

School of Basic Sciences and Research

Department of Chemistry and Biochemistry

Programme and Course Structure AY: 2019-21

MSc. in Chemistry

Program Code: SBR0101

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- **3.** Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School

Vision of the School Achieving excellence in the realm of science to address the challenges of evolving society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- **3.** To establish center of excellence for ecologically and socially innovative research.
- 4. To strengthen interinstitutional and industrial collaboration for skill development and global employability.

1.3 Vision and Mission of Department of Chemistry & Biochemistry

Vision of Chemistry & Biochemistry

Strive to achieve excellence in teaching and research in the field of Chemistry and Biochemistry and to build human resource for solving contemporary problems.

Mission of Chemistry & Biochemistry

- Providing distinctive and relevant education in Chemistry and Biochemistry to students.
- Motivating young minds through innovative teaching methods, to acquire theoretical knowledge and practical skills in different disciplines of chemistry and empowering them with problem solving skills.
- Nurturing innovation by carrying out world class research and scholarly work
- Promoting interdisciplinary research in collaboration with national/international laboratories/Institutions.

1.3 Programme Educational Objectives (PEO)

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing Post graduates to achieve.

PEO 1: To prepare students for advanced studies in Chemistry and its allied fields.

PEO2: To help students understand the value of advanced characterization techniques by gaining the knowledge of spectroscopy, chromatography and chemistry of natural products.

PEO 3: To expose the students to the practical aspects of chemistry by means of qualitative, quantitative and advance instrumental methods.

PEO 4: To develop the ability to communicate scientific information in written and oral formats.

1.3.3 Program Outcomes (PO's)

PO1: Gained knowledge, abilities and insight in well defined area of research within Chemistry.

PO2: Competency to work effectively and safely in a laboratory environment.

PO3: Developed communication skills, both written and oral, for specific for specialized audiences.

PO4: Acquired the skills of planning and conducting advanced chemical experiments and applying structural-chemical characterization techniques.

PSO1: Global level research opportunities to pursue Ph.D. programme and target the CSIR – NET examination.

PSO2: Explain the properties of metal Complexes and Transition Elements.

PSO3: Use spectrophotometer to find out the allowedness and analysis of known and unknown organic, inorganic and natural compounds through UV, IR NMR and Mass data.

PSO4: The broad education necessary to understand the impact of chemical solutions in a global and societal context.

Program Structure School of Basic Sciences & Research M. Sc. Chemistry Batch: 2019-21 TERM: I

S. No.	Subject Code	Subject Code Subjects Teaching Load		ing d	Credi	Pre- Requisite/Co	
			L T P			ts	Requisite
THE	ORY SUBJECTS	5				1	
1.	MCH131	Inorganic Chemistry-I	4	0	0	4	CC
2.	MCH132	Organic Chemistry-I	4	0	0	4	CC
3.	MCH133	Physical Chemistry-I	4	0	0	4	CC
4.	MCH134	Analytical Chemistry-I	4	0	0	4	CC
5.	MMT129	Introduction to MATLAB & its application	3	0	0	3	GE
Prace	Practical						
6.	MCH171	Inorganic Chemistry Lab-I	0	0	3	2	CC
7.	MCH172	Organic Chemistry Lab-I	0	0	3	2	CC
8.MCH173Physical Chemistry Lab-I00					3	2	CC
		TOTAL CREDITS				25	

Program Structure School of Basic Sciences & Research M. Sc. Chemistry Batch: 2019-2021 TERM: II

S. No.	Course Code Course			Teaching Load		Credi	Core/Elective
			L	L T P		ls	
THE	ORY SUBJECT	S					
1.	MCH135	Inorganic Chemistry-II	4	0	0	4	Core
2.	MCH136	Organic Chemistry-II	4	0	0	4	Core
3.	MCH137	Physical Chemistry-II		0	0	4	Core
4.	MCH138	Analytical Chemistry-II	4	0	0	4	Core
5.	MPH115	Renewable Energy Sources: Solar And Hydrogen Energy	4	0	0	4	GE
6.	CCU401	Community Connect	2	0	0	2	SEEC-1
Pract	Practical						
7.	MCH174	Inorganic Chemistry Lab-II	0	0	3	2	Core
8.	MCH175	Organic Chemistry Lab-II	0	0	3	2	Core
9.	MCH176	Physical Chemistry Lab-II	0	0	3	2	Core
		28					

Program Structure Template School of Basic Sciences & Research M. Sc. Chemistry Batch: 2019-2021 TERM: III

S.	Course	Course Course 1			ad		Core/Electiv
Ν	Code	Code		Т	P	Credits	e
0.							
TH	EORY SUB	JECTS					
1	MCH231	Molecular Spectroscopy	4	0	0	4	Core
	MCH232/	Inorganic Chemistry-III/	4	0	0	4	Core
2	MCH233/	Physical Chemistry-III/					
	MCH234	Organic Chemistry-III					
-	MCH235/	Inorganic Chemistry-IV/	4	0	0	4	Core
3.	³ MCH236/	Physical Chemistry-IV/					
	MCH237	Organic Chemistry-IV					
4	MCF201/	Environmental Chemistry /	4	0	0	4	DSE
4.	MEC202	Polymer Science and					
	MLC202	Technology					
Pra	actical						
_	MCH271/	Organic Chemistry Lab-III/	0	0	3	2	Core
5.	MCH272/	Physical Chemistry Lab-III/					
	MCH273	Inorganic Chemistry Lab-III					
6	MCH274	Dissertation-Part-A	0	0	6	4	Core
		TOTAL CREDITS	22				

Program Structure Template School of Basic Sciences & Research M. Sc. Chemistry Batch: 2019-2021 TERM: IV

S.	Course Code	Course	Teac	hing L	oad		
No ·			L T P Credits		Credits	Core/Ele ctive	
TH	THEORY SUBJECTS						
1.	MCH238/MC H239/MCH2 40	Inorganic Chemistry-V/ Physical Chemistry-V/ Organic Chemistry-V	4	0	0	4	Core
2.	MCH241/MC H242/ MCH243	Inorganic Chemistry-VI/ Physical Chemistry-VI/ Organic Chemistry-VI	4	0	0	4	Core
3.	MCE203/MC E204	Medicinal Chemistry/ Chemistry of Nanomaterials	4	0	0	4	DSE
Pra	Practical						
4.	MCH275	Dissertation-Part-B	0	0	12	6	Core
			18				

2.1 Template A1: Inorganic Chemistry-I (MCH131)

Schoo	ol: SBSR	Batch 2019-21				
Prog	ram: M.Sc.	Current Academic Year : 2019				
Bran	ch:Chemistry	Semester I				
1	Course Code	MCH131				
2	Course Title	Inorganic Chemistry I				
3	Credits	4				
4	Contact hours	4-0-0				
	Course Status	Compulsory				
5	Course	1.To provide an insight into bonding and structure of coordination				
	Objectives	compounds.				
		2.To explain the spectral and magnetic behaviour of coordination compounds.				
		3.To provide a thorough knowledge about the chemistry and application of				
		inner transition metals.				
		4.To discuss about various spectroscopic methods for structure elucidation of				
		inorganic compounds.				
		5. To explain the basics of radioactivity as well as various radio analytical				
		techniques.				
		6.To impart knowledge about structure, bonding and application of inorganic				
		compounds and radio chemistry.				
36	Course	CO1 : Explain the various theories of metal –ligand bonding				
	Outcome	CO2 : Explain the electronic spectra and magnetic properties of transition				
		metal complexes.				
		CO3 : Interpret the EPR and Mossbauer spectra				
		CO4 : Illustrate the chemistry and uses of inner transition metals				
		CO5 : Know about various radio-analytical techniques				
		CO6 : Gain knowledge about of various aspects of modern inorganic				
	~	chemistry				
7	Course	This course include basic concepts of metal –ligand bonding, magnetic and				
	Description	electronic properties of coordination compounds and their characterization				
		techniques. Chemistry of inner transition metals and nuclear chemistry are				
0		also discussed in this course.				
8	Outline Syllabus					
		Metal-ligand Bonding				
	A	Overview of crystal field and ligand field theories of 4-, 5-and 6-coordinated				
		complexes, d-orbitals splitting in linear, trigonal, octanedral, square planar,				
	D	tetrahedral, square pyramidal, trigonal-bipyramidal and cubic complexes				
	В	distortion nonholouvetic series				
		Alsonion, nephetauxeuc series				
		information compounds: Composition of ligand groups of actabation				
		ingana group orbitals, molecular orbital energy diagrams of octanedral,				
		overlan model				
	TT:4 2	Overlap model Electronic Supertur and Magnetic Ductorities of Transities Match				
	Unit 2	Electronic Spectra and Magnetic Properties of Transition Metal				

	Complexes	Complexes						
А	Interpretation of elect	tronic spectra, Orgel diagrams, Tanabe-Sugano diagrams						
	for transition metal co	omplexes (d ¹ - d ⁹ states), calculations of Dq, B and β						
	parameters							
В	charge transfer spectr	a, spectroscopic method of assignment of absolute						
	configuration in optic	cally active metal chelates and their stereochemical						
	information							
C	anomalous magnetic	moments, magnetic exchange coupling, temperature						
	independent paramag	netism (TIP) of complexes, spin cross over						
	phenomenon. Effect	phenomenon. Effect of temperature on their magnetic properties						
Unit 3	Chemistry of Inner	Transition Elements						
Α	General discussion or	General discussion on the properties of the f-block elements.						
В	Redox, Spectral and I	Magnetic properties.						
C	Use of Lanthanide co	ompounds as shift reagents. Photophysical properties of						
	Lanthanide complexe	Lanthanide complexes.						
Unit 4	Characterization Te	Characterization Techniques						
А	EPR spectroscopy-ba	sic principle, hyperfine and superhyperfine lines,						
	anisotropy, g values,	application in selected inorganic compounds.						
В	Mossbauer Spectrosc	opy-Gamma ray emission and absorption by nuclei,						
	Mossbauer effect —	conditions, Doppler effect, instrumentation, chemical						
	shift examples, quadr	rupole effect,						
C	Use of Mössbauer sp	ectra in chemical analysis, typical spectra of iron and tin						
	compounds.Optical re	otatory dispersion (ORD) and circular dichroism (CD).						
Unit 5	Nuclear Chemistry							
Α	Nuclear structures an	d nuclear stability. Nuclear models ; radioactivity and						
	nuclear reactions. De	tection and measurement of radiation. Tracer techniques.						
В	Study of chemical rea	actions, isotope exchange reactions, kinetic isotope						
	effect, nuclear activat	tion analyses, Principle of nuclear detection, gas						
	detector, ionization cl	hamber, proportional and G. M. detector.						
C	Radioactive Techniq	<i>jues:</i> Detection and measurement of radiation- GM						
	ionization and propo	rtional counters. Radiometric analysis: Isotope dilution						
	analysis, age determ	ination, neutron activation analysis (NAA) and their						
	applications. Radiatio	on hazards and safety measures.						
Mode of	f Theory/Jury/Practical	/Viva						
examina	ition							
Weighta	ige CA MTH	<u>s ette</u>						
Distribu	tion 30% 20%	50%						
Text bo	ok/s* 1.Inorganic Chemistr	y, J.E. Huhey, Harper & Row.						
Other	1.Concise Inorganic	Chemistry, J. D. Lee, Elbs with Chapman and Hall,						
Referen	ces London.							
	2. The Chemical bond	1, J.N.Murre I, SFA Kettle and JM. Tedder, Wiley, New						
	York.							
	Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley.							

2.1 Template A1: Organic Chemistry-I (MCH132)

School	SBSR	Batch 2019-20
Progra	m: M.Sc.	Current Academic Year : 2019
Branch	: Chemistry	Semester I
1	Course No.	MCH132
2	Course Title	Organic Chemistry 1
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course status	Compulsory
5	Course	1.To enhance the analytical ability of students about the basic and modern
	Objective	concepts of conjugation, resonance and aromaticity.
		2. To impart knowledge of mechanistic, kinetic and thermodynamic aspects
		of i. nucleophilic and electrophilic substitution. ii. Reaction conditions.
		products formation and mechanisms of some named reactions iii addition
		products formation and mechanisms of some named federations. In: addition
		2 To tooch the concerts and critical hand forming reactions and reaction
		5.10 teach the concepts and childran bond forming feactions and feaction
		intermediates in organic synthesis and molecular rearrangements
		4. To make the student conversant with - the basic concepts in
		stereochemistry.
		5.To discuss the Conformational analysis, reactivity, chirality,
		interconversion, resolution and asymmetric synthesis.
6.	Course	The students will acquire the knowledge and analytical ability to
	Outcomes	CO1. Rationalize the concept of Aromaticity, nonaromaticity and
		antiaromaticity in carbocyclic and heterocyclic compounds
		CO 2. Solve the reactions and analyze the conditions, products formation
		and mechanisms of different reactions.
		CO3. Recognize the correct reaction intermediate formation and different
		aspects of their stability and reactivity. CO4 Critically avaming the chirality/prochirality in the molecules and
		understand the eventio and diastereospecific/selective reactions
		CO5 Conformational analysis of cycloalkanes reactivity chirality
		interconversion resolution and asymmetric synthesis
		CO6 The students will be able to acquire the skills for recognizing the
		reaction, rationalizing their mechanism kinetic vs thermodynamic
		considerations critical analysis of intermediates and correct stereochemical
		assignment and interpretation in rather simple organic molecules and
		reactions.
7	Course	This course tends to the build the foundation of Organic Chemistry that
	Description	provides the insight of different aspects of organic reactions in terms of
		energy considerations, stereochemical implications, mechanistic approach
		and involvement of intermediates.
8	Outline syllab	us

С	elimination rea	actions of cyclo	hexyl halides, de-amination of 2-				
	aminocyclohex	aminocyclohexanols, elimination vs substitution competition and					
	neighboring group participation reactions of acyclic and cyclic						
	molecules.						
Mode of	Theory/Jury/Pra	actical/Viva					
examination							
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text Book	1.Stereochemistry, P. S. Kalsi, New Age International.						
	2.Organic Chen	nistry, R. T. Morr	ison and R. N. Boyd, Prentice-Hall.				
	3. Reaction Me	chanism in Organ	nic Chemistry, S. M. Mukherji and S.				
	P. Singh, Macm	nillan.					
Other references	1. Advanced O	rganic Chemistry	Reactions, Mechanism and Structure,				
	Jerry March, Jo	hn Wiley.					
	2.Stereochemistry of Organic Compounds By Ernest Ludwig Eleil,						
	Samual H. Wilen.						
	3.Stereochemis	try of Organic Co	mpounds: Principles and Applications				
	by D. Nasipuri						

2.1 Template A1: Physical Chemistry-I (MCH133)

School:	SBSR	Batch : 2019-21
Program	m:M.Sc.	Current Academic Year: 2019
Branch	:Chemistry	Semester:I
1	Course Code	MCH133
2	Course Title	Physical Chemistry I
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Objective	 To provide the understanding of physical states of matter and their practical applications. To define how the initially primitive models of real gases in physical chemistry are elaborated to take into account more detailed observations. To understand the concept of partial molar quantities and their variation with temperature and pressure. The concept of ensembles, partition function and their applications in studying gaseous molecules. To understand the concept and different theories of ions and electrolyte interactions To discuss the theoretical aspects of chemical kinetics and the importance of account of the provide the provi
6	Course	rate equations and different theories for studying the kinetics of complex reactions. 6. To provide an in-depth analysis of various phenomenon, laws and applications of States of Matter, Thermodynamics, Electrochemistry, Phase Equilibrium and Chemical Kinetics
	Outcomes	 the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamics and the concept of third law of thermodynamics. CO3: Familiarize with the applications of partition function and statistics in understanding the thermodynamics of molecules. CO4: Understand the concept of electrical double layer at the electrode electrolyte interface by studying different proposed models of it. CO5: Understand the detailed concepts of kinetics and its applications, Influence of physical and chemical parameters on reaction rates in solutions CO6: Do the in-depth analysis of various phenomenon and laws of States of Matter, applications of Thermodynamics, Electrochemistry and Chemical Kinetics and different functions of statistical thermodynamics.
7	Course Description	The course is framed to give broad view of states of matter, chemical potential, concepts of electrical double layer in solutions and various models to explain it. Concept of existence of different phases in the form of phase diagrams and their existence with changing variables.

8	Outline syllabus							
	Unit 1	States of Matter						
	A	(a) Gaseous State : Maxwell–Boltzmann distribution of molecular velocities						
		of gases (b) Liquid State: Structure of liquids, Radial distribution functions						
	В	Monte-Carlo method, Molecular dynamics.(c) Solid State: Types of solids,						
		Debye- Scherrer method of X-ray structure analysis of crystals, indexing of						
		reflections,						
	С	structure of simple lattice and X-Ray intensities, structure factor and its						
		relation to intensity and electron density, Rietveld analysis, particle size of						
		crystallites.						
	Unit 2	Thermodynamics						
	А	Essentials of thermodynamics, fugacity, standard state of real gases, the						
		relation between fugacity and pressure, Partial molar quantities, chemical						
		potential and Gibbs-Duhem equation,						
	В	Classius – Clayperon equation; law of mass action and its thermodynamic						
		derivation, variation of chemical potential with temperature and pressure,						
		chemical potential for an ideal gas, determination of partial molar volume,						
	С	thermodynamic functions of mixing (free energy, entropy, volume and						
		enthalpy), third law of thermodynamics, residual entropy, meaning and scope						
		of irreversible thermodynamics.						
	Unit 3	Statistical Thermodynamics						
	А	Concept of distribution, Thermodynamic probability and most probable						
		distribution. Ensembles, Canonical, grand canonical and microcanonical						
		ensembles.						
	В	Partition function - Translational, Rotational, Vibrational and Electronic						
		partition functions, calculation of thermodynamic properties in terms of						
		partition function. Applications of partition functions.						
	С	Heat capacity behaviour of solids - Chemical equilibria and equilibrium						
		constant in terms of partition functions, Fermi-Dirac statistics, distribution						
		law, Bose-Einstein statistics - distribution law, Evaluation of Lagrange's						
		undetermined multipliers.						
	Unit 4	Electrochemistry						
	А	Debye-Huckel theory of ion- ion interactions, Debye-Huckel limiting law of						
		activity coefficients and its limitations,						
	В	Debye - Huckel -Onsager treatment for aqueous solutions and its limitations,						
		Wein effect, Debye – Falkenhagen effect.						
	C	The electrode-electrolyte interface: The electrical double layer -The						
		Helmholtz-Perrin parallel plate model, the Gouy-Chapman diffuse-charge						
		model and the Stern model, excess function						
	Unit 5	Chemical Kinetics						
	Α	Simple collision theory of reaction rates, Arrhenius equation and activated						
		complex theory (ACT), thermodynamic treatment, chain reactions (hydrogen-						
		halogen reactions) decomposition of N ₂ O ₅						
	В	Theory of unimolecular reactions: Lindemann – Hinshelwood mechanism of						
		unimolecular reactions, RRKM and Slater treatment,						
	С	Factors affecting rate of chemical reactions in solution Effect of solvent and						

r							
		ionic strength (Primary salt effect) on rate constants, secondary salt effect.					
	Mode of	Theory/Jury/Practical/Viva					
	examination						
	Weightage	CA	MTE	ETE			
	Distribution	30%	20%	50%			
	Text book/s*	1.Physical C	1.Physical Chemistry, P. W. Atkins, Oxford University Press, New York.				
		2.Textbook of Physical Chemistry by K. L. Kapoor (Volume 1)					
		3.Textbook of	of Physical Che	emistry by K. L. Kapoor (Volume 3)			
		4.Textbook of Physical Chemistry by K. L. Kapoor (Volume 5)					
	Other	1. Physical Chemistry, I.N. Levine, Tata McGraw Hill Pub. Co. Ltd., New					
	References	Delhi.					
		2. Compreh	ensive Physic	al Chemistry by N.B.Singh, N.S.Gajbhiye and			
		S.S.Das, New Age publishers, New Delhi					
		3. Chemical	Kinetics, K. J.	Laidler, Harper & Row, New York.			
		4. Physical C	Chemistry by D	.A.McQuarrie and J.D.Simon			

2.1 Template A1: Analytical Chemistry-I (MCH134)

School	SBSR	Batch : 2019-2021
Progra	m: M.Sc	Current Academic Year: 2019
Branch	: Chemistry	Semester: I
1	Course Code	MCH134
2	Course Title	Analytical Chemistry I
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	 Provide and enrich the students to analytical techniques, various types of errors knowingly/ unknowingly introduced, accuracy and confidence limit in analytical process. Provide detailed insight of chemical equilibrium and its effect in chemical analysis of analyte. Provide detailed technical knowledge of various chromatogaraphic separation techniques based on physical state, contact and separation mechanism. Provide detailed technical knowledge of gas, thin layer chromatographic, integrated LC-MS and GC-MS separation techniques for qualitative and quantitative analysis. Enable the students to study the thermal behaviour of different compounds and study temperature dependent decomposition process and structural elucidation of unknown analyte. CO6:Estimate the temperature dependent weight loss in compound and model and optimize suitable temperature condition for further chemical processing.
6	Course Outcomes	CO1: Apply the knowledge of analytical techniques to minimize the error and report the outcomes of analysis with high precision and accuracy, CO2: Understand the role of different analytical techniques used for the separation of compounds present in very small quantity, CO3:Understand the role of chemical equilibrium in chemical analysis, CO4: Segregate and select the suitable indicator for measurement of pH, CO5: Purify the various compounds for their further detailed structural elucidation and molecular mass analysis, CO6. To learn analytical tools involving Chromatographic methods and thermo-analytical instruments of a lab for the identification of equilibrium process.
7	Course Description	Analytical chemistry I emphasizes on various factors as - types of errors, accuracy and precision in chemical analysis, concepts of chemical equilibrium and its effects on qualitative and quantitative estimation, Chromatographic separation and Thermal analysis.

8	Outline syllabus				
	Unit 1	Introduction to Analytical Chemistry			
	А	Scope & objectives of Analytical chemistry and chemical analysis,			
		Classification of analytical methods. Errors in chemical analyses- Accuracy			
		and precision			
В		Types of error-determinant, indeterminate and gross. Nature of random errors,			
		statistical treatment of random errors, standard deviation of calculated results,			
		reporting of calculated data			
	С	ways of expressing accuracy and precision, variance and confidence limit.			
		Comparison of mean with true values, regression analysis (least-square			
		method for linear plots)			
	Unit 2	Concept of Equilibrium			
	A	General treatment of equilibria in aqueous medium involving monoprotic			
		weak acid and weak base, and salts of weak acids and weak bases			
	В	Activity and activity coefficient: Effect of electrolytes on chemical equilibria.			
		Calculation of pH			
	С	Constructing titration curves from charge balance and mass balance equations.			
	-	Acid-base titrations and theory of pH indicators.			
	Unit 3	Chromatographic Methods-I			
	А	General principle, classification of chromatographic methods based on			
		physical state, contact and separation mechanism			
	В	Nature of partition forces. Chromatographic behavior of solutes.			
		Chromatographic resolution, selectivity factor and column efficiency.			
	С	Column chromatography: Nature of column materials, Preparation of the			
		column, Solvent systems, detection methods and applications.			
	Unit 4	Chromatographic Methods-II			
	А	Gas chromatography- principle, experimental technique, carrier gas, sample			
		injection, column, detector and application			
В		High Performance Liquid Chromatography (HPLC): instrumentation- solvent			
		and reservoirs, pumping system, sample injection, Column, detectors			
	С	Thin layer chromatography: coating of materials, preparation of TLC,			
		Solvents, methods of detection and applications. Theory and application of			
		LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS.			
	Unit 5	Thermal Analysis			
	А	Principle, different methods of thermal analysis, i) Thermo gravimetric			
		methods of analysis(TG/DTG): Instrumentation, thermogram and information			
		from thermogram, factors affecting thermogram, applications TGA for			
		quantitative analysis (TG analysis of CaC_2O_4 .H ₂ O, CuSO ₄ .5H ₂ O, dolomite			
		ore, etc.)			
	В	Problems based TGA, ii) Differential Thermal Analysis (DTA):			
		Instrumentation, general principles, differential thermogram, DTA and TG			
		curve together, Applications (DTA analysis of mixture of polymers. DTA of			
		$CaC_2O_4 H_2O$, DTA of CuSO ₄ 5H ₂ O).			
	С	Differential Scanning Calorimetry (DSC): Principle, Instrumentation, and			
		Applications (DSC curve of polyethylene terphthalate. DSC curve for			
		isothermal crystallization of polyethylene DSC of phenacetein), thermometric			

			S Seyona Boanaaries		
	titrations, Evolved gas	analysis.			
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1.Analytical Chemistry-An Introduction, 7 th Edition, D. A. Skoog, D.M. West,				
	F.J. Holler, S.R. Crouch, Saunders College Publishing, Philadelphia, London.				
Other References	1. Modern Methods of Chemical Analysis, 2 nd Edition, R. L. Pecsok, L. D.				
	Shields, T. Cairns and L.C. Mc William, John Wiley, New York.				
	2. Analytical Chemistry, 5 th Edition,G. D. Christian, John Wiley & Sons, New				
	York.				
	3. Analytical Chemistry: Principles, 2 nd Edition, J. H. Kennedy, Saunders Holt,				
	London.		-		

2.1 Template A1: INTRODUCTION TO MATLAB AND ITS APPLICATIONS (MMT129)

Scho	ool: SBSR	Batch : 2019-2021				
Prog	gram: M.Sc.	Current Academic Year: 2019				
Brar	ch: Mathematics	Semester: I				
1	Course Code	MMT-129				
2	Course Title	INTRODUCTION TO MATLAB AND ITS APPLICATIONS				
3	Credits	3				
4	Contact Hours (L-T-P)	3-0-0				
	Course Status	Compulsory				
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts for MATLAB and cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific programming problems including curve fitting, ODE solving etc.				
6	Course Outcomes Course Description	 CO1: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop program scripts and functions using the MATLAB development environment. (K4, K5) CO6: Write the program for evaluates linear system of equations, ordinary differential equations in MATLAB. (K5,K6) The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Syntax and interactive computations, programming in MATLAB using scripts and functions, rudimentary algebra and analysis. One- and two-dimensional graphical presentations. Examples on engineering applications. 				
8	Outline syllabus	Introduction to MATLAB				
	Unit 1	Introduction				
	А	Vector and matrix generation, Subscripting and the colon notation.				
	В	Matrix and array operations and their manipulations.				
	С	Introduction to some inbuilt functions.				
	Unit 2	Relational and Logical Operators				
	A	Flow control using various statement and loops including If-End statement, If-Else –End statement				
	D	nested II-EISe-End Statement,				

	С	For – End and While-End loops with break commands.						
	Unit 3	m-files						
	A	Scripts and f	Scripts and functions					
	В	concept of lo	concept of local and global variable					
	С	Few example	es of in-built fu	nctions, editing, saving m-files.				
	Unit 4	t 4 Two dimensional Graphics						
	Α	and annotation in a figure						
	В	multiple plot	s in a figure					
	С	saving and p	rinting figures					
Unit 5 Applications of MATLAB								
	А	Solving a lin	Solving a linear system of equations,					
	В	Curve fitting	with polynom	ials using inbuilt function such as polyfit,				
		solving equations in one variable,						
	С	Solving ordinary differential equations using inbuilt functions						
	Mode of	Theory						
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text book	An introduct	ion to MATLA	B : Amos Gilat				
	Other	1. A	Applied Numeri	cal Methods with Matlab for engineering and				
	References	Scien	itists by steven	chapra, Mcgraw Hill.				
		2. 0	Betting started v	with Matlab: RudraPratap				

2.1 Template A1:Inorganic Chemistry-II (MCH135)

School: S	BSR	Batch : 2019-21
Program	: M.Sc.	Current Academic Year: 2019
Branch:(Chemistry	Semester: II
1	Course Code	MCH135
2	Course Title	Inorganic Chemistry II
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course	1.To introduce the basics concept of molecular symmetry and
	Objective	group theory
		2.To demonstrate the various application of group theory in
		spectroscopy
		3.To provide an introduction to basic concepts of organometallic
		chemistry
		4. To explain to the student the various application of organometallic
		chemistry in industry
		5.10 provide information various industrially important
		organometallic compounds.
		6.10 provide structure, bonding and reactivity of transition metal
6	Course	Coll-Understand the various basics concert of melocular symmetry.
0	Outcomes	and group theory
	Outcomes	CO2 Apply their knowledge of group theory to understand the
		principles of spectroscopy
		CO3:Know the basic concepts of organometallic chemistry and its
		application in industry.
		CO4: Explain the structure and reactivity of transition metal alkyl,
		aryl, alkene, alkynes, allyls, dienyl and arene and carbine complexes.
		CO5: Gain insight about transition metal carbonyls, nitrosyls and
		phosphin complexes.
		CO6: Gain knowledge about advanced topics like organometallic
		chemistry and group theory.
7	Course	The course includes the basic concept of group theory and its
	Description	application in chemistry; as well as organometallic chemistry of
		transition metals.
8	Outline syllabus	3
	Unit 1	Molecular symmetry
	A	Introduction, Meaning and examples of different symmetry elements
		and generated operations; and general rules, Derivation of matrices
		for rotation; reflection; rotation ; reflection and inversion operations

	Seyond Boundaries
В	Symmetry operations of all the molecular point groups (C_n , D_n , C_{nh} , $D_{nb}C_{nv}$, D_{nd} , S_n , T, T _d , T _h , O, O _h , I and I _h); Determination of the
	classes of operations by similarity transform method (only C_{2v} , C_{2h} , C_{3v} , S_4) and general rules
С	Defining properties of 'group'; Types of groups (Isomorphic, Cyclic and Abelion); Subgroups; reducible and irreducible representations
Unit 2	Application of Group Theory
A	Great Orthogonality Theorem, construction of character table for C_{2v} and C_{3v} point group
 В	Optical activity and dipole moment
С	Application of group theory to electronic and vibrational spectroscopy
Unit 3	Organometallic Chemistry-I
A	General Characteristics of organometallic compounds, Ligand hapticity, electron count for different types of organometallic compounds, 16 and 18 electron rule and exceptions, Fluxionality in organometallic complexes. Stereochemical non-rigidity in organometallic compounds.
В	Synthesis, structure and bonding of organolithium and organomagnesium compounds
С	Organometallic reagents in organic synthesis and in homogeneous catalytic reactions (Hydrogenation, hydroformylation, isomerisation, polymerisation and metathesis).
Unit 4	Organometallic Chemistry-II
A	General synthetic routes, nature of bond and structural characteristics of alkyl, aryl, alkene, alkynes, allyls, dienyl and arene complexes of transition metals.
 В	Structure and bonding of metallocenes.
С	Synthesis, structure and reactivity of metal carbene and carbynes
Unit 5	Organometallic Chemistry-III
А	Ligand behavior of CO, General methods of preparation, structures, bonding, and vibrational spectra of metal (Fe, Ru, Os, Cr, Ni)

	carbonyls.						
В	Ligand beha	avior of NO (N	NO⁺, NO⁻ a	nd bridging NO), preparation,		
	structures, b	onding and im	portant reac	ctions of nitrosyls	s of Cr, Fe and		
	Ru						
C	Preparation,	structure, bon	ding and r	eactivity of meta	al phosphines.		
	Comparison	of phosphine a	and carbony	l ligands in term	s of bonding.		
		/D / 1/17					
Mode of	Theory/Jury	/Practical/Viva					
examination							
Weightage	CA	MTE	EI	ΓE			
Distribution	30%	20%	50%				
Text book/s*	1. Inorganic	Chemistry, J.E	. Huhey, H	arper & Row.			
	2.Organometallic Chemistry, R.C.Mehrotra and A.Singh, New Age						
	Internationa	1.					
Other	1. Advanced	l Inorganic Che	emistry, F.A	A. Cotton and Wi	lkinson, John		
References	Wiley						
	2. Introducti	on to Ligand fi	elds, B.N.	Figgis, Wiley, No	ew York.		
	3. The Orga	anometallic Ch	emistry of	the Transit ion	Metals, R.H.		
	Crabtree, Jo	hn Wiley.					
	4. Transiti	on metal c	hemistry,	Fundamental	concept and		
	applications	, A.Yamamoto	, John Wile	y, 1986.	-		

2.1 Template A1: Organic Chemistry-II (MCH136)

School:	SBSR	Batch : 2019-21				
Program	n:M.Sc.	Current Academic Year: 2019				
Branch	Chemistry	Semester:II				
1	Course	MCH136				
	No.					
2	Course	Organic Chemistry II				
	Title					
3	Credits	4				
4	Contact	4-0-0				
	Hours (L-					
	T-P)					
	Course	Compulsory				
	Status					
5	Course	1. To conceptualize the critical C-C bond forming reactions and in				
	Objective	organic synthesis and molecular rearrangements using enolates/				
		enamines/ metal catalyst or orgaganometallic compounds				
		2. To develop the critical thinking to analyze the conditions required for				
		C=C bond formation				
		3. To discuss the mechanism of various famous name reactions.				
		4. To elaborate the process of oxidation and reduction in organic				
		reactions by giving the example of suitable name reactions and				
		develop understanding of the functional mode of different oxidation				
		reduction reagents.				
		5. To recognize the factors that drives a reactant to undergo				
		rearrangement reaction and understand the different name reactions				
6	Course	The students will be able to				
0	Outcomes	The students will be able to- 1 compile the different ways to form C C hand and associated name				
	Outcomes	reactions				
		2 formulate his/her own reasoned opinions in the mechanistic side of				
		2. Torindrate his/her own reasoned opinions in the meenanistic side of $C=C$ bond forming organic reactions				
		3 enlist a number of oxidizing reagents and analyze the change in				
		oxidation state during the oxidation reaction.				
		4. understand the functional mode of various reducing reagents.				
		5. various name reactions and popular rearrangement reactions.				
		6. develop critical thinking and deep understanding of mechanistic				
		pathways of vast variety of reactions involving new formation,				
		reduction, oxidation and rearrangement reactions.				
7	Course	This course utilizes the basics developed in organic chemistry to				
	Description	understand the mechanism and in-depth understanding of bond forming				
		(C-C or C=C), Redox, Rearrangement and important name reactions.				
8	Outline sylla	bus				
	Unit 1	Single bond (C-C) formations				

А	Chemistry of enolates (kinetic and themodynamic) and enamines,
	lithium and boron enolates in aldol and Michael reactions, alkylation and
	acylation of enolates,
В	Knoevenagel, Claisen, Dieckmann, Perkin, Stobbe, Darzen, Acyloin
	condensations, organolithium, organomagnesium (Grignard), organozinc,
	organocopper (Gilman & Normant) reagents in synthesis
С	epoxidations (Sharpless, Jacobsen and Shi), Metal catalyzed C-C bond
	formations (Negishi, Heck, Stille, Suzuki, Sonogashira, Buchwald-
	Hartwig and Ullmann
Unit 2	Double bond (C=C) formations
А	Dehydration of alcohols, β -eliminations (Hoffman & ester pyrolysis),
	Cope elimination, Phospohorus, nitrogen and sulfur ylids,
В	Wittig reaction, Wittig-Horner reaction, Tebbe olefination, Julia
	olefination, Mannich reaction, Robinson annulation, Peterson olefination,
	McMurry reaction, Shapiro reaction, selenoxide elimination
С	Corey-Winter reaction, olefins from epoxides, olefin metathesis
	(Schrock's catalyst, Grubbs' catalyst), ring closing metathesis, enyne
	metathesis, Thorpe reaction
Unit 3	Oxidation
А	Oxidations of hydrocarbons (alkanes, alkenes and aromatic), alkenes to
	epoxides (peroxides/per acids based), alkenes to diols, Sharpless
	asymmetric dihydroxylation,
В	Prevost reaction and Woodward modification, alkenes to carbonyls with
	bond cleavage, alkenes to alcohols/carbonyls without bond cleavage
	(Wacker oxidation),
С	ketones to α -hydroxy ketones, α , β -unsaturated ketones and ester/lactones,
	alcohols to carbonyls, alcohols to acids or esters, phenols (Fremy's salt,
	silver carbonate), Swern oxidation.
Unit 4	Reduction
А	Catalytic reduction (Pt, Pd, Ni), Dissolving metal reductions (alkali
	metals in Liq. NH ₃ and Zn, Sn), Reduction by hydride transfer reagents
	(Complex hydrides of Li, B, Si and Na);
В	Steroeselectivity of reduction with small hydride donors;
	Electroreduction with metals, Reduction with non-metals (HI, Diimides
	and hydrazine),
С	Reduction of epoxides, Reduction with enzymes-Bakers yeast, microbial
	reductions (NADH model etc.)
Unit 5	Name Reactions and Molecular Rearrangements
А	Mechanism of Hoffmann Curtius, Schimidt, Lossen rearrangement,
	Beckmann rearrangement, Nef reaction
В	Mechanism of Baeyer Villiger Favorskii and Sommelet-Hauser
	rearrangement, Brook rearrangement
C	Baylis-Hillman reaction, Henry reaction, Ritter reaction, Sakurai reaction,
	Tishchenko reaction, Ugi reaction
Mode of	Theory/Jury/Practical/Viva
examinatio	

n								
Weightage	CA	MTE	ETE					
Distributio	30%	20%	50%					
n								
Text	1.Organic r	eactions and	their	mechanisms,	P.S.	Kalsi,	New	Age
Book/s*	International.							
	2. Stereochemistry, P. S. Kalsi, New Age International.							
	3. Organic Chemistry, R. T. Morrison and R. N. Boyd, Prentice-Hall.							
	4.Reaction Mechanism in Organic Chemistry, S. M. Mukherji and S. P.							
	Singh, Macn	nillan.						
Other	1.Advanced	Organic Cher	nistry	Reactions, M	echan	ism and	d Stru	cture,
references	Jerry March,	John Wiley.	•					

2.1 Template A1: Physical Chemistry-II (MCH137)

Scho	ool: SBSR	Batch : 2019-21
Prog	gram:M.Sc.	Current Academic Year: 2019
Bra	nch:Chemistry	Semester:II
1	Course Code	MCH137
2	Course Title	Physical Chemistry II
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course	1. To familiarise students with theoretical and mathematical aspects of
	Objective	quantised energy levels of particle in box
		2. To introduce the theoretical concept of Hydrogen atom and hydrogen
		molecule and hydrogen molecule ion.
		3. To infer the concept of Charge on colloids, electro kinetic phenomenon's
		and different theories on colloids
		4. To prioritise the surface phenomenon's and different equations and
		theories to explain them.
		5. To describe equilibrium processes of one and more than one component
6	Comme	systems such as congruent, Peritectic and Monotectic Systems.
0	Course	colline concepts of quantum mechanics and its mathematical
	Outcomes	CO2: The regults and their analysis obtained on the basis of MOT
		and VRT for hydrogen atom, molecule and ion
		CO3: The nomenclature of particles on the basis of particle size and
		different theories and results related to stability of colloids
		CO4: The concept of surface tension, micellization and
		solubilisation.
		CO5: The concept of existence of different phases with change in
		different variables by visualizing the phase diagrams
		CO6: The concept of quantum mechanics, their application to MOT
		and VBT, how to draw phase diagrams and importance of colloids
		and surface chemistry in daily life, their concepts, phenomenon and
		mathematical equations.
7	Course	Concept of Quantum mechanics and its applications in MOT and VBT
	Description	were shared with students. Theories of colloids and concepts of surface
		chemistry were discussed. The phase diagram of different component
		systems were discussed and explained how to plot them.
8	Outline syllabus	
	Unit 1	Quantum Mechanics
	А	Matter waves, The Uncertainty principle, The wave nature of the
		electron, Interpretation of wave function, Normalized and orthogonal
		wave functions, Linear and Hermitian operators, Commutation of
		operators, Eigen value and Eigen function

	В	The wave equation, Particle in one dimensional box, particle in three
		dimensional box, particle in a ring, Degeneracy.Angular momentum
		operator, Ladder operator,
	С	Hydrogen atom: Schrodinger wave equation, Transformation of
		coordinates, separation of variable in polar spherical coordinates and its
		solution, principal, azimuthal and magnetic quantum numbers and their
		magnitude, probability distribution function, radial distribution function
		and shape of atomic orbital's (s,p & d), Virial theorem.
	Unit 2	Chemical Bonding
	А	Born Oppenheimer Approximation, The ionic bond, The variation
		method, Ground state energy of the hydrogen atom,
	В	Huckel molecular orbital theory of conjugated systems, delocalisation
		energy and Secular equations, Molecular orbital theory – Hydrogen
		molecule ion,
	С	Valence bond theory- Hydrogen molecule, Simple homo and hetero
		nuclear diatomic molecules, Electronic spectra, effect of substituent on
		spectra.
	Unit 3	Colloids
	А	Introduction, Origin of the charges, electro-kinetic phenomena,
	D	electrophoresis, electro osmosis, sedimentation and streaming potential.
	В	The concept of electrical double layer and various models to explain its
	0	structure and properties,
	C	DLVO theory and stability of colloids. Smoluchowski theory of kinetics
		of coagulation and distribution of colloids aggregates. Organic and
	IImit 1	Surface Chemistry and Micelles
		Surface Chemistry and Micelles
	A	Laplace equation Kalvin equation: Watting: Young Dupra equation:
	D	Adsorption in liquid systems: Cibbs adsorption isotherm: Adsorption on
	D	Adsorption in inquid systems. Orbos adsorption isotherm, Adsorption of solids: Langmuir isotherm BET isotherm transition state theory of
		surface reactions: rates of chemisorption and desorption
	С	Micelles-Surface active agents and their classification micellization
	C	hydrophobic interaction critical micellar concentration (cmc) factors
		affecting cmc of surfactants counter ion binding to micelles
		thermodynamics of micellization-phase separation and mass action
		models, solubilization, micro emulsions, reverse micelles.
-	Unit 5	Phase Equilibria
	A	Statement and meaning of the terms in Gibbs phase rule; Thermodynamic
		derivation of Gibb's phase rule, phase equilibria of water, Hellium and
		carbon systems;
	В	Two component solid-liquid equilibria (example of Cu-Ni alloy,Bi - Cd
		system and CuSO ₄ – H ₂ O System): simple eutectic; congruent melting
		type; peritectic type and monotectic type phase diagrams,
	С	concept of Phase equilibria of three component systems - CaO-Al ₂ O ₃ -
		SiO ₂ and Acetic acid-water-Butanol system, Phase-Transformations in

Mode of	Theory/Jury/Practical/Viva		
examination			
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	1.Physical C	hemistry, P. W	. Atkins, Oxford University Press, New York.
	2.Physical C	hemistry, I.N. I	Levine, Tata McGraw Hill Pub. Co. Ltd., New
	Delhi.		
	3. Physical (Chemistry of S	urfaces by A. W. Adamson, John Wiley and
	Sons.		
Other	1.Theoretica	I Inorganic Che	emistry by M.C.Day and J.Selbin
References	2. Applied C	Colloid and Sur	face Chemistry by R. M. Pashley and M. E.
	Karaman, W	iley Publication	ns.
	4.Comprehen	nsive Physical	Chemistry by N.B.Singh, N.S.Gajbhiye and
	S.S.Das, Ne	w Age publishe	ers, New Delhi
	5.Physical C	hemistry by D.	A.McQuarrie and J.D.Simon

2.1 Template A1: Analytical Chemistry-II (MCH138)

School: SBSR		Batch : 2019-21	
Program: M.Sc.		Current Academic Year: 2019	
Branch: Chemistrv		Semester: II	
1	Course Code	MCH138	
2	Course Title	Analytical Chemistry II	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Objective	 Understand the theories and principles of qualitative and quantitative analysis through optical and spectroscopic technique. Analyse the textural information of bulk materials and particle dimension. Carry out qualitative and quantitative analysis employing descriptive knowledge of electrochemistry and electrochemical titration. Separate and estimate macromolecule (proteins, enzymes, blood and natural products) electrocanalytically. 	
		5.Effectively use various sensors for estimation and gain idea about developing technologically potent sensor materials.6. To learn the advance spectroscopic and microscopic methods for the analysis of molecular materials.	
6	Course Outcomes	 CO1: Understand various optical and spectroscopic methods for qualitative and quantitative analysis of metals and non metal to trace level. CO2: Evaluate the properties of materials such as porosity, density and microstructure of materials. CO3: Develop new synthetic routes involving electrochemical redox process. CO4: Understand principles of Cyclic Voltammetry and Electrophoresis. CO5: Develop quick, sensitive and selective sensory materials for qualitative and quantitative estimation of analyte. CO6: Investigate the molecular materials using advanced spectroscopic and microscopic techniques. 	
7	Course Description	Analytical chemistry II emphasizes on various parts of analytical methods as - Atomic Spectroscopy comprises of AAS, AES and ICPMS, Electron Microscopic techniques comprises of SEM, TEM and FESEM, Polarography and amperometry, Cyclic voltammetry and electrophoresis Chemical sensors	
8	Outline syllabus		
	Unit 1	Atomic Spectroscopy	
	A	Theory, sources, burners, atomic emission spectra, atomic absorption spectra, effect of temperature on emission and absorption,	

	Instrumentation for AES and AAS, standard addition and internal
	standard method of analysis
В	Comparison of atomic absorption and emission methods, Applications of
	AAS and AES
	Features of atomic mass spectroscopy, Atomic weight in mass
	spectroscopy, mass to charge ratio
С	Types of atomic mass spectroscopy, quadruple mass analyzer, time of
	flight mass analyzer, Inductively coupled mass spectroscopy (ICPMS),
	Instrumentation for ICPMS, Applications of ICPMS
Unit 2	Electron Microscopic Techniques
A	Basic principle, instrumentation and application of Transmission Electron Microscope (TEM) and HRTEM
В	Basic principle, instrumentation and application of Scanning Electron
	Microscope (SEM)
С	Basic principle, instrumentation and application of FESEM
Unit 3	Electroanalytical Technique I
А	Polarography
	Introduction, Instrumentation, Ilkovic equation and its verification
В	Derivation of wave equation, Determination of half wave potential,
	qualitative and quantitative applications
C	Amperometry: Basic principles, instrumentation, nature of titration
TI :4 4	curves and analytical principles
	Electroanalytical lechnique II
A	cyclic voltammetry Cen design, instrumentation, current-potential
	interpretation of voltammograms
В	Electrophoresis: Separation by adsorption-Affinity techniques, affinity
	elution from ion exchangers and other adsorbents
С	Pseudo affinity adsorbents, polyacrylamide get electrophoresis,
	isoelecrictric focusing, isotachophoresis
Unit 5	Chemical Sensors
А	Principles, types of chemical sensors based on the modes of
	transductions, Types of chemical sensor based on the chemically
5	sensitive materials
В	solid electrolyte, gas, semiconductor, Humidity sensors, Biosensors
C	sensors
C	Electrochemical sensors (Potentiometric sensors, Ion-selective
Madaaf	The arm/Imm/Processional/Vive
wode of	Theory/Jury/Practical/viva
Weightage	
Distribution	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Text hook/s*	Principles of Instrumental Analysis Skkog Holler Nieman (Sivth Ed.)
 Other	1) Introduction to Instrumental Analysis by R D Brown Mc Graw Hill
References	(1987)
References	(1707)

 S S Beyond Boundaries
2) Instrumental methods of chemical analysis by H. willard, L.Merrit,
J.A. Dean and F.A. settle. Sixth edition CBS (1986)
3) Fundamentals of Analytical Chemistry, 6th edition, D.A. Skoog, D.M.
West and F.J. Holler, Saunders college publishing.
4) Principles of Instrumental Analysis, Skkog, Holler, Nieman, (Sixth
Ed.)
5) Introduction to instrumental analysis by R. D. Braun, MC. Graw Hill-
International edition.
6) Analytical Chemistry, Ed. by Kellner, Mermet, otto, Valcarcel,
Widmer, Second Ed. Wiley – VCH
7) Electron microscopy in the study of material, P. J Grundy and G. A
Jones, Edward Arnold.

Sahaala SDSD		Potob + 2010 2021
Duggangen M.S.		Datch : 2019-2021
Program: MI.SC		Current Academic Fear: 2019
Brancn:		Semester: II
		MDII115
1	Course Code	MPH115 Demonrable Energy Countries
2	Course Title	Kenewable Energy Sources
3	Credits	4
4	Contact	4-0-0
	Hours	
	$\frac{(L-1-P)}{C}$	C 1
~	Course Status	Compulsory
5	Course	1. 1. To know the importance of Physics and Materials Science.
	Objective	2. To utilize the various synthesis procedure to develop materials.
-	~	3. To explain the practical application of materials in various area
6	Course	CO1: Learn the basics of Materials/Technology
	Outcomes	CO2: Understand the correlation between Applied science and
		Technology
		CO3: Apply the concept of materials and technology at certain
		levels.
		CO4: Develop devices using materials.
		CO5: Create the path to handle materials.
		CO6: Expertise in various tools will make a bridge between
		industry and students and find out the platform for employment
		in high tech industries
7	Course	This course is based on renewable energy that is collected from renewable
	Description	resources, which are naturally replenished on a human timescale, such as
		sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy often
		provides energy in four important areas: <u>electricity generation</u> , <u>air and water</u>
0	Outling gullaby	<u>nearing/cooning</u> , <u>mansportation</u> , and <u>rurar (on-grid)</u> energy services
0	Unit 1	Notural and Banawahla Enangy Basaynoog
		Natural and Renewable Energy Resources
	А	Natural resources and associated problems, Porest, water, Milleral, Pood,
	D	Energy and Land resources
	В	Use and over-exploitation, Concept of an ecosystem, Environmental
	0	Pollution, Nuclear hazards
	C	Renewable Energy sources: Definition and types of renewable sources, wind,
	Unit 2	Solar Energy: Fundamental and Material Aspects
		Solar Energy: Fundamental and Waterial Aspects
	А	Pundamentals of photovoltaic Energy Conversion Physics and Material
	D	Properties, Types of solar energy conversion
	В	solar mermal: basics and design of water neaters, solar ponds, Basic to
	9	Photovoltaic Energy Conversion: Optical properties of Solids
	C	Direct and indirect transition semiconductors, interrelationship between
		absorption coefficients and band gap recombination of carriers.

2.1 Template A1: Renewable Energy Resources (MPH115)

Unit 3	Solar Energy	: Different Ty	pes of Solar Cells		
А	Types of Sola	r Cells, p-n jur	nction solar cell, Transport Equation, Current		
	Density, Oper	n circuit voltag	e and short circuit current		
В	Brief descript	ion of single ci	systal silicon and organic and Polymer Solar		
	Cells, Elemen	tary Ideas of A	dvanced Solar Cells e.g. Tandem Solar cells,		
	Solid Liquid J	unction Solar	Cells		
С	Nature of Sem	Nature of Semiconductor, Principles of Photo-electrochemical Solar Cells.			
Unit 4	Hydrogen Energy: Fundamentals, Production and Storage				
А	Hydrogen as a	Hydrogen as a source of energy, Solar Hydrogen through			
	Photoelectroly	sis, Physics of	f material characteristics for production of		
	Solar Hydroge	en			
В	Brief discussion	on of various s	torage processes, special features of solid		
	hydrogen stor	age materials			
С	Structural and	l electronic ch	aracteristics of storage material, New Storage		
	Modes.				
Unit 5	Hydrogen Energy: Safety and UtilizationVarious factors relevant to safety, use of Hydrogen as Fuel, Use in				
А					
	Vehicular transport, Hydrogen for Electricity Generation				
В	Fuel Cells, Various type of Fuel Cells, Applications of Fuel Cell				
С	Elementary concepts of other Hydrogen- Based devices such as Hydride				
	Batteries				
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1.Fundamenta	lls of Solar Cel	ls Photovoltaic Solar Energy		
	:Fahrenbruch	&Bube			
Other	1.Solar Cell D	evices-Physic	s :Fonash		
References	2. Phoptoelect	trochemical Sc	lar Cells: Chandra		
	3. Hydrogen a	is an Energy C	arrier Technologies Systems Economy :		
	Winter &Nite	h (Eds.)			
	4. Hydrogen a	is a Future Eng	geryCarrier : Andreas Zuttel, Andreas		
	Borgschulte a	nd Louis Schla	upbach		

Г

Т

2.1 Template A1: Molecular Spectroscopy (MCH231)

School: SBSR		Batch : 2019-21	
Pro	gram:M.Sc.	Current Academic Year: 2019	
Bra	nch:Chemistry	Semester:III	
1	Course No.	MCH231	
2	Course Title	Molecular Spectroscopy	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
	Course Status	Compulsory	
5	Course	1.To know the principle and applications of molecular spectroscopy.	
	Objective	2.To understand the theories of UV, FT-IR, Raman, NMR, and Mass	
		spectroscopic techniques.	
		3. Analyze and identify simple organic molecules by using UV, IR, Mass,	
		¹ H NMR and ¹³ C NMR data.	
		4.To evaluate the application of NMR and Mass spectroscopic techniques	
		to different molecules.	
		5.To know the principle and instrumentation of different	
		spectrophotometric techniques.	
		6.To impart the knowledge of electronic, rotation, vibration. NMR, FTIR,	
		ESR, spectroscopy and their applications	
6	Course	CO1:Explain the general principles and theory of spectroscopy,	
	Outcomes	distinguish the specialities and applications of various types of	
		spectroscopic methods.	
		CO2:Describe the concept and instrumentation of atomic uv-visible	
		absorption, infrared NMR and Mass spectrometers.	
		CO3: Apply Woodward Fieser Rules.	
		CO4:Understand first and second order ¹ HNMR spectra.	
		CO5:Solve analytical science problems involving uv-visible absorption,	
		infrared ¹ H, ¹³ C and mass techniques.	
		CO6:Predict UV, IR, Proton chemical shift, spin-spin coupling, coupling	
		constants and apply ¹³ C resonance spectroscopy and mass spectroscopy to	
		chemical structures.	
7	Course	The course is framed to give fundamental concepts of UV-Visible, IR,	
	Description	¹ HNMR, ¹³ CNMR and Mass spectroscopy. Applications of these	
		spectroscopic techniques to organic/inorganic systems will be discussed.	
8	Outline syllabus		
	Unit 1	UV-Visible Spectroscopy	
	А	Lamberts-Beers law, Electronic spectra, Frank-Condon Principle.	
		predissociation spectra, Fortrat diagram	
	В	conjugated polyene and enone systems, and different types of charge	
		transfer transitions and their basis	

С	Charge transfer spectra in organic and inorganic systems
Unit 2	Infrared Spectroscopy
А	Basic principle and sample handling. Modes of stretching and bending, bond properties and absorption trends
В	Survey of vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds.
С	Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and Fermi resonance.
Unit 3	Nuclear Magnetic Resonance Spectroscopy-I
A	¹ H NMR - Effect of magnetic field strength on sensitivity and resolution, chemical shift δ , inductive and anisotropic effects on δ , chemical structure correlations of δ , chemical and magnetic equivalence of spins, spin-spin coupling, structural correlation to coupling constant J
В	first order and second order spectra, examples of AB, AX, ABX, AMX and AA'BB' systems, simplification of second order spectrum, selective decoupling, double resonance; classification of splitting pattern; spin; de coupling; chemical exchange; effect of deuteration
С	Structural elucidation of organic compounds using ¹ H NMR technique
Unit 4	Nuclear Magnetic Resonance Spectroscopy-II
A	¹³ C NMR- Introduction, interpretation of ¹³ C NMR spectra, Chemical shifts and its calculation
В	proton coupled and decoupled spin-spin splitting; Application of DEPT technique to the analysis of CH multiplicities in ¹³ C NMR spectroscopy. Correlation spectroscopy - Illustration of practical applications of ¹ H- ¹ H COSY, ¹ H- ¹³ C COSY.
С	Nuclear overhauser enhancement (NOE).Basic concept of Heternonuclear (F, P, Si) NMR.
Unit 5	Mass Spectrometry
А	Measurement technique (El; FAB); Resolution; exact masses of nucleides; molecular ions; isotope ions; fragment ions of odd and even

	electron types; rearrangement ions				
В	factors affecting cleavage patterns; simple cleavage; cleavage at a hetero atom; multi centre fragmentation				
С	Structure elucidation of organic compounds employing mass spectroscopy; Special methods of GCMS; High resolution MS.				
Mode of examination	Theory/Jury/Practical/Viva				
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text Book/s*	1.Spectroscopy of Organic Compounds – P.S.Kalsi, 6th edition, 2004.2.Molecular Spectroscopy – Banwell, 5th Edition, 2013				
Other	1.Applicatio	ns of Absorpti	on Spectroscopy of Organic Compounds –		
ReferencesDyer, 1st Edition, 2009. 2.Spectroscopic Methods in Organic Chemistry by D.H. Wil Fleming, 4th edition, Tata McGraw-Hill Publishing compan Delhi. 			n Organic Chemistry by D.H. Williams and I. McGraw-Hill Publishing company Ltd., New on of Organic Compounds- R. M. Silverstein, 7th Edition, 2005. rganic Chemistry by R. S. Drago, Affiliated on of organic compounds by Kiemle Webster 005		

2.1 Template A1: Inorganic Chemistry-III (MCH232)

School: SBSR		Batch 2019-21		
Prog	gram: M.Sc.	Current Academic Year : 2019		
Bra	nch: Chemistry	Semester III		
1	Course No	MCH232		
2	Course Title	Inorganic Chemistry III		
3	Credits	4		
4	Contact	4-0-0		
	hours(L-T-P)			
	Course Status	Compulsory		
5	Course	1. To explain the reaction mechanism of an inorganic reaction.		
	Objectives	2.To discuss factors affecting stability of complexes.		
		3.To explain the route of addition of molecules in a reaction.		
		4.To have an overview of chemistry of CO complexes.		
		5.To explain the concept of stereoisomerism in inorganic complexes.		
		6.To demonstrate mechanisms of substitution reaction and compare it		
		with associative reaction.		
6	Course	CO1: Explain the trends of rate constants and its determination with		
	Outcome	different methods.		
		CO2: Provide explanation for substitution in octahedral and square planar		
		complexes.		
		CO3: Explain ligand replacement reactions under different conditions.		
		CO4: Distinguish between oxidative addition and reductive elimination		
		mechanisms.		
		CO5: Analyze the chemistry of carbonyl compounds and metal hydrides.		
		CO6: Gain knowledge about various aspects of inorganic reaction		
		mechanism		
7	Course	The course gives a detailed view of reaction mechanism, electron transfer		
	Description	mechanisms, oxidative addition and insertion reactions of transition		
		metal complexes.		
8	Outline syllabus			
	Unit 1	Reaction Mechanism of Transition metal complexes-I		
	А	Rate Law, Steady state, Activated complex theory. Stepwise and overall		
		formation constants, their interaction		
	В	determination of formation constant by pH-meter, Job's method and		
spectrophotometery. Trends in stepwise constants		spectrophotometery. Trends in stepwise constants		
	С	factors affecting the stability of metal complexes with reference to the		
		nature of metal ion and ligand. Chelate effect and its thermodynamic		
		origin		
	Unit 2	Reaction Mechanism of Transition metal complexes-II		
	А	Inert and labile complexes, mechanisms of substitution reactions		
		(dissociative, associative interchange mechanism), the conjugate		
		mechanism,		
	В	direct and indirect evidence in favour of conjugate mechanism,		

				🥆 🥓 Beyond Boundaries	
		substitution in cis and trans complexes, isomerism of chelate rings, <i>trans</i>			
effects, explanation for <i>trans</i> effect			as effect		
	С	Ligand replacement reactions of square planar and octahedral complexes:			
		their factors	and mechanisn	n of substitution, Anation reactions.	
-	Unit 3	Electron Tr	ansfer Mecha	nisms	
	А	Inner sphere	and outer sphe	re reactions and their mechanisms	
	В	Racemizatio	n and Isomeriz	ation, Effect of ligand field on reaction rates	
	С	Mixed valen	ce complexes,	Marcus-Husch theory, Thermal and optical	
		electron tran	sfer reactions.		
	Unit 4	Oxidative-A	ddition and N	figration (Insertion Reactions)	
	А	Introduction: Acid base behaviour of metal atoms in complexes,			
		Protonation	and Lewis Ba	ase behaviour, acceptor properties of Lewis	
		acidity of co	mplexes		
	В	oxidative a	ddition and 1	reductive elimination, addition of specific	
		molecules, H	lydrogen addit	ion, HX additions, Organic halides addition of	
		some other	molecules pr	roductive elimination, migration (Insertion)	
		reaction			
	С	promotion o	f alkyl migrat	ion, insertion of CO into M-H bonds, other	
		aspects of	CO insertion	reactions, Insertion of alkenes and C-C	
		unsaturated	compounds, (Cleavage of C-H bonds; alkane activation,	
		Cyclometallation reactions.			
	Unit 5	Metal Hydr	ide Complexe	8	
	А	Synthesis, st	Synthesis, structure and reactions of hydrido complexes, characterization		
		of complexes, molecular hydrogen compounds-synthesis and reactions			
	В	Mononuclear polyhydrides, homoleptic polyhydride anions; carbonyl			
		hydrides and anion			
	С	MH interacti	ons; synthetic	applications of metal hydrides	
	Mode of	Theory/Jury/	Practical/Viva		
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*	1.J.E.Huheey	y. Inorganic Ch	emistry: Principles of Structure and	
		Reactivity. H	larper Inter sci	ence.	
	Other	1.William L.	Jolly, Modern	Inorganic Chemistry, 2 nd Edn, Tata McGraw	
	References	Hill.			
		2.E. A. V. J	Ebsworth, D.	W. H. Rankin and S. J. Cradock. Structural	
		methods in I	norganic Chem	istry, Blackwell Scientific Oxford.	
		3.1. P. Atkin	s, T. Overton,	J. Rourke, M. Weller, F. Armstrong, Shriver	
		and Atkins.	norganic Chen	nistry, Oxford University Press.	
		4.1. Moeller	. Inorganic Che	emistry: A Modern approach, John Wiley.	
		5.F. Basalo a	ind R.G.Pearso	n, Mechanism of Inorganic reactions,2 nd Edn	
1		,Wiley Eastern Ltd., New Delhi			

2.1 Template A1:Physical Chemistry-III (MCH233)

School: SBSR		Batch 2019-21		
Prog	ram: M.Sc.	Current Academic Year : 2019		
Bran	ch : Chemistry	Semester III		
1	Course Code	MCH233		
2	Course Title	Physical Chemistry III		
3	Credits	4		
4	Contact hours	4-0-0		
	Course Status	Compulsory		
5	Course	The main objectives of this program is to:		
	Objectives	1: To provide deep knowledge on advanced quantum chemistry.		
		2: To provide a thorough proficiency in approximate methods in		
		quantum chemistry.		
		3: To enable students to interpret many electron systems quantum		
		mechanically.		
		4: To impart knowledge on kinetics of complex reactions.		
		5: To make the student understand the kinetics of reaction in solution		
		6: Apply the knowledge about quantum chemistry and kinetics to		
6		solve real life problems .		
6	Course Outcome	After successful completion of the course, the students will be able		
		CO1: understand different polynomials and their application.		
		CO2. apply the knowledge of time dependent perturbation theory a		
		CO_{3} apply the quantum chemistry knowledge to apply the		
		behaviour of multi electron systems		
		Denaviour of multi-electron systems.		
		CO4. explain the knewledge of kinetics of reactions in solution		
		to solve kinetics problems		
		CO7 Apply knowledge quantum chemistry to solve real life		
		problems and kinetics to understand mechanism of reactions		
7	Course			
	Description			
8	Outline Syllabus			
	Unit 1	Advanced Quantum chemistry: Prerequisite		
	А	Legendre, associated Legendre polynomials; Hermite polynomials;		
		Lagurre and associated Lagurre polynomials; polynomials as		
		orthonormal functions, their properties; step-up and step-down		
		operators, application to single electron and multi-electron atom,		
	В	eigen-ket-ladder and formulation of spherical harmonics from		
		angular momentum rules, finite rotation operation vs. angular		
		momentum operators, spin angular momentum, Pauli spin matrices		
		— spin eigenfunctions and their properties.		

	С	coupling of angular momentum for many electron system, spin-orbit	
		coupling, Molecular term symbols. Quantum tunnel effect. Fermi and	
		Bose gases.	
	Unit 2	Approximate methods	
	А	Time dependent perturbation theory, semi classical treatment of	
		radiation-matter interaction, transition probability and rates,	
		Einstein's A and B coefficients, selection rules; Oscillator strength,	
	В	Variation theorem and variational methods: principles of linear and	
		non-linear variation methods,	
	С	stationary perturbation theory for non-degenerate and degenerate	
		states - applications to rotator, Stark effect.	
	Unit 3	Many electron systems	
	A	Antisymmetry of many electron wave function, spin and spatial	
		orbitals, Slater determinant; closed-shell and open-shell electron	
		configurations: multi-electron pure-spin state wave functions -	
		examples with 2- and 3-electron systems,	
	В	formulation of a multi-electron closed-shell electron configuration	
		energy, introduction of core. Coulomb and exchange integrals with	
		their properties - example of He atom, independent particle model.	
		multi-electron atomic Hartree Hamiltonian and related SCF equations	
		solution.	
	С	Roothaan-Hartree-Fock method vertical ionization potential and	
		Koopman's theorem: Problems with open-shell systems. Restricted	
		and unrestricted HF methods (elementary idea), discussion of	
		electron correlation.	
	Unit 4	Kinetics of complex reactions	
	A	Application of statistical mechanics to transition state theory,	
		comparison of transition state theory with experimental results,	
		Kinetics of complex reactions (reversible, simultaneous and	
		consecutive).	
	В	chain reactions; branched and non-branched kinetic rate equations,	
		population explosion, upper and lower ignition/explosion limits:	
		thermal ignition and ignition temperature: chemical oscillation:	
		conditions for oscillation, chemistry of BZ reaction (Brusselator	
		model); autocatalysis,	
	С	Fast reactions, experimental techniques for fast reactions (stopped-	
	-	flow, temperature- jump and flash photolysis	
	Unit 5	Reactions in solution	
	A	Reaction between ions, effect of solvent (single & double sphere	
		models), interpretation of frequency factor and entropy of activation.	
		influence of ionic strength, salt effect, reactions involving dipoles,	
	В	influence of pressure and volume on reaction rates in solution.	
		Intermolecular potential and centrifugal barrier. impact parameter.	
		collision cross section and rate, energy threshold, opacity function	
		and reaction cross section	
	С	Discussion of physicochemical techniques for kinetic study	
L	~	2 is the set of physics of the internation of the study.	

Mode of	Theory/Jury/Practical/Viva		
examination			
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	1. 1. Quantum Chemistry, I.M. Levine, Prentice Hall.		
	2. 2. Chemical Kinetics, K. J. Laidler, Harper & Row, New York.		
Other References	1. 1. Quantum Chemistry by D.A.McQuarrie Viva Books		
	2. Quantum Chemistry, H. Eyring, J. Walter and G.E. Kimball, (1944) John		
	Wiley, New York.		
	3. Foundations of Chemical Kinetics – S.W. Benson		

2.1 Template A1:Organic Chemistry-III (MCH234)

School: SBSR		Batch 2019-21		
Progra	m: M.Sc.	Current Academic Year : 2019		
Branch	: Chemistry	Semester III		
1	Course No.	MCH234		
2	Course Title	Organic Chemistry III		
3	Credits	4		
4	Contact	4-0-0		
	Hours (L-T-			
	P)			
	Course Status	Compulsory		
5	Course	1.Oxidation and reduction reagents and their application for functional		
	Objective	group conversion in organic synthesis.		
		2.Explain retro-synthesis of aromatic, alicyclic and aliphatic		
		compounds and synthons.		
		3. The ability to recognize reagents for functional group		
		transformations.		
		4. Retrosynthetic simplification of target molecules and to provide		
		forward synthetic proposals.		
		5. Designing a retrosynthetic approach for the synthesis of a target		
6	0			
0	Course	CO1:Role of various reagents used in organic chemistry.		
	Outcomes	cO2: Have a thorough grounding in protection and deprotection		
		CO2. Identify the components of retrocynthesis		
		CO4/Understand the synthesis and properties of metallocanes, non		
		benzenoids and polycyclic aromatics		
		CO5: Design a green synthesis using principles of prevention of		
		waste/by-products/toxic products_atom economy		
		CO6: Gain in-depth knowledge in synthetic organic chemistry		
7	Course	The aim of this organic chemistry course is to provide an in-depth		
,	Description	overview of retrosynthetic analysis and the disconnection approach. These		
	Desemption	are fundamental concepts used by organic chemists in designing the		
		synthesis of target molecules in sectors such as pharmaceuticals.		
		agrochemicals and fine chemicals.		
8	Outline syllabu	IS		
	Unit 1	Reagents in Organic Synthesis		
	А	Use of the following reagents in organic synthesis and functional group		
		transformations; Gilman's reagent, lithium diisopropylamide (LDA),		
		dicyclohexylcarbodiimide(DCC)		
	В	1,3-dithiane (reactivity Umpoloung), trimethylsilyl iodide, tri-n-butyltin		
		hydride, DDO		

	С	Phase transfer catalysts, crown ethers and Merrifield resin, Wilkinson's catalyst, Baker yeast.
	Unit 2	Protection and Deprotection of Functional Groups
	A	Protection and deprotection of hydroxy, carboxyl, carbonyl, carboxy groups
	В	Protection and deprotection of amino groups and carbon-carbon multiple bonds
	С	chemo- and regioselective protection and deprotection, illustration of protection and deprotection in multi-step synthesis
	Unit 3	Retrosynthetic Analysis
	A	Basic principles and terminology of retrosynthesis, guidelines, synthesis of aromatic compounds
	В	one group and two group C-X disconnections, one group C-C and two group C-C disconnections, amine and alkene synthesis
	С	important strategies of retrosynthesis, functional group transposition, important functional group interconversions, reversal of polarity (umpolung)
	Unit 4	Metallocenes, Non-benzenoid Aromatics and Polycyclic Aromatic compounds
A General considerations, synthesis and reactions of some compounds - tropone, tropolone, azulene B General considerations, synthesis and reactions of some compounds - ferrocene, fluorine		General considerations, synthesis and reactions of some representative compounds - tropone, tropolone, azulene
		General considerations, synthesis and reactions of some representative compounds - ferrocene, fluorine
	С	General considerations, synthesis and reactions of some representative compounds - phenanthrene and indene.
	Unit 5	Green Chemistry
A Principles of Green Chemistry, Concept of atom econor Green Chemistry: Alternative feedstocks/starting materia Solvents, Product/target molecules, Catalysis and proce chemistry.		Principles of Green Chemistry, Concept of atom economy, Tools of Green Chemistry: Alternative feedstocks/starting materials, Reagents, Solvents, Product/target molecules, Catalysis and process analytical chemistry.
	В	Evaluation of chemical product or process for its effect on human

	health and environment, Evaluation of reaction types and methods to			
	design safer chemicals. Evaluating the effects of Chemistry			
С	Toxicity to humans	s, Toxicity to wild	dlife, Effects on local environment,	
	Global environmental effects. Planning a green synthesis.			
Mode of	Theory/Jury/Practic	cal/Viva		
examination		Г		
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text Book/s*	1.Organic reactions	and their mechan	nisms, P.S. Kalsi, New Age	
	International.			
	2.Reagents for Org	anic Synthesis, L.	F. Fieser and M. Fieser.	
	3.Organic Synthesis: The Disconnection Approach, Stuart Warren, Paul			
	Wyatt.			
	4. Organic Chemistry, I.L. Finar Volumes I & II.			
	0			
Other	1. Anastas, P., and Williamson, T. C., Green Chemistry Frontiers in			
references	Benign Chemical Synthesis and Processes, Oxford University Press			
	(1999).	5		
	2.Ahluwalia, V. K.	, and Kidwai, M.,	New Trends in Green Chemistry,	
	Anamava Publisher	rs (2004).	57	
	3. Protective Group	s in Organic Synt	hesis, Peter G. M. Wuts, T.W.	
	Greene.	<u>0</u> » j ····		
	4 Sheldon R A A	rends I and Han	nefed U Green Chemistry and	
	Catalysis Wiley-V	CH Verlag Gmb	H and C_{0} (2007)	
	\Box Catalysis, whey-w	CIT VEHag OIIIDI	1 and CO. (2007).	

2.1 Template A1:Inorganic Chemistry-IV (MCH235)

School: SBSR		Batch 2019-21
Prog	gram: M.Sc.	Current Academic Year : 2019
Bra	nch:Chemistry	Semester:III
Cou	rse Code	MCH235
Cou	rse Title	Inorganic Chemistry IV
1	Credits	4
2	Contact Hour	4-0-0
	Course Status	Compulsory
5	Course	1. To describe about the structure, properties and uses of inorganic chains.
	Objective	2. To provide information about inorganic ring compounds.
		3. To introduce the basic concepts about cluster structure and their
		reactivity.
		4. To illustrate the basic concepts of inorganic photochemistry.
		5.To describe the various photochemistry of various inorganic metal
		complexes.
		6. To know about the application of photochemistry.
6	Course	CO1: Explain the structure, properties and uses of inorganic cages and
	Outcome	chains.
		CO2: Describe the structure and properties of inorganic rings.
		CO3: Predict the structure of inorganic clusters using Wade's rule.
		CO4: Understand photochemical reactions of various coordination
		compounds.
		CO5: Apply the knowledge of photochemistry in real life problems.
		CO6: Gain knowledge about advanced topics like inorganic
		photochemistry and inorganic clusters
7	Course	The course is designed to appraise the chemistry of inorganic chains,
	Description	cages, rings, clusters. The photochemistry of inorganic compounds is also
		covered in detail.
8	Outline syllabus	
	Unit 1	Chains and Cages
	А	Structural aspects of silicate minerals and silicones, Zeolites-Structure,
		applications and synthesis, Intercalation Chemistry, One dimensional
		conductors, (SN)x chains.
	В	Cages: Electron deficient bonding in higher boranes and its derivatives,
		Types of heteroboranes with special reference to carboranes, structure,
		bonding and IUPAC nomenclature.
	С	Metallaboranes, metal σ and μ bonded borane/carborane clusters.
Rese		Resemblance of Metallaboranes with ferrocene and related compounds.
		Applications of Metallaboranes.
	Unit 2	Rings and Clusters
	А	Rings : Synthesis, structure and chemical application of borazine,
		Phosphazene, phosphazene polymers, Metal-Metal bonds. Concept of
		quadrupolar bond and its comparison with a C-C bond.

В	Clusters: Types of metal clusters and multiplicity of M-M bonds. Simple			
	and condensed meta	l carbonyl cluster	s-types, calculation of number of M-	
	M bonds using 18/	in low and high nuclearity metal		
	clusters, capping rul	e.		
С	Application of Wad	le's rule over me	etral carbonyl clusters. Metal halide	
	and metal chalcogen	nide clusters.	•	
Unit 3	Photo Inorganic Cl	hemistry-I		
А	Introduction, Absor	ption, excitation, j	photochemical laws, quantum yield,	
D	redictive and no	n radiativa proc	Eranak Condon principle	
D	photochemical stag	as primary and a	secondary processes Kasha's rule	
	They state	es-primary and s	secondary processes, Kasha's Ture,	
C	Tupos of photoch	amical reactions	in transition motal complayee	
C	substitution door	enneal reactions	ontation rearrangement and redev	
	reactions	iposition, magnie	entation, realizingement and redox	
 Unit 4	Photo Inorgania Cl	homistry II		
	Photo substitution r	reactions of Cr(III	I) ammine complexes : Adamson's	
1	rules		1)- animine complexes . Adamson s	
B	Photochemistry of (Co(III) and Rh(III) Ammine Complexes	
<u>C</u>	Photochemistry of F	$\frac{2}{2}$ Polynyridyl c	complexes comparison of Fe(II) and	
C	Ru(II) complexes I	igand photoreacti	ons photoredox reactions	
Unit 5	Applications of Photochamistry			
	Solar Cells semi	conductor suppor	rted metal oxide systems water	
11	photolysis	conductor suppor	fied metal oxide systems, water	
В	Applications of	quenching and	sensitization techniques in the	
2	identification of rea	ctive state in coo	rdination complexes. Photoreactions	
	and solar energy cor	versions.		
С	Photochromism, Pl	hotocalorimetry.	application of photochemistry in	
	lasers.	57		
Mode of	Theory/Jury/Practica	al/Viva		
Examination				
Weightage	СА	MTE	ETE	
Distribution	30%	20%	50%	
Text Book/s*	1.J.E.Huheey. Inor	rganic Chemistr	y: Principles of Structure and	
	Reactivity. Harper I	nter science.	-	
	2.F. A. Cotton and	G. Wilkinson. Ad	lvanced Inorganic Chemistry, Wiley	
	InterScience.			
	3.Concepts of Inor	ganic Photochem	nistry, A. W. Adamson and P. D.	
	Fleischauer, Wiley.			
	4. Advanced Inorg	anic Chemistry	Vol-1 & 2, Gurdeep Raj, Krishna	
	Prakashan.			
Other	1.G. L. Miessler, D	. A. Tarr, Inorga	nic Chemistry, 3rd edition, Pearson	
References	Education.			

2.1 Template A1: Physical Chemistry-IV (MCH236)

School: SBSR		Batch 2019-21	
Program: M.Sc.		Current Academic Year : 2019	
Bran	ch : Chemistry	Semester III	
1	Course Code	MCH236	
1	Course Title	Physical Chemistry IV	
3	Credits	4	
4	Contact hours	4-0-0	
	Course Status	Compulsory	
5	Course Objectives	The main objectives of this course is to:	
		1: To provide the details of advanced topics of spectroscopy.	
		2. To provide the detailed understanding of Rotational	
		spectroscopy.	
		3. To provide the structure elucidation methods using IR	
		spectroscopy.	
		4. To provide the detailed knowledge of the electric structure of	
		molecules.	
		5. To provide the knowledge of the phenomenon associated with	
		photoelectron spectroscopy.	
		6. To enrich the student level of understanding of molecular	
		spectroscopy.	
6	Course Outcome	After successful completion of the course, the students will be able	
		to:	
		CO1: Analyse the essential parameters from absorption and emission	
		spectrum.	
		CO2: Analyse the microwave spectrum of a molecule.	
		CO3: Analyse the IR spectrum and obtain the bond strength	
		parameters.	
		CO4: Analyse the ground and excited state Absorption and emission	
		spectrum of the molecules.	
		CO6: Correctly predict the molecular structure and associated	
		properties using various spectroscopic techniques	
7	Course Description	properties using various spectroscopie techniques.	
8	Outline Syllabus		
	Unit 1	Principles of Spectroscopy	
	А	Electromagnetic radiation, Born-Oppenheimer approximation,	
		Heisenberg's Uncertainty Principle,	
	В	Jablonski Diagram, Fourier Transform, Time dependent	
		perturbation, Einstein coefficients. Lambert-Beer's law, Integrated	
		absorption coefficients, Transition dipole moments and general	
		selection rules based on symmetry ideas,	
	C	Transition probability, oscillator strength, the integrated	

	absorption coefficient.	
Unit 2	Introduction to Rotational Spectroscopy:	
A	Rotational spectroscopy of diatomic molecules based on rigid	
	rotator approximation, Determination of bond lengths and/or	
	atomic masses from microwave data,	
В	Effect of isotopic substitution, Non-rigid rotator, Classification of	
	polyatomic molecules,	
C	Energy levels and spectra of symmetric top molecules and	
	asymmetric top molecules, First order Stark effect, FC principle.	
Unit 3	Vibrational Spectroscopy:	
А	Force constant and amplitudes, zero potential energy, Morse	
	Potential, Normal coordinates analysis of homonuclear and	
	heteronuclear diatomic molecules, Extension to polyatomic linear	
	molecules,	
В	Derivation of selection rules for diatomic molecules based on	
	Harmonic oscillator approximation. Anharmonic oscillator,	
	Overtones and combination bands, Dissociation energies from	
	Vibrational data, Vibration-rotation spectra, P, Q and R branches,	
	Breakdown of the Born-Oppenheimer approximation.	
C	Raman Spectroscopy: Classical and quantum theories, Stokes	
	and anti-Stokes lines, Polarizability ellipsoids, Rotational and	
	Vibrational Raman spectroscopy, pure rotational Raman Spectrum	
	of a linear molecules. Selection rules-Mutually Exclusion	
	Principle, Polarization of Raman lines.	
Unit 4	UV-Visible Absorption and Emission Spectroscopy:	
A	Basic principle, Instrumentation and application of absorption and	
	emission spectroscopy, Electronic spectra, Frank-Condon	
	Principle, predissociation spectra, conjugated polyene and enone	
	systems, different types of charge transfer transitions and their	
	basis, Charge transfer spectra in organic and inorganic systems,	
	solvent effects.	
В	Steady-state fluorescence spectroscopy, Mirror-image symmetry	
	and its violation, Radiative and radiationless deactivation,	
	Fluorescence Quenching (static and Dynamics), Room	
	single photon counting TCSPC) fluorescence spectroscopy	
	Fluorescence lifetime measurement	
С	Introduction to Single melacule fluorescence and fluorescence	
C	introduction to Shigle molecule muorescence and muorescence	
	LIV Absorption Methods, Limitation of absorption and amission	
	e v Absorption Methods, Emittation of absorption and emission measurement	
Unit 5	Photoelectron Spectrosconv·	
Δ	The photoionization processes Auger and autoionization	
	processes de-excitation by fluorescence	
B	outlines of UPS XPS and Auger techniques and their applications	
	in interpretation of valence and core shell spectra of atoms and	

	molecules,			
С	Laser Spectroscopy.	Laser Spectroscopy.		
Mode of examination	Theory/Jury/Practical	/Viva		
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	 Fundamentals of Mol Pavia, D. L.; Lan Introduction to Spectros Barrow, G. M. Introd (1962). Hollas. J. M. Mode (2004). Chang, R. Basic F York, N.Y. (1970). 	ecular Spectroscopy, Bar apmann, G. M.; Kriz, scopy Cengage Learning luction to Molecular Spe ern Spectroscopy 4th Ec principles of Spectroscop	nwell, 3 rd Edition, 2018. G. S.; Vyvyan, J. R. (2014). ctroscopy McGraw-Hill I., John Wiley & Sons py McGraw-Hill, New	
Other References				

2.1 Template A1: Organic Chemistry-IV (MCH237)

School: SBSR		Batch : 2019-21	
Program:M.Sc.		Current Academic Year: 2019	
Brai	nch:Chemistry	Semester : III	
1	Course No.	MCH237	
2	Course Title	ORGANIC CHEMISTRY IV	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
	Course status	Compulsory	
5	Course	1.Define the photochemistry and distinguish absorption and emission	
	Objective	process	
		2.Describe the nature of light.	
		3. Distinguish between electric and magnetic fields, describe the action of	
		light with matter.	
		4.Compare between spontaneous and simulated emission. h) Describe the	
		electronic transition i) State photochemistry laws	
		5.Understanding of some important aspects of pericyclic reactions, to	
		learn the orbital interactions (Woodward Hoffmann rules) in concerted	
		reactions	
		6.Apply concerted and stepwise reactions in organic synthesis	
6	Course	CO1:Define types of photochemical reactions, list the factors	
	Outcomes	determining reactivity, describe Franck Condon Principle.	
		CO2:Compare between Norish type I and Norish type II, distinguish inter	
		& intra molecular cyclo addition, describe photodissociation reaction.	
		CO3:Learn photorearrangement reactions and compare between types of	
		singlet oxygen reactions.	
		CO4: Know what are pericyclic reactions, learn about classification of	
		pericyclic reactions, identify electrocyclic reaction and evaluate	
		application of Woodward-Hoffmann rules to pericyclic reactions.	
		CO5: identify various theories/rules governing electrocyclic reaction,	
		cycloaddition and sigmatropic shifts and analyze which type of pericyclic	
		mechanism is operative in a reaction.	
		CO6:Understand the concepts involved in organic photochemical	
		reactions, their mechanisms and applications in organic synthesis.	
7	Course	The course is framed to make students familiar with the concepts and	
	Description	applications in two important topics in advanced organic chemistry,	
		namely concerted organic reactions and organic photochemistry.	
		Different methods of analysis of pericyclic reactions to arrive at the	
		Woodword-Hoffmann rules are discussed. This course will uncover all	
		the major topics in pericyclic reactions and organic photochemistry.	
8	Outline syllabus		
	Unit 1	Photochemistry Part I	
	A	Introduction, Primary photophysical process of atoms and diatomic	

		molecules, spectroscopic notations, Frank condon principle and its		
		applications, rates of absorption and emission, quantum		
		efficiency/qu	antum yield	-
B quenching of excited states species, radiationless			ates species, radiationless transition and	
		predissociati	on, energy tran	sfer processes, Wigner's spin rule
	С	Woodward	Hoffman's ru	le, mechanistic analysis of photochemical
		reactions by	spectroscopic	techniques, sources of high energy radiation,
		chemical dos	simetry, compa	rison between photo and radiation chemistry.
	Unit 2	Photochemi	stry Part II	¥
	А	Photochemis	stry of Olef	ins- Cis-trans isomerism, cycloaddition,
		rearrangeme	nts. Reaction	of conjugated olefins; $di-\pi$ -methane
		rearrangements (including oxa- and aza-).		
	В	Photochemis	stry of Ketones	: Excited state of C=O, Norrish type-I and
		type-II cleav	ages.	
	С	Paterno-Buc	hi reaction, c	L.B-unsaturated ketones, Rearrangement of
		cvclohexadie	enones.	
	Unit 3	Photochemi	strv Part III	
	A	Photochemis	stry of Arom	atic compounds - Photorearrangement of
		benzene an	d its deriva	tives, Photo-Fries reactions of anilides,
		cycloaddition	n of benzene, P	hoto-Fries rearrangement
	В	Barton react	ion, Hunsdiecl	ker reaction, Photochemical oxidations and
		reductions		
	С	Cycloadditio	on of singlet	molecular oxygen, Oxidative coupling of
		aromatic con	npounds, photo	reduction by hydrogen abstraction
	Unit 4	Pericyclic R	eactions I	· · ·
	А	Molecular or	bital symmetry	, Frontier orbitals of ethylene, 1,3-butadiene,
		1,3,5-hexatri	ene and allyl sy	/stem.
	В	Classification of pericyclic reactions. Woodward – Hoffmann correlation		
		diagrams. F	MO and PMO	D approach, transition state (ATS) theory,
		generalized orbital symmetry (GOS) rule.		
	С	Electrocyclic reactions – conrotatory and disrotatory motions, [4n],		
		[4n+2] and allyl systems, torquoselectivity.		
	Unit 5	Pericyclic R	eactions II	
	A	Cycloadditio	ons – antarafac	ial and suprafacial additions, 4n and 4n+2
		systems. Reg	gio <u>, enantio and</u>	Endo selectivities in Diels-Alder reactions.
	В	Hetero Diels	-Alder reaction	, 2+2 addition of ketenes, Dipolar
		cycloaddition	ns, retrocycload	lditions.
	С	Sigmatropic	rearrangement	s - suprafacial and antarafacial shifts of H,
		sigmatropic	shifts involvi	ng carbon moieties. [i, j] - sigmatropic
		rearrangemen	nts (including	Walk, Claisen, Cope, oxy and aza-Cope
		rearrangemen	nts).	
	Mode of	Theory/Jury/	Practical/Viva	
	examination			
	Weightage	CA	MTE	ETE
	Distribution	30%	20%	50%

Text book/s*	1. Reaction M	Mechanism in	n Organic Chemistry; S. M. Mukherji and S. P.
	Singh.		
	2.Fundament	als of Photoch	chemistry, K. K. Rohatgi-Mukherjee
Other	1. Modern Sy	ynthetic reaction	ion by H. O. House, W.A. Benjamin
References	2. Advanced	Organic Chem	mistry part B, F.A. Carey & R.J. Sundberg,
	Plenum Press	S.	

2.1 Template A1: Environmental Chemistry (MCE201)

School: SBSR		Batch : 2019-21
Prog	gram: M.Sc.	Current Academic Year: 2019
Bra	nch:Chemistry	Semester: III
1	Course Code	MCE201
2	Course Title	Environmental Chemistry
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Elective
5	Course	1.To introduce the basics knowledge of chemistry of environment.
	Objective	2.To describe the chemistry of hydrosphere.
		3. To provide an introduction to chemistry of soil.
		4. To explain to the student the causes of industrial pollution.
		5.To provide information environmental toxicology.
		6.To illustrate the infamous cases of environment related disasters.
6	Course	CO1:Understand the chemistry of atmosphere.
	Outcomes	CO2:Understand the chemistry of hydrosphere.
		CO3:Explain the chemistry of soil.
		CO4: Know about adverse effect of industrialization and possible
		prevention method
		CO5:Know about environmental toxicology and a few example of
		environmental disaster.
		CO6: Gain knowledge about the chemistry of atmosphere, factors
		affecting it and possible prevention methods
7	Course	This course describes the chemistry of earth atmosphere, soil and water
	Description	bodies. It also describes the adverse effect of industrial pollution and its
		possible prevention method.
8	Outline syllabus	
	Unit 1	Earth's Atmosphere
	А	Introduction, composition of atmosphere, vertical temperature,
		heat budget of the earth atmospheric system, vertical stability atmosphere
	В	Bio-distribution of elements. Reactions in atmosphere, Stratospheric
		chemistry. Chemistry of photochemical smog, Precipitation, Acid rain,
		Production and removal of nitric acid, Sulphuric acid
	C	Atmospheric aerosols-Sources, Concentrations, Control. Chemistry of
		global climate. Air sampling techniques, Sources, effects and monitoring
		of air pollutants by Instrumental methods, Control of air pollution
	Unit 2	Hydrosphere
	A	Chemical composition of water bodies – lakes, streams, rivers and
		wetlands etc Hydrological cycle. Aquatic pollution-inorganic, organic,
		pesticides, agricultural, industrial and sewage, detergents, oil spills and
		oil pollutants
	В	water quality parameters-dissolved oxygen, biochemical oxygen demand,

				Seyond Boundaries
		solids, metals, content of chloride, sulphate, phosphate, nitrate and micro-		
		organisms, water quality standards, Analytical methods for measuring		
		BOD, DO, COD, F, OILS, METALS (As, Cd, Cr, Hg, Pb, Se), Residual		
		chloride and	chlorine dema	nd, purification and treatment of water.
	С	Distribution	of species in ad	quatic systems: Single variable diagrams, Two
		variable diag	grams, Method	of calculating pE°
	Unit 3	Soils	,	
	А	Chemical c	omposition of	the soil, micro and macronutrients, the
		exploitation	of the mineral	resources and abuse of the earth
	В	soil pollutio	on due to nat	ural and artificial agencies and its effects,
		remedial me	asures to check	the pollution. pollution-fertilizers, pesticides,
		plastics and	metals, waste t	reatment.
	С	Humic mate	rial–Formation	. Composition. Structure determination using
	-	spectroscopy	. Properties. F	Radioactive pollution, disposal of radioactive
		waste	, 110pondosi 1	
	Unit 4	Industrial F	Pollution	
	A	Cement sug	par distillery	drug paper and pulp thermal power plants
		nuclear pow	er plants, metal	lurgy polymers drugs etc
	В	radionuclide	analysis disn	osal of wastes and their management Waste
	D	Water Treatment of Industrial Waste Water		
	С	Environmen	tal Impact Asse	essment process in India
	Unit 5	Environmental Toxicology		
	Δ	Chemical so	lutions to envir	onmental problems, biodegradability
	R	principles o	f decompositi	on better industrial processes Bhopal Gas
	D	Tragedy Ch	arnobyl Disast	er Three Mile Island Sewozo and Minamata
		disasters		
	C	Occupationa	l safety Hazard	Assassment MSDS
	C Mode of	Theory/Jury	Dractical/Viva	Assessment, MSDS
	examination	Theory/Jury	Tractical/ viva	
	Weightage	CA	МТЕ	FTF
	Distribution	200/		500/
	Tract la a la /a*	30%	20%	30%
	Text book/s*	1.Environme	ental Chemistry	, A.K.Das.
		2.Environme	ental Chemistry	, Samir K. Banerji.
		3.Environme	ental Chemistr	y H. Kaur, 6th Edn, Pragathi Prakashan,
		Meerut, 201		
		4.Environme	ental Pollution	n Analysis, S. M. Khopkar, New Age
		International	I (P) Ltd, 1993.	
	Other	I.Analysis of	of Industrial W	aste Water, K.H.Mancy and W,J.Weber Jr.
	References	Wiley, Inter	escience New Y	(ork, 1971.
		2.Environme	ental Chemistry	y, L.W. Moore and E. A. Moore, McGraw Hill
		Publication,	New York	
1		3.Environme	ental Chemist	ry, Colid Baird. W. H. Freemand and

2.1 Template A1: Polymer Science and Technology (MCE202)

School: SBSR		Batch: 2019-21
Program: M.Sc.		Current Academic Year: 2019
Bra	nch:Chemistry	Semester:III
1	Course Code	MCE201
2	Course Title	Polymer Science and Technology
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Elective
5	Course	1. To impart knowledge on synthesis of polymers using different
	Objective	2 To provide basic understanding on the synthesis and characterization.
		of different types of copolymers and preparation of polymer blends and IPNs.
		3. To elaborate on the end-uses of polymers as matrix resins for composites, coatings and adhesives.
		4. To disseminate information on advanced polymeric systems and speciality polymers.
		To describe different processing techniques of polymers and to
		discuss degradation of polymers and the effect of use of polymers on
		environment.
6	Course	CO1:Basic understanding on synthesis of polymers, determination of
	Outcomes	molecular weight and characterization of polymers using chemical
		methods and different instruments.
		CO2:Concept on the factors influencing the copolymerization of
		monomers and their microstructure, use of block copolymers as
		thermoplastic elastomers and compatibilizers for polyblends and
		knowledge on IPNs and Semi-IPNs.
		CO3: Knowledge on broad spectrum of end-use of polymers as matrix
		CO4.Exposure to advanged polymeric systems such as shape memory
		cO4.Exposure to advanced porymetric systems such as shape memory
		polymers, sen nearing polymers, engineering plastics and morganic
		CO5:Understanding of different polymer processing techniques
		CO6:Understanding the synthetic pathways and functional polymers along
		with factors influencing the degradation of polymers and gaining
		knowledge on the management of plastics and the environmental impact.
7	Course	This elective course on Polymer Science and Technology covers the
,	Description	synthesis and characterization of homopolymers and copolymers.
	2.000119.000	thermoplastic elastomers, polymer blends, interpenetrating polymer
		network (IPN) structures, polymer matrix composites, adhesives and
		coatings. This course also covers certain advanced/speciality polymer
		systems such as shape memory polymers, dentrimers, hyperbranched
		polymers and inorganic polymers. An insight into polymer processing

		techniques, polymer degradation and recycling also forms part of this	
		course.	
8	Outline of syllab	DUS	
	Unit 1	Synthesis and Characterization of Polymers	
	А	Atom Transfer polymerization, Group Transfer Polymerization, Ring	
		Opening Polymerization. Molecular weight: number average, weight	
		average, viscosity average molecular weight, z-average molecular	
		weight, molecular weight distribution.	
	В	Measurement of molecular weight and size: Colligative property	
measurement, Light scatteri		measurement, Light scattering, ultracentrifuge, viscosity, Gel Permeation	
		Chromatography, Fractionation of polymers by solubility.	
	С	Characterization of polymers: chemical methods, spectroscopic methods,	
		X-ray diffraction, microscopy and thermal analysis.	
	Unit 2	Copolymers, Thermoplastic elastomers, polymer blends and IPNs	
	А	Copolymers: Radical copolymerization - monomer reactivity ratios, Q-e	
		factor, Formation of random, alternating and block copolymers in radical	
		copolymerization based on monomer reactivity. Monomer sequencing	
		(diad and triad structures) in copolymers using NMR spectroscopy.	
	В	Thermoplastic elastomers: ABA and $(AB)_n$ type block copolymers as	
		thermoplastic elastomers, their microstructure and applications.	
	C	Role of block copolymers as compatibilizers Interpene-trating Polymer	
		Networks (IPNs): Semi-IPNs and full IPNs – Synthesis, characterization	
		and applications.	
	Unit 3	Polymer matrix composites (PMCs), Adhesives and Coatings	
	А	Polymer matrix composites: Matrix resins-epoxy resins, phenolic resins	
		and polyimides, Reinforcement-particulate, short fiber, continuous fiber-	
		glass fibre and carbon fibre, characterization techniques and mechanical	
		properties. Polymer Nano Composites, Aerospace and defence	
	D	Adhesives: Theory of adhesion on evention of polymers used as	
	D	Adhesives. Theory of adhesives avaluation of adhesive properties	
		Applications of adhesives	
	С	Costings: Water-borne and solvent based costings, polymers as binders	
	C	in paints Self cleaning coatings Applications of coatings	
	Unit 4	Advanced Polymers/Speciality Polymers	
	А	Shape Memory Polymers, Self-Healing Polymers, Dentrimers and hyper-	
		branched polymers, Conducting polymers, Liquid Crystalline Polymers.	
	В	Engineering thermoplastics: Polyetherimide, Poly-carbonate.	
	C	Inorganic polymers: Polyphosphazene, polysilane, polycarbosilane,	
	T T • 4 F	polysiloxane and polymetallosiloxanes.	
	Unit 5	Polymer Processing, Polymer degradation and the environment	
	A	Basic processing operations: Extrusion, Molding, Coating, Vulcanization	
	D	and Fiber drawing.	
1	В	Polymer degradation: Thermal degradation, Oxidative and UV stability,	

Chemical and hydrolytic stability, Effects of radiation.			bility, Effects of radiation.
С	Environmen	t: Managemen	t of plastics in the environment-recycling,
	incineration	and biodegrada	tion.
Mode of	Theory/Jury/	Practical/Viva	
examination			
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	1. Text bool	c of Polymer	Science, Third Edition, F.W. Billmeyer, Jr.
	Wiley-Inte	ersciene, 2003.	
	2. Polymer S	Science & Tech	nnology, J. R. Fried, Prentice-Hall Inc., USA
	(Indian Reprint) 2005.		
	3. Polymers:	Chemistry and	Physics of Modern Materials, 3rd edition, by
	J.M.G. Co	wie and V. Arr	ighi, New York, CRC Press, 2008.
Other	1. Macromol	ecules: An Intr	oduction to Polymer Science, F. A. Bovey
References	and F. H.	Winslow, Acad	emic Press, New York, 1979.
	2. Inorganic	Polymers, 2 nd	Edition, J. E. Mark, H. R. Allcock and R.
	West, Oxf	ord University	Press, 2005.
	3. Adhesives	Technology I	landbook, 3rd Edition, Sina Ebnesajjad and
	Arthur H.	Landrock (Imp	rint: William Andrew) Elsevier, 2014.
	4. Processing	g of Polymer N	Aatrix Composites, P.K. Mallick, CRC Press,
	2017.		
	5. Engineerin	ng Thermoplas	tics: Properties and Applica-tions, Margolis,
	CRC Pres	s, 1985.	

2.1 Template A1: Inorganic Chemistry-V (MCH238)

School: SBSR		Batch : 2019-21		
Program	: M.Sc.	Current Academic Year: 2019		
Branch:	Chemistry	Semester: IV		
1 Course Code		MCH238		
2	Course Title	Inorganic Chemistry V		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Compulsory		
5	Course	1. To describe about basic principles and importance of various		
	Objective	metals in natural systems.		
	C C	2. To describe various ion transport through biological membrane.		
		3. To explain the importance of Iron and Copper containing metallo-		
		biomolecule.		
		4. To illustrate the chemistry of bio molecules like DNA and RNA.		
		5.To describe the bioinorganic chemistry of Molybdenum, Tungsten		
		and Zinc containing Enzymes.		
		6. To describe the bioinorganic chemistry of Vitamin B _{12.}		
6	Course	CO1:Explain the transport of ions through membrane		
	Outcomes	CO2: Predict the structure and mechanism of Fe and Cu containing		
		metalloproteins.		
		CO3:Learn about structure and chemistry of DNA and RNA.		
		CO4: Understand the importance of Molybdenum, Tungsten and		
		Zinc containing Enzymes.		
		COS : Illustrate biologically important processes like photosynthesis		
		CO6: Understand the role and importance of metal ions in biology.		
7	Course	This course includes details discussion about various bio molecules		
	Description	and metal containing enzymes with special reference to iron, copper,		
		zinc, tungsten and molybdenum.		
8	Outline syllabus			
	Unit 1	Bioinorganic Chemistry of Metals		
	A	Essential and trace elements in biological systems,		
	В	structure and functions of biological membranes; mechanism of ion		
		transport across membranes; sodium pump, role of calcium in		
		muscle contraction, blood clotting mechanism and biological		
		calcification.		
	C	Structure and functions of amino acids, proteins, peptides and		
	TL	comparative study of structures and functions of these biomolecules		
		bioinorganic Unemistry of Iron and Copper		
	A	Iron-suipnur proteins: rubredoxin and ierredoxins;		
	D	Nietanoporphyrms; meme proteins: nemoglobin, myoglobin.		
	C	Cytochrome P-450, Cytochrome c-oxidase and cytochrome c;		
	L	Synthetic oxygen carrier and model systems. Thermodynamic and		

	kinetics of oxygenation; Non-heme proteins: hemerythrin and			
	hemocyanin.			
Unit 3	Bioinorganic Chemistry in Biological Systems			
А	Metal complexes of polynucleotides, nucleosides and nucleic acids			
	(DNA and RNA).			
В	Stability of DNA and melting temperature.			
C	Role of metal ions in replication and transcription process of nucleic			
	acids. Metal deficiency and disease			
Unit 4	Molybdenum, Tungsten and Zinc containing Enzymes			
А	Enzymes and their classification ; Importance of Zn in nature,			
	carbonic anhydrase, carboxypeptidase, alcohol dehydrogenase.			
В	Biological nitrogen fixation (Nitrogenase) and abiological nitrogen			
	fixation			
C	tungsten containing formate dehydrogenase and tungsten bearing			
	hyperthermophilic and thermophilic enzymes.			
Unit 5	Biologically Important Processes			
А	Photosynthetic electron transport chain, chlorophyll, PS-I and PS-II,			
11				
B	Vitamin B 12 coenzyme, its function and application in organic			
B	Vitamin B 12 coenzyme, its function and application in organic synthesis.			
B C	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity.			
 B C Mode of	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity. Theory			
B C Mode of examination	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity. Theory			
 B C Mode of examination Weightage	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity. Theory CA MTE ETE			
B C Mode of examination Weightage Distribution	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity. Theory CA MTE ETE 30% 20%			
B C Mode of examination Weightage Distribution Text book/s*	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity. Theory CA MTE ETE 30% 20% 50% 1. S. J. Lippard & J. M. Berg. Principles of Bioorganic Chemistry;			
B C Mode of examination Weightage Distribution Text book/s*	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity. Theory CA MTE ETE 30% 20% 50% 1. S. J. Lippard & J. M. Berg. Principles of Bioorganic Chemistry; Panima Publ. Corpn. (2005).			
B C Mode of examination Weightage Distribution Text book/s*	Vitamin B 12 coenzyme, its function and application in organic synthesis. Availability of iron and iron toxicity. Theory CA MTE ETE 30% 20% 50% 1. S. J. Lippard & J. M. Berg. Principles of Bioorganic Chemistry; Panima Publ. Corpn. (2005). 2. EI. Ochiai. Bioinorganic Chemistry; An Introduction; Allyn and			

School: SBSR		Batch : 2019-2021		
Prog	gram: M. Sc	Current Academic Year: 2019		
Brar	nch:	Semester:IV		
Chemistry				
1	Course Code	MCH 239		
2	Course Title	PHYSICAL CHEMISTRY-V		
3	Credits	4.0.0		
4	Contact	(400)		
	Hours			
	(L-T-P)			
	Course Status	Compulsory		
5	Course	1. To provide the understanding of Quantum mechanical aspect of		
	Objective	Band gap and Band theory in semi conductors.		
		2. To understand the various techniques for the preparation of		
		nanomaterial and properties of nanomaterials.		
		3. To extend the concept of X-Ray diffraction, their generation and different		
		experiments to study X-Ray diffraction.		
		4. To provide the understanding of physical aspects in Biological		
		phenomenon.		
		5. To provide the indepth concept of polymers and their properties.		
6	Course	CO1: Direct and indirect band gap in semiconductors,		
	Outcomes	types and analysis of p-n junctions.		
		CO2: Students will be able to prepare nanomaterials and will be able to		
		characterize their optical, electronic and structural properties.		
		CO3:Students will be able to understand the generation of X-rays and		
		diffraction patterns and will be able to refine the X-ray patterns.		
		CO4: Students will be able to understand the energy Transformation and		
		Thermodynamic principles and their applications in biological		
		system.		
		CO5: Student will be able to calculate the molecular weights of polymers		
		using different techniques and will able to identify different physical and		
		rheological properties of polymers.		
		CO6: In depth knowledge of semiconductors, nanomaterials and polymers		
		with application of X-rays, their generation and refinement of structure,		
		application of physical phenomenons in biological system.		
-	9			
7	Course	Course emphasizing on the application part of Solid state chemistry and		
	Description	analysis of structure using X-Ray diffraction, materials chemistry,		
0	Out1's - 11_1	Biophysical aspects and applications and properties of polymers.		
8	Outline syllab			
		Solid State Cnemistry		
	A	Free electron theory of metals, Quantum mechanical treatment explaining		
		Drillovin genes, offective mose of charge carriers		
	D	Britiouin zones, effective mass of charge carriers,		
	В	Semiconductors: Direct and indirect band gap semiconductors, hole		

2.1 Template A1: Physical Chemistry-V (MCH239)

	concept, temperature dependence of mobility and electrical conductivity,				
	free carrier concentration in intrinsic and extrinsic semiconductors, mass				
	active law,				
С	Generation of carriers and their recombination in semiconductors. Types				
	of junctions (metal-semiconductor, semiconductor-semiconductor,				
	iunctions in organic materials). Analysis of p-n junction including I-V				
	characteristics.				
Unit 2	Materials Chemistry				
A	Definition of nanomaterials, various techniques for the preparation of				
1.	nanomaterials. Thermodynamics and Kinetics of Nucleation. Thin Films				
	and				
R	Langmuir-Blodgett films - Preparation techniques evaporation/sputtering				
	chemical processes MOCVD sol-gel Langmuir-Blodgett (LB) film				
	arowth techniques				
С	photolithography properties and applications of thin and LB films				
C	Flectronic structure and properties of nanomaterials ontical electrical and				
	magnetic properties. Chemical behaviour applications of nanomaterials				
 Unit 3	Y-Ray Diffraction and Crystal Structure				
	Generation of X-rays diffraction of X-rays by crystals systematically				
	abcent reflections multiplicities				
R	Y ray diffraction experiments: the nowder method. Bragg condition				
Б	A-lay unnaction experiments, the powder method scattering of X-rays				
	Laue memory, bragg memory and single crystal memory, scattering of 2x-rays				
C	Dy atoms and a crystal, Detterson Synthesis, the Distural d Definement of DeTiO2, 7nO and				
C	BaSnO3. R-factor.				
	Biophysical Chamistry				
Unit 4	Rionhysical Chamistry				
Unit 4	Biophysical Chemistry Energy Transformation and Distribution of Energy Thermodynamic				
Unit 4 A	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems: Osmotic pressure membrane equilibrium				
Unit 4 A	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical				
Unit 4 A B	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system Cell Membrane and Transport of Jons: Structure and functions of				
Unit 4 A B	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane				
Unit 4 A B	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane_irreversible thermodynamics				
Unit 4 A B C	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport				
Unit 4 A B C	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport.				
Unit 4 A B C Unit 5	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction Classification of polymers. Concept of Mass and Number				
Unit 4 A B C Unit 5 A	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights				
Unit 4 A B C Unit 5 A	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights				
Unit 4 A B C Unit 5 A	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry,				
Unit 4 A B C Unit 5 A B	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass				
Unit 4 A B C Unit 5 A B	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass transition temperature, crystalline melting point), Phaelogical Properties				
Unit 4 A B C Unit 5 A B C	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass transition temperature, crystalline melting point), Rheological Properties, Biodegradable and Biomedical polymers, Liquid				
Unit 4 A B C Unit 5 A B C	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass transition temperature, crystalline melting point), Rheological Properties, Biodegradable and Biomedical polymers, Liquid crystal polymers.				
Unit 4 A B C Unit 5 A B C Mode of	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass transition temperature, crystalline melting point), Rheological Properties, Biodegradable and Biomedical polymers, Liquid crystal polymers. Theory				
Unit 4 A B C Unit 5 A B C Mode of examination	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system. Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass transition temperature, crystalline melting point), Rheological Properties, Biodegradable and Biomedical polymers, Liquid crystal polymers. Theory				
Unit 4 A B C Unit 5 A B C Mode of examination Weightage	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass transition temperature, crystalline melting point), Rheological Properties, Biodegradable and Biomedical polymers, Liquid crystal polymers. Theory CA MTE ETE 200/ 500/				
Unit 4 A B C Unit 5 A B C Mode of examination Weightage Distribution	Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic principles in biological systems; Osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.Cell Membrane and Transport of Ions: Structure and functions of cell membrane. Active transport across cell membrane, irreversible thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number average molecular weights, Methods of Determining molecular weights (osmometry, diffusion and light scattering), Physical properties of polymers (glass transition temperature, crystalline melting point), Rheological Properties, Biodegradable and Biomedical polymers, Liquid crystal polymers. Theory CA MTE ETE 30% 20%				

book/s*	2. Polymer Chemistry, Gowarikar
	3. Biological Thermodynamics, Donald T. Haynie, Cambridge.
	4.Biophysical Chemistry, Vol. 1-3, C. R. Cantor & Schimmel
	5. Biophysical Chemistry: Principles and Techniques by
	Jpadhyay, Himalaya Publishing House
	6. Introduction to Biophysical chemistry, R. Bruce Martin, McGraw-Hill, N
	964.
	7. Solid State Chemistry and its Applications(1984), A.R. West, John Wi
	nd Sons,
	Singapore
	8. Introduction to Solids(1977), L.V. Azaroff, Tata McGraw-Hill, New
	Delhi
	9. Solid State Chemistry(1992), L. Smart and E Moore, Chapman & Hall,
	Madras
	10. Principles of Solid State(1993), H. V. Keer, Wiley Eastern
	11. Instrumental methods of chemical analysis: Braun

2.1 Template A1: Organic Chemistry-V (MCH240)

Scho	ool: SBSR	Batch : 2019-21	
Prog	gram: M.Sc.	Current Academic Year: 2019	
Brai	nch:Chemistry	Semester: IV	
1	Course No.	MCH240	
2	Course Title	Organic Chemistry V	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
	Course Status	Compulsory	
5	Course	1.To impart knowledge on synthesis of five and six- member heterocyclic	
	Objective	compounds with two or more hetero atoms.	
		2.To familiarize with the synthesis of larger ring heterocyclic	
		compounds.	
		3.To impart knowledge on synthesis of natural products.	
		4.To familiarize with structure determination and stereochemistry of	
		terpenoids and carotenoids.	
	~	6.To understand the structure and significance of alkaloids.	
6.	Course	CO1: Understand the structure, properties, synthesis and reactions of five	
	Outcomes	and six- member heterocyclic compounds with two or more hetero atoms.	
		CO2: Propose syntheses and applications of heterocycles from the major	
		classes.	
	CO3: Describe the structure and synthesis of terpenoids and car CO4: Formulate the synthesis of few important alkaloids		
	CO5:Identify medicinal properties of alkaloids.		
	CO6: A cauire basic knowledge of natural product chemistry at		
		understand the importance beterocycles in biological systems and in	
		pharmaceuticals	
7	Course	This course will provide a concise introduction to beterocyclic chemistry	
,	Description	Emphasis will be given on the most important heterocyclic systems	
	F	particularly five, and six-membered heterocyclic systems with 2- or 3-	
		heteroatoms as well as fused heterocyclic systems. Chemical synthesis,	
		properties, characteristics and applications of these systems will be	
		discussed in detail. The course provides a basic knowledge of natural	
		products chemistry with emphasis on terpenoids, carotenoids and	
		alkaloids.	
8	Outline syllabus	1	
	Unit 1	Heterocycles I	
	А	Introduction, synthetic approaches, reactions and important applications	
		of five membered heterocyclic compounds with two or three hetero	
		atoms - imidazole, oxazoles,	
	В	synthetic approaches, reactions and important applications of - thiazoles,	
		oxadiazoles,	

	С	synthetic a	pproaches, rea	actions ar	nd important applications of -
	II:4 0	thiadiazoles,			
	Unit 2	Heterocycle	<u>s II</u>		
	A	Introduction	, synthetic app	roaches, re	actions and important applications
		of condensed	a five and six r	nembered	neterocycles with one netero atom
	P	– indole,			1
	В	synthetic aj	pproaches, rea	actions ar	id important applications of –
	C	Synthetic an	proaches react	ions and in	portant applications of quincline
	C	and isoquino	line		iportant applications of – quinonne
	Unit 3	Heterocycles III			
		Introduction	synthetic ann	roaches re	actions and important applications
	1	of six mem	bered beteroor	velie com	ounds with two betero atoms -
		or six membered neterocyclic compounds with two netero atoms			ounds with two netero atoms
	B	synthetic and	roaches reacti	one and im	portant applications of pyrimidine
	D C	synthetic apr	proaches, reacti	ons and im	portant applications of pyraine
	Unit 1	Tomonoida	and constance		portait applications of pyrazine.
		Classificatio	and carotenoi	us 	non isolation general methods of
	A	classificatio	tormination i	e, occurre	ale Structure determination and
		structure de	the following	soprene i	tive melecules: Monotormanoide
		Citral cor	ule lollowing	a) or tor	noncol monthel (monocyclic)
		Citrai, ger	anioi (acycii	c_{j}, α -ter	zin zihorena (mana avalia) aantanin
		Sesquiterpen	ioids - Farnesol	(acyclic),	zingiberene (monocyclic), santonin
		(bicyclic), D	A repended - F	nytoi and	abietic acid, p- carotene, lycopene
	D	and vitamin	$\frac{A}{A}$	1 (1	
	В	Structure de	termination ar	a synthes	is of the following representative
		molecules:	Sesquiterpend	10s - 1	Farnesol (acyclic), zingiberene
	C	(Inonocyclic), santonin (dic	yciic),	a of the following representative
	C	structure de	Stermination at	Dhutal and	s of the following representative
		and vitamin		Filytor and	abietic acid, p- carotene, tycopene
	IInit 5	Alkaloids			
		Alkalulus Definition nomenclature and physiological action occurrence isolation			
	A	Definition, n	iomenciature al	na physiolo	ogical action, occurrence, isolation,
		general met	nods of struc	ture eluci	lation, degradation, classification
	D	Dased on mu	ogen neterocyc	$\frac{1}{1}$	
	B	Occurence, s	synthesis and st	ructure elu	cidation of alkaloids – Reserpine
		Occurence, s	synthesis and st	ructure elu	cidation of alkaloids –morphine.
	Mode of	Theory/Jury/Practical/Viva			
	examination		MTT	DTD	
	Weightage	CA	MIE	ETE	
	Distribution	30%	20%	50%	•
9	Text Book/s*	1.Heterocycl	ic Chemistry,	Г. L. Gilch	rist.
		2.An Introdu	iction to the Ch	emistry of	Heterocyclic compounds, R. M.
		Acheson.			
		3. Heterocyli	ic chemistry, J.	A. Joule &	z K. Mills.
		4. Principles	of Modern Het	terocyclic (Chemistry, A. Paquette.
		5. Heterocyc	lic Chemistry,	J. A. Joule	& Smith.

		6. Handbook of Heterocyclic Chemistry, A. R. Katritzky.		
		7.Natural Products : Chemistry and Biological significance, J. Mann, R.		
		S. Davidson, J. B. Hobbs, D. V.,		
		Banthropde & J. B. Harborne.		
		8.Organic Chemistry, Vol-2, I. L. Finar		
10	References	1. Stereoselective Synthesis: A Practical Approach, M. Nogrudi.		
		2.Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey.		
		3. Chemistry, Biological and Pharmacological properties of Medicinal		
		plants from the Americans, Ed. Kurt. Hostettmann, M. P. Gupta and A.		
		Marston		

2.1 Template A1: Inorganic Chemistry-VI (MCH241)

School: SBSR		Batch : 2019-21	
Prog	gram:M.Sc.	Current Academic Year: 2019	
Brai	nch:Chemistry	Semester:IV	
1	Course Code	MCH241	
2	Course Title	Inorganic Chemistry VI	
3	Credits	4	
4	Contact hours	4-0-0	
	Course Status	Compulsory	
5	Course	1.Understand the importance of superconductors in engineering	
	Objectives	applications.	
		2.Relate the supramolecular role in ion detections.	
		3.Understand the chemistry of glasses and ceramics and their application	
		in daily routine.	
		4.Understand the role of superconductors in catalysis.	
		5.Describe the technique used in applications of nanomaterials.	
		6. Understand the importance of nanomaterial based device in daily.	
	9	routine.	
6	Course	COI:Understand the concept of molecular recognition in the application	
	Outcome	of supramolecules.	
		CO2:Relate the applications of glass and ceramics on the basis of their	
		Structure.	
		CO4: Symthesis of percentarials	
		CO5: Identify the properties of panomaterials and their applications in	
		electronic applications	
		CO6:Gain knowledge about various advanced inorganic materials	
7	Course	The course is framed to give broad view of supramolecular, smart	
,	Description	inorganic materials, superconductors and nanomaterials.	
	F	Physicochemical properties and applications of nanomaterials have been	
		covered in this paper.	
8	Outline syllabus		
	Unit 1	Supramolecular Chemistry	
	А	Concepts of Molecular recognition: Molecular receptors for different	
		types of molecules including anionic substrates, design and synthesis of	
		co-receptor molecules and multiple recognition	
	В	Catenanes, Rotaxanes, Dendrimers and Supramolecular gels,	
		Supramolecular reactivity in catalysis	
	С	Transport processes and carrier design. Supramolecular devices. Some	
		example of self-assembly in supramolecular chemistry	
	Unit 2	Inorganic Smart Materials	
	Α	Structure of Glass and Ceramics: Ceramics crystal structures, density	
		computations, silicate ceramics	
	В	Glass ceramics. Refractories with reference to preparation, Properties and	

		applications.			
	С	fibre reinforced Composites, microscopic composites, preparation			
		procedure, special properties and applications			
	Unit 3	Superconductors			
	А	Inorganic semiconductors, Electrical, magnetic, thermal and optical			
		properties of superconductors.			
	В	Metallic bonds High temperature superconductors Structural features of			
		cuprate superconductors: 1-2-3 and 2-1-4 cuprates.			
	С	Electrical and magnetic properties of superconductors			
	Unit 4	Nanomaterials			
	A	Definition of nanomaterials, fullerenes, carbon nanotubes, graphene,			
		Discovery of C_{60} . Superconductivity in C_{60} . Alkali doped C_{60}			
	В	Carbon nanotubes - Synthesis of Single walled carbon nanotubes.			
		Synthesis methods - Arc discharge, Laser Abalation, Low temperature			
		method, Chemical vapour deposition. Growth mechanisms on CNT.			
	С	Structure and characterization techniques. Surface area measurement,			
		determination of size and textural studies of nanotubes.			
	Unit 5	Physiochemical Properties and Applications of Nanomaterials			
	А	Reactivity, effect of size and shape on nanocrystal reactivity,			
		agglomeration and sintering, dispersibility and chemical stability in			
		solution, surface modification of metallic and semiconductor			
		nanoparticles, nanofabrication and nanomanipulation.			
	В	Magnetism in nanomaterials, Doping, functionalizing nanotube.			
	С	Applications of Graphene, CNTs and Fullerenes – sensing, organic			
		transistor, odour sensor, electronics and optoelectronics and			
		photovoltaics.			
	Mode of	Theory/Jury/Practical/Viva			
	examination				
	Weightage	CA MTE ETE			
	Distribution	30% 20% 50%			
9	Textbook/s*	1.Timp.G., Ed.Nanotechnology, Springer-Verlag, N. Y			
		2.Supramolecular Chemistry by Jonathan W Steed; Jerry L. Atwood.			
10	Other	1.Keer, H.V. Principles of the Solid State, Wiley Eastern Ltd., New			
	References	Delhi.			
		2.West, A. R., Solid State Chemistry and its applications, John Wiley and			
		Sons.			
		3.Supramolecular Chemistry: Concept and Perspective by Jean Marie			
		Lehn			
		4.Mitchell, B. S. – An introduction to material engineering and			
		Science.Wiley interscience.			

2.1 Template A1: PHYSICAL CHEMISTRY VI (MCH 242)

School: SBSR		Batch : 2019-2021		
Prog	gram: M. Sc	Current Academic Year: 2019		
Bra	nch:Chemistry	Semester: 04		
1	Course Code	ode MCH 242		
2	Course Title	PHYSICAL CHEMISTRY VI		
3	Credits	4		
4	Contact Hours	(3 1 0)		
	(L-T-P)			
	Course Status	Compulsory		
5	Course	6. To provide the understanding of photophysical and photochemical		
	Objective	processes of atoms and diatomic molecules.		
		7. To understand various nonradiative relaxation processes.		
		8. To get familiar with high energy radiation with matter, radiation		
		dosimetry and flash photolysis.		
		9. To understand the meaning, scope, laws of irreversible		
		thermodynamics.		
		10. To provide information about various laws, parameters, and equations		
		related to transport phenomenon.		
		11. To provide the conceptual knowledge of molecular and advanced		
		photochemistry; radiation chemistry, dosimetry, and photolysis;		
6	Carrier	irreversible thermodynamics and transport phenomenon.		
0	Course	COI: To understand various photophysical and photochemical		
	Outcomes	processes of atoms and diatomic molecules upon irradiation. CO_2 : To study the various radiationless relevation pathways		
		CO_2 . To study the various radiationless relaxation pathways.		
		with matter: radiation dosimetry and principle and application of flash		
		photolysis		
CO4: To understand t		CO4. To understand the fundamental meaning scope and laws of		
		irreversible thermodynamics.		
		CO5: To get familiarize with different parameters and laws related to		
		transport phenomenon.		
		CO6: To study molecular and advanced photochemistry; radiation		
		chemistry, dosimetry, and photolysis; irreversible thermodynamics and		
		transport phenomenon.		
7	Course	Course emphasize on the basic concepts of molecular and advanced		
	Description	photochemistry; radiation chemistry, dosimetry, and photolysis;		
		irreversible thermodynamics and transport phenomenon.		
8	Outline syllabus			
	Unit 1	Molecular photochemistry		
	A	Introduction-primary photophysical process of atoms and diatomic		
		molecules, the absorption and emission of light - spectroscopic		
		notations, state mixing, spin-orbit coupling and spin forbidden radiative		
		transitions,		
	В	Absorption complexes, Franck-Condon principle, selection rules, laws of		

	photochemical equivalence. Radiative transitions-classical model of
	radiative transitions. Iransitions between states (chemical, classical and
~	quantum dynamics, vibronic states).
С	Potential energy surfaces; transitions between potential energy surfaces.
	Jablonski diagram, Fluorescence, phosphorescence, photosensitization,
	photosynthesis, and chemiluminescence.
Unit 2	Advanced photochemistry
А	Wave mechanical interpretation of radiationless transitions between
	states, factors influencing the rate of vibrational relaxation. Fluorescence
	quenching: collisional quenching, Stern-Volmer equation, concentration
	quenching, quenching by excimer and exciplex emissio
В	Energy transfer: Theory of radiationless energy transfer and energy
	transfer by electron exchange. Fluorescence resonance energy transfer
	between photoexcited donor and acceptor systems and dexter energy
	transfer.
С	The Perrin formulation. Triplet-triplet, triplet-singlet, singlet triplet
	energy transfer. Multiphoton energy transfer processes, reversible energy
	transfer.
Unit 3	Radiation Chemistry, Dosimetry and Photolysis: An overview
А	G-value. The mechanism of interaction of high energy radiation with
	matter, Photoelectric effect, Compton effect, Pair production, total
	absorption co-efficient, excitation and ionization, Stopping power and
	linear energy transfer.
В	Radiation dosimetry: Radiation dose and its measurement, standard free
	air chamber method,
	chemical dosimeter (Frick's Dosimeter). Short lived intermediates (ions,
	excited molecules,
	free radicals: Various mechanisms of their formation and energy transfer
	processes)
С	Flash photolysis: Principle and its applications. Radiolysis of water and
	aqueous solutions.
	Radiolysis of molecules of biological interest (carbohydrates, amino
	acids, peptides, and
	nucleic acids).
Unit 4	Irreversible thermodynamics
A	Meaning and scope of irreversible thermodynamics, Thermodynamic
	criteria for non-equilibrium states, Phenomenological laws- Linear laws,
	Gibbs equation,
В	Onsager's reciprocal relations, Entropy production- specific examples of
	entropy production, Non-equilibrium stationary states
С	Prigogine's principle of maximum entropy production, Coupled
	phenomena. Some important applications.
Unit 5	Transport phenomena
А	Diffusion coefficients, Fick's first and second laws, relation between
	flux and viscosity,
В	relation between diffusion coefficient and mean free path, relation

	between them	nal conductivi	ty/viscosity and mean	free path of a perfect		
	gas, Einstein	gas, Einstein relation,				
C	Nernst-Einste	Nernst-Einstein equation, Stokes-Einstein equation, Einstein-				
	Smoluchows	ti equation.				
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	 Turro, N Books (19 Gilbert, A Blackwell Sood, D.I Radiocher Mukherje Internatio 	I. J. Modern 191). A. & Baggot, Scientific (19 D., Reddy, A.V nistry", IANC e, K.K., "Fur nal Pvt. Ltd., N	Molecular Photocher J. Essentials of Mole 90). .R. and Ramamoorthy, AS, BARC, Mumbai. Idamentals of Photoc New Delhi.	mistry Univ. Science ecular Photochemistry , N., "Fundamentals of chemistry", New Age		
	 Lakowicz Press, Nev Wishart, Chemistry Friedland "Nuclear York. Atkin's F University Introducti Prigogine Fundamen Fundamen Katchalsk <i>Biophysic</i> Kalidas, Thermody (2002). 	z, J.R., "Princi w York. J.F. and Noc j", Oxford Uni er, G., Kenne and Radioche hysical Chem y Press on to Thermo , Interscience ntals of Photoc y, A. & Curren s Harvard Univ C. & Sa ynamics: Princ	ples of Fluorescence S era, D.G., "Photocher versity Press, USA. edy J.W., Miller, E.S emistry", John Wiley istry, P. Atkins & Ju odynamics of Irreversi hemistry, K. K. Rohatg n, P. F. <i>Non Equilibriu</i> versity Press: Cambridg ngaranarayanan, M. iples & Applications,	Spectroscopy", Plenum mistry and Radiation S. and Macais, J.M., and Sons, Inc. New Ilio de Paula, Oxford ible Processes by I. gi-Mukherjee. <i>Im Thermodynamics in</i> ge (1965). V. Non-Equilibrium Macmillan India Ltd.		

2.1 Template A1: Organic Chemistry-VI (MCH243)

School:	SBSR	Batch 2019-21		
Program	m: M.Sc.	Current Academic Year : 2019		
Branch	: Chemistry	Semester IV		
1	Course No.	MCH243		
2	Course Title	Organic Chemistry VI		
3	Credits	4		
4	Contact	4-0-0		
	Hours (L-T-			
	P)			
	Course status	Compulsory		
5	Course	1.To provide a comprehensive introduction to biochemistry.		
	Objective	2.To learn the chemistry of enzymes, structures of nucleic acids, proteins and		
		carbohydrates.		
		3.To know the chemistry of selected steroids, cholesterol and hormones.		
		4.To familiarize the chemistry and structure of oxytocin.		
		5.To know the kinetics of enzymes.		
		6.To understand the chemistry of antibiotics.		
6	Course	CO1:To introduce structure and functions of carbohydrates and their		
	Outcomes	derivatives.		
		CO2: Understand the structure, function, and folding of proteins.		
		CO3:Analyze the double helical structure of DNA and its replication, RNA		
		and transcription.		
		CO4:Learn kinetics of enzyme catalyzed reactions and enzyme inhibition.		
		structure elucidation of cholecterol		
		CO6: A cquire knowledge of molecular structure and interactions present in		
		proteins nucleic acids and carbohydrates and enzymes the organization and		
		working principles of various components present in living cell		
7	Course	The course is designed to give provide an ability to assess the significance of		
'	Description	fundamental chemical properties on biomolecular structure understanding of		
	Description	the connection between biomolecular structure and function acquire		
		knowledge of chemical synthesis of biomolecules and the chemical reactions		
		of biomolecules.		
8	Outline Syllab	us		
	Unit 1	Carbohydrates		
	А	Conformation of monosaccharides, structure and functions of important		
		derivatives of monosaccharides like glycosides, deoxy sugars, myoinositol,		
		amino sugars.		
	В	N-acetylneuraminic acid, sialic acid disaccharides and polysaccharides.		
		Structural polysaccharides - cellulose and chitin. Storage polysaccharides-		
		starch and glycogen. Structure and biological functions of glucosaminoglycans		
		or mucopolysaccharides.		
	С	Carbohydrates of glycoprotiens and glycolipids. Role of sugars in biological		

	recognition. Blood group substances. Ascorbic acid.					
Unit 2	Amino acids a	and Proteins				
А	Chemical and	enzymatic h	ydrolysis of proteins to peptides, amino acid			
	sequencing. Secondary structure of protein, forces responsible for holding of					
	secondary stru	ctures. A- heliz	x, β -sheets, super secondary structure, triple helix			
	structure of c	ollagen. Terti	ary structure of protein- folding and domain			
	structure. Quat	ernary structur	e			
В	Amino acid	metabolism- c	legradation and biosynthesis of amino acids,			
	sequence dete	rmination: che	emical/ enzymatic/ mass spectral, racemization/			
	detection					
С	Chemistry of c	xytocin and try	ptophan releasing hormone (TRH).			
Unit 3	Nucleic Acids					
А	Introduction, c	hemical and er	zymatic hydrolysis of nucleic acids, Structure			
	physical and cl	hemical proper	ties of the heterocyclic bases – Adenine,			
	Guanine. Cyto	sine, Uracil and	d Thiamine.			
В	Structure and	synthesis of	mono and poly – nucleosides and nucleotides.			
	Deoxyribose r	nucleic acid (I	ONA): Primary, secondary, tertiary structure of			
	DNA.Structure	e of RNA. Type	es of RNA – mRNA, rRNA and tRNA.			
С	The chemical	basis for he	eredity, an overview of replication of DNA,			
	transcription, t	ranslation and	genetic code.			
Unit 4	Enzymes					
А	Introduction a	nd historical p	perspective, chemical and biological catalysis,			
	remarkable pr	roperties of e	nzymes like catalytic power, specificity and			
	regulation.					
В	Nomenclature and classification, extraction and purification. Fischer's lock					
	and key and K	and key and Koshland's induced fit hypothesis, concept and identification of				
	active site by	the use of inhi	pitors, affinity labeling and enzyme modification			
	by site-directed mutagenesis.					
C	Enzyme kinetics, Michaelis-Menten and Lineweaver Burk plots, reversible					
	and irreversible inhibition, mechanism of enzyme action					
Unit 5	Steroids and l	Hormones				
Α	Occurrence, no	omenclature, D	iel's hydrocarbon and stereochemistry.			
В	Isolation, struc	ture determina	tion and synthesis of Cholesterol, bile acids			
С	Androsterone,	testosterone, e	strone, progesterone, vitamin D			
Mode of	Theory/Jury/P	ractical/Viva				
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text Book/s*	1.A.L. Lehning	ger, Principles	of Biochemistry, CBS Publishers, Delhi.			
	2.I.L. Finar Vo	olume II.				
Other	1.D. Voet, J.G	. Voet & CW F	Pratt, Fundamentals of Biochemistry, John Wiley			
references	& Sons, New	York.				
	2.H.R. Mahler and E.H. Cordes, Biological Chemistry, 2 nd Edition					
	Row Pub., Nev	w York.				
	3.T.C. Bruice	and S. Bentkov	ic, Bioorganic Mechanisms, Vol. I & II, W. A.			
	Benjamin, New York.					

2.1 Template A1: Medicinal Chemistry (MCE203)

Scho	ool: SBSR	Batch : 2019-21				
Prog	gram:M.Sc.	Current Academic Year: 2019				
Brai	nch:Chemistry	Semester:IV				
1	Course No.	MCE203				
2	Course Title	Medicinal Chemistry				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Elective				
5	Course	1.To provide a comprehensive introduction to Pharmaceutical Chemistry.				
	Objective	2.To introduce the Quantitative structure activity relationship.				
		3.To introduce the software used in drug designing.				
		4.To explain the process of pharmacology.				
		5.To introduce the chemistry of antineoplastic drugs.				
		6.To throw light on the chemistry of Anti-HIV Drugs and AIDS and				
		antibiotics.				
6.	Course	CO1:Explain concept of Quantitative Structure Activity Relationship.				
	Outcomes	CO2:Understand the process of pharmacokinetic and pharmacodynamics.				
		CO3:Elucidate the mode of action of Antineoplastic drugs.				
		CO4:Explain the chemistry and mode of action of Anti-HIV and AIDS				
		drugs.				
		CO5:Explain the chemistry and mode of action of NSAID drugs				
		and review the chemistry of Antibiotic drugs.				
		CO6:Have a thorough grounding in Pharmaceutical Chemistry and basic				
		knowledge in drug designing.				
7	Course	The course is emphasises on physical interactions and chemical reactions				
	Description	and their mechanisms as applied to biological systems, how drugs are				
		discovered and developed, classified, how they get to their site of action,				
		what happens when they reach the site of action in their interaction with				
		receptors, enzymes, and DNA. The approaches discussed are those used				
		in the pharmaceutical industry and elsewhere for the discovery of new				
		drugs.				
8	Outline Syllabus					
	Unit 1	Drug Design and Development				
	А	Procedures followed in drug design, concept of lead compound and lead				
		modification				
	В	structure-activity relationship (SAR), Quantitative structure activity				
		relationship (QSAR). History and development of QSAR.				
		Physicochemical parameters: lipophilicity, Hydrophobicity, Electronic				
		effect Steric factors, Hansch equation (Mathematical derivations of				
	~	equations excluded).				
	С	Computer aided drug design. Software used in drug design.				
	Unit 2	Pharmacology				

r							
	А	Pharmacokinetics: various modes of administration of drug, distribution,					
		metabolism (biotransformation) and drug excretion					
	В	pharmacodynamic: Concepts of drug receptors interactions					
	C	Definition of the following medicinal terms: Pharmacon, pharmacophore,					
		soft drug, prodrug, half-life, efficiency, LD50, ED50, therapeutic index,					
		drug toxicity, drug addiction, spurious drugs, misbranded drugs,					
		adulterated drugs, pharmacopoeia					
	Unit 3	Antineoplastic Agents					
	А	Introduction, cancer chemotherapy, special problems					
	В	Role of alkylating agents and antimetabolites in treatment of cancer.					
		Mode of action of mechlorethamine, cyclophosphamide, 5-Fluorouracil.					
	С	Recent development in cancer chemotherapy.					
	Unit 4	Anti-HIV Drugs and NSAIDs					
	А	Basic facts about HIV & AIDS, Structure of HIV cell, Anti HIV drugs					
		and their classification					
	В	NSAIDS & Mechanism of Action:Asprin					
	С	NSAID-Induced Side Effects					
	Unit 5	Antibiotics					
	A	Introduction, classification of antibiotics, <i>β</i> -lactam antibiotics & their					
		mode of action - Amoxicillin, Chloramphenicol, Cephalosporin					
	В	Tetracycline antibiotics & their mode of action, Aminoglycoside					
		antibiotics & their mode of action - Streptomycin.					
	С	Macrolide antibiotics & their Mode of action - ervthromvcin					
	Mode of	Theory/Jury/Practical/Viva					
	examination						
	Weightage	CA MTE ETE					
	Distribution	30% 20% 50%					
	Text book/s*	1. Strategies for Organic Drug Synthesis and Design, D. Lednicer, John					
		Wiley & Sons Ltd.					
		2A Text Book of Medicinal Chemistry, Vol-I and Vol-II, Surendra N.					
		Pandeya, SG Publishers.					
		3.An Introduction to Drug Design, S.S. Pandeya and J. R. Dimmock,					
		New Age International Publishers.					
		4.Medicinal Chemistry, Ashutosh Kar, New Age International					
		Publishers.					
		5.Goodman and Gilman's Pharmacological Basis of Therapeutics,					
		McGraw-Hill.					
	Other	1.Introduction to Medicinal Chemistry, A. Gringauge, Wiley-VCH.					
	References	2. Wilson and Gisvold's Text book of Organic Medicinal and					
		Pharmaceutical Chemistry, Edited by J.N. Delgado and W. A. Remers,					
		J.B. Lipincott Company.					
		3.The Organic Chemistry of Drug Design and Drug Action, R.B.					
		Silverman, Academic Press.					
		4.Burger's Medicinal Chemistry and Drug Discovery, Vol. I-V, Edited					
		by M.E. Wolff, John Wiley & Sons Ltd					

2.1	Tem	olate A	A1:	Chemistry	of Nanoma	aterials	(MCE204))
								,

Sch	ool:SBSR	Batch:2019-21			
Prog	gram:M.Sc.	Current Academic Year: 2019			
Bra	nch:Chemistry	Semester:IV			
1	Course Code	MCE204			
2	Course Title	Chemistry of Nanomaterials			
3	Credits	4			
4	Contact Hours (L-T-P)	4-0-0			
	Course Status	Elective			
5	Course Objective	1.Teach the advanced methods towards the synthesis of functional materials.2.Teach the advanced methods towards the synthesis of high-quality thin films.			
		 3.Teach the mechanical and magnetic behaviour of functional materials. 4.Teach the basics and phenomenon associated with the electrical and optical behavior. 5.Teach modern spectroscopic and microscopic methods towards the characterization of functional materials. 6. To understand the novel materials from synthetic, analysis and application perspectives. 			
6	Course Outcomes Course Description	CO1:Formulate the synthetic methods towards preparation of novel materials. CO2:Prepare the mechanistic pathway towards facile synthesis of thin films. CO3:Understand the diverse magnetic behaviour of materials CO4:Understand the various electro-optical phenomenon of the materials. CO5:Characterize the materials via spectroscopic and microscopic tools. CO6:Understand the advanced synthetic perspectives along with physical properties and the concept of Auger and X-ray Photoelectron Spectroscopy. The elective course on Chemistry of Materials aims to teach the modern and advanced methods of synthesis, characterization and properties of novel materials			
8	Outline svllabus				
-	Unit 1	Synthesis Methods: Physicochemical Techniques			
	A	Preparation of materials by Ball milling, Attrition and Vibration milling, Cluster compounds, Preparation of nano particles, Preparation of nanostructured polymers/Conducting polymers, composites.			
	В	Chemical precipitation and co-precipitation, Wet chemical methods, Metal crystals by reduction, Sol-gel synthesis			
	C	Microemulsions or reverse micelles, Hydrothermal & Solvothermal			

		synthesis,	Thermolysis	routes,	Microwave	heating	synthesis,	
		Electrochem	ical synthesis.					
	Unit 2	Synthesis M	Synthesis Methods: Deposition Techniques					
	А	Physical Vapor Deposition; mass evaporation rate; evaporators, e						
		reactive evap	poration, ion be	am assis	ted deposition,	Sputtering	g techniques	
	В	Chemical Va	apor Depositior	ı - reactio	on chemistry ar	nd thermoo	lynamics of	
		CVD						
	С	Thermal CV	D, laser & plas	ma enhai	nced CVD, Pyr	rolytic syn	thesis.	
	Unit 3	Unit 3: Properties: Mechanical and Magnetic						
	А	Stress Strain	n diagram for	different	engineering	materials,	Ductile and	
		brittle mater	ial, Tensile stre	ngth, Ha	rdness, Impact	strength		
	В	Fracture (Ty	pes and Ductil	e to britt	le transition), H	Fatigue, Ci	reep, Factors	
	~	affecting me	chanical proper	rties				
	С	Classificatio	n of magnetic	e materia	als, Diamagne	etism, Par	amagnetism,	
		Langevin t	heory of di	a- and	paramagnetis	sm, Ferr	omagnetism,	
		Antiferroma	gnetism, Ferrin	nagnetisn	n, Structure of	Ferrite.		
	Unit 4	Properties:	Electrical and	Optical				
	А	Dielectric M	aterials: Basic	concepts	complex pern	nittivity, d	ielectric loss	
		factor, polar	zation, mechar	usm of p	olarization, cla	ssification	ot	
		dielectrics-fr	requency depen	dence of	dielectric cons	stant		
	B Ferroelectricity, Piezoelectricity, pyro-electric states, tra				transition			
		temperature, polarization catastrophe, antiferroelectricity, ferro electric						
		Continel Dependence Defendence in dem and die in Transie						
	C	Optical Pro	perties: Refra	ctive in	dex and disp	ersion, 1	ransmission,	
		Reflection a	ind absorption	of light	, Optical mat	erial for	UV and IR,	
	T T 9 4 P	Optical aniso	otropic, Non-Iir	near optic	cal crystals, Pho	otolumine	scence	
	Unit 5	Structural A	UV visible ET ID Demon and Atomic characteristics					
	A	UV-VISION, FI-IK, Kaman and Atomic absorption spectroscopy; X-ray					opy; X-ray	
	D							
	В	Giancing angle and wide angle, Debye-Scherer formula, Dislocation						
	C	density, Mic	ro strain	V	- 4 1 4			
-		AUGER Spe	ectroscopy and	X-ray pn	otoelectron spe	ectroscopy	(XPS)	
	Mode of	Ineory						
	examination		MTE	ETE				
	Weightage	CA 200/		EIE 500/				
	Distribution	30%	20%	50%	1	EN V.	f T 1	
	Text book/s*	1.Characterit	zation of mater	riais (vo	1. 1 and 2) by	E.N. Kau	imann, Jonn	
		whey and S	UNS.	of Mot	miala' Valum	a III har I		
		Shepard L	Wulff I 4^{th}	Edition	ohn Wiley 19	11.09 1 184	x. M., Kose	
	Other	1 Pradeen T	"NANO the	e Essenti	al understand	ling Nanc	science and	
	References	Nanotechnol	ogy". TataMa	cGraw-H	ill Publishing	compar	iv Limited	
		2007.		11		, 20mpu	-j <u></u> ,	
		2.Charles P	Poole Jr. "Intr	oduction	to Nanotechno	ology". Jo	hn Willev &	
		Sons, 2003				-0,,00		

2.3 A3: Syllabus of CCU401

School: SBSR		Batch :2019- 2021				
Prog	ram: M.Sc.	Current Academic Year: 2019-20				
Bran	ich: Chemistry	Semester: II				
1	Course Code	CCU401				
2	Course Title	Commun	ity Connect			
3	Credits	2	•			
4	Contact Hours	2-0-0				
	(L-T-P)					
	Course Status	Compulse	ory			
5	Course Objective					
		1. To e	xpose our stude	ents to different social issues faced by the		
		people in	different section	ns of society.		
		2. To	o connect their	class-room learning with problem solving		
		skills	in real life scena	ario.		
6	Course Outcomes	After con	pletion of this o	course students will be able to:		
		1. Recog	nise social pro	oblems prevailing in different sections of		
		society ar	nd finding the so	lution in sustainable manner.		
		2. Get	practical expe	osure of all round development which		
		compleme	ents their class r	oom learning		
		3. These a	activities will ad	d value to students, faculty members, school		
		and unive	ersity.			
7	Course	In this mo	ode, students wi	l make survey, analyze data and will extract		
	Description	results ou	t of it to correla	te with their theoretical knowledge. E.g.		
		Crops and	d animals, land l	olding, labour problems, medical problems		
		of animal	s and humans, s	avage and sanitation situation, waste		
		managem	ent etc.			
8	Outline syllabus					
	Unit 1	Introducti	on to the Topic			
	Unit 2	Drafting the	he questionairr	e		
		~				
	Unit 3	Survey				
	T T 1 / 4		<i></i>			
	Unit 4	Data collec	ction, Discussio	ns and result interpretation		
	TT:4 5	Domont room	ting and Duage	-4		
	Umt 5	Keport wr	iting and Prese			
	Mode of	Presentatio	n and Viva			
	examination	Tresentatio	ii uiid viivu			
	Weightage	CA	MTE	ETE		
	Distribution	60%	0%	40%		
	Text book/s*	-	0.00			

Other References	The entries in the list should be in alphabetical order.
	Journal article
	Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear
	systems of partial differential equations. Ann. Mat. Pura Appl. 169,
	321–354 (1995)
	Article by DOI
	Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New
	nanohybrid materials for biophotonics. Appl. Phys. A (2007).
	doi:10.1007/s00339-007-4137-z
	Book
	Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer
	Algebra. Kluwer, Boston (1992)
	Book chapter
	Broy, M.: Software engineering — from auxiliary to key technologies.
	In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer,
	Heidelberg (2002)
	Online document
	Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb.
	http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June
	2007
	Always use the standard abbreviation of a journal's name according to
	the ISSN List of Title Word Abbreviations, see
	www.issn.org/2-22661-LTWA-online.php
	For authors using End Note, Springer provides an output style that
	supports the formatting of in-text citations and reference list.
	End Note style (zip, 2 kB)

School: SBSR		Batch :2019- 2021				
Program: M.Sc.		Current Academic Year: 2019				
Branch: Chemistry		Semester: V				
1	Course Code	MCH274				
2	Course Title	Dissertation A				
3	Credits	4				
4	Contact Hours (L-T-P)	0-0-6				
	Course Status	Compulsory/Elective				
5	Course Objective	 1.To enhance the practical knowledge and result analysis skills. 2.To enable the students experience a real-life problem solving under the supervision of faculty members. 3.To prepare the students perform functions that demand higher competence in national/international organizations. 4.To train the students in scientific research. 5.To help the students find meaning in life by broadening their field of vision. 6.Develop deep knowledge of a specific area of specialization by literature search. 				
6	Course Outcomes	 CO1: Able to do literature search, develop deeper interest / inquisitiveness in chemistry and interdisciplinary subjects. CO2: Able to prepare stock solutions, buffers etc . CO3: Understand the basics of chemistry and become familiar with qualitative and qualitative estimations. CO4: Able to understand the chemistry of reactions. CO5: Able to analyse the results and understand the chemical reactions involved. CO6: Enhance the practical skills. 				
7	Course	This course provides the applied knowledge of chemistry and gives				
	Description	confidence and a solid foundation for future learning.				
8	Outline syllabus					
Unit 1 Introduction of subject / Literature		Introduction of subject / Literature search				
	Unit 2	Concept building and Study designing				
	Unit 3	Experimentation / Standardization of techniques				
	Unit 4	Data collection, Discussions and result interpretation				

Unit 5	Peport writing					
Unit 5	Report writing					
Mode of	Presentation and Viva					
examination						
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text book/s*	-					
Other References	Pubmed Search (NCBI)					
	Review and research articles of Indexed Journals					

2.3 A3: Syllabus of Dissertation B

School: SBSR		Batch :2019- 2021				
Program:		Current Academic Year: 2019				
B.Sc.(Hons)						
Branch: Chemistry		Semester: VI				
1	Course Code	MCH275				
2	Course Title	Dissertation	В			
3	Credits	6				
4	Contact Hours	0-0-12				
	(L-T-P)					
	Course Status	Compulsory	/Elective			
5	Course	1.To enhanc	e the practical k	nowledge and result analysis skills.		
	Objective	e 2.To enable the students experience a real-life problem solving und		perience a real-life problem solving under the		
	-	supervision	of faculty memb	pers.		
		3.To prepa	re the student	s perform functions that demand higher		
		competence	in national/inter	national organizations.		
		4.To train th	e students in sci	entific research.		
		5.Develop r	research/ experiment	nentation skills as well as enhancing project		
		writing and	oral presentatio	n skills		
		6.Inculcate t	team spirit and ti	me management.		
6	Course	CO1: Able t	o use lab instrur	nents independently.		
	Outcomes	CO2:Cultiva	ate the understar	ding of problem, study design,		
		methodolog	y/ experimentati	on, significance of reproducibility of results.		
		CO3:Understanding of ethics of science and research for supporting				
		higher studies.				
		CO4:Learn effective project organizational skills along with discussions,				
		result interpretation and paper writing.				
		CO5: Able to analyse the results and understand the chemical reactions				
		involved.				
		CO6: Enhance the practical skills.				
7	Course	This course	This course will help to develop knowledge and research skills applicable			
	Description	to a career in	to a career in chemistry.			
8	Outline syllabus					
	Unit 1	Introduction	Introduction of subject/ literature search			
	Unit 2	Concept bui	Concept building and study design			
	Unit 3	Experimenta	Experimentation/ Standardization of techniques			
	Unit 4	Data collect	Data collection, Discussions and result interpretation			
	Unit 5	Report writ	ting			
	Weightage	CA	MTE	ETE		
	Distribution	60%	0%	40%		
	Text book/s*	-				
	Other	Pubmed Search (NCBI)				
	References	Review and research articals of Indexed Journals				