principle and its applications.(K1,K2,K4) CO4: Write Hahn-Banach theorem and its consequence. (K6) CO5: Illustrate Inner product spaces, Hilbert spaces with examples and write Projection theorem, Bessel's inequality, existence of complete orthonormal basis of a Hilbert space Riesz representation theorem. (K3,K6) CO6: Describe the concept of bounded linear functional, Hilbert adjoint operator, self adjoint operator, Compact operators and write

A.

		Riesz-Schauder theorem. (K1,K2,K6)	
7	Course Description	The primary objective of the course is to develop the u the normed linear spaces, bounded linear operator, ope and closed graph theorems and Inner product spaces.	derstanding mapping
8	Outline sylla		CO Mapping
	Unit 1	Normed linear spaces	
	A	Normed linear spaces, Holder's inequality, Minkowski's inequality	CO1
	B	l^{p}-spaces, equivalence of norms, equivalence of norms on a finite dimensional space, Riesz lemma,	CO1
	C	Banach spaces, examples	CO1
	Unit 2	Bounded linear operator	
	A	Bounded linear operator, spaces of bounded linear operator	CO 2
	B	Finite dimensional normed space and compactness	CO 2
	C	Dual of normed spaces $\mathfrak{R}^{n} ; l^{p}$ also of $\mathrm{C}[\mathrm{a}, \mathrm{b}]$).	CO2
	Unit 3	Open mapping	
	A	Open mapping and closed graph theorems	CO3
	B	Uniform boundedness principle and its applications	CO3
	C	Hahn-Banach theorem and its consequence.	CO3, CO4
	Unit 4	Inner product spaces	
	A	Inner product spaces, Hilbert spaces and examples	CO5
	B	Projection theorem, Bessel's inequality, existence of complete orthonormal basis of a Hilbert space	CO5
	C	Riesz representation theorem	CO5
	Unit 5	Bounded linear functional	
	A	Bounded linear functional.	CO6
	B	Hilbert adjoint operator, self adjoint operator, Compact operators	CO6
	C	Riesz-Schauder theorem, self-adjoint compact	CO6

		operators.			
	Mode of examination	Theory			
	Weightage Distribution	CA	MTE	ETE	
	25%	25%	50%		
	Text book/s*	[1] Kreyszig, Erwin, Introductory Functional Analysis with Applications, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1989. [2] Limaye, Balmohan V., Functional Analysis, second edition, New Age International Publishers Limited,			
	Other References				

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT205.1	3	3	3	3	3	3	3	2	2
MMT205.2	3	2	3	3	2	3	3	1	1
MMT205.3	2	2	2	2	2	2	2	2	2
MMT205.4	2	2	1	2	3	2	3	1	1
MMT205.5	3	2	2	3	2	3	2	2	2
MMT205.6	3	2	1	3	2	2	2	1	2

Graph Theory and its Application (MMT 209)

School: SSBSR		Batch: 2023-25
Programme: M.Sc.		Academic Year: 2024-25
Branch: Mathematics		Semester: III
1	Course Code	MMT-209
2	Course Title	Graph Theory and its Application
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts of relevant vocabulary from graph theory and combinatory, and know the statements and proofs of many of the important theorems in the subject, and be able to perform related calculations.
6	Course Outcomes	CO1: Describe the basic concept of graphs and evaluate distances, radius, diameter, centre of a graph, the number of distinct spanning trees in a complete graph. (K2,K4,K5) CO2: Explain the concept of tree and write Kruskal and Prim algorithms, Huffman's algorithm. (K2,K4,K6) CO3: Discuss about matching of graphs and write the theorems related to matching. (K1,K2,K6) CO4: Describe graph colouring, chromatic number, bounds on chromatic numbers and write Greedy algorithm. (K2,K6) CO5: Discuss interval graphs and chordal graphs, chromatic polynomials and write Brook's theorem. (K1, K2, K6) CO6: Explain Hamilton property, Non-Hamiltonian graphs, Nonplanarity of K5 and K3,3, classification of regular polytopes and write 5-colour theorem. Ramsey theory. (K2,K4,K6)
7	Course Description	This course covers the theory of graphs and networks for both directed and undirected graphs. Topics include graph isomorphism, Eulerian and Hamiltonian graphs, matching, covers, connectivity, coloring, and planarity. There is an emphasis on applications to real world problems and on graph algorithms such as those for spanning trees, shortest paths, and network flows.

		Chvatal's theorem and toughness of a graph.	
	B	Non-Hamiltonian graphs with large vertex degrees. Planar graphs Embedding a graph on plane, Euler's formula.	CO6
C	Non-planarity of K5 and K3,3, classification of regular polytopes, Kuratowski's theorem (no proof), 5-colour theorem. Ramsey theory.	CO6	
Mode of examination	Theory		
Weightage Distribution	CA	MTE	ETE

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT209.1	3	3	3	3	3	3	3	2	1
MMT209.2	3	2	3	3	2	3	2	1	2
MMT209.3	2	2	3	2	3	2	2	1	2
MMT209.4	2	3	2	2	2	2	3	3	2
MMT209.5	3	2	2	3	2	3	2	2	2
MMT209.6	3	2	2	3	2	2	2	2	2

FLUID DYNAMICS (MMT 204)

School: SSBSR		Batch: 2023-25
Programme: M.Sc.	Academic Year: 2023-24	
Branch: Mathematics	Semester: III	
1	Course Code	MMT-204
$\mathbf{2}$	Course Title	FLUID DYNAMICS
3	Credits	$\mathbf{4}$
4	Contact Hours	
(L-T-P)	4-0-0	
5	Course Status	Cbjective
6	Compulsory The goal of this course is to introduce the necessary mathematical concepts for analysing fluid dynamics. Learn to perform integral analyses and overall balances from conservation laws and differential equations analyses for fields. Understand modelling approximations such as inviscid, incompressible, and turbulent for different types of flows.	
8	Outline syllabus	Coutcomes
CO1: Explain the definition, properties and classification of fluid; define Pascal's law and write basic hydrostatic equation, Buoyancy and Archimedes' principle. (K1, K2,K4,K6) CO2: Describe the streamlines, path lines and streak lines, steady/unsteady, uniform/non-uniform, one-two dimensional flows and evaluate velocity and acceleration in an Eulerian flow field. (K1,K2,K5) CO3: Explain equations for stream function, velocity potential function in rectangular and cylindrical co-ordinates and discuss the concept of equations for source, sink, irrotational vortex, circulation.(K1,K2,K4) CO4: Explain and apply Integral equations for the control volume: using Reynold's Transport theorem. (K2,K3,K4) CO5: Explain equations for conservation of mass, energy and momentum and write Bernoulli's equation and its application. (K2,K4,K6) CO6: Apply Mass conservation in 2 dimension in rectangular co- ordinates, Euler's equations in 2,3 dimensions and subsequent derivation of Bernoulli's equation and write Navier-Stokes equations.(K3,K4,K6)		
	Course Description	This course is an introduction to basics concept of velocity field, fluid statics, basic conservation laws for systems and control volumes, dimensional analysis and similitude, Euler and Bernoulli equations, NavierStokes equations, viscous flows, boundary-layer flow in channels and around submerged bodies, applications.

		rectangular Cartesian co-ordinates			
	Mode of examination	Theory			
	Weightage Distribution	CA	MTE	ETE	
	Text book	25%	25%	50%	1. Fluid Mechanics : Streeter and Wylie, McGraw Hill
	Other References	1. Fluid Mechanics :F.M.White, McGraw Hill 2. Fluid Dynamics, M. D. Raisinghania, S Chand Group			

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT204.1	3	3	3	3	3	3	3	2	1
MMT204.2	3	2	3	3	2	3	2	1	2
MMT204.3	2	3	2	2	3	2	2	1	2
MMT204.4	2	2	1	3	2	2	3	2	1
MMT204.5	3	2	2	3	2	3	2	2	2
MMT204.6	3	2	2	3	2	2	2	2	2

Number Theory with Cryptography (MMT 206)

School: SSBSR		Batch: 2023-25	
Programme: M.Sc.		Academic Year: 2024-25	
Branch: Mathematics		Semester: III	
1	Course Code	MMT 206	
2	Course Title	Number Theory with Cryptography	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Course Objective	To make students familiar with the basic concepts of number theory, congruence. Also students are able to understand public \& private key cryptography.	
6	Course Outcomes	CO1: Explain the basic concepts of number theory and calculate GCD, LCM; write factorization theorem, Euclid theorem, and Prime number theorem. (K2,K3,K4,K6) CO2: Discuss about congruences along with solutions, residue system, write Fermat's little theorem, Wilson theorem, Chinese remainder theorem, Hansel lemma and calculate Primitive roots. (K1,K2,K5,K6) CO3: Describe classical encryption techniques, Substitution ciphers and transposition ciphers, modern block ciphers principles, public \& private key cryptography, write RSA algorithm. (K2,K6) CO4: Discuss and write Gauss lemma, Legendre symbol, quadrqtic reciprocity law, Jacobi symbol.(K2,K6) CO5: Explain the greatest integer function, Euler's totient function, the number of divisors function.(K2,K4) CO6: Discuss and evaluate the sum of divisors function, Mobius mu function, Mobius inversion formula. (K1,K2,K5)	
7	Course Description	This course is an introduction to basics of number theory with cryptography, congruences, quadratic residues, some standard arithmetic functions.	
8	Outline syllabus :Number theory with Cryptography (MMT-206)		CO Mapping
	Unit 1	BASICS	
	A	Primes, Divisibility, Euclid's algorithm, GCD, LCM, expressing.	CO1

B	GCD as a linear combination of the numbers, Unique factorization theorem, Euclid's theorem on infinitude of primes.		CO1
C	Idea of existence of large gaps between primes, Statement of prime number theorem.		CO1
Unit 2	CONGRUENCES		
A	Definition, Residue system modulo m, Fermat's little theorem, Euler's generalization of Fermat's theorem.		CO 2
B	Wilson's theorem, Solution of congruences, Chinese remainder theorem.		CO 2
C	Hansel's lemma, Prime power moduli, Primitive roots.		CO 2
Unit 3	CRYPTOGRAPHY		
A	Classical encryption techniques, Substitution ciphers and transposition ciphers, Modern block ciphers and Block ciphers principles.		CO 3
B	Public key Cryptography: Public keys, Encrypting the message.		CO 3
C	Private keys, decrypting and retrieval of the original message (RSA algorithm).		CO3
Unit 4	QUADRATIC RESIDUES		
A	Gauss lemma.		CO4
B	Legendre symbol, Jacobi symbol.		CO4
C	Quadratic reciprocity law.		CO4
Unit 5	SOME STANDARD ARITHMETIC FUNCTIONS		
A	The greatest integer function, Euler's totient function.		CO5
B	The number of divisors function, The sum of divisors function.		CO6
C	Mobius mu function, Mobius inversion formula.		CO6
Mode of examination	Theory		
Weightage	CA MTE	ETE	

	Distribution	25%	25%	50%	
	Text book/s*	- Ivan Niven, Herbert S. Zuckerman , Hugh L. Montgomery: An Introduction to the theory of numbers, John Wiley and Sons (Asia) Pvt. Ltd.			
	Other References	G. H. Hardy \& E. M. Wright : An Introduction to the theory of Numbers.			

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT206.1	3	3	3	3	3	3	3	2	1
MMT206.2	3	2	3	3	2	3	2	1	1
MMT206.3	2	2	2	2	2	2	2	1	2
MMT206.4	2	2	1	2	2	2	3	1	1
MMT206.5	3	2	2	3	3	3	2	2	2
MMT206.6	3	2	1	3	2	2	2	1	2

MEASURE THEORY(MMT 202)

School: SSBSR	Batch: 2023-25	
Programme: B.SC	Academic Year: 2024-25	
Branch: Mathematics	Semester: IV	
1	Course Code	MMT 202
2	Course Title	MEASURE THEORY
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0 5
Course Status Objective	Compulsory This course provides an introduction to topics involving concepts of Topological space, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional.	
6	Course Outcomes	CO1: Explain the concept of Topological spaces and calculate interior, exterior limit point and boundary points. (K2, K3, K4) CO2: Describe the concept of approximation of measurable functions, explain Lebesgue's monotone convergence theorem and Fatou's lemma and evaluate integration of positive functions, term by term differentiation of a series of positive measurable functions. (K1,K2, K5) CO3: Discuss the integration of complex function.(K1, K2) CO4: Explain Lebesgue's dominated convergence theorem, role of sets of measure zero, write extension of a measure to a complete measure. (K2,K4,K6) CO5: Explain integration as linear functional, Topological ingredients and write positive Borel measure, Hausdorff spaces. (K2, K3, K4, K6) CO6: Describe the concept locally compact Hausdorff spaces, support of a complex function, vector space of continuous complex functions with compact support and write Urysohn's lemma, Riesz representation theorem. (K1,K2, K6)
7	Course Description	This course provides an introduction to topics involving concepts of Topological space and separate axioms, σ-algebra of measurable sets, Borel sets, measurable functions, Lebesgue measure, integration of complex functions and linear functional. The primary objective of the course is to develop the advance understanding of Measure Theory.

				Mapping
Unit 1	Preliminaries:			
A	Topological spaces, continuous functions			CO1
B	σ-algebra of measurable sets, Borel sets, measurable functions			CO1
C	lim sup and liminf of sequence of functions.			CO1
Unit 2	Lebesgue measure:			
A	Approximation of measurable functions by simple functions, positive measures			CO 2
B	Integration of positive functions, Lebesgue's monotone convergence theorem			CO 2
C	Term by term differentiation of a series of positive measurable functions, Fatou's lemma.			CO 2
Unit 3	Integration of complex functions:			
A	Complex measurable functions, integration of Complex measurable functions			CO3
B	Lebesgue's dominated convergence theorem, role of sets of measure zero			CO3, CO4
C	Extension of a measure to a complete measure.			CO3, CO4
Unit 4	Integration as a linear functional:			
A	Positive Borel measure, vector spaces			CO5
B	Integration as a linear functional, Topological ingredients			CO5
C	Definition of compactness and Hausdorff spaces.			CO5
Unit 5	Riesz representation theorem:			
A	Locally compact Hausdorff spaces, support of a complex function			CO6
B	Vector space of continuous complex functions with compact support			CO6
C	Urysohn's lemma, Riesz representation theorem.			CO6
Mode of examination	Theory			
Weightage Distribution	CA	MTE	ETE	
	25\%	25\%	50\%	

\left.		Text book/s*	1) Walter Rudin: Real and Complex analysis, Mc
GRAW HILL, International student edition.			$\right]$

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT202.1	3	3	3	3	3	3	3	2	1
MMT202.2	3	2	3	3	2	3	2	1	1
MMT202.3	2	2	2	2	2	2	2	1	1
MMT202.4	2	2	1	2	2	2	3	1	1
MMT202.5	3	2	2	3	3	3	2	2	2
MMT202.6	3	2	1	3	2	3	2	2	2

LINEAR PROGRAMMEMING (MMT 203)

	ol: SSBSR	Batch :2022-24
	ramme: c.	Academic Year: 2024-25
	ch: hematics	Semester: IV
1	Course Code	MMT 203
2	Course Title	LINEAR PROGRAMMEMING
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	To make students familiar with the concepts of simple analytical Methods to solve L.P.P., queuing theory with kendall's notations, inventory control with ABC analysis, Project Management (CPM \& PERT).
6	Course Outcomes	CO1: Discuss the origins of Operation Research, formulate the problems in L.P. and solve it by graphical. (K1, K3, K6) CO2: Explain analytical Methods: Simplex, Big M, Primal and Dual problems and discuss about economic interpretation of dual. (K2,K3, K4) CO3: Describe queuing theory and Kendall's Notations and formulate M/M/1: $\infty /$ FCFS model illustrate with example. (K2, K3, K6) CO4: Explain inventory classifications and develop economic order quantity models. (K2, K4, K6) CO5: Explain ABC analysis. (K2,K4) CO6: Describe the concept of CPM and PERT and calculate float calculation and Cost reduction by Crashing of activities. (K1, K2,K3)
7	Course Description	This course is an introduction to concept of linear Programmeming problems. The primary objective of the course is to develop the understanding of queuing theory with kendall's notations, inventory control with ABC analysis, Project Management (CPM \& PERT).
8	Outline syllabus	

				Mapping
Unit 1	Origin of Operation Research			
A	Origin of Operation Research, Historical Standpoint, Methodology, Different Phases.			CO1
B	Characteristics, Scope and Application of Operations Research. Introduction.			CO1
C	Requirement of LP, Basic Assumptions, Formulation of LP, General Statement of LP, Solution techniques of LP: Graphical Methods.			CO1
Unit 2	Analytical Methods			
A	Analytical Methods: Simplex.			CO2
B	Big M, Primal and Dual Problems.			CO 2
C	Economic Interpretation and Dual Simplex Method.			CO2
Unit 3	Queuing Theory			
A	Basis of Queuing theory, elements of queuing theory.			CO3
B	Kendall's Notation, Operating characteristics of a queuing system, Classification of Queuing models.			CO3
C	Preliminary examples of M/M/1: \sim /FCFS.			CO3
Unit 4	Inventory Control			
A	Inventory classification, Different cost associated to Inventory.			CO4
B	Economic order quantity, Inventory models with deterministic demands			CO4
C	ABC analysis.			CO4, CO5
Unit 5	Project Management			
A	Introduction to PERT and CPM, critical Path calculation.			CO6
B	Float calculation and its importance.			CO6
C	Cost reduction by Crashing of activity.			CO6
Mode of examination	Theory			
Weightage Distribution	CA	MTE	ETE	
	25\%	25\%	50\%	

| | Text book/s* | 1.Taha, H.A., Operations Research-An
 introduction, New York: MacMillan, 1992.
 2.
 KantiSwarup, P. K. Gupta and Man Mohan:
 Operation Research ; S. Chand \& Sons, New delhi. |
| :--- | :--- | :--- | :--- |
| Other
 References | 1.Hadley, G., Linear Programmeming,
 Addison -Wesley, 1962. | |
| | 2.Hillier, F.S. and G.J. Lieberman, Introduction to
 Operations Research-concept and cases, Asian Ed.,
 Tata McGraw-Hill. | |

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT203.1	3	3	3	3	3	3	3	2	1
MMT203.2	3	2	3	3	2	3	2	1	2
MMT203.3	2	2	2	2	2	1	2	2	1
MMT203.4	2	2	1	3	2	2	3	1	1
MMT203.5	3	1	2	3	2	3	2	2	2
MMT203.6	3	2	1	3	2	2	2	1	1

DISCRETE MATHEMATICS (MMT 208)

School: SSBSR		Batch: 2023-25
Programme: M.Sc.	Academic Year: 2024-25	
Branch: Mathematics		Semester: IV
1	Course Code	MMT-208
2	Course Title	DISCRETE MATHEMATICS
3	Credits	Contact Hours
(L-T-P)	Course Status	4-0-0
5	Course Objective	$\begin{array}{l}\text { Compulsory } \\ \text { This course is aimed to provide an advance understanding to the sets } \\ \text { and propositions, relations and functions, permutation and } \\ \text { combination, graphs, groups and rings. }\end{array}$
6	Course Outcomes	$\begin{array}{l}\text { CO1: Discuss the concept of sets, un-countably infinite sets, principle } \\ \text { of inclusion and exclusion, multisets, propositions, conditional } \\ \text { propositions and evaluate normal forms, Mathematical } \\ \text { induction.(K2,K3, K4,K5) }\end{array}$
$\begin{array}{l}\text { CO2: Describe the concept functions, composition of function, } \\ \text { invertible functions, discrete properties of binary relations and check } \\ \text { the closure of relations. (K3, K6) }\end{array}$		
CO 3: Explain the concept of POSET and lattices, Warshall's		
algorithm, Equivalence relations and partitions and evaluate Chains,		
and Anti-chains. Generating Functions, Recurrence relations and		
discuss linear recurrence relations with constant coefficient,		
homogeneous solution, total solutions, solutions by method of		
Generating function. (K2, K4,K5)		
CO 4: Illustrate the concept permutations and combinations: rule of		

and combination.(K3, K5,K6)

CO 5: Discuss the concept graph, sub-graph, Walks, Path and circuits,\end{array}\right\}\)| Connected graphs, Disconnected graphs and component, evaluate the |
| :--- |
| fundamental circuits, distance, diameters, radius and pendant vertices, |
| rooted and binary trees (K1,K2,K5,K6) |
| CO6: Demonstrate the understanding of Algebraic systems, Group |
| and evaluate Semi-groups, Monoid, Subgroups, Isomorphism and |
| Automorphism. (K2, K5) |

7	Course Description	This course is given the deep knowledge of sets and propositions, relations and functions, permutation and combination, graphs, groups and rings.	
8	Outline syllabus		CO Mapping
	Unit 1	Sets and Propositions:	
	A	Sets, Un-countably infinite sets, Principle of inclusion and exclusion, multisets, propositions, conditional propositions.	CO1
	B	Logical connectivity, Propositional, calculus, Universal and existential quantifiers	CO1
	C	Normal forms, methods of proofs, Mathematical induction.	CO1
	Unit 2	Relations and Functions:	
	A	Functions , Composition of function , invertible functions, Discrete properties of binary relations, closure of relations	CO 2
	B	Warshall's algorithm, Equivalence relations and partitions, POSET and lattices, Chains, and Antichains. Generating Functions, Recurrence relations	CO3
	C	Linear Recurrence relations with constant coefficient, Homogeneous solution, Total Solutions, Solutions by method of Generating function.	CO 3
	Unit 3	Permutation and Combination:	
	A	Permutations and combinations : Rule of sum and Product	CO4
	B	Permutations, Combination	CO 4
	C	Algorithms for Generation of Permutations and Combination.	CO4
	Unit 4	Graphs:	
	A	Graph, Sub-graph, Various examples of graph and their subgraphs, Walks, Path and circuits, Connected graphs, Disconnected graphs and componant	CO5
	B	Euler's graphs, various operation on graphs, Hamiltonian Paths and circuits. Trees and fundamental circuits, distance, diameters, radius and pendant vertices, rooted and binary trees	CO5
	C	Counting tree, Spanning tree, Fundamental circuits, Finding all spanning trees, Fundamental circuits.	CO5

Unit 5	Groups and Rings:			
A	Algebraic systems, Group			CO6
B	Semi-groups, Monoid, Subgroups			CO6
C	Isomorphism and Automorphism.			CO6
Mode of examination	Theory			
Weightage Distribution	CA	MTE	ETE	
	25\%	25\%	50\%	
Text book/s*	1. Liu C.L. and Mohapatra, D.P., " Elements of Discrete Mathematics" , SiE edition, TMH, 2008			
Other References	1) Kenneth H.R.,' Discrete Mathematics and its Applications", Mc-graw hill. 2) Biggs N., "Discrete Mathematics", 3rd edition, Oxford University			

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT208.1	3	3	3	3	3	3	3	2	1
MMT208.2	3	2	3	3	2	3	2	1	2
MMT208.3	2	3	2	3	2	2	2	2	1
MMT208.4	2	2	1	2	2	2	3	2	2
MMT208.5	3	2	2	3	2	3	2	2	2
MMT208.6	3	2	2	3	2	2	2	1	2

Big Data Analytics (MMT 221)

	ol: SSBSR	Batch: 2023-25
Programme: M.Sc.		Academic Year: 2024-25
Branch: Mathematics		Semester: IV
1	Course Code	MMT-221
2	Course Title	Big Data Analytics
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Compulsory
5	Course Objective	This course is aimed to provide an advance understanding to the big data overview, model building, clustering and advance analytics.
6	Course Outcomes	CO1: Discuss the concept big data analysis and data preparation. (K2,K5) CO2: Describe the concept model building, communicating results and check the basic data analysis. (K3, K6) CO 3: Explain the concept how using R to look at data introduction to R , Analysing and Exploring the Data, Statistics for Model Building and Evaluation Advanced Analytics. (K2, K4,K5) CO 4: Illustrate the concept of K Means Clustering, association rules, linear regression, logistic regression, Naïve Bayesian Classifier and evaluate decision trees, time series analysis, text analysis. (K3, K5,K6) CO 5: Discuss the concept of unstructured data - Map Reduce and Hadoop, The Hadoop Ecosystem In-database Analytics and illustrate SQL Essentials, Advanced SQL and MADlib for In-database Analytics. (K1,K2,K5,K6) CO6: Demonstrate the understanding of the Endgame, or putting it all together: operationalizing an analytics project, creating the final deliverables, data visualization techniques, final lab exercise on big data analytics. (K2, K5)
7	Course Description	This course is given the deep knowledge of big data, model building, clustering and advance analytics.
8	Outline syllabus	CO Mapping

	Text book/s*	1) Big Data, Big Dupe, 2016	
	Other References	1) Big Data, Big Dupe, 2016	

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT221.1	3	3	3	3	3	3	3	2	2
MMT221.2	3	2	3	3	2	3	2	2	2
MMT221.3	2	3	2	3	2	2	2	2	2
MMT221.4	2	2	2	2	2	2	3	2	2
MMT221.5	3	2	2	3	2	3	2	2	2
MMT221.6	3	2	2	3	2	2	2	2	2

Machine Learning (MMT 222)

School: SSBSR	Batch :2022-24	
Programme: M.Sc.	Academic Year: 2024-25	
Branch: Mathematics	Semester: IV	
1	Course Code	MMT 222
2	Course Title	Machine Learning
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0 Course Status
5	Course Objective	Compulsory To make students familiar with the concepts of machine learning, supervised learning, testing and generalization the data
6	Course Outcomes	CO1: Discuss the origins of machine learning and explain supervised, unsupervised, semi-supervised. (K1, K3, K4) CO2: Explain and discuss training, validation, testing, generalization, over-ttin.. (K2,K3, K4) CO3: Describe decision trees, random forests. linear classifiers and
7	Course Description illustrate with example. (K2, K3, K6) CO4: Explain kernel based methods and SVMs. Nearest neighbour method and develop hidden Markov models. (K2, K4, K6) CO5: Discuss neural and deep networks. (K2,K4)	
8	Outline syllabus CO6: Explain ensemble methods - boosting, bagging, voting schemes. Illustrate distance metrics and clustering. Methods for semi-supervised learning. (K1, K2,K3) problems. The primary objective of the course is to develop the understanding of queuing theory with kendall's notations, inventory control with ABC analysis, Project Management (CPM \& PERT).	

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT222.1	3	3	3	3	3	3	3	2	2
MMT222.2	3	2	3	3	2	3	2	1	2
MMT222.3	2	2	2	2	2	2	2	2	1
MMT222.4	2	2	2	3	2	2	3	1	2
MMT222.5	3	1	2	3	2	3	2	2	2
MMT222.6	3	2	1	3	2	2	2	2	2

Practical

Mathematics Lab I (MMT-151)

School: SSBSR		Batch: 2023-25
Programme: M.Sc.	Academic Year: 2024-25	
Branch: Mathematics	Semester: I	
1	Course Code	MMT-151
2	Course Title	Mathematics Lab I
3	Credits	2
4	Contact Hours (L-T-P)	0-0-4
5	Course Objective	The goal of this course is to introduce students to the fundamental mathematical concepts for MATLAB. The course will cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific Programmeming problems including curve fitting, ODE solving etc
6	Course Outcomes	Com: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop Programme scripts and functions using the MATLAB development environment. (K4, K5) CO6.Create and control simple plot and user-interface graphics objects in MATLAB (K4, K5)
7	Course Description	The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Syntax and interactive computations, Programmeming in MATLAB using scripts and functions, rudimentary algebra and analysis. One- and two-dimensional graphical presentations. Examples on engineering applications.
	Practical based MATLAB as a calculator.	

		Creating an Array in MATLAB	CO1
	Unit 2	Practical related to -- Mathematical Operations with Arrays	CO3
	Unit 4	Practical related to-- How to make scripts files in MATLAB and do some examples.	CO4
	Practical related to--- Make some function files in MATLAB. Basic two-dimensional and three- dimensional plotting, change in axes and annotation in a figure.	CO5,CO6	
	Unit 5 examination	Practical related to--- If-End statement, If-Else-End statement, nested If-Else-End statement Solving a system of linear equations, curve fitting with polynomials using inbuilt functions such as polyfit.	CO2,CO6
	Weightage Distribution	CA	
	25\%	CE	ETE

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT151.1	3	3	2	2	2	3	2	2	3
MMT151.2	2	3	3	3	3	2	3	3	2
MMT151.3	2	3	2	2	3	3	3	3	3
MMT151.4	2	3	2	3	2	2	2	3	2
MMT151.5	3	3	2	3	2	2	3	2	3
MMT151.6	2	2	3	3	2	2	2	2	3

Mathematics Lab IMMT 152 (Practical)

School: SSBSR	Batch: 2022- 24	
Programme:M.Sc	Academic Year: 2024-25	
Branch: Mathematics	Semester: I	
1	Course Code	MMT 152
2	Course Title	Mathematics Lab II
3	Credits	2
4	Contact Hours (L-T-P)	0-0-4 5 Course StatusCourse Objective
	Compulsory To familiarize the student in introducing and exploring MS excel. To enable the student on how to approach for solving statistical problems using excel tools. To prepare the students to use excel in their project works. To provide a foundation in use of this MS office for real time applications.	
6	Course Outcomes	CO1: Understand the procedures,Analyzing and Visualizing Data with Excel. (K2) CO2: Discuss and develop the basic understanding of creating formulas and how cells are referenced by rows and columns within Excel. (K2, K5, K6) CO3: Discuss and construct table and graph of data with excel. (K2, K5, K6) CO4: Discuss and calculate basic statistical parameters (mean, measures of dispersion, correlation coefficient, indexes). (K2, K5, K6) CO5: Discuss and calculate correlationbetween two variables with excel. (K2, K5, K6) CO6: Discuss, predict and estimate the variable by regression analysis with excel. (K2, K5, K6)
7	Course Description	Enable students for using the computer Programme MS Excel, apply basic statistical techniques and methods for grouping, tabular and graphical display, analysis and interpretation of Statistical data.
8	Outline syllabus	Unit 1

	Exploring Data in Excel			CO1, CO2
Unit 2	Lab. Experiment 2:			
	Create Charts			CO1, CO3
Unit 3	Lab. Experiment 3:			
	Calculate Descriptive Statistics			CO1, CO4
Unit 4	Lab. Experiment 4:			
	Calculate Correlation, Perform Regression,			CO1,CO5
Unit 5	Lab. Experiment 5:			
	Survey on gender ethics using statistical tools.			CO1, CO6
Mode of examination	Practical			
Weightage Distribution	CA	CE	ETE	
	25\%	25\%	50\%	
Text book/s*				
Other References				

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT152.1	3	3	2	2	2	3	2	2	1
MMT152.2	2	3	3	3	3	2	1	2	1
MMT152.3	2	3	2	2	3	2	3	2	2
MMT152.4	2	3	2	3	2	2	2	2	3
MMT152.5	3	3	2	3	2	2	2	2	2
MMT152.6	3	2	2	2	3	2	2	2	3

(A)

Numerical Analysis Lab (MMT-155)

	ol: SSBSR	Batch: 2023-25
	ramme: M.Sc.	Academic Year: 2024-25
	ch: hematics	Semester: II
1	Course Code	MMT155
2	Course Title	Numerical Analysis Lab
3	Credits	2
4	Contact Hours (L-T-P)	0-0-4
	Course Status	Compulsory
5	Course Objective	- To familiarize the student in introducing and exploring MATLAB software. - To enable the student on how to approach for solving problems using MATLAB tools. - To prepare the students to use MATLAB in their project works. - To provide a foundation in use of this software for real time applications.
6	Course Outcomes	CO1: Understand the procedures, algorithms, and concepts require to solve specific problems. (K2) CO2: Discuss and develop the algorithms to solve system of linear equations and measure the accuracy. (K2, K5, K6) CO3: Discuss and develop the algorithms to solve finite differences and interpolation and measure the accuracy. (K2, K5, K6) CO4: Discuss and develop the algorithms to solve system of transcendental equations and measure the accuracy. (K2, K5, K6) CO5: Discuss and develop the algorithms to solve divided differences and measure the accuracy. (K2, K5, K6) CO6: Discuss and develop the algorithms to solve numerical differentiation and integration and measure the accuracy. (K2, K5, K6)
7	Course Description	This course teaches computer Programmeming to those with little to no previous experience. It uses the Programmeming system and language called MATLAB to do so because it is easy to learn, versatile and very useful for engineers and other professionals. MATLAB is a special-purpose language that is an excellent choice for writing moderate-size Programmes that solve problems involving the manipulation of numbers.
8	Outline syllabus	CO Mapping

| Unit 1 | Lab. Experiment no:1-3 | |
| :--- | :--- | :--- | :--- |
| | Solution of transcendental equations using
 1. Bisection method
 2. Regula falsi method and secant method
 3. Newton Raphson method | CO1, CO2 |
| Unit 2 | Lab. Experiment no:4-6 | CO1, CO3 |
| | System of Transcendental equations using
 4. Gauss-Jacobi method
 5. Gauss-Seidel method
 6. Gauss-Jacobi and Seidel with convergence criteria | |
| Unit 3 | Lab. Experiment no: 7-8 | |
| | Finite differences and interpolation:
 7. Newton forward and backward interpolation
 8. Trapezoidal, Simpson (1/3) and Simpson(3/8) | CO1, CO4 |
| Unit 4 | Lab. Experiment no: 9-10 | |
| | Solution of ODEs using:
 9. Euler's and Range Kutta 2 | |
| 10.BVPs using finite difference method | | |

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT155.1	3	3	2	2	2	3	2	2	3
MMT155.2	2	3	3	2	3	2	3	3	2
MMT155.3	2	3	2	2	3	3	3	2	3
MMT155.4	2	3	2	3	2	2	2	2	2
MMT155.5	3	3	2	3	2	2	3	3	3
MMT155.6	2	3	2	3	2	2	2	2	2

Mathematics Lab IV (MMT-154)

School: SSBSR		Batch: 2023-25	
Programme: M.Sc.		Academic Year: 2024-25	
Branch: Mathematics		Semester: II	
1	Course Code	MMT-154	
2	Course Title	Mathematics Lab IV	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-4	
	Course Status	Compulsory	
5	Course Objective	- To create understanding of the LaTeX and enable the students how to write resume, write question paper, write articles/ research papers.	
6	Course Outcomes	CO1: Understand the procedures installation of the software LaTeX. (K2) CO2: Discuss and explain Latex basic syntax and write equations, matrix, and tables. (K2, K4, K6) CO3: Explain and write page layout, equation references citation tables of contents list of figures etc. (K2, K4, K6) CO4: Describe how to write Geometry, Hyperref, amsmath, amssymb, algorithms in Latex. (K1, K2, K6) CO5: Discuss the classes and explain how to write article, book, report, beamer, slides. IEEtran. . (K2,K4, K6) CO6: Write resume, question paper, research paper, project in Latex . (K2, K5, K6)	
7	Course Description	This course teaches the LaTeXTo and describes how to write resume, write question paper, and write articles / research papers.	
8	Outline syllabus		CO Mapping
	Unit 1	Lab. Experiment 1:	
		Installation of the software LaTeX	CO1, CO2
		Understanding Latex compilation:	

	Basic Syntex, Writing equations, Matrix, Tables			
Unit 2	Lab. Experiment 2:			
	Page Layout - Titles, Abstract Chapters, Sections, References, Equation references, citation. List making environments Table of contents, Generating new commands, Figure handling numbering, List of figures, List of tables, Generating index.			CO3
Unit 3	Lab. Experiment 3:			
	Packages: Geometry, Hyperref, amsmath, amssymb, algorithms, algorithmic graphic, color, tilez listing.			CO4
Unit 4	Lab. Experiment 4:			
	Classes: article, book, report, beamer, slides. IEEtran.			CO5
Unit 5	Lab. Experiment 5:			
	Applications to: Writing resume Writing question paper Writing articles/ research papers			CO6
Mode of examination	Practical			
Weightage Distribution	CA	CE	ETE	
	25\%	25\%	50\%	
Text book/s*	LATEX for Beginners			
Other References				

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT154.1	3	3	2	2	2	3	2	2	3
MMT154.2	2	3	3	2	3	2	3	2	2
MMT154.3	2	3	2	2	3	3	3	2	2
MMT154.4	2	3	2	2	2	2	2	2	2
MMT154.5	3	3	2	2	2	2	3	3	3
MMT154.6	2	3	2	2	2	2	2	2	2

Mathematics Lab V (MMT 250)

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT250.1	3	3	2	2	2	3	2	2	3
MMT250.2	2	3	3	2	3	2	3	2	2
MMT250.3	2	3	2	2	3	3	3	2	2
MMT250.4	2	3	2	2	2	2	2	2	2
MMT250.5	3	3	2	2	2	2	3	3	3
MMT250.6	2	3	2	2	3	3	3	2	2

Project I

DISSERTATION-I (MMT 261)

School: SSBSR		Batch: 2023-25	
Programme: M.Sc.		Academic Year: 2024-25	
Branch: Mathematics		Semester: III	
1	Course Code	MMT 261	
2	Course Title	DISSERTATION-I	
3	Credits	4	
4	$\begin{aligned} & \text { Contact Hours } \\ & \text { (L-T-P) } \end{aligned}$	0-0-8	
	Course Status	Compulsory/Elective	
5	Course Objective	- Deep knowledge of a specific area of specialization. - Develop communication skills especially in project writing and oral presentation. Develop some time management skills.	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analysing background material and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and taste for research. (K5, K6) CO3: Select and recommend the activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5) CO5. Discuss the ethical dimensions of your research and obtain appropriate ethical approval if needed. (K5) CO6. Plan a research article of the findings in an appropriate manner. (K6)	
7	Course Description	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.	
8	Outline syllabus		CO Achievement

UNTVERSITY

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT261.1	3	3	2	2	2	3	2	3	3
MMT261.2	2	3	3	2	3	2	3	3	2
MMT261.3	2	3	2	2	3	3	3	3	3
MMT261.4	2	3	2	2	2	3	2	3	2
MMT261.5	2	2	2	3	3	3	3	3	3
MMT261.6	2	2	2	3	3	3	3	3	3

Project II

DISSERTATION-2 (MMT 262)

School: SSBSR		Batch: 2023-25	
Programme: M.Sc.	Academic Year: 2024-25		
Branch: Mathematics	Semester: IV		
1	Course Code	MMT 262	
2	Course Title	DISSERTATION-2	
3	Credits	6	Contact Hours (L-T-P)
4	Course Status 0-0-12 specialization. project writing and oral presentation. Develop some time management skills.		
5	Course Objective	Compulsory/Elective	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analysing background material and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and taste for research. (K5, K6) CO3: Select and recommend the activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5) CO5. Discuss the ethical dimensions of your research and	
7	Course Description		
8	Outline syllabus obtain appropriate ethical approval if needed. (K5) CO6. Plan a research article of the findings in an appropriate manner. (K6)		
Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.			

N..... *..........

Unit 2	Case study		CO1,CO2
Unit 3	Conceptual		CO2,CO3
Unit 4	Development		CO3, CO4
Unit 5	Finalisation		C05,CO6
Mode of examination	Jury/Practical/Viva		
Weightage Distribution	CA CE 25% 25%	ETE 50%	
Text book/s*	-		
Other References			

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
MMT262.1	3	3	2	2	2	3	2	3	3
MMT262.2	2	3	3	2	3	2	3	3	2
MMT262.3	2	3	2	2	3	3	3	3	3
MMT262.4	2	3	2	2	2	3	2	3	2
MMT262.5	2	2	2	3	3	3	3	3	3
MMT262.6	2	2	2	3	3	3	3	3	3

	l: SSBSR	Batch: 2023-25	
	amme: M.Sc	Academic Year: 2024-25	
Bra	ch: Mathematics	Semester: I	
1	Course Code	RBL001	
2	Course Title	Research Based Learning-1	
3	Credits	0	
4	Contact Hours (L-T-P)	0-0-4	
	Course Status	Compulsory	
5	Course Objective	1. Deep knowledge of a specific area of specialization. 2. Develop communication skills especially in project writing and oral presentation. Develop some time management skills.	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analysing background material and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and taste for research. (K5, K6) CO3: Select and recommend the activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5) CO5: Analyse the problem and summarize research findings. (K4,K5) CO6: Use research findings to develop education theory and practice. (K3,K6)	
7	Course Description	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning.	
8	Outline syllabus		CO Achievement
	Unit 1	Introduction	CO1

Unit 2	Case study		CO1,CO2
Unit 3	Conceptual		CO2,CO3
Unit 4	Development		CO4, $\mathrm{CO5}$
Unit 5	Finalisation		C05,CO6
Mode of examination	Jury/Practical/V		
Weightage	CA	ETE	
Text book/s*	-		
Other References			

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
RBL001.1	2	2	2	2	2	3	2	3	3
RBL001.2	2	2	2	2	3	2	3	3	2
RBL001.3	2	2	2	2	3	3	3	3	3
RBL001.4	2	2	2	2	2	3	2	3	2
RBL001.5	2	2	2	3	3	3	3	3	3
RBL001.6	2	2	2	3	3	3	3	3	3

School: SSBSR		Batch: 2023-25	
Programme: M.Sc.	Academic Year: 2024-25		
Branch: Mathematics	Semester: II		
1	Course Code	RBL002	
2	Course Title	Research Based Learning-2	
3	Credits	0	Contact Hours (L-T-P)
Course Status	0-0-4		
5	Course Objective	1. Deep knowledge of a specific area of specialization. 2. Develop communication skills especially in project writing and oral presentation. Develop some time management skills.	
6	Course Outcomes	CO1: Explain the concept of research within the subject, as regards approaching a question, collecting and analysing background material and presenting research questions and conclusions. (K2, K4) CO2: Construct and develop a deeper interest in mathematics and taste for research. (K5, K6) CO3: Select and recommend the activities that support their professional goals. (K4, K6) CO4: Develop effective project organizational skills. (K5)	
8	Outline syllabus		
7	Course Description	CO5: Analyse the problem and summarize research Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for future learning. findings. (K4,K5) CO6: Use research findings to develop education theory and practice. (K3,K6)	
	Introduction		

COURSE OUTCOMES - PROGRAMMEME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
RBL002.1	2	2	2	2	2	3	2	3	3
RBL002.2	2	2	2	2	3	2	3	3	2
RBL002.3	2	2	2	2	3	3	3	3	3
RBL002.4	2	2	2	2	2	3	2	3	2
RBL002.5	2	2	2	3	3	3	3	3	3
RBL002.6	2	2	2	3	3	3	3	3	3

[^0]: ${ }^{1}$ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

[^1]: ${ }^{2}$ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

[^2]: ${ }^{3}$ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

