

School of Basic Sciences and Research

Department of Chemistry and Biochemistry

Programme and Course Structure AY: 2021-23

MSc. in Chemistry

Program Code: SBR0101

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School

Vision of the School Achieving excellence in the realm of science to address the challenges of evolving society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- 3. To establish center of excellence for ecologically and socially innovative research.
- 4. To strengthen inter-institutional and industrial collaboration for skill development and global employability.

1.3 Vision and Mission of Department of Chemistry & Biochemistry

Vision of Chemistry & Biochemistry

Strive to achieve excellence in teaching and research in the field of Chemistry and Biochemistry and to build human resource for solving contemporary problems.

Mission of Chemistry & Biochemistry

- Providing distinctive and relevant education in Chemistry and Biochemistry to students.
- Motivating young minds through innovative teaching methods, to acquire theoretical knowledge and practical skills in different disciplines of chemistry and empowering them with problem solving skills.
- Nurturing innovation by carrying out world class research and scholarly work
- Promoting interdisciplinary research in collaboration with national/international laboratories/Institutions.

1.3 Programme Educational Objectives (PEO)

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing Post graduates to achieve.

PEO 1: To prepare students for advanced studies in Chemistry and its allied fields.

PEO2: To help students understand the value of advanced characterization techniques by gaining the knowledge of spectroscopy, chromatography and chemistry of natural products.

PEO 3: To expose the students to the practical aspects of chemistry by means of qualitative, quantitative and advance instrumental methods.

PEO 4: To develop the ability to communicate scientific information in written and oral formats.

1.3.3 Program Outcomes (PO's)

PO1: Gained knowledge, abilities and insight in well defined area of research within Chemistry.

PO2: Competency to work effectively and safely in a laboratory environment.

PO3: Developed communication skills, both written and oral, for specific for specialized audiences.

PO4: Acquired the skills of planning and conducting advanced chemical experiments and applying structural-chemical characterization techniques.

PSO1: Global level research opportunities to pursue Ph.D. programme and target the CSIR – NET examination.

PSO2: Explain the properties of metal Complexes and Transition Elements.

PSO3: Use spectrophotometer to find out the allowedness and analysis of known and unknown organic, inorganic and natural compounds through UV, IR NMR and Mass data.

PSO4: The broad education necessary to understand the impact of chemical solutions in a global and societal context.

Program Structure School of Basic Sciences & Research M. Sc. Chemistry Batch: 2021-23

TERM: I

S. No.	Subject Code	Subjects	Subjects Teaching Load L T P				Pre- Requisite/Co Requisite
THEOR	Y SUBJECTS					-	•
1.	MCH131	Inorganic Chemistry-I	4	0	0	4	Core
2.	MCH132	Organic Chemistry-I	4	0	0	4	Core
3.	MCH133	Physical		0	0	4	Core
4.	MCH134	Analytical Chemistry-I	4	0	0	4	Core
5.	MMT129	Introduction to MATLAB & its application	3	0	0	3	GE
PRACT	ICAL					•	
6.	MCH171	Inorganic Chemistry Lab-I	0	0	3	2	Core
7.	MCH172	Organic Chemistry Lab-I	0	0	3	2	Core
8.	MCH173	Physical Chemistry Lab-I	0	0	3	2	Core
		25					

Program Structure School of Basic Sciences & Research M. Sc. Chemistry Batch: 2021-2023

TERM: II

S. No.	Course	Course	Teaching Load			Credits	Core/Elective
5. 140.	Code	Course	L	T	P	Credits	Corcalicente
THEO	RY SUBJEC'	TS					
1.	MCH135	Inorganic Chemistry-II	4	0	0	4	Core
2.	MCH136	Organic Chemistry-II	4	0	0	4	Core
3.	MCH137	Physical Chemistry-II	4	0	0	4	Core
4.	MCH138	Analytical Chemistry-II	4	0	0	4	Core
5.	MPH115	Renewable Energy Sources: Solar And Hydrogen Energy	4	0	0	4	GE
6.	CCU401	Community Connect	2	0	0	2	SEEC-1
PRACT	TICAL						
7.	MCH174	Inorganic Chemistry Lab-II	0	0	3	2	Core
8.	MCH175	Organic Chemistry Lab-II	0	0	3	2	Core
9.	MCH176	Physical Chemistry Lab-II	0	0	3	2	Core
	-	TOTAL CRED	OITS			28	

Program Structure Template School of Basic Sciences & Research M. Sc. Chemistry

Batch: 2021-2023 TERM: III

S.	Course	Course	Tea	ching L	oad	Credi	Core/Elec			
N			L	T	P	ts	tive			
0.										
TH	THEORY SUBJECTS									
1	MCH231	Molecular Spectroscopy	4	0	0	4	Core			
	MCH232/	Inorganic Chemistry-III/ Physical		0	0		Core			
2	MCH233/	Chemistry-III/ Organic Chemistry-III	4			4				
	MCH234		7			7				
	MCH235/	Inorganic Chemistry-IV/ Physical		0	0		Core			
3.	WIC11230/	Chemistry-IV/ Organic Chemistry-IV	4			4				
	MCH237		1			'				
4.	MCE201/	Environmental Chemistry / Polymer	4	0	0	4	DSE			
	202	Science and Technology								
PR	ACTICAL									
	MCH271/	Organic Chemistry Lab-III/ Physical	0	0	3	2	Core			
5.	MCH272/	Chemistry Lab-III/ Inorganic								
	273	Chemistry Lab-III								
6.	MCH276	Dissertation-Part-A	0	0	6	2	Core			
		TOTAL CREDITS				20				

Program Structure Template School of Basic Sciences & Research M. Sc. Chemistry

Batch: 2021-2023 TERM: IV

S.	Course Code	Course	Те	eaching I	Load		Core/E
N	[L	T	P	Credits	lective
0.							
TH	EORY SUBJEC	CTS					
	MCH238/MC	Inorganic Chemistry-V/ Physical					Core
1	H239/MCH24 0	Chemistry-V/ Organic Chemistry-V	4	0	0	4	
	MCH241/MC	Inorganic Chemistry-VI/ Physical					Core
2	2 H242/MCH24 Chemistry-VI/ Organic Chemistr VI		4	0	0	4	
3.	MCE203/204	Medicinal Chemistry/ Science and Technology of Nanomaterials	4	0	0	4	DSE
4.	OPEXXX	Open Elective	2	0	0	2	SEEC- 2
Pra	Practical						
5.	MCH275	Dissertation-Part-B	0	0	12	6	Core
		20					

Course

- Theory Subject
- Practical Subjects
- Projects/Dissertations

2.1 Template A1: Inorganic Chemistry-I (MCH131)

School	SBSR	Batch 2021-23			
Progra	m: M.Sc.	Current Academic Year : 2021-22			
Branch	:Chemistry	Semester I			
1	Course Code	MCH131			
2	Course Title	Inorganic Chemistry I			
3	Credits	4			
4	Contact hours	4-0-0			
	Course Status	Compulsory			
5	Course	1.To provide an insight into bonding and structure of coordination			
	Objectives	compounds.			
		2.To explain the spectral and magnetic behaviour of coordination			
		compounds.			
		3.To provide a thorough knowledge about the chemistry and application of			
		inner transition metals.			
		4.To discuss about various spectroscopic methods for structure elucidation			
		of inorganic compounds.			
		5.To explain the basics of radioactivity as well as various radio analytical			
		techniques.			
		6.To impart knowledge about structure, bonding and application of inorganic			
26		compounds and radio chemistry.			
36	Course	CO1: Explain the various theories of metal –ligand bonding			
	Outcome	CO2 : Explain the electronic spectra and magnetic properties of transition			
		metal complexes. CO3 : Interpret the EPR and Mossbauer spectra			
		CO4: Illustrate the chemistry and uses of inner transition metals			
		CO5 : Know about various radio-analytical techniques			
		CO6: Gain knowledge about of various aspects of modern inorganic			
		chemistry			
7	Course	This course include basic concepts of metal –ligand bonding, magnetic and			
,	Description	electronic properties of coordination compounds and their characterization			
		techniques. Chemistry of inner transition metals and nuclear chemistry are			
		also discussed in this course.			
8	Outline Syllabus	S			
	Unit 1	Metal-ligand Bonding			
	A	Overview of crystal field and ligand field theories of 4-, 5-and 6-coordinated			
		complexes, d-orbitals splitting in linear, trigonal, octahedral, square planar,			
		tetrahedral, square pyramidal, trigonal-bipyramidal and cubic complexes			
	В	measurement of CFSE (d ¹ to d ¹⁰) in weak and strong ligand fields,			
		JahnTeller distortion, nephelauxetic series			
	C	Molecular orbital theory (MOT) of coordination compounds: Composition			
		of ligand group orbitals, molecular orbital energy diagrams of octahedral,			
		tetrahedral, square planar complexes including both s and p bonding, angular			
		overlap model			

Unit 2	Electronic Spectra and Magnetic Properties of Transition Metal					
	Complexes					
A	Interpretation of electronic spectra, Orgel diagrams, Tanabe-Sugano diagrams for transition metal complexes (d¹ - d9 states), calculations of Dq,					
	B and β parameters					
В	charge transfer spectra, spectroscopic method of assignment of absolute configuration in optically active metal chelates and their stereochemical					
	information					
С	anomalous magnetic moments, magnetic exchange coupling, temperature independent paramagnetism (TIP) of complexes, spin cross over					
	phenomenon. Effect of temperature on their magnetic properties					
Unit 3	Chemistry of Inner Transition Elements					
A	General discussion on the properties of the f-block elements.					
В	Redox, Spectral and Magnetic properties.					
С	Use of Lanthanide compounds as shift reagents. Photophysical properties of Lanthanide complexes.					
Unit 4	Characterization Techniques					
A	EPR spectroscopy-basic principle, hyperfine and superhyperfine lines,					
	anisotropy, g values, application in selected inorganic compounds.					
В	Mossbauer Spectroscopy-Gamma ray emission and absorption by nuclei,					
	Mossbauer effect — conditions, Doppler effect, instrumentation, chemical					
	shift examples, quadrupole effect,					
С	Use of Mössbauer spectra in chemical analysis, typical spectra of iron and					
	tin compounds. Optical rotatory dispersion (ORD) and circular dichroism (CD).					
Unit 5	Nuclear Chemistry					
A	Nuclear structures and nuclear stability. Nuclear models; radioactivity and nuclear reactions. Detection and measurement of radiation. Tracer					
	techniques.					
В	Study of chemical reactions, isotope exchange reactions, kinetic isotope effect, nuclear activation analyses, Principle of nuclear detection, gas					
	detector, ionization chamber, proportional and G. M. detector.					
C	Radioactive Techniques: Detection and measurement of radiation- GM					
	ionization and proportional counters. Radiometric analysis: Isotope dilution					
	analysis, age determination, neutron activation analysis (NAA) and their applications. Radiation hazards and safety measures.					
Mode of	Theory/Jury/Practical/Viva					
examination	Theory, and y, radically viva					
Weightage	CA MTE ETE					
Distribution	30% 20% 50%					
Text book/s*	1.Inorganic Chemistry, J.E. Huhey, Harper & Row.					
Other	1.Concise Inorganic Chemistry, J. D. Lee, Elbs with Chapman and Hall,					
References	London.					
	2.The Chemical bond, J.N.Murre l, SFA Kettle and JM. Tedder, Wiley, New					
	York.					
	Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley.					

2.1 Template A1: Organic Chemistry-I (MCH132)

School: SBSR		Batch 2021-23			
Prog	gram: M.Sc.	Current Academic Year : 2021-22			
Brai	nch: Chemistry	Semester I			
1	Course No.	MCH132			
2	Course Title	Organic Chemistry 1			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course status	Compulsory			
5	Course	1.To enhance the analytical ability of students about the basic and			
	Objective	modern concepts of conjugation, resonance and aromaticity.			
		2. To impart knowledge of mechanistic, kinetic and thermodynamic			
		aspects of i. nucleophilic and electrophilic substitution. ii. Reaction			
		conditions, products formation and mechanisms of some named			
		reactions, iii. addition reactions of C=C and C=O bonds and elimination			
		reactions.			
		3.To teach the concepts and critical bond forming reactions and reaction			
		intermediates in organic synthesis and molecular rearrangements			
		4. To make the student conversant with - the basic concepts in			
		stereochemistry.			
		5.To discuss the Conformational analysis, reactivity, chirality,			
		interconversion, resolution and asymmetric synthesis.			
6.	Course	The students will acquire the knowledge and analytical ability to			
	Outcomes	CO1. Rationalize the concept of Aromaticity, nonaromaticity and			
		antiaromaticity in carbocyclic and heterocyclic compounds			
		CO 2. Solve the reactions and analyze the conditions, products formation			
		and mechanisms of different reactions.			
		CO3. Recognize the correct reaction intermediate formation and different			
		aspects of their stability and reactivity. CO4. Critically examine the chirality/prochirality in the molecules and			
		understand the enentio and diastereospecific/selective reactions.			
		CO5. Conformational analysis of cycloalkanes, reactivity, chirality,			
		interconversion, resolution and asymmetric synthesis,.			
		CO6. The students will be able to acquire the skills for recognizing the			
		reaction, rationalizing their mechanism, kinetic vs. thermodynamic			
		considerations critical analysis of intermediates and correct			
		stereochemical assignment and interpretation in rather simple organic			
		molecules and reactions.			
7	Course	This course tends to the build the foundation of Organic Chemistry that			
	Description	provides the insight of different aspects of organic reactions in terms of			
		energy considerations, stereochemical implications, mechanistic			
		approach and involvement of intermediates.			

8	Outline syllabus	Beyond Boundaries							
	Unit 1	Nature of Bonding in Organic Molecules							
	A	Delocalized chemical bonding: conjugation, cross conjugation,							
		resonance, hyperconjugation, tautomerism;							
	В	Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and							
		non benzenoid aromatic compounds; Application in carbocyclic and							
		heterocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60,							
		cryptates, azulenes.							
	C	Current concepts of aromaticity: Anti-aromatic, non-aromatic and							
		homoaromatic compounds, Effect of tautomerism and hyperconjugation							
		on aromaticity.							
	Unit 2	Reaction Mechanism - Structure and Reactivity							
	A	Types of reaction mechanisms- substitutions, eliminations, additions,							
		rearrangements, thermodynamic and kinetic requirements							
	В	Hammond postulate, Curtin-Hammett principle, transition states and							
		intermediates, catalysis: electrophilic catalysis, acid and base catalysis							
	С	Libido rule; methods of determination of reaction mechanism methods of							
	TI 14 0	determining mechanisms, isotopic effects.							
	Unit 3	Reaction Intermediates							
	A	Classical and non classical carbocations, phenonium ions, norbornyl							
		system, common carbocation rearrangement (Wagner Meerwein							
		rearrangement, Demjonove rearrangement and Pinacol-pinacolone							
	В	rearrangement); Conhaminate ambident ions and their reactions. HSAR principle and its							
	D	Carbanions: ambident ions and their reactions. HSAB principle and its applications;							
	С	Free radicals: cage effects. Radical Cations and Radical Anions; Carbene:							
	C	Synthesis, structure and reactions of singlet and triplet carbene, nitrenes,							
		Benzyne.							
	Unit 4	Stereochemistry I							
	A	Elements of symmetry, chirality (centre, axis and plane), molecules with							
		more than one chiral center, threo and erythro isomers, optical purity							
	В	Topicity of ligand and faces and their nomenclature, stereogenecity,							
		chirogenicity and pseudosymmetry, stereospecific and stereoselective							
		reactions							
	C	Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric							
		induction - substrate, reagent and catalyst controlled reactions;							
		determination of enantiomeric and diastereomeric excess; enantio-							
		discrimination. Resolution – optical and kinetic							
	Unit 5	Stereochemistry II							
	A	Conformational analysis of cyclic systems: Cyclohexane and its							
		derivatives (mono-,and di- substituted), fused (decalins) and bridged							
		bicyclic systems, effect of conformation on the reduction of cyclic							
	D	ketones,							
	В	nucleophilic addition to carbonyl group (Cram, Franklin Ahn Model,							
		Cieplak effect), nucleophilic substitution on cyclohexane substrates,							
		cyclohexane epoxide formation and opening							

С	aminocycloh neighboring molecules.	exanols, elin group parti	nination vs cipation reac	halides, de-amination of 2- substitution competition and ctions of acyclic and cyclic		
Mode of examination	Theory/Jury/	Theory/Jury/Practical/Viva				
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text Book	1.Stereocher	nistry, P. S. Ka	lsi, New Age	International.		
	2.Organic C	hemistry, R. T.	Morrison and	R. N. Boyd, Prentice-Hall.		
	3. Reaction	Mechanism in	Organic Chen	nistry, S. M. Mukherji and S. P.		
	Singh, Macn	nillan.				
Other	1. Advanced	d Organic Che	mistry Reacti	ons, Mechanism and Structure,		
references	Jerry March,	Jerry March, John Wiley.				
	2.Stereochemistry of Organic Compounds By Ernest Ludwig Eleil,					
	Samual H. Wilen.					
	3.Stereocher	nistry of Orga	nic Compoun	ds: Principles and Applications		
	by D. Nasipi	ıri				

2.1 Template A1: Physical Chemistry-I (MCH133)

Scho	ool: SBSR	Batch: 2021-23				
Prog	gram:M.Sc.	Current Academic Year: 2021-22				
	nch:Chemistry	Semester:I				
1	Course Code	MCH133				
2	Course Title	Physical Chemistry I				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	1. To provide the understanding of physical states of matter and their				
	Objective	practical applications. To define how the initially primitive models of real				
		gases in physical chemistry are elaborated to take into account more				
		detailed observations.				
		2. To understand the concept of partial molar quantities and their				
		variation with temperature and pressure.				
		3. The concept of ensembles, partition function and their applications in				
		studying gaseous molecules.				
		4. To understand the concept and different theories of ions and electrolyte				
		interactions				
		5.To discuss the theoretical aspects of chemical kinetics and the importance				
		of rate equations and different theories for studying the kinetics of complex				
		reactions.				
		6. To provide an in-depth analysis of various phenomenon, laws and				
		applications of States of Matter, Thermodynamics, Electrochemistry,				
	C	Phase Equilibrium and Chemical Kinetics				
6	Course	CO1: Understand the detailed concept of liquid and gaseous state				
	Outcomes	and the structural features of solid state material by having				
		complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamics and				
		the concept of third law of thermodynamics.				
		CO3: Familiarize with the applications of partition function and statistics in				
		understanding the thermodynamics of molecules.				
		CO4: Understand the concept of electrical double layer at the electrode				
		electrolyte interface by studying different proposed models of it.				
		CO5: Understand the detailed concepts of kinetics and its applications,				
		Influence of physical and chemical parameters on reaction rates in				
		solutions				
		CO6: Do the in-depth analysis of various phenomenon and laws of States				
		of Matter, applications of Thermodynamics, Electrochemistry and				
		Chemical Kinetics and different functions of statistical thermodynamics.				
7	Course	The course is framed to give broad view of states of matter, chemical				
	Description	potential, concepts of electrical double layer in solutions and various				
		models to explain it. Concept of existence of different phases in the form				
		of phase diagrams and their existence with changing variables.				

8	Outline syllabus	Beyond Boundaries
	Unit 1	States of Matter
	A	(a) Gaseous State: Maxwell–Boltzmann distribution of molecular
		velocities of gases (b) Liquid State: Structure of liquids, Radial
		distribution functions
	В	Monte-Carlo method, Molecular dynamics.(c) Solid State: Types of
		solids, Debye- Scherrer method of X-ray structure analysis of crystals,
		indexing of reflections,
	C	structure of simple lattice and X-Ray intensities, structure factor and its
		relation to intensity and electron density, Rietveld analysis, particle size
		of crystallites.
	Unit 2	Thermodynamics
	A	Essentials of thermodynamics, fugacity, standard state of real gases, the
		relation between fugacity and pressure, Partial molar quantities, chemical
		potential and Gibbs-Duhem equation,
	В	Classius – Clayperon equation; law of mass action and its
		thermodynamic derivation, variation of chemical potential with
		temperature and pressure, chemical potential for an ideal gas,
		determination of partial molar volume,
	C	thermodynamic functions of mixing (free energy, entropy, volume and
		enthalpy), third law of thermodynamics, residual entropy, meaning and
		scope of irreversible thermodynamics.
	Unit 3	Statistical Thermodynamics
	A	Concept of distribution, Thermodynamic probability and most probable
		distribution. Ensembles, Canonical, grand canonical and microcanonical
		ensembles.
	В	Partition function - Translational, Rotational, Vibrational and Electronic
		partition functions, calculation of thermodynamic properties in terms of
		partition function. Applications of partition functions.
	C	Heat capacity behaviour of solids - Chemical equilibria and equilibrium
		constant in terms of partition functions, Fermi-Dirac statistics,
		distribution law, Bose-Einstein statistics - distribution law, Evaluation of Lagrange's undetermined multipliers.
	Unit 4	Electrochemistry
	A	Debye-Huckel theory of ion- ion interactions, Debye-Huckel limiting law
	A	of activity coefficients and its limitations,
	В	Debye - Huckel -Onsager treatment for aqueous solutions and its
	В	limitations, Wein effect, Debye – Falkenhagen effect.
	С	The electrode-electrolyte interface: The electrical double layer -The
		Helmholtz-Perrin parallel plate model, the Gouy-Chapman diffuse-
		charge model and the Stern model, excess function
	Unit 5	Chemical Kinetics
	A	Simple collision theory of reaction rates, Arrhenius equation and
		activated complex theory (ACT), thermodynamic treatment, chain
		reactions (hydrogen-halogen reactions) decomposition of N ₂ O ₅
	В	Theory of unimolecular reactions: Lindemann – Hinshelwood
L	<u> </u>	Theory of diffinorection reactions. Emidemann – Hinshelwood

			Beyond Boundaries			
	mechanism o	of unimolecular	reactions, RRKM and Slater treatment,			
С	Factors affecting rate of chemical reactions in solution Effect of solvent					
	and ionic str	and ionic strength (Primary salt effect) on rate constants, secondary salt				
	effect.					
Mode of	Theory/Jury/	Practical/Viva				
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	1.Physical C	hemistry, P. W	. Atkins, Oxford University Press, New York.			
	2.Textbook	of Physical Che	emistry by K. L. Kapoor (Volume 1)			
	3.Textbook	of Physical Che	emistry by K. L. Kapoor (Volume 3)			
	4.Textbook	of Physical Che	emistry by K. L. Kapoor (Volume 5)			
Other	1. Physical	Chemistry, I.N	I. Levine, Tata McGraw Hill Pub. Co. Ltd.,			
References	New Delhi.					
	2. Comprehensive Physical Chemistry by N.B.Singh, N.S.Gajbhiye and					
	S.S.Das, New Age publishers, New Delhi					
	3. Chemical	Kinetics, K. J.	Laidler, Harper & Row, New York.			
	4. Physical C	Chemistry by D	.A.McQuarrie and J.D.Simon			
	Mode of examination Weightage Distribution Text book/s*	C Factors affect and ionic streeffect. Mode of examination Weightage CA Distribution 30% Text book/s* 1.Physical C 2.Textbook of 3.Textbook of 4.Textbook of 4.Textbook of 5.S.Das , Ne 3. Chemical	C Factors affecting rate of chand ionic strength (Primary effect. Mode of examination Weightage Distribution Text book/s* CA MTE 30% 20% Text book/s* 1.Physical Chemistry, P. W 2.Textbook of Physical Che 3.Textbook of Physical Che 4.Textbook of Physical Che 4.Textbook of Physical Chemistry, I.N New Delhi. 2. Comprehensive Physical S.S.Das , New Age published 3. Chemical Kinetics, K. J.			

2.1 Template A1: Analytical Chemistry-I (MCH134)

School: SBSR		Batch: 2021-2023
Prog	gram: M.Sc	Current Academic Year: 2021-2022
Brai	nch: Chemistry	Semester: I
1	Course Code	MCH134
2	Course Title	Analytical Chemistry I
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course	1.Provide and enrich the students to analytical techniques, various types
	Objective	of errors knowingly/ unknowingly introduced, accuracy and confidence
		limit in analytical process.
		2.Provide detailed insight of chemical equilibrium and its effect in
		chemical analysis of analyte.
		3. Provide detailed technical knowledge of various chromatogaraphic
		separation techniques based on physical state, contact and separation
		mechanism.
		4. Provide detailed technical knowledge of gas, thin layer
		chromatographic, integrated LC-MS and GC-MS separation techniques
		for qualitative and quantitative analysis.
		5.Enable the students to study the thermal behaviour of different
		compounds and study temperature dependent decomposition process and
		structural elucidation of unknown analyte.
		CO6:Estimate the temperature dependent weight loss in compound and
		model and optimize suitable temperature condition for further chemical
-	Carresa	processing.
6	Course	CO1: Apply the knowledge of analytical techniques to minimize the error
	Outcomes	and report the outcomes of analysis with high precision and accuracy, CO2: Understand the role of different analytical techniques used for the
		separation of compounds present in very small quantity,
		CO3:Understand the role of chemical equilibrium in chemical analysis,
		CO4: Segregate and select the suitable indicator for measurement of pH,
		CO5: Purify the various compounds for their further detailed structural
		elucidation and molecular mass analysis,
		CO6. To learn analytical tools involving Chromatographic methods and
		thermo-analytical instruments of a lab for the identification of
		equilibrium process.
7	Course	Analytical chemistry I emphasizes on various factors as - types of errors,
	Description	accuracy and precision in chemical analysis, concepts of chemical
	r	equilibrium and its effects on qualitative and quantitative estimation,
		Chromatographic separation and Thermal analysis.
8	Outline syllabus	
	Unit 1	Introduction to Analytical Chemistry
		and outcome to raining from Circumstry

A	Scope & objectives of Analytical chemistry and chemical analysis,
	Classification of analytical methods. Errors in chemical analyses-
	Accuracy and precision
В	Types of error-determinant, indeterminate and gross. Nature of random
	errors, statistical treatment of random errors, standard deviation of
	calculated results, reporting of calculated data
С	
	ways of expressing accuracy and precision. variance and confidence limit. Comparison of mean with true values, regression analysis (least-
	square method for linear plots)
Unit 2	Concept of Equilibrium
A	General treatment of equilibria in aqueous medium involving
A	monoprotic weak acid and weak base, and salts of weak acids and weak
	bases
В	Activity and activity coefficient; Effect of electrolytes on chemical
	equilibria, Calculation of pH
C	Constructing titration curves from charge balance and mass balance
	equations, Acid-base titrations and theory of pH indicators.
Unit 3	Chromatographic Methods-I
A	General principle, classification of chromatographic methods based on
	physical state, contact and separation mechanism
В	Nature of partition forces. Chromatographic behavior of solutes.
	Chromatographic resolution, selectivity factor and column efficiency.
	· · · · · · · · · · · · · · · · · · ·
	Column chromatography: Nature of column materials. Preparation of
C	Column chromatography: Nature of column materials, Preparation of the column, Solvent systems, detection methods and applications.
C Unit 4	the column, Solvent systems, detection methods and applications.
Unit 4	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II
Unit 4	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas,
Unit 4 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application
Unit 4 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-
Unit 4 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC,
Unit 4 A B	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application
Unit 4 A B	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS.
Unit 4 A B C Unit 5	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis
Unit 4 A B	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric
Unit 4 A B C Unit 5	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and
Unit 4 A B C Unit 5	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram,
Unit 4 A B C Unit 5	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of
Unit 4 A B C Unit 5 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O, dolomite ore, etc.)
Unit 4 A B C Unit 5	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O, dolomite ore, etc.) Problems based TGA, ii) Differential Thermal Analysis (DTA):
Unit 4 A B C Unit 5 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O, dolomite ore, etc.) Problems based TGA, ii) Differential Thermal Analysis (DTA): Instrumentation, general principles, differential thermogram, DTA and
Unit 4 A B C Unit 5 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O, dolomite ore, etc.) Problems based TGA, ii) Differential Thermal Analysis (DTA): Instrumentation, general principles, differential thermogram, DTA and TG curve together, Applications (DTA analysis of mixture of polymers,
Unit 4 A B C Unit 5 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O, dolomite ore, etc.) Problems based TGA, ii) Differential Thermal Analysis (DTA): Instrumentation, general principles, differential thermogram, DTA and TG curve together, Applications (DTA analysis of mixture of polymers, DTA of CaC ₂ O ₄ H ₂ O, DTA of CuSO ₄ 5H ₂ O).
Unit 4 A B C Unit 5 A	Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O, dolomite ore, etc.) Problems based TGA, ii) Differential Thermal Analysis (DTA): Instrumentation, general principles, differential thermogram, DTA and TG curve together, Applications (DTA analysis of mixture of polymers, DTA of CaC ₂ O ₄ H ₂ O, DTA of CuSO ₄ 5H ₂ O). Differential Scanning Calorimetry (DSC): Principle, Instrumentation,
Unit 4 A B C Unit 5 A	the column, Solvent systems, detection methods and applications. Chromatographic Methods-II Gas chromatography- principle, experimental technique, carrier gas, sample injection, column, detector and application High Performance Liquid Chromatography (HPLC): instrumentation-solvent and reservoirs, pumping system, sample injection, Column, detectors Thin layer chromatography: coating of materials, preparation of TLC, Solvents, methods of detection and applications. Theory and application of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS. Thermal Analysis Principle, different methods of thermal analysis, i) Thermo gravimetric methods of analysis(TG/DTG): Instrumentation, thermogram and information from thermogram, factors affecting thermogram, applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O, CuSO ₄ .5H ₂ O, dolomite ore, etc.) Problems based TGA, ii) Differential Thermal Analysis (DTA): Instrumentation, general principles, differential thermogram, DTA and TG curve together, Applications (DTA analysis of mixture of polymers, DTA of CaC ₂ O ₄ H ₂ O, DTA of CuSO ₄ 5H ₂ O).

	thermometric	thermometric titrations, Evolved gas analysis.			
Mode of	Theory	Theory			
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1.Analytical	Chemistry-An	Introduction, 7	7 th Edition,D. A. Sko	og, D.M.
	West, F.J. H	oller, S.R. Crou	ich, Saunders C	College Publishing,	
	Philadelphia	, London.			
Other	1. Modern Methods of Chemical Analysis, 2 nd Edition,R. L. Pecsok, L.				
References	D. Shields, T. Cairns and L.C. Mc William, John Wiley, New York.				
	2. Analytical Chemistry, 5 th Edition,G. D. Christian, John Wiley &				
	Sons, New York.				
	3. Analytical Chemistry: Principles, 2 nd Edition,J. H. Kennedy,				
	Saunders Ho	lt, London.			

2.1 Template A1: INTRODUCTION TO MATLAB AND ITS APPLICATIONS (MMT129)

Scho	ool: SBSR	Batch: 2021-2023
Prog	gram: M.Sc.	Current Academic Year: 2021-22
Brar	nch: Chemistry	Semester: I
1	Course Code	MMT-129
2	Course Title	Introduction to MATLAB and its Applications
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Compulsory
5	Course	The goal of this course is to introduce the necessary mathematical
	Objective	concepts for MATLAB and cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific programming problems including curve fitting, ODE solving etc.
7	Course Outcomes Course Description	 CO1: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop program scripts and functions using the MATLAB development environment. (K4, K5) CO6: Write the program for evaluates linear system of equations, ordinary differential equations in MATLAB. (K5, K6) The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Syntax and interactive computations, programming in MATLAB using scripts and functions, rudimentary algebra and analysis. One- and two-dimensional graphical presentations. Examples on engineering applications.
8	Outline syllabus	: Introduction to MATLAB
	Unit 1	Introduction
	A	Vector and matrix generation, Subscripting and the colon notation.
	В	Matrix and array operations and their manipulations,
	С	Introduction to some inbuilt functions.
	Unit 2	Relational and Logical Operators
	A	Flow control using various statement and loops including If-End statement, If-Else –End statement
	В	Nested If-Else-End Statement,

С	For – End an	d While-End lo	pops with break commands.		
Unit 3	m-files				
A	Scripts and f	unctions			
В	concept of lo	concept of local and global variable			
С	Few example	es of in-built fu	nctions, editing, saving m-files.		
Unit 4	Two dimens	ional Graphic	rs -		
A	Basic Plots,	Change in axes	and annotation in a figure		
В	multiple plot	s in a figure			
С	saving and p	rinting figures			
Unit 5	Applications	s of MATLAB			
A	Solving a lin	Solving a linear system of equations,			
В	Curve fitting with polynomials using inbuilt function such as polyfit,				
	solving equations in one variable,				
C	Solving ordinary differential equations using inbuilt functions				
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book	An introduct	ion to MATLA	B : Amos Gilat		
Other	1. Applied Numerical Methods with Matlab for Engineering and				
References		•	Chapra, Mcgraw Hill.		
	2. 0	2. Getting started with Matlab: Rudra Pratap			

2.1 Template A1:Inorganic Chemistry-II (MCH135)

School: SBSR		Batch: 2021-23		
Program	: M.Sc.	Current Academic Year: 2021-22		
Branch:0	Chemistry	Semester: II		
1	Course Code	MCH135		
2	Course Title	Inorganic Chemistry II		
3	Credits	4		
4	T-P)	4-0-0		
	Course Status	Compulsory		
5	Course Objective	1.To introduce the basics concept of molecular symmetry and group theory 2.To demonstrate the various application of group theory in spectroscopy 3.To provide an introduction to basic concepts of organometallic chemistry 4.To explain to the student the various application of organometallic chemistry in industry 5.To provide information various industrially important organometallic compounds. 6.To provide structure, bonding and reactivity of transition		
		metal carbonyls, nitrosyls and phosphin complexes.		
6	Course Outcomes	CO1:Understand the various basics concept of molecular symmetry and group theory. CO2:Apply their knowledge of group theory to understand the principles of spectroscopy. CO3:Know the basic concepts of organometallic chemistry and its application in industry. CO4: Explain the structure and reactivity of transition metal alkyl, aryl, alkene, alkynes, allyls, dienyl and arene and carbine complexes. CO5: Gain insight about transition metal carbonyls, nitrosyls and phosphin complexes. CO6: Gain knowledge about advanced topics like organometallic chemistry and group theory.		
7	Course Description	The course includes the basic concept of group theory and its application in chemistry; as well as organometallic chemistry of transition metals.		
8	Outline syllabus			
	Unit 1	Molecular symmetry		
	A	Introduction, Meaning and examples of different symmetry elements and generated operations; and general rules, Derivation of matrices for rotation; reflection; rotation; reflection and inversion operations;		

*	SH	IAR	DA
		VER	

	В	Symmetry operations of all the molecular point groups (C_n, D_n, D_n)
		C _{nh} , D _{nb} C _{nv} , D _{nd} , S _n , T, T _d , T _h , O, O _h , I and I _h); Determination
		of the classes of operations by similarity transform method (only
		C _{2v} , C _{2h} , C _{3v} , S ₄) and general rules
	C	Defining properties of 'group'; Types of groups (Isomorphic,
		Cyclic and Abelion); Subgroups; reducible and irreducible
		representations;
	Unit 2	Application of Group Theory
	A	Great Orthogonality Theorem, construction of character table for
		C_{2v} and C_{3v} point group
	В	Optical activity and dipole moment
	C	Application of group theory to electronic and vibrational
		spectroscopy
	Unit 3	Organometallic Chemistry-I
	A	General Characteristics oforganometallic compounds, Ligand
		hapticity, electron count for different types of organometallic
		compounds, 16 and 18 electron rule and exceptions, Fluxionality
		in organometallic complexes. Stereochemical non-rigidity in
		organometallic compounds.
	В	Synthesis, structure and bonding of organolithium and
		organomagnesium compounds
	C	Organometallic reagents in organic synthesis and in
		homogeneous catalytic reactions (Hydrogenation,
		hydroformylation, isomerisation, polymerisation and metathesis).
	Unit 4	Organometallic Chemistry-II
	A	General synthetic routes, nature of bond and structural
		characteristics of alkyl, aryl, alkene, alkynes, allyls, dienyl and
		arene complexes of transition metals.
	В	Structure and bonding of metallocenes.
	C	Synthesis, structure and reactivity of metal carbene and carbynes
	Unit 5	Organometallic Chemistry-III
	A	Ligand behavior of CO, General methods of preparation,
		structures, bonding, and vibrational spectra of metal (Fe, Ru, Os,
		Cr, Ni) carbonyls.
	В	Ligand behavior of NO (NO ⁺ , NO ⁻ and bridging NO),
		preparation, structures, bonding and important reactions of
		nitrosyls of Cr, Fe and Ru
	C	Preparation, structure, bonding and reactivity of metal
		phosphines. Comparison of phosphine and carbonyl ligands in
		terms of bonding.
	Mode of	Theory/Jury/Practical/Viva
	examination	
	Weightage	CA MTE ETE
	Distribution	30% 20% 50%
	Text book/s*	1. Inorganic Chemistry, J.E. Huhey, Harper & Row.
1		2.Organometallic Chemistry, R.C.Mehrotra and A.Singh, New

	Age International.			
Other References	1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson,			
	John Wiley			
	2. Introduction to Ligand fields, B.N. Figgis, Wiley, New York.			
	3. The Organometallic Chemistry of the Transit ion Metals, R.H.			
	Crabtree, John Wiley.			
	4. Transition metal chemistry, Fundamental concept and			
	applications, A.Yamamoto, John Wiley, 1986.			

2.1 Template A1: Organic Chemistry-II (MCH136)

School: SBSR		Batch: 2021-23
Progran	n:M.Sc.	Current Academic Year: 2021-22
Branch:	Chemistry	Semester:II
1	Course No.	MCH136
2	Course Title	Organic Chemistry II
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	 To conceptualize the critical C-C bond forming reactions and in organic synthesis and molecular rearrangements using enolates/ enamines/ metal catalyst or orgaganometallic compounds To develop the critical thinking to analyze the conditions required for C=C bond formation To discuss the mechanism of various famous name reactions. To elaborate the process of oxidation and reduction in organic reactions by giving the example of suitable name reactions and develop understanding of the functional mode of different
		oxidation reduction reagents. 5. To recognize the factors that drives a reactant to undergo rearrangement reaction and understand the different name reactions involving rearrangement.
6	Course Outcomes	 The students will be able to- compile the different ways to form C-C bond and associated name reactions. formulate his/her own reasoned opinions in the mechanistic side of C=C bond forming organic reactions enlist a number of oxidizing reagents and analyze the change in oxidation state during the oxidation reaction. understand the functional mode of various reducing reagents. various name reactions and popular rearrangement reactions. develop critical thinking and deep understanding of mechanistic pathways of vast variety of reactions involving new formation, reduction, oxidation and rearrangement reactions.
7	Course Description	This course utilizes the basics developed in organic chemistry to understand the mechanism and in-depth understanding of bond forming (C-C or C=C), Redox, Rearrangement and important name reactions.
8	Outline syllabus	
	Unit 1	Single bond (C-C) formations
	A	Chemistry of enolates (kinetic and themodynamic) and enamines, lithium and boron enolates in aldol and Michael reactions, alkylation and acylation of enolates,

	В	Knoevenagel, Claisen, Dieckmann, Perkin, Stobbe, Darzen, Acyloin
	D	
		condensations, organolithium, organomagnesium (Grignard),
		organozinc, organocopper (Gilman & Normant) reagents in
		synthesis
	C	epoxidations (Sharpless, Jacobsen and Shi), Metal catalyzed C-C
		bond formations (Negishi, Heck, Stille, Suzuki, Sonogashira,
		Buchwald-Hartwig and Ullmann
	Unit 2	Double bond (C=C) formations
	A	Dehydration of alcohols, β-eliminations (Hoffman & ester
		pyrolysis), Cope elimination, Phospohorus, nitrogen and sulfur
		ylids,
	В	Wittig reaction, Wittig-Horner reaction, Tebbe olefination, Julia
		olefination, Mannich reaction, Robinson annulation, Peterson
		olefination, McMurry reaction, Shapiro reaction, selenoxide
		elimination
	С	Corey-Winter reaction, olefins from epoxides, olefin metathesis
		(Schrock's catalyst, Grubbs' catalyst), ring closing metathesis, enyne
		metathesis, Thorpe reaction
	Unit 3	Oxidation
	A	Oxidations of hydrocarbons (alkanes, alkenes and aromatic), alkenes
		to epoxides (peroxides/per acids based), alkenes to diols, Sharpless
		asymmetric dihydroxylation,
	В	Prevost reaction and Woodward modification, alkenes to carbonyls
		with bond cleavage, alkenes to alcohols/carbonyls without bond
		cleavage (Wacker oxidation),
	С	ketones to α-hydroxy ketones, α,β-unsaturated ketones and
		ester/lactones, alcohols to carbonyls, alcohols to acids or esters,
		phenols (Fremy's salt, silver carbonate), Swern oxidation.
	Unit 4	Reduction
	A	
	A	Catalytic reduction (Pt, Pd, Ni), Dissolving metal reductions (alkali
		metals in Liq. NH3 and Zn, Sn), Reduction by hydride transfer
	D	reagents (Complex hydrides of Li, B, Si and Na);
	В	Steroeselectivity of reduction with small hydride donors;
		Electroreduction with metals, Reduction with non-metals (HI,
		Diimides and hydrazine),
	C	Reduction of epoxides, Reduction with enzymes-Bakers yeast,
		microbial reductions (NADH model etc.)
	Unit 5	Name Reactions and Molecular Rearrangements
	A	Mechanism of Hoffmann Curtius, Schimidt, Lossen rearrangement,
		Beckmann rearrangement, Nef reaction
	В	Mechanism of Baeyer Villiger Favorskii and Sommelet-Hauser
		rearrangement, Brook rearrangement
	C	Baylis-Hillman reaction, Henry reaction, Ritter reaction, Sakurai
		reaction, Tishchenko reaction, Ugi reaction
	Mode of	Theory/Jury/Practical/Viva
	examination	
-	•	

Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text Book/s*	1.Orgai	nic reactions a	nd their mech	nanisms, P.S.	Kalsi, New	Age
	Interna	tional.				
	2.Stere	2.Stereochemistry, P. S. Kalsi, New Age International.				
	3.Organ	3.Organic Chemistry, R. T. Morrison and R. N. Boyd, Prentice-				
	Hall.					
	4.React	4.Reaction Mechanism in Organic Chemistry, S. M. Mukherji and				
	S. P. Si	ngh, Macmilla	n.			
Other references	1.Adva	nced Organic	Chemistry	Reactions,	Mechanism	and
	Structu	re, Jerry March	, John Wiley.			

2.1 Template A1: Physical Chemistry-II (MCH137)

School: SBSR		Batch: 2021-23
Program:M.Sc.		Current Academic Year: 2021-22
Brai	nch:Chemistry	Semester:II
1	Course Code	MCH137
2	Course Title	Physical Chemistry II
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course	1. To familiarise students with theoretical and mathematical aspects of
	Objective	quantised energy levels of particle in box,
		2. To introduce the theoretical concept of Hydrogen atom and hydrogen
		molecule and hydrogen molecule ion.
		3. To infer the concept of Charge on colloids, electro kinetic phenomenon's
		and different theories on colloids
		4. To prioritise the surface phenomenon's and different equations and
		theories to explain them.
		5. To describe equilibrium processes of one and more than one component
		systems such as congruent, Peritectic and Monotectic Systems.
6	Course	CO1:The concepts of quantum mechanics and its mathematical
	Outcomes	interpretation for atoms and molecules possessing single electron.
		CO2:The results and their analysis obtained on the basis of MOT
		and VBT for hydrogen atom, molecule and ion.
		CO3:The nomenclature of particles on the basis of particle size and
		different theories and results related to stability of colloids.
		CO4:The concept of surface tension, micellization and
		solubilisation.
		CO5: The concept of existence of different phases with change in
		different variables by visualizing the phase diagrams
		CO6: The concept of quantum mechanics, their application to MOT
		and VBT, how to draw phase diagrams and importance of colloids
		and surface chemistry in daily life, their concepts, phenomenon and
7	C	mathematical equations.
7	Course	Concept of Quantum mechanics and its applications in MOT and VBT
	Description	were shared with students. Theories of colloids and concepts of surface
		chemistry were discussed. The phase diagram of different component
0	systems were discussed and explained how to plot them.	
8	Outline syllabus	
	Unit 1	Quantum Mechanics Metter years. The Uncertainty principle. The ways notyre of the
	A	Matter waves, The Uncertainty principle, The wave nature of the
		electron, Interpretation of wave function, Normalized and orthogonal
		wave functions, Linear and Hermitian operators, Commutation of
		operators, Eigen value and Eigen function

B The wave equation, Particle in one dimensional box, particle in three dimensional box, particle in a ring, Degeneracy. Angular momentum operator, Ladder operator, C Hydrogen atom: Schrodinger wave equation, Transformation of coordinates, separation of variable in polar spherical coordinates and its solution, principal, azimuthal and magnetic quantum numbers and their magnitude, probability distribution function, radial distribution function and shape of atomic orbital's (s.p. & d), Virial theorem. Unit 2 Chemical Bonding A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory — Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation: Wetting: Young-Dupre equation: B Adsorption in liquid systems: Gibbs adsorption isotherm, Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilizati
Operator, Ladder operator, C Hydrogen atom: Schrodinger wave equation, Transformation of coordinates, separation of variable in polar spherical coordinates and its solution, principal, azimuthal and magnetic quantum numbers and their magnitude, probability distribution function, radial distribution function and shape of atomic orbital's (s.p. & d), Virial theorem. Unit 2 Chemical Bonding A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties. C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting; Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization, phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
C Hydrogen atom: Schrodinger wave equation, Transformation of coordinates, separation of variable in polar spherical coordinates and its solution, principal, azimuthal and magnetic quantum numbers and their magnitude, probability distribution function, radial distribution function and shape of atomic orbital's (s,p & d), Virial theorem. Unit 2 Chemical Bonding A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting; Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
coordinates, separation of variable in polar spherical coordinates and its solution, principal, azimuthal and magnetic quantum numbers and their magnitude, probability distribution function, radial distribution function and shape of atomic orbital's (s,p & d), Virial theorem. Unit 2 Chemical Bonding A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties. C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles.
solution, principal, azimuthal and magnetic quantum numbers and their magnitude, probability distribution function, radial distribution function and shape of atomic orbital's (s,p & d), Virial theorem. Unit 2 Chemical Bonding A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
magnitude, probability distribution function, radial distribution function and shape of atomic orbital's (s,p & d), Virial theorem. Unit 2 Chemical Bonding A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
Unit 2 Chemical Bonding A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
Unit 2
A Born Oppenheimer Approximation, The ionic bond, The variation method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory — Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties. C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
method, Ground state energy of the hydrogen atom, B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
B Huckel molecular orbital theory of conjugated systems, delocalisation energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties. C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
energy and Secular equations, Molecular orbital theory – Hydrogen molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
molecule ion, C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
C Valence bond theory- Hydrogen molecule, Simple homo and hetero nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
nuclear diatomic molecules, Electronic spectra, effect of substituent on spectra. Unit 3 Colloids A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
Spectra.
Unit 3
A Introduction, Origin of the charges, electro-kinetic phenomena, electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
electrophoresis, electro osmosis, sedimentation and streaming potential. B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
B The concept of electrical double layer and various models to explain its structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
structure and properties, C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
C DLVO theory and stability of colloids. Smoluchowski theory of kinetics of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
of coagulation and distribution of colloids aggregates. Organic and inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
inorganic gels and clay colloids. Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
Unit 4 Surface Chemistry and Micelles A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
A Surface tension and surface free energy; Pressure across an interface: Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
Laplace equation, Kelvin equation; Wetting: Young-Dupre equation; Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
B Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
solids: Langmuir isotherm, BET isotherm, transition state theory of surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
surface reactions: rates of chemisorption and desorption. C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
C Micelles-Surface active agents and their classification, micellization, hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
hydrophobic interaction, critical micellar concentration (cmc), factors affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
affecting cmc of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
thermodynamics of micellization-phase separation and mass action models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
models, solubilization, micro emulsions, reverse micelles. Unit 5 Phase Equilibria
Unit 5 Phase Equilibria
•
A Statement and meaning of the terms in Gibbs phase rule; Thermodynamic
A Statement and meaning of the terms in Gibbs phase rule; Thermodynamic derivation of Gibb's phase rule, phase equilibria of water, Hellium and
carbon systems; Two component solid liquid equilibria (example of Cu Ni elley Pi Cd
B Two component solid-liquid equilibria (example of Cu-Ni alloy,Bi - Cd
system and CuSO ₄ – H ₂ O System): simple eutectic; congruent melting
type; peritectic type and monotectic type phase diagrams,
type; peritectic type and monotectic type phase diagrams, C concept of Phase equilibria of three component systems - CaO-Al ₂ O ₃ -
type; peritectic type and monotectic type phase diagrams,

Mode of	Theory/Jury/Practical/Viva			
examination				
Weightage	CA	CA MTE ETE		
Distribution	30%	20%	50%	
Text book/s*	1.Physical C	hemistry, P. W	. Atkins, Oxford University Press, New York.	
	2.Physical C	2.Physical Chemistry, I.N. Levine, Tata McGraw Hill Pub. Co. Ltd., New		
	Delhi.	Delhi.		
	3. Physical Chemistry of Surfaces by A. W. Adamson, John Wiley and			
	Sons.			
Other	1. Theoretical Inorganic Chemistry by M.C.Day and J.Selbin			
References	2. Applied Colloid and Surface Chemistry by R. M. Pashley and M. E.			
	Karaman, Wiley Publications.			
	4.Comprehensive Physical Chemistry by N.B.Singh, N.S.Gajbhiye and			
	S.S.Das , New Age publishers, New Delhi			
	5.Physical Chemistry by D.A.McQuarrie and J.D.Simon			

2.1 Template A1: Analytical Chemistry-II (MCH138)

School: SBSR		Batch: 2021-23		
Program: M.Sc.		Current Academic Year: 2021-2022		
Brai	nch: Chemistry	Semester: II		
1	Course Code	MCH138		
2	Course Title	Analytical Chemistry II		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Compulsory		
5	Course	1. Understand the theories and principles of qualitative and quantitative		
		analysis through optical and spectroscopic technique.		
	3	2. Analyse the textural information of bulk materials and particle		
		dimension.		
		3. Carry out qualitative and quantitative analysis employing descriptive		
		knowledge of electrochemistry and electrochemical titration.		
		4. Separate and estimate macromolecule (proteins, enzymes, blood and		
		natural products) electroanalytically.		
		5.Effectively use various sensors for estimation and gain idea about		
		developing technologically potent sensor materials.		
		6. To learn the advance spectroscopic and microscopic methods for the		
		analysis of molecular materials.		
6	Course	CO1: Understand various optical and spectroscopic methods for		
	Outcomes	qualitative and quantitative analysis of metals and non metal to trace		
		level.		
		CO2: Evaluate the properties of materials such as porosity, density and		
		microstructure of materials.		
		CO3: Develop new synthetic routes involving electrochemical redox		
		process.		
		CO4: Understand principles of Cyclic Voltammetry and Electrophoresis.		
		CO5: Develop quick, sensitive and selective sensory materials for		
		qualitative and quantitative estimation of analyte.		
		CO6: Investigate the molecular materials using advanced spectroscopic		
		and microscopic techniques.		
7	Course	Analytical chemistry II emphasizes on various parts of analytical		
	Description	methods as - Atomic Spectroscopy comprises of AAS, AES and ICPMS,		
		Electron Microscopic techniques comprises of SEM, TEM and FESEM,		
		Polarography and amperometry, Cyclic voltammetry and electrophoresis		
0	0 41 11 1	Chemical sensors		
8	Outline syllabus			
	Unit 1	Atomic Spectroscopy		
	A	Theory, sources, burners, atomic emission spectra, atomic absorption		
		spectra, effect of temperature on emission and absorption,		

	Instrumentation for AES and AAS standard addition and internal					
	Instrumentation for AES and AAS, standard addition and internal					
		hod of analysis				
В	Comparison of atomic absorption and emission methods, Applicati					
	AAS and AE					
			ectroscopy, Atomic weight in mass			
~		, mass to charg				
С			roscopy, quadruple mass analyzer, time of			
	_	-	ively coupled mass spectroscopy (ICPMS),			
TI :4 2	_		, Applications of ICPMS			
Unit 2		croscopic Tecl				
A			ation and application of Transmission Electron			
D		TEM) and HR				
В			ntion and application of Scanning Electron			
C	Microscope (· · · · · · · · · · · · · · · · · · ·	ation and application of EESEM			
Unit 3		rtical Techniq	ation and application of FESEM			
A	•		ue 1			
A	Polarograph Introduction	•	on, Ilkovic equation and its verification			
В			n, Determination of half wave potential,			
В						
С	qualitative and quantitative applications Amperometry: Basic principles, instrumentation, nature of titration					
curves and analytical principles						
Unit 4		tical Techniq				
A			l design, instrumentation, current-potential			
			voltammetry (LSV), cyclic voltammetry,			
		interpretation of voltammograms.				
В	Electrophoresis: Separation by adsorption-Affinity techniques, affinity					
	elution from ion exchangers and other adsorbents					
C Pseudo affinity adsorbents, polyacrylamide get electrophoresis, isoelecrictric focusing, isotachophoresis Chamical Songars						
			achophoresis			
Unit 5	Chemical Sensors Principles types of chemical sensors based on the modes of					
A	Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically					
D	sensitive materials solid electrolyte, gas, semiconductor, Humidity sensors, Biosensors					
В		yte, gas, semic	onductor, Humidity sensors, Biosensors			
С	sensors Electrochemical sensors (Potentiometric sensors, Ion-sele					
	`					
Mode of	·	electrodes, Membrane electrodes, Amperometric sensors)				
examination	Theory/Jury/	Theory/Jury/Practical/Viva				
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*			Analysis, Skkog, Holler, Nieman, (Sixth Ed.)			
Other			ental Analysis by R. D. Broun, Mc Graw Hill			
References		on to mstruffle	milai Anaiysis by K. D. Dibuii, Mc Giaw Alli			
References	(1987)					

- 2) Instrumental methods of chemical analysis by H. willard, L.Merrit, J.A. Dean and F.A. settle. Sixth edition CBS (1986)
- 3) Fundamentals of Analytical Chemistry, 6th edition, D.A. Skoog, D.M. West and F.J. Holler, Saunders college publishing.
- 4) Principles of Instrumental Analysis, Skkog, Holler, Nieman, (Sixth Ed.)
- 5) Introduction to instrumental analysis by R. D. Braun, MC. Graw Hill-International edition.
- 6) Analytical Chemistry, Ed. by Kellner, Mermet, otto, Valcarcel, Widmer, Second Ed. Wiley –VCH
- 7) Electron microscopy in the study of material, P. J Grundy and G. A Jones, Edward Arnold.

2.1 Template A1: Renewable Energy Resources (MPH115)

School: SBSR		Batch: 2021-2023			
Program: M.Sc		Current Academic Year: 2021-2022			
Branch:		Semester: II			
Chemistry					
1	Course Code	MPH115			
2	Course Title	Renewable Energy Sources			
3	Credits	4			
4	Contact	4-0-0			
	Hours (L-T-				
	P)				
	Course Status	Compulsory			
5	Course	1. 1. To know the importance of Physics and Materials Science.			
	Objective	2. To utilize the various synthesis procedure to develop materials.			
		3. To explain the practical application of materials in various area			
6	Course	CO1: Learn the basics of Materials/Technology			
	Outcomes	CO2: Understand the correlation between Applied science and			
		Technology			
		CO3: Apply the concept of materials and technology at certain			
		levels.			
		CO4: Develop devices using materials.			
		CO5: Create the path to handle materials.			
		CO6: Expertise in various tools will make a bridge between			
		industry and students and find out the platform for employment			
		in high tech industries			
7	Course	This course is based on renewable energy that is collected from renewable			
	Description	resources, which are naturally replenished on a human timescale, such as			
		sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy often			
		provides energy in four important areas: <u>electricity generation</u> , <u>air</u> and <u>water</u> <u>heating/cooling</u> , <u>transportation</u> , and <u>rural (off-grid)</u> energy services			
8	Outline syllabu				
0	Unit 1	Natural and Renewable Energy Resources			
	A	Natural resources and associated problems, Forest, Water, Mineral, Food,			
	71	Energy and Land resources			
	В	Use and over-exploitation, Concept of an ecosystem, Environmental			
	D	Pollution, Nuclear hazards			
	С	Renewable Energy sources: Definition and types of renewable sources, Wind,			
		Ocean, Geothermal, Biomass, Hydro as renewable energy resources			
	Unit 2 Solar Energy: Fundamental and Material Aspects				
	A	Fundamentals of photovoltaic Energy Conversion Physics and Material			
		Properties, Types of solar energy conversion			
	В	solar thermal: basics and design of water heaters, solar ponds, Basic to			
		Photovoltaic Energy Conversion: Optical properties of Solids			
	С	Direct and indirect transition semiconductors, interrelationship between			
		absorption coefficients and band gap recombination of carriers.			

		1		Beyond Boundaries
	Unit 3 Solar Energy: Different Types of Solar Cells			
	A			nction solar cell, Transport Equation, Current
				e and short circuit current
	В	Brief descript	ion of single ca	rystal silicon and organic and Polymer Solar
		Cells, Elemen	tary Ideas of A	Advanced Solar Cells e.g. Tandem Solar cells,
		Solid Liquid J	unction Solar	Cells
	С	Nature of Sen	niconductor, Pr	rinciples of Photo-electrochemical Solar Cells.
	Unit 4 Hydrogen Energy: Fundamentals, Production and Storage			
	A			rgy, Solar Hydrogen through
		Photoelectrolysis, Physics of material characteristics for production of		
		Solar Hydrogo		
	В	Brief discussi	on of various s	storage processes, special features of solid
		hydrogen stor		
	C		l electronic ch	aracteristics of storage material, New Storage
		Modes.		
	Unit 5	Hydrogen Energy: Safety and Utilization		
A Various factors relevant to safety, use of Hydrogen				
		Vehicular transport, Hydrogen for Electricity Generation		
	В			Fuel Cells, Applications of Fuel Cell
	С		oncepts of othe	er Hydrogen- Based devices such as Hydride
		Batteries		
	Mode of	Theory		
	examination			
	Weightage	CA	MTE	ETE
	Distribution	30%	20%	50%
	Text book/s*	1.Fundamenta	als of Solar Cel	lls Photovoltaic Solar Energy
		:Fahrenbruch	&Bube	
	Other	1.Solar Cell Devices-Physics :Fonash 2. Phoptoelectrochemical Solar Cells: Chandra		
	References			
		3. Hydrogen a	is an Energy C	arrier Technologies Systems Economy:
		Winter &Nitc	h (Eds.)	
		4. Hydrogen a	s a Future Eng	geryCarrier: Andreas Zuttel, Andreas
	Borgschulte and Louis Schlapbach			apbach

2.1 Template A1: Molecular Spectroscopy (MCH231)

School: SBSR		Batch: 2021-23
Program:M.Sc.		Current Academic Year: 2021-22
Brai	nch:Chemistry	Semester:III
1	Course No.	MCH231
2	Course Title	Molecular Spectroscopy
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course	1.To know the principle and applications of molecular spectroscopy.
	Objective	2.To understand the theories of UV, FT-IR, Raman, NMR, and Mass
		spectroscopic techniques.
		3. Analyze and identify simple organic molecules by using UV, IR, Mass,
		¹ H NMR and ¹³ C NMR data.
		4.To evaluate the application of NMR and Mass spectroscopic techniques
		to different molecules.
		5.To know the principle and instrumentation of different
		spectrophotometric techniques.
		6.To impart the knowledge of electronic, rotation, vibration. NMR, FTIR,
	C	ESR, spectroscopy and their applications
6	Course	CO1:Explain the general principles and theory of spectroscopy,
	Outcomes	distinguish the specialities and applications of various types of
		spectroscopic methods.
		CO2:Describe the concept and instrumentation of atomic uv-visible absorption, infrared NMR and Mass spectrometers.
		CO3:Apply Woodward Fieser Rules.
		CO3:Apply woodward riesel Rules. CO4:Understand first and second order ¹ HNMR spectra.
	CO5:Solve analytical science problems involving uv-visible abs	
		infrared ¹ H, ¹³ C and mass techniques.
		CO6:Predict UV, IR, Proton chemical shift, spin-spin coupling, coupling
		constants and apply ¹³ C resonance spectroscopy and mass spectroscopy to
		chemical structures.
7	Course	The course is framed to give fundamental concepts of UV-Visible, IR,
	Description	¹ HNMR, ¹³ CNMR and Mass spectroscopy. Applications of these
	•	spectroscopic techniques to organic/inorganic systems will be discussed.
8	Outline syllabus	
	Unit 1	UV-Visible Spectroscopy
	A	Lamberts-Beers law, Electronic spectra, Frank-Condon Principle,
		predissociation spectra, Fortrat diagram,
	В	conjugated polyene and enone systems, and different types of charge
		transfer transitions and their basis
	С	Charge transfer spectra in organic and inorganic systems
	Unit 2	Infrared Spectroscopy

				Beyond Boundaries		
	A	Basic principle and sample handling. Modes of stretching and bending, bond properties and absorption trends,				
	-		*			
	В	•	-	lkenes, alkynes, aromatic		
		-	ethers, phenols and amir	•		
		esters, amides, acids,	anhydrides, lactones, lact	ams and conjugated		
		carbonyl compounds.				
	C	Effect of hydrogen bo	onding and solvent effect	on vibrational frequencies,		
		overtones, combination	on bands and Fermi reson	ance.		
	Unit 3		esonance Spectroscopy-			
	A			n sensitivity and resolution,		
		chemical shift δ , in	iductive and anisotropic	c effects on δ , chemical		
		structure correlations	of δ , chemical and mag	netic equivalence of spins,		
			ructural correlation to cou			
	В			s of AB, AX, ABX, AMX		
				d order spectrum, selective		
		_	_	of splitting pattern; spin; de		
	С	coupling; chemical exchange; effect of deuteration Structural elucidation of organic compounds using ¹ H NMR technique				
	Unit 4		Nuclear Magnetic Resonance Spectroscopy-II			
	A			NMR spectra, Chemical		
	11	shifts and its calculati		o iviit spectra, chemical		
	В			ting: Application of DEPT		
		proton coupled and decoupled spin-spin splitting; Application of DEPT technique to the analysis of CH multiplicities in ¹³ C NMR spectroscopy.				
		Correlation spectroscopy - Illustration of practical applications of COSY, ¹ H- ¹³ C COSY.				
	С			concept of Heternonuclear		
		(F, P, Si) NMR.	(F, P, Si) NMR.			
	Unit 5	Mass Spectrometry				
	A	Measurement technique (El; FAB); Resolution; exact masses of				
		nucleides; molecular ions; isotope ions; fragment ions of odd and even				
		electron types; rearrangement ions				
	В	factors affecting cleavage patterns; simple cleavage; cleavage at a hetero				
		atom; multi centre fragmentation				
	С	Structure elucidation of organic compounds employing mass				
		spectroscopy; Special methods of GCMS; High resolution MS.				
	Mode of	Theory/Jury/Practical/Viva				
	examination					
	Weightage	CA	MTE	ETE		
	Distribution	30%	20%	50%		
	Text Book/s*		1.Spectroscopy of Organic Compounds – P.S.Kalsi, 6 th edition, 2004.			
			copy – Banwell, 5 th Edition			
	Other	1.Applications of Absorption Spectroscopy of Organic Compounds –				
	References	Dyer, 1 st Edition, 2009.				
		2.Spectroscopic Meth	2.Spectroscopic Methods in Organic Chemistry by D.H. Williams and I.			
	Fleming, 4th edition, Tata McGraw-Hill Publishing company Ltd., Ne			ishing company Ltd., New		

Beyond Boundaries
Delhi.
3. Spectrometric Identification of Organic Compounds- R. M. Silverstein,
F. X. Webster, D. Kiemle, 7th Edition, 2005.
4.Physical Methods in Inorganic Chemistry by R. S. Drago, Affiliated
East-West Press, 1 st Edition.
5. Spectroscopic identification of organic compounds by Kiemle Webster
Silverstein, 7 2 nd Edition, 2005

2.1 Template A1: Inorganic Chemistry-III (MCH232)

Scho	ool: SBSR	Batch 2021-23		
Prog	gram: M.Sc.	Current Academic Year : 2021-22		
Brai	nch: Chemistry	Semester III		
1	Course No	MCH232		
2	Course Title	Inorganic Chemistry III		
3	Credits	4		
4	Contact	4-0-0		
	hours(L-T-P)			
	Course Status	Compulsory		
5	Course	1.To explain the reaction mechanism of an inorganic reaction.		
	Objectives	2.To discuss factors affecting stability of complexes.		
	_	3.To explain the route of addition of molecules in a reaction.		
		4.To have an overview of chemistry of CO complexes.		
		5.To explain the concept of stereoisomerism in inorganic complexes.		
		6.To demonstrate mechanisms of substitution reaction and compare it		
		with associative reaction.		
6	Course	CO1: Explain the trends of rate constants and its determination with		
	Outcome	different methods.		
		CO2: Provide explanation for substitution in octahedral and square planar		
		complexes.		
		CO3: Explain ligand replacement reactions under different conditions.		
		CO4: Distinguish between oxidative addition and reductive elimination		
		mechanisms.		
		CO5: Analyze the chemistry of carbonyl compounds and metal hydrides.		
		CO6: Gain knowledge about various aspects of inorganic reaction		
		mechanism		
7	Course	The course gives a detailed view of reaction mechanism, electron transfer		
	Description	mechanisms, oxidative addition and insertion reactions of transition		
		metal complexes.		
8	Outline syllabus			
	Unit 1	Reaction Mechanism of Transition metal complexes-I		
	A	Rate Law, Steady state, Activated complex theory. Stepwise and overall		
		formation constants, their interaction		
	В	determination of formation constant by pH-meter, Job's method and		
		spectrophotometery. Trends in stepwise constants		
	C	factors affecting the stability of metal complexes with reference to the		
		nature of metal ion and ligand. Chelate effect and its thermodynamic		
		origin		
	Unit 2	Reaction Mechanism of Transition metal complexes-II		
	A	Inert and labile complexes, mechanisms of substitution reactions		
		(dissociative, associative interchange mechanism), the conjugate		
		mechanism,		
	В	direct and indirect evidence in favour of conjugate mechanism,		

				Beyond Boundaries		
		substitution in cis and trans complexes, isomerism of chelate rings, <i>trans</i> effects, explanation for <i>trans</i> effect				
_		-				
	C		reactions of square plan			
			ors and mechanism of s	substitution, Anation		
		reactions.				
 	Unit 3	Electron Transfer N				
I –	A		er sphere reactions and			
	В			gand field on reaction rates		
	C			eory, Thermal and optical		
		electron transfer reac				
	Unit 4		and Migration (Insert			
	A			netal atoms in complexes,		
		Protonation and Lewis Base behaviour, acceptor properties of Lewis				
		acidity of complexes				
	В			ation, addition of specific		
				ns, Organic halides addition		
		of some other molecules productive elimination, migration (Insertion)				
		reaction				
	C	promotion of alkyl migration, insertion of CO into M-H bonds, other				
				tion of alkenes and C-C		
				I bonds; alkane activation,		
		Cyclometallation rea				
-	Unit 5	Metal Hydride Complexes				
	A	Synthesis, structure and reactions of hydrido complexes,				
		characterization of complexes, molecular hydrogen compounds-				
		synthesis and reactions Mononuclear polyhydrides, homoleptic polyhydride anions; carbonyl				
	В	1 0 0	drides, homoleptic poly	hydride anions; carbonyl		
		hydrides and anion				
	C MH interactions; synthetic applications of metal hydrides			atal hydridae		
		Theory/Jury/Practical/Viva				
	Mode of			ictai flydrides		
	examination	Theory/Jury/Practica	l/Viva			
	examination Weightage	Theory/Jury/Practica CA	ıl/Viva MTE	ЕТЕ		
	examination Weightage Distribution	Theory/Jury/Practical CA 30%	MTE 20%	ETE 50%		
	examination Weightage	CA 30% 1.J.E.Huheey. Inorga	l/Viva MTE 20% unic Chemistry: Principl	ETE 50%		
	examination Weightage Distribution Text book/s*	Theory/Jury/Practical CA 30% 1.J.E.Huheey. Inorgal Reactivity. Harper Ir	MTE 20% anic Chemistry: Principlater science.	ETE 50% es of Structure and		
	examination Weightage Distribution Text book/s* Other	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper Ir 1.William L. Jolly	l/Viva MTE 20% unic Chemistry: Principl	ETE 50% es of Structure and		
	examination Weightage Distribution Text book/s*	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper Ir 1.William L. Jolly McGraw Hill.	MTE 20% unic Chemistry: Principlater science. , Modern Inorganic	ETE 50% es of Structure and Chemistry, 2 nd Edn, Tata		
	examination Weightage Distribution Text book/s* Other	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper In 1.William L. Jolly McGraw Hill. 2.E. A. V. Ebswortl	MTE 20% anic Chemistry: Principlater science. , Modern Inorganic an, D. W. H. Rankin an	ETE 50% es of Structure and Chemistry, 2 nd Edn, Tata and S. J. Cradock. Structural		
	examination Weightage Distribution Text book/s* Other	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper Ir 1.William L. Jolly McGraw Hill. 2.E. A. V. Ebswortl methods in Inorganic	MTE 20% anic Chemistry: Principle ter science. , Modern Inorganic and the Chemistry, Blackwell	ETE 50% es of Structure and Chemistry, 2 nd Edn, Tata ad S. J. Cradock. Structural Scientific Oxford.		
	examination Weightage Distribution Text book/s* Other	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper Ir 1.William L. Jolly McGraw Hill. 2.E. A. V. Ebswortl methods in Inorganic 3.I. P. Atkins, T. Ov	MTE 20% unic Chemistry: Principleter science. , Modern Inorganic an, D. W. H. Rankin and Chemistry, Blackwell verton, J. Rourke, M. W	ETE 50% es of Structure and Chemistry, 2 nd Edn, Tata ad S. J. Cradock. Structural Scientific Oxford. feller, F. Armstrong, Shriver		
	examination Weightage Distribution Text book/s* Other	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper In 1.William L. Jolly McGraw Hill. 2.E. A. V. Ebsworth methods in Inorganic 3.I. P. Atkins, T. Ov and Atkins. Inorgani	MTE 20% anic Chemistry: Principle ater science. , Modern Inorganic and the Chemistry, Blackwell areton, J. Rourke, M. We Chemistry, Oxford Ur	ETE 50% es of Structure and Chemistry, 2 nd Edn, Tata ad S. J. Cradock. Structural Scientific Oxford. Teller, F. Armstrong, Shriver niversity Press.		
	examination Weightage Distribution Text book/s* Other	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper Ir 1.William L. Jolly McGraw Hill. 2.E. A. V. Ebsworth methods in Inorganic 3.I. P. Atkins, T. Ov and Atkins. Inorgani 4.T. Moeller. Inorgani	MTE 20% anic Chemistry: Principle ter science. Modern Inorganic A, D. W. H. Rankin and Chemistry, Blackwell terton, J. Rourke, M. We Chemistry, Oxford Unic Chemistry: A Modernic Chemistry: A Moder	ETE 50% es of Structure and Chemistry, 2 nd Edn, Tata ad S. J. Cradock. Structural Scientific Oxford. feller, F. Armstrong, Shriver niversity Press. rn approach, John Wiley.		
	examination Weightage Distribution Text book/s* Other	CA 30% 1.J.E.Huheey. Inorga Reactivity. Harper Ir 1.William L. Jolly McGraw Hill. 2.E. A. V. Ebsworth methods in Inorganic 3.I. P. Atkins, T. Ov and Atkins. Inorgani 4.T. Moeller. Inorgani	MTE 20% unic Chemistry: Principle ter science. , Modern Inorganic on D. W. H. Rankin and Chemistry, Blackwell terton, J. Rourke, M. We Chemistry, Oxford Uranic Chemistry: A Modern Pearson, Mechanism of	ETE 50% es of Structure and Chemistry, 2 nd Edn, Tata ad S. J. Cradock. Structural Scientific Oxford. Teller, F. Armstrong, Shriver niversity Press.		

2.1 Template A1:Physical Chemistry-III (MCH233)

School: SBSR		Batch 2021-23	
Program: M.Sc.		Current Academic Year : 2021-22	
	ch : Chemistry	Semester III	
1	Course Code	MCH233	
2	Course Title	Physical Chemistry III	
3	Credits	4	
4	Contact hours	4-0-0	
	Course Status	Compulsory	
5	Course Objectives	The main objectives of this program is to: 1: To provide deep knowledge on advanced quantum chemistry. 2: To provide a thorough proficiency in approximate methods in quantum chemistry. 3: To enable students to interpret many electron systems quantum mechanically. 4: To impart knowledge on kinetics of complex reactions. 5: To make the student understand the kinetics of reaction in solution. 6: Apply the knowledge about quantum chemistry and kinetics to	
		solve real life problems.	
6	Course Outcome	After successful completion of the course, the students will be able to: CO1: understand different polynomials and their application. CO2. apply the knowledge of time dependent perturbation theory and variational method for quantum mechanical problems. CO3 apply the quantum chemistry knowledge to analyse the behaviour of multi electron systems. CO4. explain the kinetics of various types of complex reactions CO5. Apply the knowledge of kinetics of reactions in solution to solve kinetics problems. CO7.Apply knowledge quantum chemistry to solve real life problems and kinetics to understand mechanism of reactions.	
7	Course Description		
8	Outline Syllabus		
	Unit 1	Advanced Quantum chemistry: Prerequisite	
	A	Legendre, associated Legendre polynomials; Hermite polynomials; Lagurre and associated Lagurre polynomials; polynomials as orthonormal functions, their properties; step-up and step-down operators, application to single electron and multi-electron atom,	
	В	eigen-ket-ladder and formulation of spherical harmonics from angular momentum rules, finite rotation operation vs. angular momentum operators, spin angular momentum, Pauli spin matrices	

	Beyond Boundaries
	— spin eigenfunctions and their properties.
С	coupling of angular momentum for many electron system, spin-
	orbit coupling, Molecular term symbols. Quantum tunnel effect.
	Fermi and Bose gases.
Unit 2	Approximate methods
A	Time dependent perturbation theory, semi classical treatment of
	radiation-matter interaction, transition probability and rates,
	Einstein's A and B coefficients, selection rules; Oscillator strength,
В	Variation theorem and variational methods: principles of linear and
	non-linear variation methods,
С	stationary perturbation theory for non-degenerate and degenerate
	states - applications to rotator, Stark effect.
Unit 3	Many electron systems
A	Antisymmetry of many electron wave function, spin and spatial
	orbitals, Slater determinant; closed-shell and open-shell electron
	configurations; multi-electron pure-spin state wave functions -
	examples with 2- and 3-electron systems,
В	formulation of a multi-electron closed-shell electron configuration
	energy, introduction of core, Coulomb and exchange integrals with
	their properties - example of He atom, independent particle model,
	multi-electron atomic Hartree Hamiltonian and related SCF
	equations solution,
С	Roothaan-Hartree-Fock method vertical ionization potential and
	Koopman's theorem; Problems with open-shell systems. Restricted
	and unrestricted HF methods (elementary idea). discussion of
	electron correlation.
Unit 4	Kinetics of complex reactions
A	Application of statistical mechanics to transition state theory,
	comparison of transition state theory with experimental results,
	Kinetics of complex reactions (reversible, simultaneous and
	consecutive),
В	chain reactions; branched and non-branched kinetic rate equations,
	population explosion, upper and lower ignition/explosion limits;
	thermal ignition and ignition temperature; chemical oscillation:
	conditions for oscillation, chemistry of BZ reaction (Brusselator
	model); autocatalysis,
С	Fast reactions, experimental techniques for fast reactions (stopped-
	flow, temperature- jump and flash photolysis
Unit 5	Reactions in solution
A	Reaction between ions, effect of solvent (single & double sphere
	models), interpretation of frequency factor and entropy of
	activation, influence of ionic strength, salt effect, reactions
	involving dipoles,
В	influence of pressure and volume on reaction rates in solution.
	Intermolecular potential and centrifugal barrier, impact parameter,
	mermorecular potential and centificigal barrier, impact parameter,

		collision cross section	on and rate, energy thre	shold, opacity function
		and reaction cross se	ection	
(C	Discussion of physic	cochemical techniques	for kinetic study.
I	Mode of	Theory/Jury/Practic	al/Viva	
ϵ	examination			
1	Weightage	CA	MTE	ETE
I	Distribution	30%	20%	50%
	Text book/s*	1. 1. Quantum	Chemistry, I.M. Levine	e, Prentice Hall.
		2. 2. Chemical K	inetics, K. J. Laidler, Harper	& Row, New York.
	Other References	2. Quantum Cher John Wiley, No		r and G.E. Kimball, (1944)

2.1 Template A1:Organic Chemistry-III (MCH234)

School: SBSR		Batch 2021-23
Program: M.Sc.		Current Academic Year : 2021-22
Branch	: Chemistry	Semester III
1	Course No.	MCH234
2	Course	Organic Chemistry III
	Title	•
3	Credits	4
4	Contact	4-0-0
	Hours (L-T-	
	P)	
	Course	Compulsory
	Status	
5	Course	1.Oxidation and reduction reagents and their application for functional
	Objective	group conversion in organic synthesis.
	3	2.Explain retro-synthesis of aromatic, alicyclic and aliphatic compounds
		and synthons.
		3. The ability to recognize reagents for functional group transformations.
		4.Retrosynthetic simplification of target molecules and to provide
		forward synthetic proposals.
		5.Designing a retrosynthetic approach for the synthesis of a target
		molecule.
6	Course	CO1:Role of various reagents used in organic chemistry.
	Outcomes	CO2:Have a thorough grounding in protection and deprotection chemistry.
		CO3:Identify the components of retrosynthesis.
		CO4:Understand the synthesis and properties of metallocenes, non-
		benzenoids and polycyclic aromatics.
		CO5: Design a green synthesis using principles of prevention of
		waste/by-products/toxic products, atom economy.
		CO6: Gain in-depth knowledge in synthetic organic chemistry.
7	Course	The aim of this organic chemistry course is to provide an in-depth overview
	Description	of retrosynthetic analysis and the disconnection approach. These are
		fundamental concepts used by organic chemists in designing the synthesis
		of target molecules in sectors such as pharmaceuticals, agrochemicals and
		fine chemicals.
8 Outline sylla		
	Unit 1	Reagents in Organic Synthesis
	A	Use of the following reagents in organic synthesis and functional group
		transformations; Gilman's reagent, lithium diisopropylamide (LDA), dicyclohexylcarbodiimide(DCC)
	В	1,3-dithiane (reactivity Umpoloung), trimethylsilyl iodide, tri-n-butyltin
		hydride, DDQ,
	С	Phase transfer catalysts, crown ethers and Merrifield resin, Wilkinson's catalyst,
	T1 '4 2	Baker yeast.
	Unit 2	Protection and Deprotection of Functional Groups

1	<u> </u>		Beyond Boundaries	
A	Protection and deprotection	·		
В	Protection and deprotection			
C			on, illustration of protection	
	and deprotection in multi-st	tep synthesis		
Unit 3	Retrosynthetic Analysis			
A	Basic principles and term	inology of retrosynthesis	s, guidelines, synthesis of	
	aromatic compounds			
В			roup C-C and two group C-	
	C disconnections, amine an	d alkene synthesis		
С	important strategies of retro functional group interconve	•	oup transposition, important v (umpolung)	
Unit 4			d Polycyclic Aromatic	
	compounds			
A		synthesis and reactions	of some representative	
	compounds - tropone, tropo	•	1	
В			of some representative	
	compounds - ferrocene, flu		1	
С			of some representative	
	General considerations, synthesis and reactions of some representative compounds - phenanthrene and indene.			
Unit 5	Green Chemistry			
A	Principles of Green Chem	nistry, Concept of atom	economy, Tools of Green	
	Chemistry: Alternative feedstocks/starting materials, Reagents, Solvents,			
	Product/target molecules, C	Catalysis and process analy	ytical chemistry.	
В	Evaluation of chemical pro	oduct or process for its e	ffect on human health and	
	environment, Evaluation	of reaction types and	methods to design safer	
	chemicals. Evaluating the e	ffects of Chemistry:		
С	Toxicity to humans, Toxica	ity to wildlife, Effects on	local environment, Global	
	environmental effects. Plan			
Mode of	Theory/Jury/Practical/Viva			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text	1.Organic reactions and the		•	
Book/s*	2.Reagents for Organic Syn			
	3.Organic Synthesis: The Disconnection Approach, Stuart Warren, Paul Wyatt.			
	4. Organic Chemistry, I.L.			
Other	1. Anastas, P., and William		•	
references	Chemical Synthesis and Pro	•		
	2.Ahluwalia, V. K., and Kie		Green Chemistry,	
	Anamaya Publishers (2004)			
	3. Protective Groups in Orga	•		
	4.Sheldon, R.A., Arends, I.		Chemistry and Catalysis,	
	Wiley-VCH Verlag GmbH	and Co. (2007).		

2.1 Template A1:Inorganic Chemistry-IV (MCH235)

Scho	ool: SBSR	Batch 2021-23
Prog	gram: M.Sc.	Current Academic Year : 2021-22
Bra	nch:Chemistry	Semester:III
Cou	rse Code	MCH235
Cou	rse Title	Inorganic Chemistry IV
1	Credits	4
2	Contact Hour	4-0-0
	Course Status	Compulsory
5	Course	1.To describe about the structure, properties and uses of inorganic chains.
	Objective	2. To provide information about inorganic ring compounds.
		3. To introduce the basic concepts about cluster structure and their
		reactivity.
		4.To illustrate the basic concepts of inorganic photochemistry.
		5.To describe the various photochemistry of various inorganic metal
		complexes.
		6. To know about the application of photochemistry.
6	Course	CO1: Explain the structure, properties and uses of inorganic cages and
	Outcome	chains.
		CO2: Describe the structure and properties of inorganic rings.
		CO3: Predict the structure of inorganic clusters using Wade's rule.
		CO4: Understand photochemical reactions of various coordination
		compounds.
		CO5: Apply the knowledge of photochemistry in real life problems.
		CO6: Gain knowledge about advanced topics like inorganic
		photochemistry and inorganic clusters
7	Course	The course is designed to appraise the chemistry of inorganic chains,
	Description	cages, rings, clusters. The photochemistry of inorganic compounds is also
0	O-41'	covered in detail.
8	Outline syllabus Unit 1	
		Chains and Cages Structural agreets of cilicate minerals and cilicanas Zaclitas Structura
	A	Structural aspects of silicate minerals and silicones, Zeolites-Structure,
		applications and synthesis, Intercalation Chemistry, One dimensional conductors, (SN)x chains.
	В	Cages: Electron deficient bonding in higher boranes and its derivatives,
	l B	Types of heteroboranes with special reference to carboranes, structure,
		bonding and IUPAC nomenclature.
	С	Metallaboranes, metal σ and μ bonded borane/carborane clusters.
		Resemblance of Metallaboranes with ferrocene and related compounds.
		Applications of Metallaboranes.
	Unit 2	Rings and Clusters
	A	Rings: Synthesis, structure and chemical application of borazine,
		Phosphazene, phosphazene polymers, Metal-Metal bonds. Concept of
		quadrupolar bond and its comparison with a C-C bond.

В	Clusters: Types of meta	al clusters and multiplicity of	M-M bonds Simple	
D		carbonyl clusters-types, calcu		
		16 electron rule in low and h		
	clusters, capping rule.	io electron rate in 16 w and 1	ngn nacioarty metar	
С		rule over metral carbonyl c	lusters Metal halide	
C	and metal chalcogenide		idsicis. Miciai fiande	
Unit 3	Photo Inorganic Chen			
A		on, excitation, photochemical	laws quantum vield	
TX.	_	tates, Photochemical laws; Jab		
В	radiative and non-ra	adiative processes, Franck	-Condon principle,	
	photochemical stages-1	primary and secondary proc	esses, Kasha's rule,	
	Thexi state			
C	Types of photochemic	ical reactions in transition	metal complexes-	
	substitution, decompos	sition, fragmentation, rearra	ngement and redox	
	reactions.			
Unit 4	Photo Inorganic Chen			
A	Photo substitution reac	tions of Cr(III)- ammine con	nplexes : Adamson's	
	rules,			
В	Photochemistry of Co(III) and Rh(III) Ammine Com	iplexes,	
C	Photochemistry of Ru- Polypyridyl complexes, comparison of Fe(II) and			
	Ru(II) complexes. Ligand photoreactions, photoredox reactions			
Unit 5	Applications of Photochemistry			
A	Solar Cells, semiconductor supported metal oxide systems, water photolysis.			
B Applications of quenching and sensitization technic				
		ve state in coordination compl	lexes. Photoreactions	
	and solar energy conver			
C	Photochromism, Photo	ocalorimetry, application of	photochemistry in	
	lasers.			
Mode of	Theory/Jury/Practical/V	/iva		
Examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text Book/s*	1.J.E.Huheey. Inorgai		of Structure and	
	Reactivity. Harper Inter			
		Wilkinson. Advanced Inorgar	nic Chemistry, Wiley	
	InterScience.			
	1	ic Photochemistry, A. W.	Adamson and P. D.	
	Fleischauer, Wiley.			
	4. Advanced Inorganic Chemistry Vol-1 & 2, Gurdeep Raj, K			
	Prakashan.			
Other		. Tarr, Inorganic Chemistry,	3rd edition, Pearson	
References	Education.			

2.1 Template A1: Physical Chemistry-IV (MCH236)

Schoo	ol: SBSR	Batch 2021-23	
Program: M.Sc.		Current Academic Year : 2021-22	
Bran	ch : Chemistry	Semester III	
1	Course Code	MCH236	
1	Course Title	Physical Chemistry IV	
3	Credits	4	
4	Contact hours	4-0-0	
	Course Status	Compulsory	
5	Course	The main objectives of this course is to:	
	Objectives	1: To provide the details of advanced topics of spectroscopy.	
		2. To provide the detailed understanding of Rotational spectroscopy.	
		3. To provide the structure elucidation methods using IR spectroscopy.	
		4. To provide the detailed knowledge of the electric structure of	
		molecules.	
		5. To provide the knowledge of the phenomenon associated with	
		photoelectron spectroscopy.	
		6. To enrich the student level of understanding of molecular	
		spectroscopy.	
6	Course	After successful completion of the course, the students will be able to:	
	Outcome	CO1: Analyse the essential parameters from absorption and emission	
		spectrum.	
		CO2: Analyse the microwave spectrum of a molecule.	
		CO3: Analyse the IR spectrum and obtain the bond strength parameters. CO4: Analyse the ground and excited state Absorption and emission	
		spectrum of the molecules.	
		CO5: Investigate the photoelectron spectrum of the molecules.	
		CO6: Correctly predict the molecular structure and associated properties	
		using various spectroscopic techniques.	
7	Course	and a specific commentation.	
	Description		
8	Outline Syllabus		
	Unit 1	Principles of Spectroscopy	
	A	Electromagnetic radiation, Born-Oppenheimer approximation,	
		Heisenberg's Uncertainty Principle,	
	В	Jablonski Diagram, Fourier Transform, Time dependent perturbation,	
		Einstein coefficients. Lambert-Beer's law, Integrated absorption	
		coefficients, Transition dipole moments and general selection rules	
		based on symmetry ideas,	
	С	Transition probability, oscillator strength, the integrated absorption	
		coefficient.	
	Unit 2	Introduction to Rotational Spectroscopy:	

	Beyond Boundaries
A	Rotational spectroscopy of diatomic molecules based on rigid rotator
	approximation, Determination of bond lengths and/or atomic masses
	from microwave data,
В	Effect of isotopic substitution, Non-rigid rotator, Classification of
	polyatomic molecule
С	Energy levels and spectra of symmetric top molecules and asymmetric
	top molecules, First order Stark effect, FC principle.
Unit 3	Vibrational Spectroscopy:
A	Force constant and amplitudes, zero potential energy, Morse Potential,
	Normal coordinates analysis of homonuclear and heteronuclear diatomic
	molecules, Extension to polyatomic linear molecules,
В	Derivation of selection rules for diatomic molecules based on Harmonic
	oscillator approximation. Anharmonic oscillator, Overtones and
	combination bands, Dissociation energies from Vibrational data
	Vibration-rotation spectra, P, Q and R branches, Breakdown of the
	Born-Oppenheimer approximation.
С	Raman Spectroscopy: Classical and quantum theories, Stokes and anti-
	Stokes lines, Polarizability ellipsoids, Rotational and Vibrational Raman
	spectroscopy, pure rotational Raman Spectrum of a linear molecules.
	Selection rules-Mutually Exclusion Principle, Polarization of Raman
	lines.
Unit 4	UV-Visible Absorption and Emission Spectroscopy:
A	Basic principle, Instrumentation and application of absorption and
	emission spectroscopy, Electronic spectra, Frank-Condon Principle,
	predissociation spectra, conjugated polyene and enone systems, different
	types of charge transfer transitions and their basis, Charge transfer
	spectra in organic and inorganic systems, solvent effects.
В	Steady-state fluorescence spectroscopy, Mirror-image symmetry and its
	violation, Radiative and radiationless deactivation, Fluorescence
	Quenching (static and Dynamics), Room Temperature Phosphorescence,
	Time-resolved (Time correlated single photon counting-TCSPC)
	fluorescence spectroscopy, Fluorescence lifetime measurement,
C	Introduction to Single molecule fluorescence and fluorescence imaging,
	Photometric titration, comparison of Luminescence and UV Absorption
	Methods, Limitation of absorption and emission measurement.
Unit 5	Photoelectron Spectroscopy:
A	The photoionization processes, Auger and autoionization processes, de-
	excitaion by fluorescence,
В	outlines of UPS, XPS and Auger techniques and their applications in
	interpretation of valence and core shell spectra of atoms and molecules,
С	Laser Spectroscopy.
Mode of	Theory/Jury/Practical/Viva
examinati	
Weightage	
Distribution	on 30% 20% 50%

Text book/s*	 Fundamentals of Molecular Spectroscopy, Banwell, 3rd Edition, 2018. Pavia, D. L.; Lampmann, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy Cengage Learning (2014). Barrow, G. M. Introduction to Molecular Spectroscopy McGraw-Hill (1962). Hollas. J. M. Modern Spectroscopy 4th Ed., John Wiley & Sons (2004). Chang, R. Basic Principles of Spectroscopy McGraw-Hill, New York, N.Y.
	(1970).
Other	
References	

2.1 Template A1: Organic Chemistry-IV (MCH237)

orption and emission
-
describe the action of
ission. h) Describe the
ericyclic reactions, to
in rules) in concerted
synthesis
he factors
nciple.
pe II, distinguish inter
ociation reaction.
are between types of
1 '0' '
ut classification of
and evaluate
clic reactions.
rocyclic reaction,
nich type of pericyclic
hotophomical
hotochemical anic synthesis.
with the concepts and
d organic chemistry,
anic photochemistry.
tions to arrive at the
ourse will uncover all
photochemistry.
photoenombu y.
and diatomic molecules,
ts applications, rates of

	absorption and emission	. quantum efficiency/qua	nntum vield		
В	quenching of excited states species, radiationless transition and predissoci				
	energy transfer processe		s umismon und prodissociumen,		
С			s of photochemical reactions by		
			radiation, chemical dosimetry,		
	comparison between pho		•		
Unit 2	Photochemistry Part II				
A	· ·		cycloaddition, rearrangements.		
			rearrangements (including oxa-		
	and aza-).		(
В		ones: Excited state of C	O, Norrish type-I and type-II		
	cleavages.				
С					
	cyclohexadienones.	, ,	ketones, Rearrangement of		
Unit 3	Photochemistry Part II	I			
A	Photochemistry of Aron	natic compounds - Photo	orearrangement of benzene and		
	its derivatives, Photo-F	ries reactions of anilio	les, cycloaddition of benzene,		
	Photo-Fries rearrangeme	ent	•		
В	Barton reaction, Huns	sdiecker reaction, P	hotochemical oxidations and		
	reductions				
C		Cycloaddition of singlet molecular oxygen, Oxidative coupling of arom			
	compounds, photoreduction by hydrogen abstraction				
Unit 4	Pericyclic Reactions I				
A		Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-			
		hexatriene and allyl system. Classification of pariovalia reactions. Woodward Hoffmann correlation			
В		Classification of pericyclic reactions. Woodward – Hoffmann correl			
		diagrams. FMO and PMO approach, transition state (ATS) theory, generalized orbital symmetry (GOS) rule.			
C		Electrocyclic reactions – conrotatory and disrotatory motions, [4n], [4n+2] and			
C	allyl systems, torquoselectivity.				
Unit 5		Pericyclic Reactions II			
A	Cycloadditions – antarafacial and suprafacial additions, 4n and 4n+2 systems.				
		Regio, enantio and Endo selectivities in Diels-Alder reactions.			
В			enes, Dipolar cycloadditions,		
	retrocycloadditions.	ion, 2+2 addition of Rec	ches, Dipolar cycloadaltions,		
С		ments - suprafacial a	nd antarafacial shifts of H,		
			i] - sigmatropic rearrangements		
		n, Cope, oxy and aza-Cop			
Mode of	Theory/Jury/Practical/V		<u> </u>		
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1. Reaction Mechanism in Organic Chemistry; S. M. Mukherji and S. P. Singh.				
	2.Fundamentals of Photochemistry, K. K. Rohatgi-Mukherjee				
Other	1. Modern Synthetic reaction by H. O. House, W.A. Benjamin				
References					
	Press.				

2.1 Template A1: Environmental Chemistry (MCE201)

School: SBSR		Batch: 2021-23	
Program: M.Sc.		Current Academic Year: 2021-22	
Bra	nch:Chemistry	Semester: III	
1	Course Code	MCE201	
2	Course Title	Environmental Chemistry	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
	Course Status	Elective	
5	Course	1.To introduce the basics knowledge of chemistry of environment.	
	Objective	2.To describe the chemistry of hydrosphere.	
	_	3.To provide an introduction to chemistry of soil.	
		4.To explain to the student the causes of industrial pollution.	
		5.To provide information environmental toxicology.	
		6.To illustrate the infamous cases of environment related disasters.	
6	Course	CO1:Understand the chemistry of atmosphere.	
	Outcomes	CO2:Understand the chemistry of hydrosphere.	
		CO3:Explain the chemistry of soil.	
		CO4: Know about adverse effect of industrialization and possible	
		prevention method	
		CO5:Know about environmental toxicology and a few example of	
		environmental disaster.	
		CO6: Gain knowledge about the chemistry of atmosphere, factors	
		affecting it and possible prevention methods	
7	Course	This course describes the chemistry of earth atmosphere, soil and water	
	Description	bodies. It also describes the adverse effect of industrial pollution and its	
		possible prevention method.	
8	Outline syllabus		
	Unit 1	Earth's Atmosphere	
	A	Introduction, composition of atmosphere, vertical temperature,	
		heat budget of the earth atmospheric system, vertical stability atmosphere	
	В	Bio-distribution of elements. Reactions in atmosphere, Stratospheric	
		chemistry. Chemistry of photochemical smog, Precipitation, Acid rain,	
		Production and removal of nitric acid, Sulphuric acid	
	C	Atmospheric aerosols-Sources, Concentrations, Control. Chemistry of	
		global climate. Air sampling techniques, Sources, effects and monitoring	
	TT 1.0	of air pollutants by Instrumental methods, Control of air pollution	
	Unit 2	Hydrosphere	
	A	Chemical composition of water bodies – lakes, streams, rivers and	
		wetlands etc Hydrological cycle. Aquatic pollution-inorganic, organic,	
		pesticides, agricultural, industrial and sewage, detergents, oil spills and	
	D	oil pollutants	
<u> </u>	В	water quality parameters-dissolved oxygen, biochemical oxygen demand,	

		11.1		Beyond Boundaries	
		solids, metals, content of c		·	
		organisms, water quality		9	
		BOD, DO, COD, F, OILS	• • • • • • • • • • • • • • • • • • • •	<u> </u>	
		chloride and chlorine dem			
	C	Distribution of species in aquatic systems: Single variable diagrams, Tw			
		variable diagrams, Method	d of calculating pE ^o		
	Unit 3	Soils			
	A	Chemical composition of	of the soil, micro and	macronutrients, the	
		exploitation of the mineral	l resources and abuse of the	he earth	
	В	soil pollution due to na	tural and artificial age	ncies and its effects,	
		remedial measures to chec	ck the pollution, pollution	-fertilizers, pesticides,	
		plastics and metals, waste			
	С	Humic material–Formation, Composition, Structure determination using			
		spectroscopy, Properties.			
		waste			
	Unit 4	Industrial Pollution			
	A		drug, paper and pulp,	thermal power plants,	
		Cement, sugar, distillery, drug, paper and pulp, thermal power plants, nuclear power plants, metallurgy, polymers, drugs etc			
	В	radionuclide analysis, disposal of wastes and their management. Waste			
		Water, Treatment of Industrial Waste Water,			
	С	Environmental Impact Assessment process in India.			
	Unit 5	Environmental Toxicology			
	A	Chemical solutions to environmental problems, biodegradability,			
	В	principles of decomposition, better industrial processes. Bhopal Gas			
		Tragedy, Chernobyl Disaster, Three Mile Island, Sewozo and Minamata			
		disasters.			
	С	Occupational safety Hazard Assessment, MSDS			
	Mode of	Theory/Jury/Practical/Viv			
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*	1.Environmental Chemistry, A.K.Das.			
		2.Environmental Chemistr			
		3.Environmental Chemist		Pragathi Prakashan.	
Meerut, 2011.		<i>,</i>	,		
		4.Environmental Pollution	on Analysis, S. M.	Khopkar, New Age	
		International (P) Ltd, 1993	=	F 11, 11, 11, 11, 11, 11, 11, 11, 11, 11	
	Other	1. Analysis of Industrial Waste Water, K.H.Mancy and W,.J.Weber Jr.			
	References	Wiley, Interescience New		,	
		2.Environmental Chemistry, L.W. Moore and E. A. Moore, McGraw Hi Publication, New York			
		3.Environmental Chemis	stry, Colid Baird. W.	H. Freemand and	
		Company, 1995.	3 ,		

2.1 Template A1: Polymer Science and Technology (MCE202)

School: SBSR		Batch: 2021-23		
Program: M.Sc.		Current Academic Year: 2021-22		
Brai	nch:Chemistry	Semester:III		
1 Course Code		MCE202		
2	Course Title	Polymer Science and Technology		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Elective		
5	Course Objective	 To impart knowledge on synthesis of polymers using different polymerization methods/techniques and their characterization. To provide basic understanding on the synthesis and characterization of different types of copolymers and preparation of polymer blends and IPNs. 		
		 3. To elaborate on the end-uses of polymers as matrix resins for composites, coatings and adhesives. 4. To disseminate information on advanced polymeric systems and speciality polymers. To describe different processing techniques of polymers and to discuss degradation of polymers and the effect of use of polymers on 		
6	Course Outcomes	environment. CO1:Basic understanding on synthesis of polymers, determination of molecular weight and characterization of polymers using chemical methods and different instruments. CO2:Concept on the factors influencing the copolymerization of monomers and their microstructure, use of block copolymers as thermoplastic elastomers and compatibilizers for polyblends and knowledge on IPNs and Semi-IPNs. CO3:Knowledge on broad spectrum of end-use of polymers as matrix resins for composites, coatings and adhesives and their applications. CO4:Exposure to advanced polymeric systems such as shape memory polymers, self healing polymers, engineering plastics and inorganic polymers. CO5:Understanding of different polymer processing techniques. CO6:Understanding the synthetic pathways and functional polymers along with factors influencing the degradation of polymers and gaining knowledge on the management of plastics and the environmental impact.		
7	Course Description	This elective course on Polymer Science and Technology covers the synthesis and characterization of homopolymers and copolymers, thermoplastic elastomers, polymer blends, interpenetrating polymer network (IPN) structures, polymer matrix composites, adhesives and coatings. This course also covers certain advanced/speciality polymer systems such as shape memory polymers, dentrimers, hyperbranched polymers and inorganic polymers. An insight into polymer processing		

		techniques polymon descretation and recycling also forms now of this	
		techniques, polymer degradation and recycling also forms part of this	
0	Outling of cyllobus		
8	Outline of syllabus Unit 1 Synthesis and Characterization of Polymers		
	Synthesis and Characterization of Polymers		
	A	Atom Transfer polymerization, Group Transfer Polymerization, Ring Opening Polymerization. Molecular weight: number average, weight average, viscosity average molecular weight, z-average molecular weight, molecular weight distribution.	
	В	Measurement of molecular weight and size: Colligative property measurement, Light scattering, ultracentrifuge, viscosity, Gel Permeation Chromatography, Fractionation of polymers by solubility.	
	С	Characterization of polymers: chemical methods, spectroscopic methods, X-ray diffraction, microscopy and thermal analysis.	
	Unit 2	Copolymers, Thermoplastic elastomers, polymer blends and IPNs	
	A	Copolymers: Radical copolymerization - monomer reactivity ratios, Q-e factor, Formation of random, alternating and block copolymers in radical copolymerization based on monomer reactivity. Monomer sequencing (diad and triad structures) in copolymers using NMR spectroscopy.	
	В	Thermoplastic elastomers: ABA and (AB) _n type block copolymers as thermoplastic elastomers, their microstructure and applications.	
	С	Role of block copolymers as compatibilizers Interpene-trating Polymer Networks (IPNs): Semi-IPNs and full IPNs – Synthesis, characterization and applications.	
		Polymer matrix composites (PMCs), Adhesives and Coatings	
	A	Polymer matrix composites: Matrix resins-epoxy resins, phenolic resins and polyimides, Reinforcement-particulate, short fiber, continuous fiber-glass fibre and carbon fibre, characterization techniques and mechanical properties. Polymer Nano Composites, Aerospace and defence applications of PMCs.	
	В	Adhesives: Theory of adhesion, an overview of polymers used as adhesives, high temperature adhesives, evaluation of adhesive properties. Applications of adhesives.	
	С	Coatings: Water-borne and solvent based coatings, polymers as binders in paints. Self cleaning coatings. Applications of coatings.	
	Unit 4	Advanced Polymers/Speciality Polymers	
	A	Shape Memory Polymers, Self-Healing Polymers, Dentrimers and hyper-branched polymers, Conducting polymers, Liquid Crystalline Polymers.	
	В	Engineering thermoplastics: Polyetherimide, Poly-carbonate.	
	С	Inorganic polymers: Polyphosphazene, polysilane, polycarbosilane, polysiloxane and polymetallosiloxanes.	
	Unit 5	Polymer Processing, Polymer degradation and the environment	
	A	Basic processing operations: Extrusion, Molding, Coating, Vulcanization and Fiber drawing.	
	В	Polymer degradation: Thermal degradation, Oxidative and UV stability,	
	В	Polymer degradation: Thermal degradation, Oxidative and UV stabil	

			Beyond Boundaries	
	Chemical an	d hydrolytic st	ability, Effects of radiation.	
C	Environment: Management of plastics in the environment-recycling,			
	incineration	incineration and biodegradation.		
Mode of	Theory/Jury/	Practical/Viva		
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1. Text bool	k of Polymer	Science, Third Edition, F.W. Billmeyer, Jr.	
	Wiley-Into	ersciene, 2003.		
	2. Polymer S	Science & Tecl	hnology, J. R. Fried, Prentice-Hall Inc., USA	
	(Indian Re	eprint) 2005.		
	3. Polymers: Chemistry and Physics of Modern Materials, 3rd edition, by			
	J.M.G. Cowie and V. Arrighi, New York, CRC Press, 2008.			
Other 1. Macromolecules: An Introduction to Polymer Science, F. A. Bov and F. H. Winslow, Academic Press, New York, 1979.			· · · · · · · · · · · · · · · · · · ·	
recretences		,	Edition, J. E. Mark, H. R. Allcock and R.	
	_	Ford University		
		•	Handbook, 3rd Edition, Sina Ebnesajjad and	
	Arthur H.	Landrock (Imp	orint: William Andrew) Elsevier, 2014.	
	4. Processing of Polymer Matrix Composites, P.K. Mallick, CRC Press,			
	2017.			
		•	stics: Properties and Applica-tions, Margolis,	
	CRC Pres	s, 1985.		

2.1 Template A1: Inorganic Chemistry-V (MCH238)

School: SBSR		Batch: 2021-23
Program	: M.Sc.	Current Academic Year: 2021-22
Branch:0	Chemistry	Semester: IV
1 Course Code		MCH238
2	Course Title	Inorganic Chemistry V
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course	1. To describe about basic principles and importance of various
	Objective	metals in natural systems.
	J	2. To describe various ion transport through biological membrane.
		3.To explain the importance of Iron and Copper containing
		metallo-biomolecule.
		4.To illustrate the chemistry of bio molecules like DNA and RNA.
		5.To describe the bioinorganic chemistry of Molybdenum,
		Tungsten and Zinc containing Enzymes.
		6. To describe the bioinorganic chemistry of Vitamin B ₁₂ .
6	Course	CO1:Explain the transport of ions through membrane
	Outcomes	CO2: Predict the structure and mechanism of Fe and Cu
		containing metalloproteins.
		CO3:Learn about structure and chemistry of DNA and RNA.
		CO4: Understand the importance of Molybdenum, Tungsten and
		Zinc containing Enzymes.
		CO5 : Illustrate biologically important processes like
		photosynthesis
		CO6:Understand the role and importance of metal ions in biology.
7	Course	This course includes details discussion about various bio
	Description	molecules and metal containing enzymes with special reference to
		iron, copper, zinc, tungsten and molybdenum.
8	Outline syllabus	
	Unit 1	Bioinorganic Chemistry of Metals
	A	Essential and trace elements in biological systems,
	В	structure and functions of biological membranes; mechanism of
		ion transport across membranes; sodium pump, role of calcium in
		muscle contraction, blood clotting mechanism and biological
		calcification.
	С	Structure and functions of amino acids, proteins, peptides and
		comparative study of structures and functions of these
	TT 14 0	biomolecules CV AV
	Unit 2	Bioinorganic Chemistry of Iron and Copper
	A	Iron-sulphur proteins: rubredoxin and ferredoxins;
	В	Metalloporphyrins; Heme proteins: hemoglobin, myoglobin.

	Cytochroma P 150 Cytochroma a ovidese and cytochroma a:			
	Cytochrome P-450, Cytochrome c-oxidase and cytochrome c;			
C	Synthetic oxygen carrier and model systems. Thermodynamic an			
	kinetics of oxygenation; Non-heme proteins: hemerythrin an			
	hemocyanin.			
Unit 3	Bioinorganic Chemistry in Biological Systems			
A	Metal complexes of polynucleotides, nucleosides and nucleic acid			
	(DNA and RNA).			
В	Stability of DNA and melting temperature.			
C	Role of metal ions in replication and transcription process of			
	nucleic acids. Metal deficiency and disease			
Unit 4	Molybdenum, Tungsten and Zinc containing Enzymes			
A	Enzymes and their classification; Importance of Zn in nature			
	carbonic anhydrase, carboxypeptidase, alcohol dehydrogenase.			
В	Biological nitrogen fixation (Nitrogenase) and abiological nitroge			
	fixation			
С	tungsten containing formate dehydrogenase and tungsten bearin			
	hyperthermophilic and thermophilic enzymes.			
Unit 5	Biologically Important Processes			
A	Photosynthetic electron transport chain, chlorophyll, PS-I and PS			
	II,			
В	Vitamin B 12 coenzyme, its function and application in organi			
	synthesis.			
C	Availability of iron and iron toxicity.			
Mode of	Theory			
examinat	on			
Weightag	e CA MTE ETE			
Distribut	on 30% 20% 50%			
Text boo	/s* 1. S. J. Lippard & J. M. Berg. Principles of Bioorganic Chemistry			
	Panima Publ. Corpn. (2005).			
	2. EI. Ochiai. Bioinorganic Chemistry; An Introduction; Allyn			
	and Bacon Inc. (1977).			
Other	1.M. N. Hughes. The Inorganic Chemistry of Biological Processes			
Reference				
	2.R. P. Hanzlik. Inorganic Aspects of Biological and Organic			
	Chemistry; Academic Press (1976).			
	3.H. Kraatz & N. Metzler-Nolte (Eds.). Concepts and Models in			
	Bioinorganic Chemistry; Wiley (2006).			
	4.Bertini; H. B. Gray; S. J. Dippard & J. S. Valentine;			
	Bioinorganic Chemistry; Viva Books Pvt. Ltd. (2004).			
	5.A. W. Addison; W.R. Cullen; D. Dolphin & B.R. James (eds.).			
	Biological Aspects of Inorganic Chemistry; John Wiley (1977).			

2.1 Template A1: Physical Chemistry-V (MCH239)

School: SBSR Batch: 2021-2023			
Prog	gram: M. Sc	Current Academic Year: 2021-22	
Bra	nch:	Semester:IV	
Chemistry			
1	Course Code	MCH 239	
2	Course Title	PHYSICAL CHEMISTRY-V	
3	Credits	4.0.0	
4	Contact	(4 0 0)	
	Hours		
	(L-T-P)		
	Course Status	Compulsory	
5	Course Objective	1. To provide the understanding of Quantum mechanical aspect of Band gap and Band theory in semi conductors.	
		2. To understand the various techniques for the preparation of	
		nanomaterial and properties of nanomaterials. 3. To extend the concept of X-Ray diffraction, their generation and different	
		experiments to study X-Ray diffraction.	
		4. To provide the understanding of physical aspects in Biological	
		phenomenon.	
		5. To provide the indepth concept of polymers and their properties.	
6	Course	CO1: Direct and indirect band gap in semiconductors,	
	Outcomes	types and analysis of p-n junctions.	
		CO2: Students will be able to prepare nanomaterials and will be able to	
		characterize their optical, electronic and structural properties.	
		CO3:Students will be able to understand the generation of X-rays and	
		diffraction patterns and will be able to refine the X-ray patterns.	
	CO4: Students will be able to understand the energy Transformation		
	Thermodynamic principles and their applications in biolog		
system.		system.	
CO5: Student will be able to calculate the molecular weights of		CO5: Student will be able to calculate the molecular weights of polymers	
		using different techniques and will able to identify different physical and	
rheological properties of polymers.			
		CO6: In depth knowledge of semiconductors, nanomaterials and polymers	
		with application of X-rays, their generation and refinement of structure,	
	_	application of physical phenomenons in biological system.	
7	Course	Course emphasizing on the application part of Solid state chemistry and	
	Description	analysis of structure using X-Ray diffraction, materials chemistry,	
	0 11 11 1	Biophysical aspects and applications and properties of polymers.	
8	Outline syllabu		
	Unit 1	Solid State Chemistry	
	A	Free electron theory of metals, Quantum mechanical treatment	
		explaining the origin of band gaps, density of states, Band	
		theory, Bloch theorem, Brillouin zones, effective mass of	

	1	Beyond Boundaries
	_	charge carriers,
	В	Semiconductors: Direct and indirect band gap semiconductors,
		hole concept, temperature dependence of mobility and
		electrical conductivity, free carrier concentration in intrinsic
		and extrinsic semiconductors, mass active law,
	C	Generation of carriers and their recombination in
		semiconductors. Types of junctions (metal-semiconductor,
		semiconductor-semiconductor, junctions in organic materials),
		Analysis of p-n junction including I-V characteristics.
	Unit 2	Materials Chemistry
	A	Definition of nanomaterials, various techniques for the
		preparation of nanomaterials, Thermodynamics and Kinetics of
		Nucleation, Thin Films and
	В	Langmuir-Blodgett films - Preparation techniques,
	B	evaporation/sputtering, chemical processes, MOCVD, sol-gel.
		Langmuir-Blodgett (LB) film growth techniques,
	С	photolithography, properties and applications of thin and LB
	C	films.
		Electronic structure and properties of nanomaterials, optical,
		electrical and magnetic properties, Chemical behaviour,
	T1 14 2	applications of nanomaterials.
	Unit 3	X-Ray Diffraction and Crystal Structure
	A	Generation of X-rays, diffraction of X-rays by crystals, systematically
	_	absent reflections, multiplicities,
	В	X-ray diffraction experiments: the powder method-Bragg condition,
		Laue method, Bragg method and single crystal method, scattering of X-rays
		by atoms and a crystal,
	C	Patterson Synthesis, the Rietveld Refinement of BaTiO ₃ , ZnO and BaSnO ₃ ,
		R-factor.
	Unit 4	Biophysical Chemistry
	A	Energy Transformation and Distribution of Energy, Thermodynamic
		principles in biological systems; Osmotic pressure, membrane
		equilibrium,
	В	muscular contraction and energy generation in
		mechanochemical system. Cell Membrane and Transport of
		Ions: Structure and functions of cell membrane.
	С	Active transport across cell membrane, irreversible
		thermodynamics treatment of membrane transport.
	Unit 5	Polymers
	A	Introduction, Classification of polymers, Concept of Mass and Number
		average molecular weights, Methods of Determining molecular weights
		(osmometry,
	В	diffusion and light scattering), Physical properties of polymers (glass
		transition temperature, crystalline melting point),
ĺ		
	Γ	Rheological Properties Riodegradable and Riomedical holymers Liquid
	С	Rheological Properties, Biodegradable and Biomedical polymers, Liquid crystal polymers.

Mode of	Theory		Beyond Boundaries		
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1.Polymer Chemistry, Bil	lmayer			
	2. Polymer Chemistry,	Gowarikar			
	3. Biological Thermodyna	3. Biological Thermodynamics, Donald T. Haynie, Cambridge.			
	4. Biophysical Chemistry,	Vol. 1-3, C. R. Can	ntor & Schimmel		
	5. Biophysical Chemistry: Principles and Techniques by				
	Jpadhyay, Himalaya Publishing House				
	6. Introduction to Biophysical chemistry, R. Bruce Martin, McGraw-Hill, N				
	1964.				
	7. Solid State Chemistry and its Applications(1984), A.R. West, John Wi				
	and Sons,				
	Singapore				
	8. Introduction to Solids(1977), L.V. Azaroff, Tata McGraw-Hill, New				
		Delhi			
	9. Solid State Chemistry(1992), L. Smart and E Moore, Chapman & Hall,				
	Madras				
	10. Principles of Solid State(1993), H. V. Keer, Wiley Eastern				
	11. Instrumental methods of chemical analysis: Braun				

2.1 Template A1: Organic Chemistry-V (MCH240)

School: SBSR		Batch: 2021-23		
Program: M.Sc.		Current Academic Year: 2021-22		
Brai	nch:Chemistry	Semester: IV		
1	Course No.	MCH240		
2	Course Title	Organic Chemistry V		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Compulsory		
5	Course	1.To impart knowledge on synthesis of five and six- member heterocyclic		
	Objective	compounds with two or more hetero atoms.		
		2.To familiarize with the synthesis of larger ring heterocyclic		
		compounds.		
		3.To impart knowledge on synthesis of natural products.		
		4.To familiarize with structure determination and stereochemistry of		
		terpenoids and carotenoids.		
		6.To understand the structure and significance of alkaloids.		
6.	Course	CO1: Understand the structure, properties, synthesis and reactions of five		
	Outcomes	and six- member heterocyclic compounds with two or more hetero atoms.		
		CO2: Propose syntheses and applications of heterocycles from the major		
		classes.		
		CO3:Describe the structure and synthesis of terpenoids and carotenoids.		
		CO4:Formulate the synthesis of few important alkaloids.		
		CO5:Identify medicinal properties of alkaloids.		
		CO6: Acquire basic knowledge of natural product chemistry and		
		understand the importance heterocycles in biological systems and in pharmaceuticals.		
7	Course	This course will provide a concise introduction to heterocyclic chemistry.		
'	Description	Emphasis will be given on the most important heterocyclic systems		
	Description	particularly five, and six-membered heterocyclic systems with 2- or 3-		
		heteroatoms as well as fused heterocyclic systems. Chemical synthesis,		
		properties, characteristics and applications of these systems will be		
		discussed in detail. The course provides a basic knowledge of natural		
		products chemistry with emphasis on terpenoids, carotenoids and		
		alkaloids.		
8	Outline syllabus			
	Unit 1	Heterocycles I		
	A	Introduction, synthetic approaches, reactions and important applications		
		of five membered heterocyclic compounds with two or three hetero		
		atoms - imidazole, oxazoles,		
	В	synthetic approaches, reactions and important applications of -		
		thiazoles, oxadiazoles,		
	С	synthetic approaches, reactions and important applications of -		

t 2	Heterocycles II Introduction, synthetic approaches, reactions and important applications of condensed five and six membered heterocycles with one hetero atom indole, synthetic approaches, reactions and important applications of penzofuran, benzothiophene, synthetic approaches, reactions and important applications of quinoline and isoquinoline. Heterocycles III Introduction, synthetic approaches, reactions and important applications of six membered heterocyclic compounds with two hetero atoms pyridazine. Synthetic approaches, reactions and important applications of opyrimidine synthetic approaches, reactions and important applications of opyrimidine synthetic approaches, reactions and important applications of opyrimidine synthetic approaches, reactions and important applications of pyrazine. Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
I	Introduction, synthetic approaches, reactions and important applications of condensed five and six membered heterocycles with one hetero atom indole, synthetic approaches, reactions and important applications of enzofuran, benzothiophene, Synthetic approaches, reactions and important applications of equinoline and isoquinoline. Heterocycles III Introduction, synthetic approaches, reactions and important applications of six membered heterocyclic compounds with two hetero atoms of synthetic approaches, reactions and important applications of pyrazine. Terpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
s b S S S S S S S S S S S S S S S S S S	of condensed five and six membered heterocycles with one hetero atom indole, synthetic approaches, reactions and important applications of penzofuran, benzothiophene, synthetic approaches, reactions and important applications of quinoline and isoquinoline. Heterocycles III Introduction, synthetic approaches, reactions and important applications of six membered heterocyclic compounds with two hetero atoms pyridazine. Synthetic approaches, reactions and important applications of cyrimidine synthetic approaches, reactions and important applications of cyrimidine synthetic approaches, reactions and important applications of pyrazine. Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
b S S S S S S S S S S S S S S S S S S S	Synthetic approaches, reactions and important applications of — quinoline and isoquinoline. Heterocycles III Introduction, synthetic approaches, reactions and important applications of six membered heterocyclic compounds with two hetero atoms — pyridazine. Synthetic approaches, reactions and important applications of pyrimidine synthetic approaches, reactions and important applications of pyrimidine Synthetic approaches, reactions and important applications of pyrazine. Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
9	Heterocycles III Introduction, synthetic approaches, reactions and important applications of six membered heterocyclic compounds with two hetero atoms – byridazine. Synthetic approaches, reactions and important applications of byrimidine Synthetic approaches, reactions and important applications of byrimidine Synthetic approaches, reactions and important applications of pyrazine. Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
II	Introduction, synthetic approaches, reactions and important applications of six membered heterocyclic compounds with two hetero atoms – pyridazine. Synthetic approaches, reactions and important applications of pyrimidine synthetic approaches, reactions and important applications of pyrazine. Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
s p s t 4 T C s	of six membered heterocyclic compounds with two hetero atoms – byridazine. Synthetic approaches, reactions and important applications of byrimidine Synthetic approaches, reactions and important applications of pyrazine. Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
P S S C S S C S S S S	byrimidine synthetic approaches, reactions and important applications of pyrazine. Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
t 4 T	Ferpenoids and carotenoids Classification, nomenclature, occurrence, isolation, general methods of		
S	Classification, nomenclature, occurrence, isolation, general methods of		
s			
S s	structure determination, isoprene rule. Structure determination and synthesis of the following representative molecules: Monoterpenoids - Citral, geraniol (acyclic), α-terpeneol, menthol (monocyclic). Sesquiterpenoids - Farnesol (acyclic), zingiberene (monocyclic), santonin (bicyclic), Diterpenoids - Phytol and abietic acid, β- carotene,		
S	lycopene and vitamin A. Structure determination and synthesis of the following representative molecules: Sesquiterpenoids - Farnesol (acyclic), zingiberene (monocyclic), santonin (bicyclic), Structure determination and synthesis of the following representative molecules: Diterpenoids - Phytol and abietic acid, β- carotene, lycopene and vitamin A.		
n			
	Alkaloids		
is c p	Definition, nomenclature and physiological action, occurrence, isolation, general methods of structure elucidation, degradation, classification based on nitrogen heterocyclic ring, role of alkaloids in plants.		
	Occurence, synthesis and structure elucidation of alkaloids – Reserpine		
	Occurence, synthesis and structure elucidation of alkaloids –morphine.		
le of T nination	Γheory/Jury/Practical/Viva		
_	CA MTE ETE		
	30% 20% 50%		
2 A 3	 Heterocyclic Chemistry, T. L. Gilchrist. An Introduction to the Chemistry of Heterocyclic compounds, R. M. Acheson. Heterocylic chemistry, J. A. Joule & K. Mills. Principles of Modern Heterocyclic Chemistry, A. Paquette. 		
	t 5 It is a second of the sec		

		5. Heterocyclic Chemistry, J. A. Joule & Smith.			
		6. Handbook of Heterocyclic Chemistry, A. R. Katritzky.			
		7. Natural Products: Chemistry and Biological significance, J. Mann, R.			
		S. Davidson, J. B. Hobbs, D. V.,			
		Banthropde & J. B. Harborne.			
		8.Organic Chemistry, Vol-2, I. L. Finar			
10	References	1.Stereoselective Synthesis: A Practical Approach, M. Nogrudi.			
		2.Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey.			
		3. Chemistry, Biological and Pharmacological properties of Medicinal			
		plants from the Americans, Ed. Kurt. Hostettmann, M. P. Gupta and A.			
		Marston			

2.1 Template A1: Inorganic Chemistry-VI (MCH241)

School: SBSR		Batch: 2021-23		
Prog	gram:M.Sc.	Current Academic Year: 2021-22		
	nch:Chemistry	Semester:IV		
1	Course Code	MCH241		
2	Course Title	Inorganic Chemistry VI		
3	Credits	4		
4	Contact hours	4-0-0		
	Course Status	Compulsory		
5	Course	1.Understand the importance of superconductors in engineering		
	Objectives	applications.		
		2.Relate the supramolecular role in ion detections.		
		3.Understand the chemistry of glasses and ceramics and their application		
		in daily routine.		
		4.Understand the role of superconductors in catalysis.		
		5.Describe the technique used in applications of nanomaterials.		
		6.Understand the importance of nanomaterial based device in daily.		
		routine.		
6				
Outcome of supramolecules.		*		
	CO2:Relate the applications of glass and ceramics on the basis			
		structure.		
		CO3:Explain the concept of superconductivity.		
		CO4:Synthesis of nanomaterials.		
		CO5:Identify the properties of nanomaterials and their applications in		
		electronic applications.		
		CO6:Gain knowledge about various advanced inorganic materials.		
7	Course	The course is framed to give broad view of supramolecular, smart		
	Description	inorganic materials, superconductors and nanomaterials.		
		Physicochemical properties and applications of nanomaterials have been		
		covered in this paper.		
8	Outline syllabus			
	Unit 1	Supramolecular Chemistry		
	A	Concepts of Molecular recognition: Molecular receptors for different		
		types of molecules including anionic substrates, design and synthesis of		
		co-receptor molecules and multiple recognition		
	В	Catenanes, Rotaxanes, Dendrimers and Supramolecular gels,		
1		Supramolecular reactivity in catalysis		
	С	Transport processes and carrier design. Supramolecular devices. Some		
		example of self-assembly in supramolecular chemistry		
	Unit 2	Inorganic Smart Materials		
	A	Structure of Glass and Ceramics: Ceramics crystal structures, density		
		computations, silicate ceramics		

	1	Beyond Boundaries			
	В	Glass ceramics.Refractories with reference to preparation, Properties and			
		applications.			
	C	fibre reinforced Composites, microscopic composites, preparation			
		procedure, special properties and applications			
	Unit 3	Superconductors			
	A	Inorganic semiconductors, Electrical, magnetic, thermal and optical			
		properties of superconductors,.			
	В	Metallic bonds High temperature superconductors Structural features of			
		cuprate superconductors:1-2-3 and 2-1-4 cuprates.			
	С	Electrical and magnetic properties of superconductors			
	Unit 4	Nanomaterials			
	A	Definition of nanomaterials, fullerenes, carbon nanotubes, graphene			
		Discovery of C_{60} , Superconductivity in C_{60} , Alkali doped C_{60} .			
	В	Carbon nanotubes - Synthesis of Single walled carbon nanotubes.			
	D	Synthesis methods - Arc discharge, Laser Abalation, Low temperature			
		method, Chemical vapour deposition. Growth mechanisms on CNT.			
	С				
	C	Structure and characterization techniques. Surface area measurement,			
	TT *4 =	determination of size and textural studies of nanotubes.			
	Unit 5	Physiochemical Properties and Applications of Nanomaterials			
	A	Reactivity, effect of size and shape on nanocrystal reactivity,			
		agglomeration and sintering, dispersibility and chemical stability in			
		solution, surface modification of metallic and semiconductor			
		nanoparticles, nanofabrication and nanomanipulation.			
	В	Magnetism in nanomaterials, Doping, functionalizing nanotube.			
	C	Applications of Graphene, CNTs and Fullerenes - sensing, organic			
		transistor, odour sensor, electronics and optoelectronics and			
		photovoltaics.			
	Mode of	Theory/Jury/Practical/Viva			
	examination				
	Weightage	CA MTE ETE			
	Distribution	30% 20% 50%			
9	Textbook/s*	1.Timp.G., Ed.Nanotechnology, Springer-Verlag, N. Y			
		2.Supramolecular Chemistry by Jonathan W Steed; Jerry L. Atwood.			
10	Other	1.Keer, H.V. Principles of the Solid State, Wiley Eastern Ltd., New			
	References	Delhi.			
		2.West, A. R., Solid State Chemistry and its applications, John Wiley and			
		Sons.			
		3. Supramolecular Chemistry: Concept and Perspective by Jean Marie			
		Lehn			
		4.Mitchell, B. S. – An introduction to material engineering and			
		Science. Wiley interscience.			
L	J	Science, whey interscience.			

2.1 Template A1: PHYSICAL CHEMISTRY VI (MCH242)

School: SBSR Batch: 2021-2023				
Program: M. Sc		Current Academic Year: 2021-22		
	nch:Chemistry	Semester: 04		
1	Course Code	MCH242		
2	Course Title	PHYSICAL CHEMISTRY VI		
3	Credits	4		
4	Contact Hours	(3 1 0)		
	(L-T-P)			
	Course Status	Compulsory		
5	Course Objective	 6. To provide the understanding of photophysical and photochemical processes of atoms and diatomic molecules. 7. To understand various nonradiative relaxation processes. 8. To get familiar with high energy radiation with matter, radiation 		
		dosimetry and flash photolysis. 9. To understand the meaning, scope, laws of irreversible		
		thermodynamics. 10. To provide information about various laws, parameters, and equations related to transport phenomenon.		
		11. To provide the conceptual knowledge of molecular and advanced photochemistry; radiation chemistry, dosimetry, and photolysis; irreversible thermodynamics and transport phenomenon.		
6	Course Outcomes	CO1: To understand various photophysical and photochemical processes of atoms and diatomic molecules upon irradiation. CO2: To study the various radiationless relaxation pathways. CO3: To learn about mechanism of interaction of high energy radiation with matter; radiation dosimetry and principle and application of flash photolysis. CO4: To understand the fundamental meaning, scope, and laws of irreversible thermodynamics. CO5: To get familiarize with different parameters and laws related to transport phenomenon. CO6: To study molecular and advanced photochemistry; radiation chemistry, dosimetry, and photolysis; irreversible thermodynamics and transport phenomenon.		
7	Course Description	Course emphasize on the basic concepts of molecular and advanced photochemistry; radiation chemistry, dosimetry, and photolysis irreversible thermodynamics and transport phenomenon.		
8	Outline syllabus			
	Unit 1	Molecular photochemistry		
	A	Introduction-primary photophysical process of atoms and diatomic		
	molecules, the absorption and emission of light - spec notations, state mixing, spin-orbit coupling and spin forbidden			
	D	transitions,		
	B Absorption complexes, Franck-Condon principle, selection rules, laws			

	Beyond Boundaries
	photochemical equivalence. Radiative transitions-classical model of
	radiative transitions. Transitions between states (chemical, classical and
	quantum dynamics, vibronic states).
C	Potential energy surfaces; transitions between potential energy surfaces.
	Jablonski diagram, Fluorescence, phosphorescence, photosensitization,
	photosynthesis, and chemiluminescence.
Unit 2	Advanced photochemistry
A	Wave mechanical interpretation of radiationless transitions between
	states, factors influencing the rate of vibrational relaxation. Fluorescence
	quenching: collisional quenching, Stern-Volmer equation, concentration
	quenching, quenching by excimer and exciplex emissio
В	Energy transfer: Theory of radiationless energy transfer and energy
	transfer by electron exchange. Fluorescence resonance energy transfer
	between photoexcited donor and acceptor systems and dexter energy
	transfer.
С	The Perrin formulation. Triplet-triplet, triplet-singlet, singlet triplet
	energy transfer. Multiphoton energy transfer processes, reversible energy
	transfer.
Unit 3	Radiation Chemistry, Dosimetry and Photolysis: An overview
A	G-value. The mechanism of interaction of high energy radiation with
	matter, Photoelectric effect, Compton effect, Pair production, total
	absorption co-efficient, excitation and ionization, Stopping power and
	linear energy transfer.
В	Radiation dosimetry: Radiation dose and its measurement, standard free
l B	air chamber method,
	chemical dosimeter (Frick's Dosimeter). Short lived intermediates (ions,
	excited molecules,
	free radicals: Various mechanisms of their formation and energy transfer
	processes)
C	Flash photolysis: Principle and its applications. Radiolysis of water and
	aqueous solutions.
	Radiolysis of molecules of biological interest (carbohydrates, amino
	acids, peptides, and
77.4.4	nucleic acids).
Unit 4	Irreversible thermodynamics
A	Meaning and scope of irreversible thermodynamics, Thermodynamic
	criteria for non-equilibrium states, Phenomenological laws- Linear laws,
	Gibbs equation,
В	Onsager's reciprocal relations, Entropy production- specific examples of
	entropy production, Non-equilibrium stationary states,
C	Prigogine's principle of maximum entropy production, Coupled
	phenomena. Some important applications.
Unit 5	Transport phenomena
A	Diffusion coefficients, Fick's first and second laws, relation between
	flux and viscosity,
В	relation between diffusion coefficient and mean free path, relation
·	

between thermal conductivity/viscosity and mean gas, Einstein relation,				ee path of a perfect		
		Nernst-Einstein equation, Stokes-Einstein equation, Einstein- Smoluchowski equation.				
	Mode of	Theory	*			
	examination					
	Weightage	CA	MTE	ETE		
	Distribution	30%	20%	50%		
	Text book/s*	1. Turro, N. J. Modern Molecular Photochemistry Univ. Science Books (1991).				
		2. Gilbert, A. & Baggo Blackwell Scientific (ot, J. Essentials of Molecu (1990).	ılar Photochemistry		
		 Sood, D.D., Reddy, A.V.R. and Ramamoorthy, N., "Fundamentals of Radiochemistry", IANCAS, BARC, Mumbai. Mukherjee, K.K., "Fundamentals of Photochemistry", New Age International Pvt. Ltd., New Delhi. Lakowicz, J.R., "Principles of Fluorescence Spectroscopy", Plenum Press, New York. Wishart, J.F. and Nocera, D.G., "Photochemistry and Radiation Chemistry", Oxford University Press, USA. Friedlander, G., Kennedy J.W., Miller, E.S. and Macais, J.M., "Nuclear and Radiochemistry", John Wiley and Sons, Inc. New York. 				
		8. Atkin's Physical Chemistry, P. Atkins & Julio de Paula, Oxf University Press				
		 Introduction to Thermodynamics of Irreversible Processes by Prigogine, Interscience Fundamentals of Photochemistry, K. K. Rohatgi-Mukherjee. 				
	Thermodynamics: Principles & Applications, Macmillan			(1965). Non-Equilibrium		
		(2002).				

2.1 Template A1: Organic Chemistry-VI (MCH243)

School: SBSR		Batch 2021-23		
Program: M.Sc.		Current Academic Year : 2021-22		
	nch : Chemistry	Semester IV		
1	Course No.	MCH243		
2	Course Title	Organic Chemistry VI		
3	Credits	4		
4	Contact Hours (L-T-P)	4-0-0		
	Course status	Compulsory		
5	Course Objective	 To provide a comprehensive introduction to biochemistry. To learn the chemistry of enzymes, structures of nucleic acids, proteins and carbohydrates. To know the chemistry of selected steroids, cholesterol and hormones. familiarize the chemistry and structure of oxytocin. To know the kinetics of enzymes. 		
6	Course	6.To understand the chemistry of antibiotics. CO1:To introduce structure and functions of carbohydrates and their		
	Outcomes	derivatives. CO2:Understand the structure, function, and folding of proteins. CO3:Analyze the double helical structure of DNA and its replication, RNA and transcription. CO4:Learn kinetics of enzyme catalyzed reactions and enzyme inhibition. CO5:Convert cholesterol to progesterone, estrone and testosterone and structure elucidation of cholesterol. CO6:Acquire knowledge of molecular structure and interactions present in proteins, nucleic acids and carbohydrates and enzymes, the organization and working principles of various components present in living cell.		
Description significance of fundamental chemical properties of structure, understanding of the connection between structure and function, acquire knowledge of chemical properties of structure and function, acquire knowledge of chemical properties of structure and function, acquire knowledge of chemical properties of structure and function, acquire knowledge of chemical properties of structure.		The course is designed to give provide an ability to assess the significance of fundamental chemical properties on biomolecular structure, understanding of the connection between biomolecular structure and function, acquire knowledge of chemical synthesis of biomolecules and the chemical reactions of biomolecules.		
8	Outline Syllabus			
Unit 1 Carbohydrates		Carbohydrates		
	A	Conformation of monosaccharides, structure and functions of important derivatives of monosaccharides like glycosides, deoxy sugars, myoinositol, amino sugars.		
	В	N-acetylneuraminic acid, sialic acid disaccharides and polysaccharides. Structural polysaccharides - cellulose and chitin. Storage polysaccharides- starch and glycogen. Structure and biological functions of glucosaminoglycans or mucopolysaccharides.		

	С	Carbohydrates of glycoprotiens and glycolipids. Role of sugars in				
		biological recognition. Blood group substances. Ascorbic acid.				
	Unit 2	Amino acids and Proteins				
	A	Chemical and enzymatic hydrolysis of proteins to peptides, amino acid				
	Λ	sequencing. Secondary structure of protein, forces responsible for				
		holding of secondary structures. A- helix, β -sheets, super secondary				
		structure, triple helix structure of collagen. Tertiary structure of protein-				
		folding and domain structure. Quaternary structure				
	В	Amino acid metabolism- degradation and biosynthesis of amino acids,				
	Б	sequence determination: chemical/ enzymatic/ mass spectral,				
		racemization/ detection				
	С	Chemistry of oxytocin and tryptophan releasing hormone (TRH).				
	Unit 3	Nucleic Acids				
	A	Introduction, chemical and enzymatic hydrolysis of nucleic acids,				
	A	Structure physical and chemical properties of the heterocyclic bases –				
		Adenine, Guanine. Cytosine, Uracil and Thiamine.				
	В	Structure and synthesis of mono and poly – nucleosides and nucleotides.				
	Б	Deoxyribose nucleic acid (DNA): Primary, secondary, tertiary structure				
		of DNA.Structure of RNA. Types of RNA – mRNA, rRNA and tRNA.				
	С	The chemical basis for heredity, an overview of replication of DNA,				
		transcription, translation and genetic code.				
	Unit 4	Enzymes				
	A	Introduction and historical perspective, chemical and biological				
		catalysis, remarkable properties of enzymes like catalytic power,				
		specificity and regulation.				
	В	Nomenclature and classification, extraction and purification. Fischer's				
		lock and key and Koshland's induced fit hypothesis, concept and				
		identification of active site by the use of inhibitors, affinity labeling and				
		enzyme modification by site-directed mutagenesis.				
	С	Enzyme kinetics, Michaelis-Menten and Lineweaver Burk plots,				
		reversible and irreversible inhibition, mechanism of enzyme action				
	Unit 5	Steroids and Hormones				
	A	Occurrence, nomenclature, Diel's hydrocarbon and stereochemistry.				
	В	Isolation, structure determination and synthesis of Cholesterol, bile acids				
	С	Androsterone, testosterone, estrone, progesterone, vitamin D				
	Mode of	Theory/Jury/Practical/Viva				
	examination					
	Weightage	CA MTE ETE				
	Distribution	30% 20% 50%				
	Text Book/s*	1.A.L. Lehninger, Principles of Biochemistry, CBS Publishers, Delhi. 2.I.L. Finar Volume II.				
	Other references	1.D. Voet, J.G. Voet & CW Pratt, Fundamentals of Biochemistry, John Wiley & Sons,				
	New York. 2.H.R. Mahler and E.H. Cordes, Biological Chemistry, 2 nd Edition, Harper and Row					
	Pub., New York.					
		3.T.C. Bruice and S. Bentkovic, Bioorganic Mechanisms, Vol. I & II, W. A. Benjamin,				
1	New York.					

2.1 Template A1: Medicinal Chemistry (MCE203)

School: SBSR		Batch: 2021-23		
Program:M.Sc.		Current Academic Year: 2021-22		
Brai	nch:Chemistry	Semester:IV		
1 Course No.		MCE203		
2	Course Title	Medicinal Chemistry		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Elective		
5	Course Objective	 To provide a comprehensive introduction to Pharmaceutical Chemistry. To introduce the Quantitative structure activity relationship. To introduce the software used in drug designing. To explain the process of pharmacology. To introduce the chemistry of antineoplastic drugs. To throw light on the chemistry of Anti-HIV Drugs and AIDS and 		
6.	Course Outcomes	antibiotics. CO1:Explain concept of Quantitative Structure Activity Relationship. CO2:Understand the process of pharmacokinetic and pharmacodynamics. CO3:Elucidate the mode of action of Antineoplastic drugs. CO4:Explain the chemistry and mode of action of Anti-HIV and AIDS drugs. CO5:Explain the chemistry and mode of action of NSAID drugs and review the chemistry of Antibiotic drugs. CO6:Have a thorough grounding in Pharmaceutical Chemistry and basic knowledge in drug designing.		
Description and their mechanisms as applied to be discovered and developed, classified what happens when they reach the sireceptors, enzymes, and DNA. The a in the pharmaceutical industry and elements of the control		The course is emphasises on physical interactions and chemical reactions and their mechanisms as applied to biological systems, how drugs are discovered and developed, classified, how they get to their site of action, what happens when they reach the site of action in their interaction with receptors, enzymes, and DNA. The approaches discussed are those used in the pharmaceutical industry and elsewhere for the discovery of new drugs.		
8 Outline Syllabus				
	Unit 1	Drug Design and Development		
A		Procedures followed in drug design, concept of lead compound and lead modification		
	В	structure-activity relationship (SAR), Quantitative structure activity relationship (QSAR). History and development of QSAR. Physicochemical parameters: lipophilicity, Hydrophobicity, Electronic effect Steric factors, Hansch equation (Mathematical derivations of equations excluded).		
	С	Computer aided drug design. Software used in drug design.		
	Unit 2	Pharmacology		

	A	Beyond Boundaries
	Pharmacokinetics: various modes of administration of drug, distribution,	
	D	metabolism (biotransformation) and drug excretion
	В	pharmacodynamic: Concepts of drug receptors interactions
	С	Definition of the following medicinal terms: Pharmacon, pharmacophore,
		soft drug, prodrug, half-life, efficiency, LD50, ED50, therapeutic index,
		drug toxicity, drug addiction, spurious drugs, misbranded drugs,
		adulterated drugs, pharmacopoeia
	Unit 3	Antineoplastic Agents
	A	Introduction, cancer chemotherapy, special problems
	В	Role of alkylating agents and antimetabolites in treatment of cancer.
		Mode of action of mechlorethamine, cyclophosphamide, 5-Fluorouracil.
	С	Recent development in cancer chemotherapy.
	Unit 4	Anti-HIV Drugs and NSAIDs
	A	Basic facts about HIV & AIDS, Structure of HIV cell, Anti HIV drugs
		and their classification
	В	NSAIDS & Mechanism of Action:Asprin
	С	NSAID-Induced Side Effects
	Unit 5	Antibiotics
	A	Introduction, classification of antibiotics, β -lactam antibiotics & their
		mode of action - Amoxicillin, Chloramphenicol, Cephalosporin
	В	Tetracycline antibiotics & their mode of action, Aminoglycoside
		antibiotics & their mode of action - Streptomycin.
	С	Macrolide antibiotics & their Mode of action - erythromycin
	Mode of	Theory/Jury/Practical/Viva
	examination	
	Weightage	CA MTE ETE
	Distribution	30% 20% 50%
	Text book/s*	1.Strategies for Organic Drug Synthesis and Design, D. Lednicer, John
		Wiley & Sons Ltd.
		2A Text Book of Medicinal Chemistry, Vol-I and Vol-II, Surendra N.
		Pandeya, SG Publishers.
		3.An Introduction to Drug Design, S.S. Pandeya and J. R. Dimmock,
		New Age International Publishers.
		4.Medicinal Chemistry, Ashutosh Kar, New Age International
		Publishers.
		5.Goodman and Gilman's Pharmacological Basis of Therapeutics,
	0.1	McGraw-Hill.
	Other	1.Introduction to Medicinal Chemistry, A. Gringauge, Wiley-VCH.
	References	2. Wilson and Gisvold's Text book of Organic Medicinal and
		Pharmaceutical Chemistry, Edited by J.N. Delgado and W. A. Remers,
		J.B. Lipincott Company. 3 The Organia Chemistry of Drug Design and Drug Action B.B.
		3. The Organic Chemistry of Drug Design and Drug Action, R.B.
		Silverman, Academic Press.
		4.Burger's Medicinal Chemistry and Drug Discovery, Vol. I-V, Edited by M.F. Wolff, John Wiley & Sons Ltd.
		by M.E. Wolff, John Wiley & Sons Ltd

2.1 Template A1: Chemistry of Nanomaterials (MCE204)

School:SBSR		Batch:2021-23		
Pros	gram:M.Sc.	Current Academic Year: 2021-22		
	nch:Chemistry	Semester:IV		
1	Course Code	MCE204		
2	Course Title	Science and Technology of Nanomaterials		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Elective		
5	Course	1.Teach the advanced methods towards the synthesis of functional		
	Objective	materials.		
		2.Teach the advanced methods towards the synthesis of high-quality thin		
		films.		
		3. Teach the mechanical and magnetic behaviour of functional materials.		
		4.Teach the basics and phenomenon associated with the electrical and		
		optical behavior.		
		5.Teach modern spectroscopic and microscopic methods towards the		
		characterization of functional materials.		
		6. To understand the novel materials from synthetic, analysis and		
		application perspectives.		
6	Course	CO1:Formulate the synthetic methods towards preparation of novel		
	Outcomes	materials.		
		CO2:Prepare the mechanistic pathway towards facile synthesis of thin		
		films.		
		CO3:Understand the diverse magnetic behaviour of materials		
		CO4:Understand the various electro-optical phenomenon of the		
		materials.		
		CO5:Characterize the materials via spectroscopic and microscopic tools.		
		CO6:Understand the advanced synthetic perspectives along with		
		physical properties and the concept of Auger and X-ray		
7	Carras	Photoelectron Spectroscopy.		
7	Course Description	The elective course on Chemistry of Materials aims to teach the modern and advanced methods of synthesis, characterization and properties of		
	Describuon	novel materials.		
8	Outline extlabus			
<u> </u>		Synthesis Methods: Physicochemical Techniques		
	A	Preparation of materials by Ball milling, Attrition and Vibration milling,		
	11	Cluster compounds, Preparation of nano particles, Preparation of		
		nanostructured polymers/Conducting polymers, composites.		
	В	Chemical precipitation and co-precipitation, Wet chemical methods,		
		Metal crystals by reduction, Sol-gel synthesis		
		Microemulsions or reverse micelles, Hydrothermal & Solvothermal		
		synthesis, Thermolysis routes, Microwave heating synthesis,		
<u> </u>	1	synthesis, incliniorysis routes, inclowave nearing synthesis,		

		Beyond Boundaries					
		Electrochemical synthesis.					
	Unit 2			sition Techniques			
	A			; mass evaporation rate; evaporators, e-beam,			
				eam assisted deposition, Sputtering techniques			
	В		apor Deposition	n - reaction chemistry and thermodynamics of			
		CVD					
	С			sma enhanced CVD, Pyrolytic synthesis.			
	Unit 3	Unit 3: Properties: Mechanical and Magnetic					
	A	Stress Strain	n diagram for	different engineering materials, Ductile and			
		brittle mater	ial, Tensile stre	ength, Hardness, Impact strength			
	В	Fracture (Ty	pes and Ductil	e to brittle transition), Fatigue, Creep, Factors			
			fecting mechanical properties				
	С			c materials, Diamagnetism, Paramagnetism,			
				ia- and paramagnetism, Ferromagnetism,			
				nagnetism, Structure of Ferrite.			
	Unit 4		Electrical and				
	A	_		concepts: complex permittivity, dielectric loss			
				nism of polarization, classification of			
				ndence of dielectric constant			
	В			ectricity, pyro-electric states, transition			
				catastrophe, antiferroelectricity, ferro electric			
		domains.					
	С	Optical Properties: Refractive index and dispersion, Transmission,					
			Reflection and absorption of light, Optical material for UV and IR,				
		Optical anisotropic, Non-linear optical crystals, Photoluminescence					
	Unit 5	Structural Analysis					
	A	UV-visible, FT-IR, Raman and Atomic absorption spectroscopy; X-ray					
		diffraction					
	В	Glancing an	Glancing angle and wide angle, Debye-Scherer formula, Dislocation				
		density, Micro strain					
	С	•		X-ray photoelectron spectroscopy (XPS)			
	Mode of	Theory	1.				
	examination						
	Weightage	CA	MTE	ETE			
	Distribution	30%	20%	50%			
	Text book/s*			rials (Vol. 1 and 2) by E.N. Kaufmann, John			
		Wiley and S		, , , , , , , , , , , , , , , , , , , ,			
		•		of Materials', Volume III, by R. M., Rose			
			.	Edition, John Wiley, 1984			
	Other		1.Pradeep T., "NANO the Essential, understanding Nanoscience and				
	References	Nanotechnology". TataMcGraw-Hill Publishing Company Limited,					
		2007.					
			Poole Jr. "Inti	roduction to Nanotechnology", John Willey &			
		Sons, 2003					
5010, 2005							

2.3 A3: Community Connect:CCU401

Scho	ool: SBSR	Batch :2021- 2023			
Prog	gram: M.Sc.	Current Academic Year: 2021-22			
Brai	nch: Chemistry	Semester: II			
1	Course Code	CCU401			
2	Course Title	Community Connect			
3	Credits	2			
4	Contact Hours	2-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective				
		1. To expose our students to different social issues f	faced by the		
		people in different sections of society.	•		
		2. To connect their class-room learning with problem sol	ving skills in		
		real life scenario.			
6	Course Outcomes	After completion of this course students will be able to:			
		1. Recognise social problems prevailing in different	sections of		
		society and finding the solution in sustainable manner.			
		2. Get practical exposure of all round develop	ment which		
		complements their class room learning			
		3. These activities will add value to students, faculty mem	bers, school		
		and university.			
7	Course	In this mode, students will make survey, analyze data and			
	Description	results out of it to correlate with their theoretical knowled	ge. E.g.		
		Crops and animals, land holding, labour problems, medica	al problems		
		of animals and humans, savage and sanitation situation, waste			
		management etc.			
8	Outline syllabus				
	Unit 1	Introduction to the Topic			
	Unit 2	Drafting the questionairre			
	Unit 3	Survey			
	Unit 4	Data collection, Discussions and result interpretation			
	Unit 5	Report writing and Presentation			
	Mode of	Presentation and Viva			
examination		A TOURNAL WILL TATE			
	Weightage	CA MTE ETE			
	Distribution	60% 0% 40%			
	Text book/s*	- 40/0			
	Other References				
	Oniei Kelelelices	rences The entries in the list should be in alphabetical order.			

Journal article

Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995)

Article by DOI

Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z

Book

Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992)

Book chapter

Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002)

Online document

Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007

Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see

www.issn.org/2-22661-LTWA-online.php

For authors using End Note, Springer provides an output style that supports the formatting of in-text citations and reference list. End Note style (zip, 2 kB)

2.3 A3: Dissertation A:MCH276

School: SBSR		Batch :2021- 2023
Prog	gram: M.Sc.	Current Academic Year: 2021-22
Branch: Chemistry		Semester: V
1	Course Code	MCH276
2	Course Title	Dissertation A
3	Credits	2
4	Contact Hours (L-T-P)	0-0-6
	Course Status	Compulsory/Elective
5	Course Objective	 To enhance the practical knowledge and result analysis skills. To enable the students experience a real-life problem solving under the supervision of faculty members. To prepare the students perform functions that demand higher competence in national/international organizations. To train the students in scientific research. To help the students find meaning in life by broadening their field of vision. Develop deep knowledge of a specific area of specialization by literature search.
inquisitiveness in che CO2: Able to prepare CO3: Understand the qualitative and qualit CO4: Able to unders CO5: Able to analyse involved.		CO1: Able to do literature search, develop deeper interest / inquisitiveness in chemistry and interdisciplinary subjects. CO2: Able to prepare stock solutions, buffers etc. CO3: Understand the basics of chemistry and become familiar with qualitative and qualitative estimations. CO4: Able to understand the chemistry of reactions. CO5: Able to analyse the results and understand the chemical reactions involved. CO6: Enhance the practical skills.
7	Course Description	This course provides the applied knowledge of chemistry and gives confidence and a solid foundation for future learning.
	-	
8	Outline syllabus Unit 1	Introduction of subject / Literature search
		<u> </u>

	Beyond Bou			Beyond Boundaries	
1	Unit 2	Concept building and Study designing			
1	Unit 3	Experimen	Experimentation / Standardization of techniques Data collection, Discussions and result interpretation		
1	Unit 4	Data collec			
1	Unit 5	Report wr			
	Mode of examination	Presentation and Viva			
1	Weightage	CA MTE ETE			
	Distribution	60%	0%	40%	
	Text book/s*	-			
	Other References	Pubmed Search (NCBI) Review and research articles of Indexed Journals			

2.3 A3: Dissertation B: MCH275

	ool: SBSR	Batch :2021- 2023			
Program: M.Sc.		Current Academic Year: 2021-22			
Branch: Chemistry		Semester: VI			
1	Course Code	MCH275			
2	Course Title	Dissertation B			
3	Credits	6			
4	Contact Hours (L-T-P)	0-0-12			
	Course Status	Compulsory/Elective			
5	Course Objective	 To enhance the practical knowledge and result analysis skills. To enable the students experience a real-life problem solving under the supervision of faculty members. To prepare the students perform functions that demand higher competence in national/international organizations. To train the students in scientific research. Develop research/ experimentation skills as well as enhancing project writing and oral presentation skills Inculcate team spirit and time management. 			
6 Course Outcomes CO1: CO2:0 methor results CO3:1 higher CO4:1 discuss CO5: involv		CO1: Able to use lab instruments independently. CO2:Cultivate the understanding of problem, study design, methodology/ experimentation, significance of reproducibility of results. CO3:Understanding of ethics of science and research for supporting higher studies. CO4:Learn effective project organizational skills along with discussions, result interpretation and paper writing. CO5: Able to analyse the results and understand the chemical reactions involved. CO6: Enhance the practical skills.			

	T	Beyond Boundaries					
7	Course	This course will help to develop knowledge and research skills					
	Description	applicable to a career in chemistry.					
	1			·			
8	Outline syllabus	Outline syllabus					
	Unit 1						
	Unit 2	Concept building and study design					
	Unit 3	Experimentation/ Standardization of techniques					
	Unit 4	Data collection, Discussions and result interpretation					
	Unit 5	Report	writing				
	Weightage	CA	MTE	ETE			
	Distribution	60%	0%	40%			
	Text book/s*	-					
	Other References	Pubmed Search (NCBI)					
		Review and research articals of Indexed Journals					