

Programme Structure

Department of Electrical Electronics & Communication Engineering

M.Tech in Electrical & Electronics Engineering

Programme Code: SET0407 Batch: 2023-2025

SU/SSET/M.Tech./EEE

Sharda School of Engineering & Technology

rogramme / Branch: M. Tech. /EEE				n: 2023-	2025		Term.:I
S.	Paper	Subject	Subjects	Teac	ching Loa	d	Credits
No.		Code		L	Т	Р	
HEU	JRY SUBJI	ECIS			-	-	
1	М	IIA139	MEMS, Smart Sensors and Wireless Sensor Networks	3	1	0	4
2	М	IIC104	Optimization Techniques in Engineering	3	1	0	4
3	М	IRM001	Research Methodology	1	0	0	1
4	4		Departmental Elective-1	3	0	0	3
5	5		Departmental Elective-2	3	0	0	3
6	5		Departmental Elective-3	3	0	0	3
7	R	BL001	RBL-1	_	_	_	0
PRA	CTICAL	SUBJECT	S				
8	M	EP139	MEMS, Smart Sensors and Wireless Sensor Networks Lab	0	0	2	1
9			Departmental Elective-1Lab	0	0	2	1
10	М	IRM001	Research Methodology	0	0	2	1
					J	TOTAL	21

Sharda School of Engineering & Technology

Programme / Branch: M. Tech. /EEE

Batch: 2023-2025

Term.:II

S.	Subject	Subjects	Tea	aching L	oad	Credits
No.	Code		L	Т	P	
THE	ORY SUBJI	ECTS				
1	MIA120	Industrial Automation using PLC and SCADA	3	1	0	4
2	MPS129	Distribution Generation Technologies	3	0	0	3
3		Departmental Elective-4	3	0	0	3
4		Departmental Elective-5	2	0	0	2
5		Departmental Elective-6	3	0	0	3
6		Departmental Elective-7	3	0	0	3
7	RBL002	RBL-2	_	_	_	0
PRAG	CTICAL SU	BJECTS				
8	CCU101	Community Connect	0	0	4	2
9	MIA154	PLC and SCADA Lab	0	0	2	1
10		Departmental Elective-4 Lab	0	0	2	1
11		Departmental Elective-5 Lab	0	0	2	1
		TOTAL CREDITS		23		

Sahrda School of Engineering & Technology

Programme / Branch: M. Tech. /EEE

Batch: 2023-2025

Term.:III

S.	Paper	per Subject Subjects Teaching Load		d	Credits					
No.	ID	Code		L	Т	Р				
THEO	THEORY SUBJECTS									
1	MI	EE694	Seminar	0	0	4	2			
2 MEE695		EE695	Dissertation-I	0	0	20	10			
	TOTAL 12									

Shrda School of Engineering & Technology

Programme / Branch: M. Tech. /EEE Batch: 2023-2025

Term.:IV

S.	S. Paper Subject S		Subjects	Teac	hing Load	1	Credits		
No.	ID	Code		L	Т	Р			
THEORY SUBJECTS									
				-					
1	1 EEE810		Dissertation-II	0	0	32	16		
	TOTAL 16								

M.Tech in Electrical & Electronics Engineering <u>COURSE STRUCTURE</u>

	Department of Electrical and Electronics Engineering M.TECH in Electrical & ElectronicsEngineering														
Course Structure for batches admitted in session and onwards															
Semester				Courses	5				Courses	Labs	L	Т	Р	Weekly Contact	Credits
Ι	MEMS Smart Sensors and Wireless Sensor Netwworks (3- 1-2) 5	Optimiz ation Techniq ues in Enginee ring (3- 1-0) 4	Research Methodo logy(1- 0-2)	Electiv e 1 (3- 0-2) 4	Elect iv e 2 (3- 0-0) 3	Electi v e 3 (3- 0-0) 3	RBL-1(0- 0-0)0		6	3	16	2	6	24	21
II	Industry Automation s using PLC and SCADA(3- 1-2) 5	Distributio n Generation Technologi es(3-0-0)3	Electiv e 4 (3- 0-2) 4	Electiv e5 (2-0- 2)3	Elect iv e 6 (3- 0-0) 3	Electi v e 7 (3- 0-0) 3	RBL- 2(0-0- 0)0	Comm unity Connec t(0-0- 4) 2	6	4	17	1	10	28	23
ш	Seminar (0-0-4) 2	Dissertati on -1 (0- 0-20) 10							0	2	0	0	24	24	12
IV	Disserta tion -II (0- 0-32) 16								0	1	0	0	32	32	16
				то	TAL CR	REDITS									72

SU/SSET/M.Tech./EEE

List (Of Electives		
	With Specialization in Power Systems	With Specializationin Instrumentation and Control	With Specialization in Industrial Automation
1	Extra High Voltage Transmission	Advanced Control Engineering And Controllers	Advanced Control Engineering And Controllers
2	Modeling & Analysis Of Power System	Smart Power Grid And Micro grid	Smart Power Grid And Micro grid
3	Power Systems Operation& Control	Optimal Control	Electrical Drives
4	Power System Reliability Assessment	Intelligent Actuators And Mechatronics	Intelligent Actuators And Mechatronics
5	Smart Power Grid And Micro grid	Virtual Instrumentation	Virtual Instrumentation
6	FACTS Devices And Systems	Analog And Digital Signal Processing	Digital Signal Processing Techniques
7	Digital Relaying For Power Systems	Industrial Network Protocols And IoT	Industrial Network Protocols And IoT
8	Power Quality	Industrial Robotics	Industrial Robotics
9	Wind And Solar Energy Systems	Embedded Systems	Embedded Systems
10	Wireless Sensor Networks And Application	Industrial Instrumentation	Mechatronics of Robotics
11	Sustainable Energy	Analog And Digital Communication Techniques	Wind And Solar Energy Systems
12	Electrical And Hybrid Vehicles	Sustainable Energy	Electrical And Hybrid Vehicles
13	Operation and control of smart grid	Electrical And Hybrid Vehicles	Internet of Things and Applications
14	Restructured Power System	Biomedical Instrumentation	Optimal Control
15	Internet of Things and Applications	Internet of Things and Applications	

Course Module Term-I

School: SSET		Batch : 2023-25					
Progr	ramme: M.Tech	Current Academic Year: 2023-24					
Brane	ch: EEE	Semester: 1					
1	Course Code	MIA139					
2	Course Title	MEMS, Smart Sensors and Wireless Sensor Networks					
3	Credits	4					
4	Contact Hours	4-0-0					
	(L-T-P)						
	Course Status	Compulsory					
5	Course	To provide students with:					
	Objective	1. basic principles and techniques of MEMS and Smart	Sensors				
		2. knowledge of various fabrication and machining proc	cess of MEMS				
		along with its benefits in relation to applications					
		3. Knowledge in wireless sensor networks and to apply	this knowledge in				
		various industrial application like environmental mor	nitoring, structural				
		health and greenhouse monitoring					
		nearth and greenhouse monitoring					
6	Course	After completion of this course the students will be able to					
	Outcomes	After completion of this course the students will be able to					
		CO1: To be able to understand architecture of smart s	sensors along with				
		differences among smart, intelligent and network sensors.	ences among smart, intelligent and network sensors.				
		CO2: To be familiar with the important concepts	MEMS and smart				
		sensor fabrication technologies.	c 1°CC (
		CO3: To be able to select and use the MEMIS based se	ensors for different				
		applications.	nnlightions				
		CO5: To understand principles of wireless sensors for different applications.					
		among various wireless network protocols					
		CO6: To apply and develop WSN based real time application	s of WSN in various				
		industrial environmental and societal domains					
		industrial, environmental and societal domains.					
7	Course	This course is aimed at equipping students with basic knowle	edge on of MEMS				
	Description	(Micro electro Mechanical System). Smart sensor and its var	rious fabrication				
	1	techniques. This course also enables the student with appropriate knowledge of					
		Wireless sensor network and its applications in industry.	U				
8	Outline syllabus		CO Mapping				
0	Unit 1	Basics of MEMS and Smart Sensors					
	A	Overview of measurement system, transducers, Sensors	CO1				
		Types, open and closed loop control system, actuators in					
		open and closed loop and signal conditioners					
	В	Definition and working principle of MEMS-Based	CO1				
		Acceleration Sensor, MEMS-Based Pressure Sensor.					
		MEMS-Based Micro-Motor (Actuator), MEMS-Based					
		Resonator (Sensor/Actuator), Smart MEMS Sensors with					

	Analog/Digital Output, Smart MEMS Sensors with Quasi-	
~		G 0 1
C	Definition and architecture of smart sensor; different levels	COI
	of integration in smart sensors; Differences between smart,	
	intelligent and network sensors; Advantages of smart	
	sensors, Smart MEMS Devices,	
Unit 2	MEMS and Smart Sensor Technologies	
А	Micro-machining processes: materials for micro-	CO2
	machining, wafer bonding, bulk and surface	
	micromachining	
В	IC Technologies: thick film, thin film technologies	CO2
С	Monolithic IC technology	CO2
Unit 3	Case studies of MEMS and Smart Sensors	
А	Principles, characteristics and constructional details of	CO3
	MEMS-based smart acceleration and pressure sensor,	
	MEMS-Based Micro-Motor (Actuator), MEMS-Based	
	Resonator (Sensor/Actuator). Smart MEMS Sensors with	
	Analog/Digital Output, Smart MEMS Sensors with Quasi-	
	Digital Output	
B	Principle characteristics and constructional details of a	CO4
	smart temperature sensor	001
С	Principle characteristics and constructional details of a	CO4
C	smart humidity sensor	004
 Unit 1	Wireless Sensor Notwork	
	WIN Based Monitoring System Need and advantages of	CO5
	WSN Network topologies: seven-layer OSL model of	005
	communication system	
B	Zabee (IEEE 802.15.4) protocol Marits of Zighee over	C05
D	Wi Ei (IEEE 802.11) and Pluotooth for WSN	05
	Architecture of Wireless sensor node	
C	Sansor and actuator natural (SAN) homogeneous and	CO5
C	betarogeneous SAN and comparison	05
	Wireless Sensor Network, based Applications	
Unit 5	whereas sensor network based Applications	
	Spectrum of applications: Case studies on WSN application:	COG
A	Environment monitoring. Forest fire detection	000
 D	Condition monitoring. Structural health. Equipment health	COG
D	Condition monitoring - Structural health, Equipment health	000
 C	Creathouse maniforing and control. Human health	COC
C	Greenhouse monitoring and control, Human health	006
 M. J. C	IIIOIIIIOIIIg The same	
Mode of	Ineory	
 examination		
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	

		www.sharda.ac.in
Text book/s*	 D. Patranabis, "Sensors and Transducers", Prentice-Holl, 2nd Edition, 2003. Randy Frank, "Understanding Smart Sensors", Artech House, 2nd Edition, 2000. E.H. Callaway, "Wireless Sensor Networks : Architecture and Protocols" 	
Other References	 H.K. Verma, e-monograph on "Smart Sensors", at www.profhkverma.info, Chapter 1 – Basics of Smart Sensor, Chapter 2 – Smart Sensor Technologies, Chapter 3 – Case Studies of Smart Sensors. H.K. Verma, e-monograph on "WSN", at www.profhkverma.info, Chapter 1 – Wireless Sensor Network, Chapter 2 – Wireless Sensor Node, Chapter 3 – Applications of Wireless Sensor Networks. 	

Scho	ool: SSET	Batch : 2023-25					
Prog	gramme: M.Tech	Current Academic Year: 2023-24					
Brar	ich: EEE	Semester: 1					
1	Course Code	MIC104					
2	Course Title	Optimization Techniques in Engineering					
3	Credits	4					
4	Contact Hours (L-T-P)	3-1-0					
	Course Status	Compulsory					
5	Course Objective	 This course provides the students with: Knowledge of solving linear and nonlinear Algebraic Knowledge of solving differential equations Introduction to various concepts of Optimization Te Awareness to the importance of optimizations in rea Knowledge of various classical and modern methods constrained and unconstrained problems in both singl multivariable. Knowledge of Various Evolutionary Techniques 	e equations echniques. al scenarios; of le and				
6	Course Outcomes	 7. Ideas to solve Integer programming. After completion of this course the students will be able to CO1: Solve various linear and nonlinear Algebraic equation CO2: Solve various Differential equations CO3: Formulate optimization problems CO4: Apply the concept of optimality criteria for various type problems and solve various constrained and unconstrained pr CO5: Know various Evolutionary Techniques and Solve in Programming problems. CO6: Apply Optimization Techniques in real time application 	ns e ofoptimization roblems teger ons.				
7	Course Description	Optimization is the process of obtaining the best result circumstances. In design, construction and maintenance of ar system, engineers have to take many technological an decisions at several stages. The ultimate goal of all such deci- to minimize the effort required or to maximize the desir number of optimization methods have been developed for so types of optimization problems.	t under given ny engineering nd managerial isions is either red benefit. A living different				
8	Outline syllabus		CO Mapping				
·	-						
	Unit 1	Algebraic Equations					

				AAC SHAL		
А	Introduction	of Algebraic I	Equations. Iterative	CO1		
	methods for s	solving non li	near equations-Bisection			
	method, Regi	ulafalsi metho	d, Newton Raphson			
	method, secar	nt method.				
В	Fixed Point n	nethod, Two e	equation Newton Raphson	CO1		
~	method.			CO1		
C	method. Gau	ss- seidel met	ng nnear equations-Jacobi	01		
Unit 2	Differential	Equations	104	<u> </u>		
А	Finite differe	nce method		CO2		
В	Euler"s meth	od		CO2		
С	Runga-kutta	methods(four	h order)	CO2		
Unit 3	Optimizatio	n Problems	,			
А	Requirements optimization	CO3				
В	Feasible solution and feasible region, Necessary and sufficient optimality conditions, Graphical			CO3		
	method for o	ptimal solutio	<u>n.</u>			
	Simplex meth	nod and Dual	Simplex method	CO3,CO6		
Unit 4	Optimizatio	n Technique	8			
A	Lagrange mu	ltiplier, Kuhn	-tucker conditions	CO4,CO6		
B	Newtons met	hod,Interior P	enalty function method,	CO4,CO6		
C	Rosen Gradie	ent projection	method	CO4,CO6		
Unit 5	Evolutionar	y Techniques	and Integer Programming	g		
А	Genetic Algo optimization	rithm, Particle methods	e swarm and ant colony	CO5,CO6		
В	Branch and E	Bound method		CO5,CO6		
С	cutting plane	method		CO5,CO6		
Mode of	Theory					
examination		5				
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	1 Balagurusa 2 Bao S S "F	my, E., "Num Engineering O	erical methods", Tata McGr ntimization: Theory and Prac	awHill ctice" wiley		

Sch	ool: SSET	Batch: 2023-2025						
Pro	gramme: M	Current Academic Year: 2023-24						
Tec	h							
Bra	nch: EEE	Semester: I						
1	Course Code	MEP 139						
2	Course Title	MEMS, Smart Sensors and Wireless Sensors Network Lab)					
3	Credits	1						
4	Contact	0-0-2						
	Hours							
	(L-T-P)							
	Course Status	Compulsory						
5	Course	To provide students with:						
	Objective	1. To equip students with the working knowledge all	bout the smart					
		sensors and their interfacing with microcontrollers.						
		2. To provide practical knowledge about WS not	les and WSN					
		configuration.						
		3. To provide the knowledge for analyzing the profile r	neasurement of					
		various parameters.						
6	Course	After completion of this course the students will be able to)					
	Outcomes		, ,					
		CO1: To understand basics of Smart Sensors.						
		CO2: To interface and measure various parameters using s	smart sensors					
		with microcontrollers /DAQ cards.						
		CO3: To interface and measure various parameters using s	smart MEMS					
		based sensors with microcontroller/DAQ cards						
		CO4: To understand fundamentals of Wireless sensor networks						
		CO5: To configure WS node and build a wireless network.						
		cool. To acquire and control the parameter data from the	w Sin and					
7	Course	The contents of this course cover the measurement of ter	an anatura usin a					
/	Description	the smort sensors with different type of extructs. Also, the	interfacing of					
	Description	smart sensors with the microcontroller has been focused.	Pote acquisition					
		with DAO cards is also covered in this course. Configure	ing WS nodes					
		building WSN and profile measurement have been are also	ng ws noues,					
0	Outling sylloby	building wish and prome measurement have been are also	CO Monning					
0	Unit 1	S Interfacing of smort sensors	CO Mapping					
		Magurament of Temperature with Smart temperature	CO1					
	A	Sensor AD592 with analog current output	COI					
	B	Measurement of Temperature with Smart temperature	CO1					
	U U	Sensor I M 35 with analog voltage output						
	C	Measurement of soil moisture using appropriate consor	CO1					
	Unit 2	Interfacing of Smort MEMS						
		11111111111111111111111111111111111111						

		A+ NAAG
A	Interfacing of Smart humidity and temperature sensor output (SHT75) with digital serial output.	CO2
В	Interfacing of Smart MEMS acceleration sensor to microcontroller/DAQ.	CO2
С	Interfacing of Smart MEMS pressure sensor to microcontroller/DAQ Card	CO2
Unit 3	Configuring a wireless sensor network using TL Sensor Node (SENSEnuts)	
А	Installing the toolchain	CO3
В	Configuring TL node as sensing node and as broadcasting node	CO3
С	Create a GUI for data acquisition	CO3
Unit 4	Configuring a wireless sensor network using HTP Sensor Node (SENSEnuts)	
А	Configuring HTP node as sensing node	CO4
В	Configuring HTP node as broadcasting mode	
С	Create a GUI for data acquisition	CO4
Unit 5	Profiling of parameters	CO4
Α	Setting up Wireless sensor Network	CO5
В	Temporal profiling of a parameters for TL sensor network	CO5,CO6
C	Temporal profiling of a parameters for HTP sensor network	CO5,CO6
Mode of examination	Practical & Viva	
Weightage	CA CE ETE	
Distribution	25% 25% 50%	
Text book/s*	 D. Patranabis, "Sensors and Transducers", Prentice-Holl, 2nd Edition, 2003. Randy Frank, "Understanding Smart Sensors", Artech House, 2nd Edition, 2000. E.H. Callaway, "Wireless Sensor Networks : Architecture and Protocols" Manuals of various sensors provided by the manufacturers. Lab Manuals 	
Other References	 H.K. Verma, e-monograph on "Smart Sensors", at www.profhkverma.info, <u>Chapter 1 – Basics of</u> <u>Smart Sensor</u>, <u>Chapter 2 – Smart Sensor</u> <u>Technologies</u>, <u>Chapter 3 – Case Studies of Smart</u> <u>Sensors</u> 	

2.	H.K. Verma, e-monograph on "WSN", at	
	www.profhkverma.info, Chapter 1 – Wireless	
	Sensor Network, Chapter 2 – Wireless Sensor	
	Node, Chapter 3 – Applications of Wireless	
	Sensor Networks.	

Sc	School: SSET		Batch : 2023- 2025			
Pr	ogramme: M	.Tech	Current Academic Year: 2023-2024			
Bı	anch: EEE		Semester: I			
1	Course Code		RBL001			
2	Course Title		Research Based Learning -1			
3	Credits		0			
4	Contact Hour (L-T-P)	CS	0-0-0			
	Course Status	S	Compulsory			
5 Course Objective To provide students with: 1To align student's skill and interests with a reproblem or project 2.To understand the significance of problem a scope 3. Students will make decisions within a fram			with a realistic roblem and its n a framework			
6	6 Course Outcomes		After the completion of course student will be a CO1: Literature Survey in Identified stream. CO2:Identifying the research gaps. CO3: Learn appropriate simulation software / up. CO4: Comparative Study. CO5: Draft a review article. CO6: Communicating the article.	able to experimental set		
7	7 Course Description		In RBL-1, the students will learn how to define the problem for developing projects, identifying the skills required for developing the project based on given a set of specifications and all subjects of that Semester.			
8	Outline syllal	bus		CO Mapping		
F	Unit 1	Study resea	rch papers.	CO1, CO2		
<u> </u>	Unit 2	Identify the	research area.	CO2,CO3		
	Unit 3	Learn the s	imulation software.	CO3		
	Unit 4	Comparativ	ve study related to identified research area.	CO3, CO4		
	Unit 5	Prepare a communica	write up based on comparative study and the article.	CO4, CO5, CO6		

Mode of	Practical/Viv					
examination						
Weightage	CA	CE	ETE			
Distribution	25%	25%	50%			

Scho	ool: SSET	Batch : 2023-2025			
Prog	gramme:M.Tech	Current Academic Year: 2023-24			
Brar	nch: EEE	Semester: I			
1	Course Code	MRM001			
2	Course Title	Research Methodology			
3	Credits	2			
4	Contact Hours	1-0-2			
	(L-T-P)	Compulsory			
5	Course Status	 To develop understanding of the basic framework of res 	aarch process		
5	Objective	• To develop understanding of the basic framework of res	earch process.		
	o o je o di ve	• To develop an understanding of various research designs	s and techniques.		
		• To identify various sources of information for literature	e review and data		
		collection.			
		• To develop an understanding of the ethical dimension	ons of conducting		
		applied research.			
		• Appreciate the components of scholarly writing and eval	luate its quality.		
6	Course	CO1: Infer the mind-set of a researcher			
	Outcomes	CO2: Design a research plan			
		CO3: Apply different methods for data collection			
		CO4: Analyse the collected data			
		CO5: Compile relevant data and prepare a report			
		CO6: Infer the process of research right from inception of	idea to execution		
		and documentation.			
7	Course	The course aims to develop a research orientation among the	he scholars and to		
	Description	acquaint them with fundamentals of research methods.	Specifically, the		
		course aims at introducing them to the basic concepts used	in research and to		
		scientific social research methods and their approach. It inc	cludes discussions		
		on sampling techniques, research designs and techniques of	fanalysis.		
8	Outline syllabus		CO Mapping		
	Unit 1	Introduction			
	А	Introduction to research – The role of research, research process overview	CO1		

	A+ NAAC WENNIVERSIT Beyond Boundari Wenned		
Philosophies and the language of research theory building – Science and its functions, What is theory?, and The meaning of methodology	CO1,CO2		
Thinking like a researcher – Understanding Concepts, Constructs, Variables, and Definitions	CO1,CO2		
Research Problem and Hypotheses			
Defining the research problem, The importance of problems	CO2,CO3		
Formulation of the research hypotheses, The importance of hypothesis	CO2,CO3		
Experimental and Non-experimental research design	CO2,CO3		
Data Collection			
Field research, and Survey research	CO4,CO5		
Methods of data collection- Secondary data collection methods	CO4,CO5		
Methods of data collection– qualitative methods of data collection, and Survey methods of data collection	CO4,CO5		
Data Analysis			
Attitude measurement and scaling – Types of measurement scales; Questionnaire designing – Reliability and Validity	CO5,CO6		
Sampling techniques – The nature of sampling, Probability sampling design, Non-probability sampling design, Determination of sample	CO5,CO6		
Processing and analysis of data	CO5,CO6		
Report Writing			
Ethical issues in conducting research	CO6		
Report generation and report writing	CO6		
APA format – Title page, Abstract, Introduction, Methodology, Results, Discussion, References, and Appendices			
CA CE ETE			
25% 25% 50%			
 Chawla, Deepak & Sondhi, Neena (2011). Research methodology: Concepts and cases, Vikas Publishing House Pvt. Ltd. Delhi Bryman, Alan & Bell, Emma (2011). Business Research Methods (Third Edition), Oxford University Durant 			
	Philosophies and the language of research theory building – Science and its functions, What is theory?, and The meaning of methodology Thinking like a researcher – Understanding Concepts, Constructs, Variables, and Definitions Research Problem and Hypotheses Defining the research problem, The importance of problems Formulation of the research hypotheses, The importance of hypothesis Experimental and Non-experimental research design Data Collection Field research, and Survey research Methods of data collection– qualitative methods of data collection methods Methods of data collection– qualitative methods of data collection Data Analysis Attitude measurement and scaling – Types of measurement scales; Questionnaire designing – Reliability and Validity Sampling techniques – The nature of sampling, Probability sampling design, Non-probability sampling design, Determination of sample Processing and analysis of data Report Writing Ethical issues in conducting research Report generation and report writing APA format – Title page, Abstract, Introduction, Methodology, Results, Discussion, References, and Appendices CA CE CA CE Proses 50% Southi, Neena (2011). Research methodology: Concepts and cases, Vikas Publis		

		A+ NAAC SHARDA UNIVERSITY Beyond Boundaries
Other References	 Kerlinger, F.N., & Lee, H.B. (2000). Foundations of Behavioural Research (Fourth Edition), Harcourt Inc. Rubin, Allen & Babbie, Earl (2009). Essential Research Methods for Social Work, Cengage Learning Inc., USA. 	

Course Module Term-II

Scho	ool: SSET	Batch : 2023-25							
Prog	gramme: M.Tech	Current Academic Year: 2023-24							
Brai	nch: EEE	Semester: II							
1	Course Code	MIA120							
2	Course Title	Industrial Automation using PLC and SCADA							
3	Credits	4							
4	Contact Hours (L-T-P)	3-1-0	5-1-0						
	Course Status	Compulsory /Elective/Open Elective							
5	Course Objective	To provide students with:							
		1. The conceptual as well as practical knowledge of the Indu	istrial						
		Automation & latest technologies being used to achieve Ind	ustrial						
		Automation.							
6	Course Outcomes	After completion of this course students will be able to:							
		CO1: Describe working of various blocks of basic Industria	l Field						
		Instrumentation & Controllers							
		CO2: To provide knowledge levels needed for PLC Program	nming and						
		operating.							
		CO3: Connect the peripherals with the PLC.							
		CO4: Use various PLC functions and develop small PLC Pr	ogrammes.						
		CO5: Getting knowledge of PLC SCADA applications in d	lifferent						
		industries.							
		CO6: Getting knowledge about different types communication	O6: Getting knowledge about different types communication in the						
7	Course	automation field.	lun oral o do o						
/	Course	This course is aimed at equipping students with appropriate	knowledge						
	Description	and skins required in configuring, Programming and operation systems with the use of Industrial Field Instrum	anto DI Co						
		SCADA/HMI and DCS	utomation systems with the use of industrial Field Instruments, PLCs,						
		SCADA IIVII and Des.	~ ~ ~ ~ .						
8	Outline syllabus		CO Mapping						
		Industrial Field Instrumentation & Controllers	<u>CO1</u>						
	A	Microprocessor/microcontroller based industrial	COI						
	D	Industrial Automation System structure functional levels	CO1						
	В	industrial Automation System structure, functional levels	COI						
	C	Industrial Control Valvas Signal conditionars and	CO1						
	C	intelligent transmitters	COI						
	Unit 2	PLC Basics							
	A	Introduction to PLC PLC versus	CO2						
	· · ·	microprocessor/microcontroller/computer: Advantages							
		and disadvantages of PLC							
	В	Hardware, internal architecture and physical forms of PLC.	CO3						
	_	Digital inputs/ outputs; Analog inputs/ outputs							

	9	A+
С	PLC Programming: ladder Programming, function blocks, Instruction lists, Sequential function chart, mnemonic Programming	CO2, CO6
Unit 3	PLC Functions	
A	Registers: holding, input and output registers; Timers and timer functions; Counters and counter functions.	CO4
В	Data handling functions; Bit functions; Analog Input/ Output Cards and control loops	CO4
С	Advanced functions; PLC Programming using various functions; Structured Programming (Functions & Function blocks)	CO4, CO6
Unit 4	SCADA Basics, Layout and Functions	
A	Introduction; Definition and purpose; Controlled / uncontrolled variables and remotely / locally controlled objects in controlled plant	CO5
В	Layout and parts of SCADA system; Detailed block schematic of SCADA system	CO5
С	Functions of SCADA system: data acquisition and transmission, monitoring, control, data collection and storage, data processing and calculation, report generation	CO5
Unit 5	SCADA Hardware and Software	
A	Master Terminal Unit (MTU): functions, single processor and multiprocessor MTU, single and dual computer configurations of MTU	CO5
В	Remote Terminal Unit (RTU): functions, architecture / layout; RTU Programming; MTU-RTU communication and RTU-field device communication	CO5, CO6
С	OPC Server (OLE for Process Control)/PLC (RTU) and SCADA Interface Configuration concepts	CO5, CO6
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Text book/s*	 J.W. Webb and R.A. Reis, Programme able Logic Controllers, Prentice-Hall India Stuart A. Boyer, Supervisory Control and Data Acquisition (SCADA), 4th Edition, International Society of Automation, 2010. 	
Other References	 J.R. Hackworth and F.D. Hackworth, Programme able Logic Controllers, Pearson Edition 2. W. Boston, Programme able Logic Controllers, Newnes,(Elsevier). 3. H.K. Verma, SCADA, e-monograph at www.profhkyerma.info. Chapter 1: Basics of SCADA 	

		A+ NAAC	SHARDA UNIVERSITY Beyond Boundaries
	Chapter 2: Functions of SCADA System, Chapter 3:		
	Hardware of SCADA System.		

Sch	ool: SSET	Batch : 2023-2025			
Pro	gramme:	Current Academic Year: 2023-2024			
M. 7	Гесh				
Bra	nch: EEE	Semester: I			
1	Course Code	MPS129			
2	Course Title	Distributed Generation Technology			
3	Credits	3			
4	Contact	3-0-0			
	Hours				
	(L-T-P)				
	Course	Compulsory			
	Status				
5	Course	To provide students with:			
	Objective	1. To introduce the concept of distributed generation, micr	ogrids,		
		electric vehicles and energy storage.			
		1. To familiarize the students with renewable generation	system		
		modelling, and their grid integration issues.	•		
		2. To impart an understanding of economics, policies and	technical		
		regulations for DG integration			
6	Course	After completion of this course students will be able to:			
	Outcomes	CO1 : Analyse the concept and importance of distributed g	generation and		
		micro grid.			
		CO2: Understand different renewable energy-based DG sou	rces and other		
		alternate DG sources.			
		CO3: Evaluate the technical impact of DG in power system	. 1		
		CO4: Analyse power quality issues with DG and reactive power control.			
		COS: Evaluate the effect of DG placement in the existing system.			
7	Course	This cullebus sizes on everying of distributed energy resources	devices		
/	Description	sustame small hydro fuel celle energy storage technologies	s, photovoltaic		
	Description	Dringinlas of control of distributed concretion systems; E	Vind turbines,		
		distribution systems installation interconnection and integrati	ion: Economic		
		and financial aspects of distributed generation, the regulatory	v environment		
		and standards	y environment		
8	Outline syllab	DUS	СО		
			Mapping		
	Unit 1	Introduction to Distributed Generation	CO1		
	А	Concept of DG and, its definition, Current scenario in	CO1		
		distributed generation			
	В	Need for distributed generation	CO1		
	С	Advantage and limitation of DG	CO1		
	Unit 2	Renewable based Distributed generation			
	А	Wind power plant	CO2		

					SHARDA UNIVERSITY	
В	Solar power p	olant		CO2		
С	Small hydro	Small hydro other alternate DG				
Unit 3	Technical im	pacts of DG	r	CO3		
А	Transmission	CO3				
В	Impact of DG	s upon prote	ctive relaying	CO3		
С	Impact of DG	s upon trans	ient and dynamic stability of	CO3		
	existing distri	bution system	ns			
Unit 4	Operation an	nd Economic	c aspects of DGs	CO4		
А	De-regulation	of power sy	stem	CO4		
В	Voltage contro	ol technique	s, Reactive power control,	CO4		
	Harmonics, Power quality issues, Reliability of DG based systems					
С	Economic imp	CO4				
Unit 5	Grid integrat	tion of DGs		CO5		
А	Optimal place	ement of DG	sources in distribution systems	CO5		
В	Different type rotating mach DG units	es of interfaction	es, Inverter based DGs and terfaces, Aggregation of multiple	CO5		
С	Energy storag	e elements, I	Batteries, ultra capacitors,	CO6		
	flywheels					
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	1. Renew	vable Energy	- Power for a sustainable future,			
	third e	dition, Edite	d by Godfrey Boyle, Oxford			
University Press, 2013.			.013.			
Other	1 Microgrids and Active Distribution Networks S					
References Chowdhury S.P. Chowdhury and P. Cross			howdhury and P Crossley The			
	Institu	tion of Engi	neering and Technology I ordon			
	LUK 2000					
U.K, 2009				1		

Sc	hool: SSET		Batch	: 2023- 202	5			
Pr	ogramme: M.	Tech	Curre	nt Academi	c Year:	2023-2024		
Bı	ranch: EEE		Semes	ster: II				
1	Course Code		RBL0	02				
2	Course Title		Resear	Research Based Learning -2				
3	Credits		0	0				
4	Contact Hour	S	0-0-0	0-0-0				
	(L-T-P)							
	Course Status		Comp	ulsory				
5	Course Objec	tive	1.To p	rovide stude	nts with	:		
			1. To a	align student	's skill a	and interests with a	realistic problem or	
			project	t				
			2. To ı	understand th	ne signif	icance of problem a	nd its scope	
			3. Stuc	dents will ma	ake decis	sions within a frame	ework	
6	Course Outco	mes	After t	he completion	on of cor	urse student will be	able to	
			CO1: 1	Literature Su	irvey in	Identified stream.		
			CO2:	Identifying	the resea	urch gaps.		
			CO3: 1	Learn approp	priate sir	nulation software / e	experimental set up.	
			CO4: 0	Comparative	Study.	1		
			C05: 1	Draft a resea	rch artic			
			CU6: 0	Communicat	ing the a	article.		
7	Course Deser	intion	In DD	I 2 the stur	donte wi	11 Jaarn have to dafi	no the problem for	
	Course Descr	iption	develo	L-2, the stud	s identi	fying the skills requ	ired for developing	
			the pro	ping project	s, iuciiii	a set of specification	and all subjects	
			of that	Semester	ni given	a set of specification	sits and an subjects	
8	Outline syllab	115	or that	bemester.			CO Mapping	
	Unit 1	Study resea	rch nan	ers			CO1 CO2	
	Unit 2	Formulate	the research	arch problem	1		CO2 CO3	
	Unit 3	Apply the	simulati	ion software	to the	identified research	CO3	
	0 0	problem.	5					
	Unit 4	Analysis of	the resi	ults obtained	from si	mulation.	CO3, CO4	
	TT:4 5	Dremana a r		hazad an id	antified			
	Unit 5	Prepare a v	vrite up	based on 1d	entified	research work and	C04, C05, C06	
	Mode of	communica	ite the a	nucle.				
	From Examination	Practical						
1	Examination	1 1001001						
	Weightage	CA		CE		ETE		
1	Distribution	25%		25%		50%	1	

Schoo	ol: SSET	Batch : 2022-24				
Progr	ramme: M.Tech	Current Academic Year: 2022-23				
Branc	ch:EEE	Semester: 1				
1	Course Code	CCU101				
2	Course Title	Community Connect				
3	Credits	2				
4	Contact Hours	(0-0-2)				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	To provide students with:				
	Objective	1. To connect the students to the community.				
		2. To conduct survey of community people and record responses and identify				
		the issues faced by the community.				
		3. To do detailed analysis of data collected in the survey and student will use				
		their learning to propose suitable solution for these issues.				
		4. To enhance skills of students on communication, data analysis and report				
		writing skills.				
		5.To conduct survey on general awareness.				
6	Course Outcomes	After completion of this course the students will be able to				
		CO1. Interpret knowledge on different issues faced by the community in better				
		way.				
		CO2. Analyze data and identify problems				
		CO3. Solve the complex problems efficiently				
		CO4. Construct documentation, data analysis and report on any project.				
		the problem				
		the problem CO6. Utilize technology based knowledge to improvise the existing solution				
		for the problem				
7	Theme	Major Sub-themes for research:				
/	Theme	1 Energy solutions, saving and management				
		2 Electronics solution in everyday life				
		3. Civil works like transportation, drainage, water, construction etc.				
		4. Agriculture and irrigation, crop production				
		5. IoT and smart solutions				
		6. Medical and Healthcare issues				
		7. Environmental issues				
		8. Security and surveillance				
		9. Education and skills				
8.1	Guidelines for	• Any one of the sub-themes can be taken as survey topics				
0.1	Faculty	 It will be a group assignment 				
	Members	 There should be no more than 10 students in each group 				
	1,10110015	- There should be no more than 10 students in each group.				

		KAAL STARDA
		 The faculty guide will guide the students to complete the survey and help the student in preparing final report. The questionnaire should be well design by the school and it should carry at least 40 questions (Including demographic questions). The faculty will guide each group of students to prepare the PPT. Each group should submit the report to CCC-Coordinator signed by the faculty guide before one week of last date of instruction mentioned in the Academic Calendar. The students have to send the hard copy of the report and PPT, and then only they will be allowed for ETE.
8.2	Role of CCC- Coordinator	• The CCC Coordinator will supervise the whole process and assign students to faculty members.
8.3	Layout of the Report	 Abstract (250 words) Introduction Literature review(optional) Objective of the research Research Methodology Questionnaire Expected Outcomes References Note: Research report should base on primary data
8.4	Guideline for Report Writing	 Title Page: The following elements must be included: Title of the article; Name(s) and initial(s) of author(s), preferably with first names spelled out; Affiliation(s) of author(s); Name of the faculty guide and Co-guide Abstract: Each article is to be preceded by a succinct abstract, of up to 250 words, that highlights the objectives, methods, results, and conclusions of the paper. Text: Manuscripts should be submitted in Word. Use a normal, plain font (e.g., 12-point Times Roman) for text.
		 Use italics for emphasis. Use the automatic page numbering function to number the pages. Save your file in docx format (Word 2007 or higher) or doc format (older Word versions) Reference list: The list of references should only include works that are cited in the text and that have been published or accepted for publication. The soft copy of final report should be submitted along with the hard copy signed by faculty / guide and countersigned by HoD / Dean.

		• The regiven	eport will be su in the notificat	ubject to plagiarism check as per the guidelines tion.					
8.5	Format	The report sh	ould be Spira	l / softbound					
		Cover page							
		Acknowledge	ment						
		Content							
		Project report							
		Appendices							
8.6	Important	Students will complete their community survey before last instruction date of							
	Dates:	the running semester and submit the same to concern faculty member. (Each group should complete min 50 questionnaires).							
		Faculty members should guide students for report writing.							
		The students should submit the hard copy and soft copy of the report to Coordinator signed by the faculty guide. The students should submit the soft copy of the PPT to CCC-Coordinator signed by the faculty guide before 1 week of final presentation. The final presentation and evaluation should be organised by the School last instruction date.							
8.7	ЕТЕ	The students will be evaluated by panel of internal faculty members on the							
		basis of their	basis of their presentation.						
	Mode of	Practical/Viva	L						
	examination								
	Weightage	CA	CE	ETE					
	Distribution	25%	25%	50%					

OTTADDA

Programme Electives

Scho	ol: SSET	Batch: 2023-2025
Prog	gramme: M	Current Academic Year: 2023-24
Tech	1	
Brar	nch: EEE	Semester: I
1	Course Code	MIA113
2	Course Title	Intelligent Actuators and Mechatronics
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course Status	Department Elective
5	Course	To provide students with:
	Objective	1. Discussing of basic components of actuators and mechatronics
		2. Discussing of electronics and digital circuits concepts of the subject
		3. Explaining concept of intelligent and smart system
		4. Discussing of interfacing concepts of mechatronics systems
		5. Giving case studies and exploring knowledge on designing
6	Course Outcomes	After completion of this course the students will be able to
		CO1: Getting knowledge on basic components of actuators and mechatronics
		CO 2: Exploring knowledge and getting design concepts of circuits
		CO 3: Identifying concepts smart and intelligent on mechatronics systems
		CO 4: Able to design of interfacing circuits for the subject
		CO 5: Able to design of tailor-made systems
		CO6: Develop a simulation model for simple physical systems and explain
		mechatronics design process
7	Course	The field of mechatronics has broadened the scope of the traditional field of
	Description	electromechanics. The subject is made to know modern trends on
	-	mechatronics system, hybrid of different engineering, stand alone
		mechatronics systems.
8	Outline syllabu	15
	Unit 1	Introduction
	А	Definitions: Mechatronics & actuator; Overview of sensors,
		current & voltage sources; Grounding
	В	Solenoids, relays, electrical motors for actuators
	С	Basics of open loop and closed loop systems, block diagram of
	T T 1 / A	mechatronics system ; Scope of the course
	Unit 2	Overview of Analog and Digital Electronics
	А	Active electronic devices for mechatronics, basics of operation amplifiers and instrumentation amplifiers
	R	Display systems measurement systems testing and calibration
	<u> </u>	Combination logic and logic classes: Elin flons and their
	C	applications: Microcontroller concepts
		uppreutions, incretentioner concepts

	Unit 3	Smart and In	telligent Actua	ators		
	А	Definitions: S	mart and intelli	gent actuators; Architecture and		
		operation of si	mart actuator			
	В	Intelligent actuator without feedback sensor in detail				
	С	Intelligent act	uator with feed	back sensor in detail		
	Unit 4	Mechanical-I	Electronic Inte	rfacing		
A Concept of three-state (tri-state) outputs; Interfacing of pushbutton, keyboard and sensors				te) outputs; Interfacing of nsors		
	B Interfacing of relays, solenoids, DC, AC motors and special motors to microcontroller					
	С	Selecting of m	notor for actuate	ors		
	Unit 5	Case studies	& Design Exer	cise		
	А	Case study 1:	Mechatronic de	esign of a coin counter; Case study		
B Case study 2: Mechatronics for conveyor based materia			or conveyor based material			
		handling system				
	С	Design exerci	se on mechatro	nic system		
	Mode of examination	Theory				
	Weightage	CA	MTE	ETE		
	Distribution	25%	25%	50%		
	Text book/s*	David G, Alciatore et al., "Introduction to Mechatronics and Measurement Systems", Tata McGraw Hill, 2003				
	Other	1. W.Bol	ton, "Mechatro	nics ", Pearson Education, 2005		
	References	2. Godfre	ey C. Onwuboli	a, "Mechatronics", Elsevier, 2005		

School: SSET		BATCH: 2023-25				
Prog	gramme: M.Tech	Current Academic Year: 2023-24				
Brai	nch: EEE/EE	Semester: 1				
1	Course Code	MIA111				
2	Course Title	Advanced Control Engineering and Controllers				
3	Credits	3				
4	Contact Hours (L-T-P)	3-0-0				
	Course Status	Compulsory				
5	Course	To provide students with:				
	Objective	1. some advanced concepts in Control Systems Engineering and	đ			
		their applications.				
		2.A theoretical understanding of advanced linear control system	ns and			
		strategies, including the principles of digital control.				
		3 understanding of performing stability analysis of digital contr	ol systems.			
		4. knowledge of Analog controller, computer-based controller a	and			
6	0	Intelligent controller				
0	Course	CO1: Understand advanced concents and approaches to or	ntrol avatom			
	Outcomes	designs	Sintion system			
		CO2: Understand industrial controllers of continuous and disc	ontinuous			
		types and advanced control concepts of cascaded and feed	d forward			
		CO3: design develop and operate analog controllers both elect	ronic			
		and pneumatic types.	lonie			
		CO4: Design develop and operate computer-based control syste	ems.			
		CO5: Understand simulate and design artificial intelligence-bas	sed control			
		CO6: Understand simulate and design the advance controllers	for the given			
		plant.	e			
7	Course	This course introduces systematic approaches to the design and	analysis of			
	Description	advance control systems for industrial applications.				
8	Outline syllabus		CO			
	Unit 1	Overview of Central System	Mapping			
		Elements of control systems Concert of open loop and closed	CO1			
	A	Lean systems; Examples and application of open loop and closed	COI			
		closed loop systems				
	B	Priof idea of multivariable control systems. Concert of	CO1			
	Ы	stability and necessary conditions. Pouth Humpitz criterie and	COI			
		limitations. Correlation between time and frequency responses				
		miniations. Conclation between time and nequency responses				

			A+ NAAC	Beyond Bo	
С	State variable controllability a	modelling and observabil	of linear discrete systems, ity; Nonlinear control systems;	CO1	
	Fundamentals-	zone, relay,	on-off nonlinearity, backlash,		
II:4 2	nysteresis com	non nonlinear	ittes (saturation, dead-		
	Drogogo Choroot	icipies	al avatam nonomatana, aman	<u> </u>	
A	Flocess Charact	ensues, Conu	tor system parameters. error,	$\frac{CO2}{CO2}$	
	cycling	control param	eter range, control lag, dead time,	02	
В	Discontinuous controller modes: two-position mode, multi- position mode; Continuous controller modes				
С	proportional, Composite Co proportional-der Cascaded and fe	integral and ontrol mode rivative (PD) a ced-forward co	derivative control modes; s: proportional-integral (PI), and three mode controller (PID); ontrols	CO2	
Unit 3	Analog Contro	llers			
А	Introduction; Ge	eneral features	3	CO3	
В	Electronics controllers : error detector, single mode and composite mode controller;			CO3	
С	Pneumatic controllers: proportional, proportional-integral (PI), proportional-derivative (PD) and PID controller.			CO3	
Unit 4	Computer Based Control				
А	Introduction; Digital applications: alarms, two-position control			CO4	
В	Computer based controller			CO4	
С	hardware configurations, software requirements			CO4	
Unit 5	Intelligent Control Systems				
A	Fuzzy-logic control system: Fuzzy set theory, basic fuzzy set operations, fuzzy relations, fuzzy logic controller, methods of determination of membership functions			CO5	
В	Methods of defuzzification, fuzzy rule base, design of fuzzy logic control system.			CO5	
С	C Neural-network control system :Artificial neural networks operation of a single artificial neuron, network architecture learning in neural networks, back-propagation, Neuro fuzzy control			CO5	
Mode of examination	Theory				
Weightage	CA	MTE	ETE		
Distribution	25%	25%	50%		
Text book/s*	 Curtis D. Johnson "Process Control Instrumentation Technology,"8th Edition Pearson. I.J. Nagrath and M. Gopal, "Control Systems Engineering,"4th Edition, 				
	SHARDA				
------------	---				
Other	1. S.N. Sivanandam and S.N. Deepa, "Principles of softcomputing,"				
References	Wiley India Pvt. Limited.				
	2. S.Rajashekaran and G.A. VijayalakshmiPai, "Neural Nwtworks, Fuzzy logic, and Genetic Algorithms," PHI Pvt.Limited.				

Sc	hool: SSET	Batch: 2023-25	WARDWISE.			
Pr	ogramme:	Current Academic Year:2023-24				
M.	Tech					
Br	anch: EEE	Semester: I				
1	Course Code	MPS121				
2	Course Title	Smart Power Grid and Microgrid				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-I-P)					
5	Course Status	To provide students with:				
5	Objective	1 To understand the concepts of smart power grid and m	viero grid			
	Objective	2. To acquire in depth knowledge of smart distribution d	listribution			
		2. To acquire in deput knowledge of smart distribution, o				
		automa-tion, smart transmission and substation automa	ation			
		3. To identify various components of smart grid and mich	ro grid			
		4. To apply principles of automation to transmission and	distribution			
		5. To design smart microgrid for a given application				
6	Course	After completion of this course students will be able to:				
	Outcomes	CO1: To understand concept, motivation and benefits of Sma	art PowerGrid			
		CO2: To develop knowledge of demand-side management as	s a tool of			
		Sinari distribution	ution			
		Automation	ution			
		CO4: To design AC, DC and hybrid micro grids				
		CO5. To design phasor measurement and develop wide area	Aonitoring			
		system using PMU	Tomtoring			
		CO6: Industrial experiences in renewable energy integration	in distribution			
		system				
7	Course	The course deals with the concept of smart power grid and inc	cludes in depth study			
	Des	of its its various components, namely smart distribution, dis	tribution automation			
	cription	and management, advanced metering infrastructure, small	rt microgrid, smart			
		transmission and substation automation.				
8	Outline syllabu	S	CO Mapping			
	Unit1	Introduction to Smart Power Grid(4hours)				
	А	Traditional power grid, Smart power grid (or smart	CO1			
		grid)concept and objectives				
	В	Benefits of smart power grid, traditional-grid and	CO1,CO2			
	C	smart-grid comparison	CO1CO2			
	C	stakeholders in sinari-grid development, Smart				
	Unit?	Smart Distribution				
	Δ	Demand-side management: Energy efficiency time of use	CO2CO3			
	11	and spinning reserve				
	В	Demand response: Market driven DR and operation-	CO3			
	-					

				www.sharda.ac.in
	driven DR, inco DR	entive-based D	R and TOU-based rates	
С	Distributed ge electric and hy	neration, Ener brid electric ve	rgy storage, Use of plugged hicles	CO3
Unit3	Distribution A	utomation an	d Management	
А	Overview of di	stribution syste	em, Components of DA:	CO3
	customer auto	mation, feed	erau to mation and	
	substation a	utomation,	Distribution control	
	centre(DCC)			
В	Distribution	management	system(DMS),Outage	CO3
	management s	ystem(OMS)-	unplanned and planned	
	outages, Asset	management	system(AMS),Customer	
0	information sys	stem(CIS)		<u> </u>
C	Meaning and b	enerits of adva	inced metering, Structure and	03
	Components of	AMI, AMI III	egration with DA, DWS and	
Unit/	Smart Miaroa	mid		
	Definition con	nonents and h	enefits of micro grid	CO4
B	Types of microgrid: AC DC and hybrid			CO4
Ъ	Modes of or	.00		
	island modes			6
С	Meaning of sm andcontrol	art micro grid,	Microgrid operation	CO4,CO6
Unit5	Smart Transn	nission and Su	bstation Automation	
А	Meaning and c	hallenges of sr	nart transmission	CO5,CO6
В	applications, V impact on EMS	Vide area mo S and DMS	onitoring system: concept and	CO5,CO6
С	Need of substat	ion automation	n (SA), Technical issues of SA, S	CO5,CO6
	Architecture ,S	A function.		
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Textbook/s*	1.MiniS.Th	omasand John	D. McDonald, PowerSystem SC	CADA and
	SmartG	rids, CRC Pre	ss,2015.	
OtherRefer	1. Janak E	knayakeatel.,S	martGrid: Technology and App	lications,John
ences	Wiley a	and Sons, 2012		
	2. H.K.Ve	erma,e- Monog	raphon "Smart–Grid",	
	www.p	rofhkverma.inf	<u>.</u>	

School: SSET		BATCH: 2023-25				
Pro	gramme:	Current Academic Year: 2023-24				
М.Т	Tech					
Bra	nch:EEE	Semester: I				
1	Course Code	MPS120				
2	Course Title	Energy Resources and Technology				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course	Departmental elective				
_	Status					
5	Course	To provide the student with				
	Objective					
		1. Various renewable energy resources available at a location				
		2. Familiarize with Solar energy radiation, Wind energy, hydro	energy,			
		biomass energy and other miscellaneous energy sources				
	0	After completion of this course students will be able to:				
6	Course	After completion of this course students will be able to:	gias and their role			
	Outcomes	in the India and world apargu domand	es and their role			
		In the mula and world energy demand.	d color D V			
		2. Olderstand the Frinciples involved in solar thermal system and system solar energy collection and conversion of it to electricity	generation			
		3 Explore the concepts involved in wind energy conversion syst	em by studying			
		its components, types and performance	cill by studying			
		4. Explore the concepts involved in hydro energy conversion sys	stem by studying			
		its components	······································			
		5. Understand the bio mass power generation.				
		6. Explore the concepts involved in geothermal energy, hydrogen energy, fuel				
		cells, wave energy and tidal energy and dispersed generation.				
7	Course	The course is designed to familiarize and train the student to ass	ess the various			
,	Description	renewable energy resources and its potential at any location acr	oss the globe.			
	Desemption	Tone waste energy resources and his potential at any rocation aer	obs the groce,			
8	Outline syllal	bus	CO Mapping			
	Unit 1	Introduction to Signals and Systems				
	А	Energy reserves and estimates	CO1			
	В	Indian and global energy scenarios, environmental	CO1			
	С	social and economic impacts of renewable energy use	CO1			

	Unit 2	Solar Energy						
	A	Solar Therma measurement; drying, distillati	Solar Thermal System: Solar radiation spectrum; radiation easurement; technology, Applications: heating, cooling, lrying, distillation; solar thermal power generation.					
	В	Salar Photovoltaic System: Operating principle, photovoltaid CO2						
	2	cell concepts, se	eries and parall	el connections	002			
	С	I-V characteris	tics; maximum	power point tracking; solar	CO2			
		photovoltaic p	ower generatio	n.				
	Unit 3	Wind Energy						
	А	Wind resource a	/ind resource assessment and modeling					
	В	types of wind t	turbines and ge	nerators,	CO3			
	С	performance ass	performance assessment, site selection, types of wind mills. CO3					
	Unit 4	Hydro Energy						
	А	Schematic arrangement of hydroelectric power station, CO4						
	В	site selection, l	CO4					
	С	large and small	CO4					
	Unit 5	Biomass Ener	gy and Misce	llaneous Topics				
	А	Biomass as a so power generatio	CO5					
	В	Introduction to	geothermal ene	ergy, hydrogen energy, fuel cells,	CO5,CO6			
	С	wave energy and tidal energy; hybrid energy systems, distributed CO5,CO6 energy systems and dispersed generation; need of energy storage and storage methods.						
Mode of Theory examination								
	Weightage	CA	MTE	ETE				
	Distribution	25%	25%	50%				
	Text book/s*	1. B.H. Kh Publishi	an "Non Conv ng Co. Limited	entional Energy Resources ", Tata l.	McGraw-Hill			

School: SSET		Т	2023-2025				
P	rogramme	: M.	Current Academic Year: 2023-2024				
Τ	Tech.						
Branch: EEE		E	Semester: I				
1	1 Course Code		MPS123				
2	Course T	itle	Digital Relaying for Power Systems				
3	Credits		3				
4	Contact H	ours	3-0-0				
	(L-T-P)						
	Course Sta	atus	Department Elective				
			1. To provide students with:				
			1. to understand the concept of digital protection and con	nputer relaying			
			for powers system.				
			2. To acquire an in- depth knowledge on different	generations of			
~	Cours	se	protective relays				
3	Object	ive	3. To identify different components of a numerical relay	/			
			4. to apply discrete Fourier transform technique in	Power System			
			Protection				
			5. to design and develop relay algorithms for protection of powersystem				
			apparatus				
			After completion of this course students will be able to:				
			CO1: To compare, analyses the advantages and disadvant	ages of all the			
			three generations of protective relay and also identit	fy the different			
	Course		components of a numerical relay				
			CO2: To develop relay algorithms based on relaying signals	8			
5			CO3: To develop algorithm for digital protection of generator				
5	Outcor	nes	CO4: To develop algorithm for digital protection of				
			transformer				
			CO5: To apply ANN for protection of transmission l	ine and power			
			transformer				
			CO6: To design and evaluate protection algorithms for prote	ction of any			
			power system component				
			The first and foremost for advances in relaying system is no	eed to improve			
			reliability. This implies increase in dependability as well as	accuracy. This			
_	Cours	se	need to reliability propelled the development of digital relaying. In this				
1	Descrip	tion	course, the students will have an exposure to the three generations of				
	1		protective relays. Throughout the course, students will have an opportunity				
			to be exposed to different numerical techniques for protection	n of generators,			
0	0 Oratlin a scallabora		transformers and transmission lines.	COManaina			
8	Uutline sy		Justion and Analitastums of Di-it-1 D-1	CO Mapping			
1		Intro(auction and Architecture of Digital Kelay	CO1			
1	A	I nree	generations of protective relays: electromechanical, Static	COI			
1	D	and di	gital/inditerical	CO1			
1	ם	archite	ecture and elements of digital relay				

<u> </u>	M _e -1/ C				
	Multi funct	COI			
	Relay Algo	orithma haad	lathematical Basis	CO2	
A	distorted re	orithins based	on pure sinusoidal relaying signals,	02	
	system.	laying signals a	and unrerential equation represensation of		
B	Z transform	CO2			
D	DFT	0.02			
С	Walsh func	tions, digital fi	lters, windows and windowing.	CO2	
Unit 3	Digital Rel	aying for Gen	ierator		
А	Various pro	tection functio	ons: differential, stator earth fault, loss of	CO3,CO6	
	excitation a	and reverse pow	ver protection		
В	Abnormal	frequency and	d voltage protection: over and under	CO3	
	frequency p	protection, over	r and under voltage protection		
С	Numerical	differential pro	otection of generator	CO3,CO6	
Unit 4	Digital Rel	aying for Trai	nsformer		
А	Types of fa	ults encountere	ed in transformer, basic considerations	CO4,CO6	
<u> </u>	for transfor	merCO3 differe	ential,	<u> </u>	
В	Stabilizing	CO4.CO6			
C	Numerical	CO4 CO6			
Unit 5	Artificial Intelligence Based Numerical Protection				
Unit 5	Altincial				
А	Types of	Neural Networ	rk Models Artificial Neural Network	CO5 CO6	
	Design Pro	000,000			
В	Application	of Ann transm	nission line protection	CO5,CO6	
С	Ann based	power transfor	mer protection	CO5,CO6	
Mode of	Theory	•			
examina	-				
tion					
Weighta	CA	MTE	ETE		
ge	25%	25%	50%		
Distribut					
10n Tart	1 Americ C D		Son C. There "Comparison in		
1 ext	1.Arun G P	Thanke and Jam	nes S. 1 norp, Computer		
DOOK	Sons Inc. N	n rower Syster	ins , John whey and		
	2Badriram				
	r".TataMcC	iraw-hill Publi	ishing Company Ltd. New Delhi		
Other	1.BhaveshF	Bhalia, R.P. Ma	aheswari and Nilesh		
Referenc	G.Chothani	,"Protection an	nd Switchgear",Oxford		
es					

Scho	ool: SSET	Batch : 2023-25					
Prog	gramme:	Current Academic Year: 2023-24					
M.T	ech						
Branch: EEE/EE		Semester: I	Semester: I				
1	Course Code	EEE440					
2	Course Title	Modelling & Analysis of Power System					
3	Credits	4					
4	Contact	3-1-0					
	Hours						
	(L-T-P)						
	Course Status	Department Elective					
5	Course	The course paves the foundation for exploring the ways	and means to				
	Objective	perform power system analysis in normal operation and und	er symmetrical				
	5	and unsymmetrical faults. Models of generators, trar	sformers and				
		transmission lines essential for such analyses are assembled	. Additionally,				
		principles for the formulation, solution, and application of	optimal power				
		flow are established.					
6	Course						
0	Outcomes	After completion of this course students will be able to					
	Outcomes	CO1: Ability to solve nonlinear algebraic and handling of sparse matrix					
		CO2: Develop proper mathematical models for analysis of a selected					
		problem like load flow study or fault analysis.					
		CO3: Prepare the practical input data required for DC load f	low.				
		CO4. Select and identify the most appropriate algorithm for	fault studies				
		CO5: Develop and apply state estimation of power system	iuun studies.				
		CO6: Apply L and flow, and upbalanced foult study analysis					
		COO. Apply Load now and unbalanced fault study analysis					
	~						
7	Course	This course will cover the modelling issues and analysis m	nethods for the				
	Description	power flow, short circuit, contingency and stability analyses, required to be					
		carried out for the power systems. Necessary details of numerical techniques					
		to solve nonlinear algebraic as well as differential equations a	ind handling of				
		sparse matrices are also included.					
8	Outline svllabu	IS	CO Mapping				
	Unit 1	Sparsity Techniques					
	А	Storage of sparse matrix	CO1				
	В	sparsity directed inversion methods	CO1				
	С	parallel inversions	CO1				
	Unit 2	Three-Phase Load Flow					
	А	Three-phase models of synchronous generator, transformer	CO2,CO6				
		and load					
	В	Load flow equations, solution techniques- Gauss-Seidel	CO2,CO6				
	С	Newton Raphson method and fast decoupled method	CO2,CO6				

A+ NAAC	SHARDA UNIVERSITY Beyond Boundaries
NAAC	Beyond Boundaries

				www.sharda.ac.in		
Unit 3	Load Flow w	ith HVDC link	2			
А				CO3,CO6		
	stem model, inc	tem model, incorporation of control equations				
В				CO3,CO6		
	er and unified of	operation				
 С	sequential solu	ution technique	s	CO3,CO6		
Unit 4	Short Circuit	Studies For U	Inbalanced Network			
А	Z-bus building	g algorithm, de	rivation of fault admittance	CO4,CO6		
	matrices					
В	sequence com	ponents, analys	sis of unbalance shunt and	CO4,CO6		
	series					
С	open circuit fa	ults		CO4,CO6		
Unit 5	State Estimat	ion				
А	State estimation	on of linear and	nonlinear systems, pseudo-	CO5		
	measurements	•				
В	Recursive met	hod and weigh	ted least square estimation	CO5		
	method					
С	Detection and	identification of	of bad measurements, network	CO5		
	observability.					
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	Arrillaga J. an	d Arnold C.P.	, "Computer Analysis of			
	Power System	s", John Wiley	& Sons			
Other	1. Kusic G.L	., "Computer A	ided Power System Analysis",			
References	CRC F	ress.	-			
	2. Anderson	P.M., "Analys	is of Faulted Power Systems".			
	Wiley-	IEEE Press	5			

School: SSET		Т	2023-2025				
P	rogramme	: M.	Current Academic Year: 2023-2024				
Τ	ech.						
B	Branch: EEE		Semester: I				
1	Course Co	ode	MPS117				
2	Course T	itle	Power System Operation and Control				
3	Credits		4				
4	Contact H	ours	3-1-0				
	(L-T-P)						
Course Status		atus	Department Elective				
5	Cours	se	1. Learn modern techniques and analytical methods for	or dealing with			
5	Object	ive	and solving operation related problems in electric po-	wer system.			
			After completion of this course students will be able to:				
			CO1: Explore the concept of automatic generation control				
			CO2: Apply methods of excitation systems and exercise vo	ltage control.			
	Cour	Se Co	CO3: Employ incremental cost curve and penality factor	for economic			
5	Outcor	nes	operation				
	Outeon	nes	CO4: Plan unit commitment for optimal operation				
			CO5: Evaluate power system security and method of impro	vement			
			CO6: Apply mathematical and engineering fundamentals required to				
			control and operation of power system.				
			This course aims to convince the student that constancy of frequency and				
			voltage is the primary health indicator of the power system for maintaining				
7	Decorrin	se	the real and reactive power balance in systems. The concept of economic				
	Description		load dispatch and unit commitment are also given in the course. The concept				
			load demand has been included in the course	ant to meet the			
8	Outline sy	llahus	Toad demand has been meruded in the course.	CO Manning			
0	Unit 1	Fcono	mic Dispatch of Thermal Units				
		Econo	mic dispatch problem with and without losses	CO3 CO6			
	R	Soluti	on methods. I amda iteration technique, gradient search and	CO3 CO6			
	D	Newto	on's method	005,000			
	С	Soluti	on methods-priority list and dynamic Programming	CO3.CO6			
	Unit 2 Unit		Commitment				
	А	Unit c	ommitment problem, start up and shut down cost	CO4.CO6			
	В	Therm	al unit constraints, hydro constraints and other constraints	CO4.CO6			
	C	Soluti	on methods-priority list and dynamic Programming	CO4.CO6			
	Unit 3	Hvdro	-Thermal coordination				
	A	Long	term and short term hydro thermal coordination	CO6			
	В	Soluti	on by gradient method	CO6			
	С	Pumpe	ed storage hydro power plant scheduling, pumped storage	CO6			
	-	hydro	plant scheduling.				
	Unit 4	Power	System Security				
	А	Securi	ty analysis CO5.				

В	Contingency	analysis met	hods		CO5.CO6
С	Contingency	selection			CO5,CO6
Unit 5	Load Frequ	ency and E	xcitatio	on Control	
А	Generation m model, tie line	odel, load m e model	odel, pr	ime mover model, governor	CO1,CO2,C O6
В	Automatic ge steady state a	CO1,CO2,C O6			
С	Types of excitation control, Reactive power control and voltage collapse				CO1,CO2,C O6
Mode of examina tion	lode of Theory camina				
Weighta	CA	MTE		ETE	
ge Distribut ion	25%	25%		50%	
Text book*	Text 1.Allen J.Wood and Bruce F. Wollenberg,"Power book* Generation Operation and Control" John Willey and Sons,inc.2003. Other 1.P.Kundur,"Power System Stability and Control", McGraw Hill Referenc Publisher, USA,1994.			ollenberg,"Power rol" John Willey	
Other Referenc				lity and Control", McGraw Hill	
es	2.Olle .I.Elge Introduction" Delhi, second	 Publisher, USA, 1994. 2.Olle .I.Elgerd, "Electric Energy Systems Theory An Introduction" Tata Mcgraw Hill Publishinh Company Ltd. New Dolbi, second edition, 2003. 			

School: SSET		Т	Batch : 2023-2025				
Programme: M.		: M.	Current Academic Year: 2023-2024				
Т	Tech.						
B	Branch: EEE		Semester: I/II				
1	Course Co	ode	MPS133				
2	Course T	itle	Electric and Hybrid Vehicles				
3	Credits		3				
4	Contact H (L-T-P)	ours	3-0-0				
	Course Sta	atus	Department Elective				
5	Cours	se	This course is designed to give an overview of electric and h	ybrid vehicles,			
5	Object	ive	electric propulsion and energy storage.				
			After completion of the course, the student will be able to				
			CO1: Describe the configuration and performance of Electri	c vehicles			
	~		CO2: Design the structure of Hybrid Electric Vehicle				
5	Cours	se	CO3: Describe the operation of Fuel Cells and solar cars				
	Outcor	nes	CO4: Explain Electric propulsion system and Motor control	systems			
			CO5: Discuss energy storage devices and generators				
			CO6: Understand the performance characteristics of electric	hybrid vehicles			
			Hybrid Electric Vehicle Course is a professional course wherein students are				
	Cours	se	taught dynamics, charging, battery assembling, designing engines, interior				
	Descrip	tion	and exterior spacing, etc. of hybrid electric vehicles.				
	-						
8	Outline sy	llabus		CO Mapping			
	Unit 1	Electr	ic Vehicles				
	А	Introd	uction, Layout of an Electric Vehicle, Performance of	CO1,			
		Electr	ic Vehicles, Traction Motor Characteristics				
	В	Tracti	ve Effort and Transmission Requirements, Vehicle	CO1			
	a	Perfor	mance, Energy Consumption,	CO1			
	C	Advar	itages and Limitations, Specifications, System Components,	COI			
	Unit ?	Electro	d Vabialas				
		Conce	nts of Hybrid Electric Drive Train	CO2CO6			
	R	Archit	ectures of Series Hybrid Electric Drive Trains Architectures	C02,C00			
	D	of Par	allel Hybrid Electric Drive Trains, Merits and Demerits	02.000			
	C Series Hybrid Electric Drive Train Design Parallel Hybrid F			CO2.CO6			
	-	Drive	Train Design.				
	Unit 3 Fuel		Cells & Solar Cars				
1	A	Photo	voltaic Cells, Tracking, Efficiency, Solar Cars,	СОЗ,			
	В	Fuel C	Cells - Construction & Working, Equations, Possible Fuel	CO3			
		Source	es,				
	С	Fuel R	eformer, Design, Cost Comparison.	СОЗ,			
	Unit 4	Electr	ric Propulsion System And Motor Control System CO3				

							www.sharda.ac.in		
A	DC Motors Regenerative	CO4, CO6							
В	AC Motors C	AC Motors Characteristics, Speed and Torque Control.							
С	PM- BLDC M	PM- BLDC Motors Characteristics, Speed and Torque Control.							
Unit 5	Energy Stora	ges & Generator	S						
А	Electrochemic Nickel Based	cal Batteries: Type Batteries, Lithium	es of Batteri Based Bat	ies, L teries	ead-Acid s,	Batteries,	CO5		
В	Electro Chem Energy, Speci	nical Reactions, T	Thermodyn Efficiency	amic	Voltage	, Specific	CO5, CO6		
C	Ultra Capacit Frequency Re	ors, DC Generat gulations	ors, AC G	lener	ators, Vo	ltage and	CO5		
Mode of examina tion	Theory								
Weighta	CA	MTE	ETE						
ge Distribut	25% 25% 50%								
Text book*	Hingorani N. and technolog Press, 1999	G. and Gyugi L., y of Flexible AC 7	"Understar Fransmissic	nding on sys	g FACTS: stems", W	concepts iley IEEE			
Other Referenc es	 Mehrdad I "Modern Ele Fundamentals James Larm Explained", Jo Sandeep D Butterworth – Ronald K SAE, 2002. 5 Electric/Hybridic Iqbal Hu 	li Emadi, vehicles: hnology – Systems", Vehicles", nt Weight ann, 2001. - Design							
	Fundamentals	" CRC Press, 201	1.						

School: SSET		Batch: 2023-2025				
Programme: M		Current Academic Year: 2023-24				
Tec	h					
Bra	nch: EEE	Semester: I/II				
1	Course Code	EEP-621				
2	Course Title	SMART POWER GRID AND MICRO GRID LAB				
3	Credits					
4	Contact Hours (L-T-P)	0-0-2				
	Course Status	Compulsory				
5	Course	To provide students with:				
	Objective	1. To get practice on PSCAD software				
		2. To develop concepts of automatic grid on the software.				
6	Course	After completion of this course the students will be able to				
	Outcomes	CO1: Able to develop simulation of concept of 1 phase and 3	3 phase			
		sources.				
		CO2: Able to develop simulation of concept of metering				
		CO3: Able to develop simulation of converter and inverter ci	rcuit			
		CO4: Able to develop simulation of switching of sources				
		CO5: Able to develop simulation of paralleling of sources				
	~	CO6: Able to develop circuit for generation, transmission, di	stribution			
7	Course	The contents of this course cover the measurement of difference	ent electrical			
	Description	parameters of substation. Concepts of measurements will be PSCAD.	e done using			
8	Outline syllabus	3	CO			
			Mapping			
	Unit 1	Study of simulation software				
	А	Study of a generator functions and do simulation on the	CO1			
		software				
	В	Study of inverter and converter functions in the simulation	CO1			
		software.				
	С	Study of measurement functions in simulation software.	CO1			
	Unit 2	Simulation on generation and conversion modules				
	А	Simulation of generation of Power Source.	CO2			
	В	Simulation of single-phase inverter.	CO2			
	С	Measurements with the simulated generator and inerverter	CO2			
	Unit 3	Simulations on single-phase systems				
	А	Simulation of single-phase converter.	CO3			
	В	Simulation of combining of inverter and converter.	CO3			
	С	Measurements with the above simulated modules	CO3			
	Unit 4	Single-phase systems with different loads				

А	Simulati	on of single-p	hase inverter with R load.	CO4	
В	Simulati	on of single-p	hase inverter with R-L load.	CO4	
С				CO4	
Unit 5	Simulati	Simulations on three-phase systems			
Α	Simulati	Simulation of three phase generator.			
В	Simulati	Simulation of three phase generator and transformer.			
С	Measure	Measurements with the above simulated modules			
Mode of	Practical	& Viva			
examination					
Weightage	CA	CE	ETE		
Distribution	25%	25% 25% 50%			
Text book/s*	Lab Mar	Lab Manuals			
Other	Interface	Interface MATLAB - PSCAD/EMTDC Software for			
References	Integrate	d Simulation,	LAP Lambert Academic Publishin	g	

School: SSET		Batch : 2023-25					
Programme:		Current Academic Year: 2023-24					
M.T	ech						
Brai	nch:EEE	Semester: I/II					
1	Course Code	MPS116					
2	Course Title	Power System Reliability Assessment					
3	Credits	3					
4	Contact	3-0-0					
	Hours						
	(L-T-P)						
	Course Status	Department Elective					
5	Course	1. Objective of the course is to apply the knowledge of	students in the				
	Objective	field of probability analysis to evaluate the reliable	ility of power				
		system.					
		2. The concepts of reliability function, network modelling	ng, and				
		concept of frequency ad duration technique will be di	scussed to				
		significant depth for improving reliability in generation	on,				
		interconnected and distribution systems					
6	Course	On successful completion of this course students will be able to					
	Outcomes	CO1: evaluate reliability functions and probability distribution	ons				
		CO2: demonstrate network modelling and to evaluate various	s systems				
		CO3. Design and evaluate the generation system model	1				
		CO4: employ equivalent assistance unit method for reliability	y evaluation				
		of inter-connected system	C				
		CO5: discuss the elementary concepts for reliability evaluation of					
		distribution system					
7	Course	This course gives an introduction to the main principles and objectives of					
/	Description	power system reliability analysis: Basic terms and definitions applications					
	Description	overview of methodologies for contingency analysis and reliability analysis					
		reliability models, reliability indicators and main results such as					
		interruptions and societal impact. The following topic are discussed .					
		reliability analysis of transmission and distribution systems analysis of time					
		dependencies and interruption costs, protection systems, analysis of time					
		impact on reliability of supply.	j				
8			CO Mapping				
	Unit 1	Review of Probability Theory	<u> </u>				
	А	Probability concepts, rules for combining probability,	CO1				
		probability distributions.					
	В	Random variables, density and distribution functions.	CO1				
	С	Mathematical expectations, variance and standard deviation.	CO1				
	Unit 2	Basic Reliability Evaluation					
	А	General reliability functions, probability distributions in	CO2,CO6				
		reliability evaluation.	-				

				A+
В	Network mode –parallel and method, disc process.	CO2,CO6		
С	Concept of fre multi-state p evaluation me	CO2,CO6		
Unit 3	Generation S	ystem Reliabil	lity	
А	Generation system algorithm.	stem models, c	apacity outage table, recursive	CO3,CO6
В	Loss of load i forecast uncer	ndices, inclusi tainty, loss of e	on of scheduled outages, load energy indices.	CO3,CO6
С	Expected energy reliability eval	ergy generation g	on, energy limited systems, ney and duration method.	CO3,CO6
Unit 4	Interconnecte	ed System Reli	ability	
A	Probability an effect of tie ca	CO4,CO6		
В	Equivalent ass of inter-conne	CO4,CO6		
С	Elementary c connected syst	CO4,CO6		
Unit 5	Distribution	System Reliab	ility	
А	Basic technic customer-orie	que and app nted indices, lo	lication to radial systems, bad and energy indices.	CO5,CO6
В	Effect of laterated effect of prote	al distributor pr ction failures, e	rotection, effect of disconnects effect of load transfer.	CO5,CO6
С	C Meshed and parallel networks, approximate methods, failure modes and effects analysis, inclusion of scheduled maintenance, temporary and transient failures, inclusion of weather effects			
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	R. Billinton ar Power System	d R.N.Allan, ' s", Pitman Adv	"Reliability Evaluation of vanced Publishing Programme	
Other References	 R.Billinton and R.N.Allan, "Reliability Evaluation of Engineering Systems Concepts and Techniques", Pitman Advanced Publishing Programme. J.Endrenyi, "Reliability Modeling in Electric Power Systems" John Wiley & Sons 			

School: SSET			Batch : 2023-2025					
Programme: M.			Current Academic Year: 2023-2024					
	ecn.	F						
B	ranch: EE	E	Semester: I/II					
1	Course Co	ode	MPS124					
2	Course T	ıtle	FACTS Devices and Systems					
3	Credits		3					
4	Contact H (L-T-P)	ours	3-0-0					
	Course St	atus	Department Elective					
5	Cours	se	art the students with various FACTS devices which are used for pro	oper operation of				
5	Object	ive	existing AC system more flexible in normal and abnormal condition	ons				
			After completion of the course, the student will be able to					
			CO1: Understand the power flow control in transmission	lines.				
			CO2: Analyze the operation of Voltage source converter					
	Cour	se	CO3: Understand the operations of Shunt controllers.					
5	Outcor	nes	CO4: Understand the operations of Series controllers.					
	Outcol	1105	CO5: Analyze the different FACTS devices in different s	tability				
			conditions.					
			CO6: Understand operation of hybrid controllers and select an					
			appropriate FACTS device for a particular application					
			FACTS is the acronym for Flexible AC Transmission Systems and refers to					
			a group of resources used to overcome certain limitations in the static and					
	~		dynamic transmission capacity of electrical networks. The main purpose of					
7	Cours	se	these systems is to supply the network as quickly as possible with inductive					
	Descrip	otion	or capacitive reactive power that is adapted to its particular	r requirements,				
			while also improving transmission quality and the efficience	y of the power				
			transmission system. FACTS Devices course is designed to p	rovide in-depth				
0		11 1	knowledge to provide actual hardware solution of the FACT	S				
8	Outline sy		· · · · · ·	CO Mapping				
	Unit I	Power	r transmission control	<u>CO1</u>				
	A	Power transm	nission	COI				
	В	Transı	nission line compensation	CO1				
	С	Objec	tives of FACTS devices	CO1				
	Unit 2	FACT	'S Controller					
	А	Shunt	CO2					
	В	Comb	ined shunt and series connected controllers	CO2				
C Voltage-source converters			ge-source converters	CO2				
	Unit 3	Shunt	and Series Compensation					
	А	Princi	pal of operation and configuration of SVC and STATCOM	CO1,CO3, CO4				
	В	V-I an	d V-Q characteristics, operation with unbalanced system,	CO1,CO3,				

	applications o	f SVC and STAT	СОМ	CO4
С	Principal of operation and configuration of TCSC and SSSC			
Unit 4	Unified powe	er flow controlle	r	
А	Basic operatir	ng principles		CO4,C06
В	Characteristic	s of UPFC		CO4,C06
С	Dynamic perf	ormance, steady	state analysis and control	CO4,C06
Unit 5	Stability ana	lysis	· · · · ·	
А	Oscillation sta	ability analysis		CO5
В	Transient stab	CO5		
С	Protection iss	CO5		
Mode of examina tion	Theory			
Weighta	CA	MTE	ETE	
ge Distribut ion	25%	2\5%	50%	
Text book*	Hingorani N. and technolog Press, 1999			
Other Referenc es	1. Acha E., Fuerta-Esquivel C. R., Ambriz-Perez H. and Angeles- Camacho C., "FACTS modeling and simulation in power networks", John Wiley & Sons Ltd., England, 2004			
	2. Song Y. H. a Power Serie	and Johns A. T, "Fl s, IET, 2000	exible AC Transmission Systems", IEE	
	3. Mathur R.M Electric Tra	. and Verma R.K., nsmission System'	"Thyrister Based FACTS Controller for , Wiley Interscience, 2002	

Sch	ool: SSET	BATCH: 2023-25
Programme:		Current Academic Year: 2023-24
M.Tech		
Bra	nch:EEE/	Semester: I/II
I&A	andI&C	
1	Course Code	MIC101
2	Course Title	Analog and Digital Signal Processing
3	Credits	4
4	Contact	3-1-0
	Hours $(I T P)$	
	(L-1-1) Course	Department Elective
	Status	Department Elective
5	Course	To provide the student with
	Objective	3 Concepts so as to categories various types of Signals and Systems
		5. Concepts so as to categories various types of Signals and Systems.
		4. In-depth knowledge so that implementation of circuits related to
		intearapplications of the op-amp are acmevable.
		5. Basic understanding for the implementation of active filters usingop- amp.
		6. Strong foundation for designing of Digital Systems both FIR and IIR and analyses of systems using DFT and FFT.
6	Course	After completion of this course students will be able to:
	Outcomes	CO1: To categories the various types of signals and systems and to perform
		various mathematical operations on signals.
		CO2: To differentiate and design various applications of op-Amp.
		CO3: To design OP-AMP based Filters
		CO4: Design iir digital filters using various techniques
		CO5: To do frequency analysis using DFT and FFT.
		CO6: To design and implement various types of digital filters.
7	Course	
	Description	The course content of this subject includes introduction of signals and
		systems. It also covers the various linear and nonlinear applications of the op-
		Amp. Also the content elaborates the designing and implementation of
		digital inters along with DF1 and FF1 as the main frequency tool.
8	Outline svllah	us CO Manning
	Unit 1	Introduction to Signals and Systems
		and ordered to bighted the bijbooning

		A+ NAAC UNI Beyon
A	Continuous-time and discrete-time signals and their mathematical representation, analog and digital signals,	CO1
	analog signal processing (ASP) and digital signal processing (DSP)	CO1
В	Signal , Continuous time signals (CT signals), discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals - periodic and aperiodic, Even and Odd, Power and Energy Invertible and Non-invertible, Deterministic and Random	CO1
С	System, Basic Types of Systems- Causal and Non-causal, Stable and Unstable, Static and Dynamic.Linear and Non- Linear Time Variant and Time Invariant, Basic operations on signals - addition, multiplication, shifting, folding, etc.	CO1
Unit 2	Linear Applications of Opamp	
A	Operational amplifier: block diagram, equivalent circuit, ideal and practical operational amplifier; inverting and non- inverting amplifier circuits	CO2
В	Practical Integrator and Differentiator circuits,	CO2
С	Summing and differential amplifier circuits; Instrumentation amplifier	CO2
Unit 3	Op-amp based Filters	~ ~ ~ ~
A	Passive and active filters, their comparison; frequency response of low- pass, high- pass ,band- pass, band- stopand notch filters and their use in instrumentation;	CO3
В	Active filters: Basic low- pass filter circuit , first and second order low- pass and high- pass Butterworth filters	CO3
С	Band- pass filter, Band reject (notch) filter, Concept of higher order filter realization	CO3
Unit 4	Digital Filters	
А	Design of Digital Filters Design of FIR Filters: Symmetric	CO4,CO6
	and Anti-symmetric FIR Filters. Design of Linear phase FIR	
	Filter using Windows, Gibbs phenomenon.	
В	Design of IIR Filters: Design by Approximation of	CO4,CO6
	Derivatives, Impulse Invariance and by Bilinear Transformation.	CO4,CO6
C	Direct form-1 and form-2 realizations, Cascade and Parallel realizations, recursive and non-	CO4,CO6

A+ NAAC	SHARDA UNIVERSITY Beyond Boundaries
------------	---

NACC Store S						
	recursivemeth	ods of realizati	ons.			
Unit 5 Frequency Analysis						
А	FT),	CO5				
В	DFT algorithn	n for frequency	analysis	CO5		
С	CO5					
Mode of examination	Theory					
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	 Ramakant A.Gayakwad, "Op-Amp and Linear Integrated Circuits" Pearson Education, 4th Edition Sedra and Smith, "Microelectronic Circuits", 4th Edition, Oxford University Press. G. Proakis and D.G. Manolakis, "Digital Signal Processing, Principals, Algorithms, and Applications", Pearson Education, 					
Other References	 1.A. Y. Oppenhein, R. W. Schater and J. R. Buck, "Discrete Time Signal Processing", PHI 1999 2. Michael Jacob, "Applications and Design with Analog Integrated Circuits, PHI,2nd Edn.2006 3. Jacob Milliman and Arvin Grabel, "Microelectronics", 2nd Edition, TMH, 2008 					

School: SSET		Batch : 2023-25			
Programme: M.Tech Bronch: FFF		Current Academic Year: 2023-24			
Bra	nch: EEE	Semester: I/II			
1	Course Code	MIC008			
2	Course Title	Virtual Instrumentation			
3	Credits	3			
4	Contact	3-0-0			
	Hours				
	(L-T-P)				
	Course	Departmental Elective			
	Status				
5	Course	To provide students with:			
	Objective	1. Introduction to the various models of Virtual Instruments, their			
		comparison with traditional instruments and major application areas			
		of VI.			
		2. Introduction to basics of LabVIEW			
		3. VI Programmeming techniques like loops, arrays, clusters, plotting and Strings and files			
		4 Basics of signal conditioning techniques along with DAO hardware			
		and software and various signal processing techniques available in			
		LABVIEW.			
		5. Advanced concepts in LabVIEW with main concepts of real time			
		applications in Image acquisition and Motion control.			
		6. Building of Virtual Instruments with various types of controls and			
		indicators.			
		7. Configuring DAQ card and acquisition of real time signals from			
		sources and sensors.			
		8. Simulate a signal in LabVIEW and generate a virtual source using			
		DAQ cards.			
6	Course	After completion of this course students will be able to:			
	Outcomes	CO1. Distinguish among various models of Virtual instrumentation and			
		contrast between traditional and virtual instruments.			
		CO2. Select various components from various pallets from LabVIEW,			
		required for the development of VI.			
		CO3. Apply various Programming functions of LabVIEW like loops, arrays,			
		clusters and file I/Os for building of simple Virtual instruments.			
		CO4. Develop Data acquisition modules and apply basic signal processing			
		techniques available in LabVIEW.			
		Lucos. Design the real time applications of LabVIEW in motion control and			
		Image acquisition.			
7	Course	The course content of this subject includes on introduction to creation			
/	Description	The course content of this subject includes an introduction to graphical			
1	Description				

		system design	. This course al	so focuses on introduction to I	LabVIEW which
		extensively el	laborate the G	raphical Programming langu	age In Unit 3,
		building of V	I by using loop	os, arrays, clusters etc. have	been dealt with.
		Use of strings	and I/O are al	so elaborated in this course.	Data acquisition
		and various si	ignal processin	g techniques are also covered	d in this course.
		Two real time	applications n	notion control and Image acqu	uisition by using
		LabVIEW hav	ve been elabora	ted in this course.	
8	Outline syllabu	IS			CO Mapping
	Unit 1	Introduction			
	А	Graphical syst	em design mod	lel - design model, prototype	CO1
		model, deploy	ment model		
	В	Building block	ks of VI; Virtua	l instrument versus traditional	CO1
	~	instrument, Ha	ardware and so	ftware in VI	001
	C	Graphical sys	stem Design	using LabVIEW; Graphical	COI
	TI:4 0	Programming	and Textual Pr	ogramming	
		Graphical sys	stem Design us		CO2
	A	Advantages of	t Labview; C	omponents of VI Software -	
		Front panel v	vindows, Bloc	ck diagram windows, Icon	
	5	/connector par			
	В	Creating and	saving a VI; T	oolbars, Palettes, Front panel	002
		controls and in	ndicators, Bloc	k diagram – terminals, nodes,	
	~	functions	X7X 1 X7X		
	С	Sub VIs, Expr	ess VIs and VI	s, wires; Data types, Data	CO2
	Unit 2	Programmin	Tochniques		
		Modular Drog	g rechniques	Wiow: Ruilding VI front	CO3
	A	panel and bloc	k diagram	o view, building vi fiolit	05
	В	Loops – for an LabVIEW, Ar	d while loops, rays in LabVIE	Local and Global variables in EW,	CO3
	С	Clusters in La	bVIEW; Conve	ersion between arrays	CO3
		and clusters, F	lotting data in	LabVIEW, Strings and	
		File I/O in Lat	VIEW		
	Unit 4	Data Acquisit	tion and Signa	al Processing in LabVIEW	
	А	Transducers and	nd Signal condi	itioning, sampling and aliasing	CO4
	В	Basics of DAC	Q hardware and	l software, DAQ modules and	CO4
		drivers for bui	lding virtual in	struments	
	С	Fourier transfo	orms; Power sp	ectrum, Correlation methods;	CO4
		Windowing &	filtering		
	Unit 5	Advanced col	ncepts in Lab		
	А	Data Socket, 7	CP/IP VI [*] 's sy	nchronization	CO5,
	В	Serial interfac	e buses - RS 23	32, RS485,USB	CO5
	С	Concepts of re control	eal time system	s; Image acquisition; Motion	CO5
	Mode of	Theory			1
	examination				
	Weightage	СА	MTE	ETE	
1	00-	-	_		

Ι	Distribution	25%	25%	50%			
]	Fext book/s*	1. Jovitl Lear	ha Jerome, "V ming	Virtual Instrumentation and LABVIEW", PHI			
F	Other References	1. C.L. C Publi a.	lark, "LabVII shing Compar Technical M	EW Digital Signal Processing",TMH my. Manuals for DAQ Modules, Advantechand			
			National Instruments				
		2. <u>www</u> Wired	 <u>www.profhkverma.info:</u> Chapter 2: Technologies/Protocols for Wired Sensor Network 				
		3. NI USER MANUAL					
		<u>http://</u>	/www.ni.com/	n/pdf/manuals/376445b.pdf			
		4. WWW	.m.com				

Schoo	ol: SSET	Batch : 2023-25	
Progr	ramme: M.Tech	Current Academic Year: 2023-24	
Bran	ch: EEE	Semester: I/II	
1	Course Code	MIA116	
2	Course Title	Industrial Network Protocols and IoT	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Departmental Elective	
5	Course	To provide students with:	
	Objective	1. basic principles network communications and communic	cation
		system models and it's seven layers.	
		2. In depth knowledge of wired and wireless network proto	cols.
		3. With the concept of IoT, M2M and IIoT along with typic	cal
		applications thereof.	
6	Course	After completion of this course students will be able to:	
	Outcomes	CO1: To be able to understand the principles and types of data	networks,
		especially those used in industry.	
		CO2: Have in-depth knowledge of industrial wired network protoco	ls and
		their comparative merits and limitations.	
		CO3:To be able to apply Ethernet/IP protocol for industrial co	ntrol and
		automation applications.	
		CO4: To be able to select and apply wireless network protocol for	instrument
		control and automation for industrial and societal applications.	
		COS: To be able to apply the concepts of 101 and design 101 system	n.
		COO. Design 101-based systems for real-world problems	
7	Course	This course is aimed at equipping students with in-depth knowle	dge various
	Description	industrial network protocols both wired and wireless types and	a working
	F	knowledge of the IoTconcepts and systems.	u worning
8	Outline syllabus		CO
0	Outline syndous		Mapping
	Unit 1	Basics	
	А	Principles of analog and digital communication and their	CO1
		comparison; Asynchronous and synchronous data transmission;	
		Simplex, half duplex and full duplex transmissions; Baseband and	
		broadband communications; Signal transmission media: UTP, STP	
		and coaxial cables, PLCC, optical fibres and radio link;	
	В	Concept of LAN, PAN, MAN, WAN and Internet; Error detection	CO1
		techniques: Parity check, check sum and CRC; LAN topologies;	
		Role of data communication and networks in industrial automation;	
		Field-level, control-level and enterprise-level networks;	

С	ISO"s seven-layer OSI model: significance, scope, functions of	CO1
	various layers; IEC"s four-layer EPA model: significance,	
	functions of various layers; MAC techniques: reservation,	
	selection and contention techniques, polling, token passing,	
	CSMA/CD ; Special requirements of industrial network	
	protocols, list of important industrial wired and wireless network	
	protocols.	

Unit 2	Industrial Wired–Network Protocols	
А	Fieldbus: Meaning and characteristic features of fieldbus, popular	.CO2
	fieldbuses.	
	RS485 : Highlights, balanced–mode transmission in half duplex and	
	full duplex modes, MAC protocol, merits and limitations. Modbus:	
	Modbus protocol stack, Modbus address space and object types,	
	data transmission frame formats for Modbus/RTU,	
	Modbus/ASCII and Modbus/TCP, formats of data requests and	
	responses for main function codes (examples only), merits and	
	limitations of Modbus	
В	Foundation Fieldbus: FF protocol stack; physical layer,	CO2
	topologies supported, data link layer: FDLC and FMAC,	
	application layer, merits and limitations of FF.	
С	Distributed Network Protocol: DNP protocol stack, DNP version	CO2
	3.3, physical layer and physical topologies, data link layer, pseudo-	
	transport layer, application layer, merits and limitations of DNP3.	
Unit 3	Ethernet and Ethernet /IP	
А	Ethernet: IEEE802.3, physical layer, speed variants of Ethernet,	CO3
	MAC and frame format; TCP/IP model; Ethernet LAN	
	components: repeater, bridge, router, gateway, hub and switch;	
	Merits and limitations of Ethernet for industrial application	
В	Common Industrial Protocol (CIP)	CO3
С	Ethernet/IP: Adaption of Common Industrial Protocol (CIP) to	CO3
	standard Ethernet, UDP, comparison between standardEthernet	
	and Ethernet /IP.	
Unit 4	Industrial Wireless Network Protocols	
А	Zigbee: Special features, IEEE802.15.4, data rates, ISM- frequency	CO4
	bands used and bandwidths, full-function and reduced-function	
	devices, PAN coordinator, MAC protocoland data transfer types	
В	Wireless network topologies	CO4
С	Comparison of Zigbee with Wi-Fi and Bluetooth.	CO4
Unit 5	IoTand Industrial IoT	
А	IoT concept and definition; Technologies behind IoT;	CO5

					A+ NAAC	SHARDA UNIVERSITY
В	CIS dev IIo	CO"s 7-ti ices; M2N Г; Modifie	er IoT refer I communicati d OSI model fo	ence model; Compone on; Relation between Io r IoT/M2M/IIoT;	nts of IoT oT, M2Mand	CO5,CO6
C	Exa	Examples of applications of IoT, M2M and IIoT. CO5,CO6				
Mode exami	of The nation	eory				
Weigh	ntage CA	CA MTE ETE				
Distri	bution 25%	6	25%	50%		
Text b	oook/s*	1. Willian Pearso	m Stallings, "D n Prentice Hall	ata and Computer Commu, 2007.	inications",8 ^t	th Edition,
		2. Mini S. Thomas and John D. McDonald, "Power SystemSCADA and Smart Grids", CRC Press, 2015.				CADA and
		 Raj Ka Mc Gr 	amal, "Internet aw Hill Educat	of Things: Architecture a tion, 2017.	nd DesignPr	inciples",
Other						
Refere	ences	 David Newne S.K. S 2003. 	Bailey and I es, 2009. ingh, "Industria	Edwin Wright, "Practica	1 SCADA f	for Industry", AcGraw-Hill,
		3. M.M.S Prentic	S. Anand, "Elec e Hall, 2004.	tronic Instruments and Ins	trumentation	Techniques",
		4. H.K. V Chapte Netwo	/erma, Sensor er 2 – Wired Ne rkTechnologie	Networks, e-monograph a twork <u>Technologies/Proto</u> s/Protocols.	it <u>www.profh</u> cols, <u>Chapter</u>	<u>kverma.info</u> , <u>3 – Wireless</u>
		5. H.K. V 4: Netv	Verma, SCADA work Technolog	a, e-monograph at <u>www.</u> g gies Deployed in SCADA	orofhkverma.i Systems.	i <u>nfo</u> , Chapter

Scho	ool: SSET	Batch : 2023-25			
Prog	gramme: M.Tech	Current Academic Year: 2023-24			
Brai	nch: EEE	Semester: I/II			
1	Course Code	MIA118			
2	Course Title	Industrial Robotics			
3	Credits	2			
4	Contact Hours	2-0-0			
	(L-T-P)				
	Course Status	Compulsory /Elective/Open Elective			
5	Course Objective	To provide students with:			
		1. The conceptual as well as practical knowledge of the Industrial			
		Automation & latest technologies being used to achieve In	dustrial		
	~ ~	Automation.			
6	Course Outcomes	After completion of this course students will be able to:			
		CO1: Able to identify type of robots			
		CO2: Able to identify parts of robots			
		CO4: Able to understand circuits for rebots			
		CO5: Able to explain about industry robots			
		CO6: Able to select robots for a particular application			
7	Course	This course is aimed at equipping students with appropriat	e knowledge		
,	Description	and skills required in configuring Programming and opera	ting Industrial		
	Description	automation systems with the use of Industrial Field Instru	ments. PLCs.		
		SCADA/ HMI and DCS.	1200,		
8	Outline syllabus		CO Mapping		
	Unit 1	Introduction to Robotics and Motion Analysis			
	А	Historical background; Laws of robotics and robot	CO1		
		definitions;			
	В	Robotics systems and robot anatomy: Basic diagram,	CO1		
	-	basic components			
	С	Specifications of robots.	CO1		
	Unit 2	Robot End-Effectors, Robot Drives and Actuators			
	A	Classification of end-effectors; Mechanical grippers,	CO2		
		Magnetic grippers			
	B	BLDC motors, stepper motor	CO3		
	C	Servo motors, piezoelectric actuators;	CO2, CO6		
	Unit 3	Sensors of Robotic System			
	A	Obstacle Sensors	CO4		
	В	Proximity sensors	CO4		
		Other sensors	CO4, CO6		
	Unit 4	Controlling Technologies of Industrial Robots			
	Α	Controllers in robotics	CO5		

В	Interfacing in	Interfacing in robotics				
С	Communication	Communications in robotics				
Unit 5	Industrial R	Industrial Robot Applications				
А	Material hand	ling robots;		CO5		
В	Welding Robo	Welding Robots;				
С	Assembling ro	Assembling robots;				
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	S.R. Deb and	S. Deb. "Robo	tics Technology and Flexible			
	Automation",	Automation". Second edition. McGraw Hill. 2011				
	Mikell P Groc	over et al., "Ind	ustrial Robotics", fifth print,			
	McGraw Hill,	Special Indian	Edition, 2013			

School: SSET			2023-2025				
Programme: M.			Current Academic Year: 2023-2024				
Tech.							
Branch: EEE			Semester: I/II				
1	Course Co	ode	MIA153				
2	Course Ti	itle	Virtual Instrumentation Lab				
3	Credits		1				
4	Contact H (L-T-P)	ours	0-0-2				
	Course Sta	atus	Department Elective				
			To provide students with:				
5	Cours Object	se ive	 To develop VI supporting various types of data. To generate and acquire real time signals using DAQ cards and LabVIEW. To develop VI using LabVIEW and DAQ cards. 				
6	6 Course Outcomes		After completion of this course students will be able to: CO1: To select appropriate controls, indicators and functions from the various pallets of LabVIEW. CO2: To implement arithmetic and Boolean systems using LabVIEW. CO3: To create VI using arrays. CO4: To build VI using cluster operations of LabVIEW. CO5: To acquire and generate signals using DAQ cards. CO6: Build VI for simulated and real time applications using LabVIEW				
7	7 Course Description		The main focus of this course is to give hands on training to the LabVIEW software. It aims at the acquisition and genera time signals. Design and development of real time VI using and LabVIEW are covered in it.	the students on tion of the real the DAQ cards			
8	Outline sy	llabus		CO Mapping			
	Unit 1	Practi	cal related to				
	A	To stu numer Create trigon	dy various types of numeric controls and indicators and ic Programmeming functions available in function palate. the front panel and block diagram of VI to show the ometric values of sine and cosine of a given angle in degrees	COI			
	B To s stud func (A*)		and various types of Boolean controls and Indicators. Also various Boolean Programmeming functions available in ion palate. Create a VI to compute the Boolean expression B + (C*D*E).	COI			
	С	Create and fu Gener	a front panel and block diagram to implement half ladder ll adder. To create front Panel of CRO, Meters and Function ator	CO1			

	Unit 2	Practical rela						
	А	Create a VI t	o create 2D nume	ric arrays & add them.	CO2			
	В	CO2						
-	С	Create a VI us age, status, ma	sing cluster to dis arks. Use Bundle a	play information of student, name, and Unbundle Functions.	CO2			
-	Unit 3	Practical rela	ted to					
	A	Create a VI t USB6008.	o acquire an analo	og signal from a source using	CO3			
	В	Also extract parameters a	the information re nd frequency of th	requency of this signal.				
	C Acquire an analog signal of LM35 temperature sensor on a DAQ signal accessory. Plot its Characteristics using graph function in LabVIEW.				CO3			
-	Unit 4	Practical rela	ited to					
	A	Create a VI t of 0.5 volts. DAQ card.	CO4					
	В	Design contr in LabVIEW	CO4					
	С	Design a Vir	CO4					
	Unit 5	Practical rela						
	А	Design a virtu	al sinusoidal volta	age source	CO5			
	В	Design a Virtu	al CRO.		CO5, CO6			
	С	Design a mult	ifunction voltage	meter.	CO5, CO6			
	Mode of	Practical/Viva			,			
	examina tion							
	Weighta	СА	CE	ETE				
	ge Distribut ion	25%	25%	50%				
	Text book*	1.Jovitha J PHI Learn	lerome, "Virtual I ing	nstrumentation and LABVIEW",				

Other Referenc es	 C.L. Clark, "LabVIEW Digital Signal Processing", TMH Publishing Company Technical Manuals for DAQ Modules, Advantech and National Instruments. NI USER MANUAL <u>http://www.ni.com/pdf/manuals/376445b.pdf</u> 	
-------------------------	--	--

School: SSET		Т	Batch : 2023-2025			
Programme: M.			Current Academic Year: 2023-2024			
T	ech.					
Branch: EEE/PS			Semester: I/II			
1	Course Co	ode	MPS134			
2	Course Ti	itle	Power Quality			
3	Credits		2			
4	Contact Hours (L-T-P)		2-0-0			
	Course Status		Department Elective			
5	Course Objective		understand the significance of power quality, its types and to study various harmonic indices, voltage quality issues and its mitigation.			
			After completion of the course, the student will be able to			
	5 Course Outcomes		CO1: Understand the significance of power quality, its types and to study various harmonic indices			
			CO2: To study the various types of harmonics and its effects on rotating			
			machines and various control and protection strategies.			
5			types of control strategies			
			CO4: Understand the various voltage quality standards and the sources of			
			unbalanced voltages and harmonics			
			CO5: Understand various voltage quality improvement devices and its			
			operation.			
			CO6: Understand the power quality issues and methods to reduce them.			
			Power Quality is the measurement of how close to perfect an electrical			
			voltage is at any given point time or point. High quality elect	rical voltage is		
	Course Description		a sine wave that measures exactly what is expected in both voltage and			
			frequency. Power quality is a very important issue that should be addressed			
			as poor power quality costs money and in some cases downti	me. The		
			course is designed to understand power quality issues in mod	lern power		
			system and methods to mitigate them.	~~~··		
8	Outline sy	llabus	•	CO Mapping		
	Unit 1	Intro	luction	GO1 GO 4		
	A	Signit	icance of power quality, Various power quality parameters,	CO1,CO6		
	B Voltag C Harm		ge vs Current distortion,	C01,C06		
			onic indices – THD, TDD; Harmonic analysis, Harmonic	CO1,CO6		
	Unit 2	Unit 2 Harmonic effects				
	A A	Source	es of harmonics, Resonance	CO2		
	B Effects of harmonics on rotating machine, power system		s of harmonics on rotating machine, power system protection,	CO2		

-								
	С	Consumer equ	CO2					
	Unit 3	Harmonic eli						
	А	Passive filters	CO3, CO6					
	В	Shunt active f	CO3,CO6					
	С	design and co		CO3,CO6				
	Unit 4	Voltage Qual	CO3					
	А	Sources of Sa	CO4,CO6					
	В	Voltage qualit	CO4					
	С	Unbalance and	CO4					
	Unit 5	Voltage Qual						
	А	Principle of o	CO5, CO6					
	В	design and con	CO5					
	С	Principle& W	CO5,CO6					
		control mode,						
	Mode of	Theory						
	examina							
	tion		1					
	Weighta	CA	MTE	ETE				
	ge	25%	25%	50%				
	Distribut							
	ion							
	Text	1. Roger. C.						
	book*	H.WayneBeat						
		$2 I \Delta rrillag$	a N.R. Watson	S Chen "Power System Quality				
		Assessment"	(New	Vork · Wiley) 2000				
		3 Bhim Sine	andra Kamal Al-Haddad " Power					
		Quality Problems & Mitigation Techniques" Wiley, 2015.						
<u> </u>	Other	1. G.T. Heve						
	Referenc	Reference Lafayette, IN, Stars in a Circle Publications, 19 es 2. M.H.J Bollen, "Understanding Power Quality Problems: Volt						
	es							
		Sags and Interruptions", (New York: IEEE Press), 2000.						

Scho	ool: SSET	Batch : 2023-25			
Programme: M.Tech		Current Academic Year: 2023-24			
Branch:EEE		Semester: I/II			
1	Course Code	ECE619			
2	Course Title	Internet of Things and Applications			
3	Credits	3			
4	Contact Hours	3-0-0			
	(L-T-P)				
	Course Status	Elective			
5	Course Objective	e To provide students with:			
		1. Emphasize the application areas of IoT			
		2. Introduction to the building blocks of Internet of Th	nternet of Things		
		3. Able to realize the revolution of Internet in Mobile Devices,			
		Cloud & Sensor Networks			
		4. Introduction to core technologies- Sensors, Communication a Data Networks			
6	Course Outcomes	After completion of this course students will be able to: CO1: Able to illustrate key components of IoT and comp M2M): ompare it with		
		CO2: Able to explain generic network model as well as EPA mo			
		CO3: Able to analyse various IoT devices and their functionality			
		CO4: Able to justify use of IoT in Industry			
		CO5: Able to identify Key application areas			
		CO6: Able to justify role of IoT in providing solution to problems	various		
7	Course Description	IoT has become a game changer in the new economy where the customers are looking for integrated value & the IoT perspective in thinking and building solutions.			
8	Outline syllabus		CO Mapping		
	Unit 1	Basics Internet of things			
	А	Overview with application examples	CO1,CO6		
	В	Design Principles for connected devices	CO1		
	С	Physical &logical Design, M2M Communication	CO1		
	Unit 2	Basic Topologies & Network Topologies			
	Α	LAN Topologies; IIoT, physical networking	CO2		
	В	OSI model: significance, scope, functions of all layers; IEC's four layers EPA model: significance, functions of all layers.	CO2		

С	Router interna	lls, common ro	uter architecture	CO2
Unit 3	IoT Devices a	nd Networks		
А	Protocol stack	, Physical laye	r, data link layer (Frame	CO3
	Format and M	AC)		
В	Cloud connect	tivity, User inte	erface, web app versus	CO3
	mobile app			
С	IoT devices-E	V26,AR01,FM	B920,MCK01,MCK05	CO3
Unit 4	Industrial IIc	т		
А	Zigbee: Specia	al features, data	a rates, Comparison of	CO4
	Zigbee with W	Vi-Fi and Bluet	ooth	
В	Sensor techno	logies and sens	or applications	CO4
С	IIoT applicati	on examples, I	IoT future trends	CO4, CO6
Unit 5	Illustrative a	Illustrative application Scenarios & concepts		
А	Smart Waste	nanagement, S	mart energy conservation	CO5,CO6
В	Smart Urban p	olanning, Susta	inable urban Environment,	CO5, CO6
	Smart Medica	tion & emerger	ncy handling	
С	Smart product	management,	Home automation	CO5, CO6
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	<i>1</i> . E-boo	k-Designing of	f Internet of things by-	
	Adriar	McEwen, Hal	tim Cassimally, Wiley	
	2. Interne	et of Things by-	A Bahga &Vijay	
	Madis	etti, University	Press	
	https://in.coursera.org/learn/industrial-internet-of-things			

S	chool: SSE	Т	Batch : 2023-2025				
P	rogramme	: M.	Current Academic Year: 2023-2024				
T	ech.						
B	ranch: EE	E	Semester: I/II				
1	Course Co	ode	MPS131				
2	Course Ti	itle	Restructured Power System				
3	Credits		3				
4	Contact H $(I T P)$	ours	3-0-0				
	(L-1-F)	atus	Department Elective				
	Course Sta		This course is designed to overview of planning and regulator	v structure of			
5	Object	ive	nower system	y structure of			
	Object	IVC	A frag completion of the course, the student will be able to				
			CO1. Understand the need of restructuring of newspace for				
			CO2 A single stand the need of restructuring of power system	1. 1.1 (
			CO2: Acquire knowledge of basic concepts of economics and ap	oplied them to			
			solve practical applications through numerical analysis.				
	Cours	se.	CO3: Grasp the knowledge of various market models, levels o	f competition			
6	Outcor	nes	exist among these models and features of electricity as a commo	dity.			
	0 410 01	1105	CO4: Acquire the knowledge, importance, effects and class	ssification of			
			Congestion Management methods				
			CO5: Gain the information about various ancillary services.				
			CO6: Familiar with different pricing mechanism of electric energy and trading				
			of power under deregulated environment.				
			The restructuring of power industry has changed the way of op	eration of the			
			power system. Along with the secure and reliable operation of po	ower systems,			
			the economic efficiency has become an equally important of	consideration.			
7	Cours	se	Unlike the knowledge of conventional operation of po	wer system,			
	Descrip	tion	understanding the restructured power system require basic	nowledge of			
			electrical engineering, power systems and also the economics.	This course is			
			decisions associated with the operation of power systems	iding the new			
8	Outline sv	llahus	decisions associated with the operation of power systems.	CO			
0	Outline sy	nuous		Mapping			
	Unit 1	Intro	luction to restructuring of power industry	8			
	А	Need	and conditions for deregulation. Introduction of Market	CO1,CO6			
		structu	are, Market Architecture, Spot market, forward markets and				
		settler	nents.				
	В	Review	w of Concepts marginal cost of generation, least-cost operation,	CO1			
	~	incren	nental cost of generation				
	С	Power	System Operation: Old vs. New.	CO1			
	Unit 2	Funda	amentals of Economics and Market Models				
	А	Electr	icity sector structures and Ownership /management, the forms of	CO2,CO6			
	Ownership and management.						

В	Different stru	CO2,		
	model			CO6
С	wholesale con	npetition model, l	Retail competition model.	CO2,CO6
Unit 3	The Philosop			
А	Framework an markets,	nd methods for the	e analysis of Bilateral and pool	СОЗ,
В	LMP based m	arkets, auction m	odels and price formation	CO3
С	price based un	it commitment, c	country practices.	CO3,
Unit 4	Transmission Prices	Congestion Ma	nagement and Locational Marginal	CO3
А	Transmission	network and mar	ket power	CO4
В	Power wheelin costing.	ng transactions ar	nd marginal costing, transmission	CO4
С	Congestion m Effect of cong	anagement metho estion on LMPs-	ods- market splitting, counter-trading; country practices	CO4
Unit 5	Ancillary Ser	vice Manageme	nt:	
А	Ancillary Serv	vices and System	Security in Deregulation	CO5
В	Classifications country practi	s and definitions, ces.	AS management in various markets-	CO5
С	Technical, eco of the power i	onomic, & regula ndustry.	tory issues involved in the deregulation	CO5
Mode of examina tion	Theory			
Weighta	CA	MTE	ETE	
ge Distribut ion	25%	25%	50%	
Text book*	Hingorani N. technology of 1999	G. and Gyugi L., Flexible AC Tra	"Understanding FACTS: concepts and nsmission systems", Wiley IEEE Press,	
Other Referenc es	 1999 1.Power System Economics: Designing markets for electricity - S. Stoft 2.Power generation, operation and control, -J. Wood and B. F. Wollenberg 3.Operation of restructured power systems - K. Bhattacharya, M.H.J. Bollen and J.E. Daalder 4.Market operations in electric power systems - M. Shahidehpour, H. Yamin and Z. Li 5.Fundamentals of power system economics - S. Kirschen and G. Strbac 6.Optimization principles: Practical Applications to the Operation and Markets of the Electric Power Industry - N. S. Rau 7.Competition and Choice in Electricity - Sally Hunt and Graham 			

	A+ NAAC	SHARDA UNIVERSITY Beyond Boundaries
Shuttleworth		

Sch	ool: SSET	Batch : 2023-25				
Pro	gramme: M.Tech	Current Academic Year: 2023-24				
Bra	nch:EEE	Semester: I/II				
1	Course Code	MPS132				
2	Course Title	Operation and Control of smart grid				
3	Credits	2				
4	Contact Hours (L-T-P)	2-0-0				
	Course Status	Elective				
5	Course Objective	 To provide students with: 1. To integrate and optimize distributed energy resourc more efficient andreliable grid, 2. Enable active participation of consumers with more constraints. 	es to achieve a environmental			
6	Course Outcomes	 After completion of this course students will be able to: CO1: Identify different tools and approaches to modelling CO2: Apply Optimal Power Flow (OPF) solutions to every performance of a power system with renewal sources. CO3: Analyze power system dynamics (frequency stability activepower balance. CO3: To familiarize the students with modelling of components. CO5: Identify control-room technologies for system monitoring, protection, and risk management of susceurity CO6: Able to design, implementation, evaluation and a smartelectricity infrastructure. 	g a Smart Grid. valuate the ble energy y) to achieve of smart grids m-wide remote mart grid cyber management of			
,	Description	in the field of smart grid including advanced metering infr demand response, distributed storage, vehicle-to-grid syste measurement, smart grid cyber security, etc	astructures, ems, wide area			
8	Outline syllabus		CO Manning			
0	Unit 1	Modeling of Smart Grids				
	A	Operating principles and models of smart gird components	CO1			
	В	Key technologies for generation, networks, loads and their control capabilities decision-making tools	CO1			
	С	Hardware, Software, Communication. Approaches to estimation, scheduling, management and Control of next generation smart grid	CO1			
	Unit 2	Smart Grid Communications;.				

				SHA
				NAAC UNIV www.shurda.clm
A	Two-way Architectu	Digital Comm	unications Paradigm, Network	CO2
В	IP-based S	systems, Power	Line Communications	CO3
С	Advanced	Metering Infras	structure,	CO2, CO6
Unit 3	Security a	and Privacy	,	
А	Cyber Se Attacks	curity Challeng	es in Smart Grid,Load Altering	CO4
В	False Data	Injection Attac	ks, Defense Mechanisms	CO4
С	Privacy Cl	hallenges Data l	nandling functions; Bit function	s CO4, CO6
Unit 4	IoT for po	ower systems		
А	Internet of manageme	of things for electent.	ctricity infrastructure and energy	CO5
В	SCADA, I	Demand response	se, AMI, IoT aided smart grid,	CO5
С	Big data for analytics.	or power system	and introduction to data	CO5
Unit 5	High Per	formance Com	puting for Smart Grid	
A	Local Area (HAN),	a Network (LA)	N), House Area Network	CO5
В	Wide Area	a Network (WA	N),	CO5, CO6
С	CLOUD C	Computing to m	ake Smart Grids smarter	CO5, CO6
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1. Janaka	a Ekanayake, Ni	ck Jenkins, Kithsiri	
	Liyanage "Smart G Wiley & 2 James and	Jianzhong Wu, rid: Technology sons inc,2015. Momoh, "Sma	, Akihiko Yokoyama, y and Applications", John art Grid: Fundamentals of design	1
Other References	analysis", 1. Fereide Renewab Academic 2.ClarkW efficiency 2009.	John Wiley & s oon P. Sioshans le, Distributed & cPress, 2012. /.Gellings, "The y and demand re	ons Inc, IEEE press 2012 i, "Smart Grid: Integrating & Efficient Energy", e smart grid: Enabling energy esponse", Fairmont Press Inc,	

School: SSET			2023-2025					
P	rogramme	: M.	Current Academic Year: 2023-2024					
T	ech.							
B	ranch: EE	E	Semester: I/II					
1	Course Co	ode	MIA119					
2	Course T	itle	Optimal Control					
3	Credits		3					
4	Contact H	ours	3-0-0					
	(L-T-P)							
	Course Sta	atus	Department Elective					
			To provide students with:					
5	Cours	se	1.Basic knowledge of theoretical foundations of optimal co	ntrol.				
5	Object	ive	2.Develop skills needed to design controllers using available	e optimal				
			control theory.					
			After completion of the course, the student will be able to					
			CO1: Understand the basic concepts of system optimization	and optimal				
			control system					
			CO2: Understand and apply the concept of calculus of varia	ations for				
	Cours	se	optimal control problems.					
6	Outcor	nes	CO3: Demonstrate concept of LQR Design and Dynamic p	rogramming				
			CO4: Design dynamic compensator and Filters					
			CO5: Apply optimal control theory under constraints					
			CO5: Apply optimal control theory under constraints					
			control problems					
			This course introduces systematic approaches to the analysis of optimal					
7	Cours	se	control system	s of optimiti				
,	Descrip	tion						
8	Outline sv	llabus		CO Mapping				
-	Unit 1	Intro	luction					
	А	Dynar	nic system optimization,	CO1				
	В	Ontim	al system performance indices	CO1				
	С	Finite	and Infinite horizon problems	CO1				
	Unit 2	Calcu	lus of variations					
	A	Calcul	us of variations	CO2				
1	В	Constr	ained and unconstrained minimization	CO2				
1	С	Euler	equation. Hamiltonian	CO2				
	Unit 3 Dyna		nic Programming					
	A Optim		ality principle, Potryagin's principle	CO3				
	В	Riccat	i Equation; Hamilton Jacobi Bellman (HJB),	CO3,CO6				
	С	Regul	ator (LQR), constrained and unconstrained input.	CO3, CO6				
	Unit 4	Dynai	nic Compensator and Filters					
1	А	Linear	quadratic Gaussian (LQG),	CO4				
	В	State e	estimator	CO4				
1	С	Kalma	n filter, discrete and continuous-time	CO4				
	Unit 5	Cons	trained Optimal Control systems					
			- •					

r -			SHARD			
А	Constrained optimal control,	Constrained optimal control, TOC of a double integrator systems				
В	Fuel optimal control systems, Energy- optimal control system	CO5, CO6				
С	optimal control system with st	tate constraints	CO5, CO6			
Mode exami tion	of Theory					
Weig	ta CA MTE	ETE				
ge Distri ion	25% 25%	50%				
Text book ³	 1."Optimal Control System Press, 2003. 2. "Optimal Control," F. L. Le John Wiley, 	ns,"DesineniSubharam Naidu, CRC ewis, D. L. Varbie and V. L. Syramos,				
Other Refer es	 D.S. Naidu, Optimal c edition, 2002. Arturo Locatelli, Optim Birkhauser Verlag, 20 S.H.Zak, Systems and University, 2003. 	control systems, CRC Press, First mal control: An Introduction, 001. I Control, Indian Edition , Oxford				

Scho	ool: SSET	Batch : 2023-25				
Prog	gramme:	Current Academic Year: 2032-24				
M.T	'ech					
Bra	nch: EEE	Semester: I/II				
1	Course Code	MPP202				
2	Course Title	Advanced Power System Lab-II				
3	Credits	1				
4	Contact	0-0-2				
	Hours					
	(L-T-P)					
	Course Status					
5	Course	To provide students with:				
	Objective	1. To allow students to practically verify several concepts a	and procedures			
		learned in power system modelling and analysis.				
		2. To develop hands-on experience of now certain procedu	res of power			
		3. To carry out system studies using state of the art power i	sveteme			
		analysis software to assess system operation in steady state	and under			
		faulted conditions				
		4. To promote teamwork among students and effective com	munication			
		skills.				
6	Course	After completion of this course students will be able to:				
	Outcomes	CO1: Learn MATLAB fundamentals				
		CO2: Simulation of Bus admittance impedance matrix				
		CO3: Load flow analysis using Matlab				
		CO4: Fault analysis using Matlab				
		CO5: Analyse load frequency control and voltage control				
		CO6 · Apply software for power system industry				
7	Course	This lab course includes ten experiments to study various	spects of power			
'	Description	systems: load flow data preparation and system study: systems:	stem analysis of			
	Description	symmetrical and unsymmetrical faults and state estimation				
8	Outline syllabu	IS	CO Mapping			
	Unit 1	Formation of Bus/admittance matrix				
	Α	Simulation of swing Equation using Simulink	CO1			
	В	Formation of Z-bus matrix of a power system	CO1			
	С	Formation of Ybus	CO1			
	Unit 2	Load Flow				
	Α	Formation of Ybus using Sparsity Technique	CO1			
	В	Load flow study of a 3-phase power system using Gauss-	CO1			
		Seidel				
	C	Load flow study of a 3-phase power system using NR	COI			
	Unit 3	Practical related to fault analysis				
	A	Simulate single line to ground fault and to massure voltage	CO2			
		and current at different locations				
	l					

				NAGE SHALL	RDA
В				CO2]
	Simulate line	to line fault	and to measure voltage and		
	current at diff	erent locations	•		
Unit 4	Short Circuit	t Studies For V	Unbalanced Network		
А	Simulation of	symmetrical f	ault	CO2	
В	Simulation of	Unsymmetrica	al fault	CO2	
С	Simulation of	symmetrical f	ault in presence of	CO2]
	compensator				
Unit 2	Practical rela	ated to load fr	equency control and]
	voltage contr	ol			
А	To design loa	d frequency co	ntrol model in MATLAB	CO3]
В	To connect sh	unt capacitor i	n most optimal location and	CO3]
	to study impro	ovement in vol	tage profile using		
	MATLAB/PS	CAD.			
Mode of	Practical/Viva	ì			
examination					
Weightage	CA	CE	ETE]
Distribution	25%	25%	50%]
Text book/s*	Arrillaga J. ar	nd Arnold C.P	., " Computer Analysis of]
	Power System	ns", John Wile	y & Sons		
Other	3. Kusic G	.L., "Compu	ter Aided Power System]
References	Analy	sis", CRC Pres	S.		
	4. Anderson	P.M., "Analys	is of Faulted Power Systems",		
	Wiley	-IEEE Press.	<u> </u>		

Scho	ool: SSET	Batch: 2023-25	
Prog	gramme: M.	Current Academic Year: 2023-24	
Tech	1.		
Brai	nch: EEE	Semester: I/II	
1	Course Code	MPP201	
2	Course Title	Advanced Power System Lab-I	
3	Credits	1	
4 Contact Hours 0-0-2 (L-T-P)			
	(L-T-P)		
	Course Status		
5	Course	modern numerical techniques and analytical methods for de	aling with and
	Objective	solving operation and protection related problems in electric	power systems
6	Course	After the completion of course student will be able to	
	Outcomes	CO1: Explore the concept of waveform distortion.	
		CO2: Study the uncompensated transmission line	
		CO3: Reactive power control using inductors.	
		CO4: Reactive power control using capacitors.	
		CO5: Simulate voltage source and current source inverters	
		CO6: Simulation of multipulse converters.	
7	Course	This course aims to convince the student that constancy of	frequency and
	Description	voltage are the primary health indicator of the power	er system for
		maintaining the real and reactive power balance in systems	. The concepts
		of economic load dispatch and unit commitment are als	o given in the
		course. The concept of close coordination between them	nal and hydro
		power plant to meet the load demand has been included in t	he course.
8	T T 1 / 4		
	Unit I	Practical related to distortion in voltage and current	
		waveform	CO1
	A	Introduction to Mat-lab Programming and Simulink.	C01
	В	experimentally.	01
	С	To study single phase fully controlled bridge rectifiers	CO1
		with resistive and inductive loads	
	Unit 2	Practical related to Transmission line Compensation	
	Α	Simulation of uncompensated Transmission line.	CO2
		To study the voltage sag due to starting of large induction	CO2
		motor	
	В	Simulation of series compensated Transmission line.	CO4
	Unit 3	Practical related to Transmission line shunt	
		compensation	
	A	Simulation of Shunt compensated Transmission line.	CO3
	B	Simulation of TCR Compensated Transmission line.	CO3
	C	Study of harmonics in TCR Compensated Transmission	CO3
	T T 1 / 4	line.	
	Unit 4	Practical related to Transmission line Series Compensation	
	A	Simulation of TSC Compensated Transmission line	CO4
	R	Simulation of single phase VSI	C05
	C	Simulation of single-phase CSI	C05
		Sinulation of single-phase CSI	005

Unit 5	Practical rela	ated to Multip	ulse Converters	
А	Simulation ar	nd study of 6-P	ulse Converter.	CO6
В	Simulation ar	nd study of 12-	Pulse Converter.	CO6
С	Simulation ar	nd study of 18-	Pulse Converter.	CO6
Mode of examination	Practical/Viva	a		
Weightage	CA	CE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1.Allen. J. We Generation, C Inc., 2003.	ood and Bruce Operation and C	F. Wollenberg, "Power Control",John Wiley & Sons,	
Other References	1. P.Kun Contro 2. Olle.I An In Comp	ndur, "Power Sy ol"MC Craw H Elgerd, "Elect troduction" Tat pany Ltd. New 1	ystem Stability and Iill Publisher, USA, 1994. ric Energy Systems Theory ta McGraw Hill Publishing Delhi, Second Edition 2003	

Scho	ol: SSET	Batch : 2023-2025	
Prog	gramme:	Current Academic Year: 2023-2024	
M.T	ech		
Brai	nch: EEE	Semester: I/II	
1	Course Code	MPS125	
2	Course Title	Electrical Drives	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	<u>(L-T-P)</u>		
_	Course Status	Departmental Elective	
5	Course	To provide students with:	
	Objective	1 Introduction to different types of drives and empli	aationa in
		1. Introduction to different types of drives and appli	cations in
		various industries.	
		2. To know the characteristics of various motors and	l loads.
		3. To understand the modes of operation of a drive i	n various
		applications	
		4. To enable the students identify the need and choice	ce for various
		drives.	
		5. To acquire the knowledge of different speed cont	rol methods in
		a.c motors	
6	Course	After the completion of course student will be able to	
	Outcomes	CO1: Understand the characteristics of dc motors and induct	ion motors.
		CO2: Understand the principles of speed-control of dc motor	s and
		induction motors.	
		CO3: Understand the power electronic converters used for d	c motor and
		induction motor speed control	
		CO4: Acquire the knowledge about operation of dc motor sp	eed control
		using converters and choppers	
		CO5: Identify the use of drives in industrial applications	
		CO6: Apply speed control methods to dc and ac motors	
		cool. Apply speed control methods to de and ac motors	
7	Course	This course introduces the concept of control of electric mot	ors for various
,	Description	types of mechanical loads DC motor control (both steady sta	ate and
	Desemption	dynamic), and steady state torque and speed control of ac mo	otors are
		emphasized.	
8	Outline syllabu	IS	CO Mapping
	Unit 1	DC motor characteristics	
	A	Review of emf and torque equations of DC machine,	CO1
		review of torque-speed characteristics of separately excited	
		dc motor	
	В	change in torque-speed curve with armature voltage.	CO1
	2	example load torque-speed characteristics. operating point.	
L			1

С	armature volta weakening for	age control for r high speed op	varying motor speed, flux peration	CO1
Unit 2	Chopper fed	DC drive		
А	Review of dc	chopper and d	uty ratio control, chopper fed	CO2,CO6
В	steady state of	peration of a cl	hopper fed drive, armature	CO2,CO6
С	calculation of	losses in dc m	otor and chopper, efficiency of	CO2.CO6
Unit 3	Multi-quadre	ont DC drive		
A	Review of me	otoring and ge	enerating modes operation of a	CO3
В	four quadrant	t operation of and four-quad	⁷ dc machine; single-quadrant, rant choppers	CO3
С	steady-state of drive, regener	pperation of r ative braking	nulti-quadrant chopper fed dc	CO3,C06
Unit 4	Closed-loop	control of DC	Drive	
А	Control struct speed loop,	ure of DC driv	e, inner current loop and outer	CO4.CO6
В	dynamic model of dc motor – dynamic equations and transfer functions, modeling of chopper as gain with switching delay			CO4,CO6
С	plant transfer controller spe- specification a	function, for c cification and c	ontroller design, current design, speed controller	CO4,CO6
Unit 5	Induction mo			
A	Review of induction motor equivalent circuit and torque-			CO5
	speed character			
В	variation of to applied freque	CO5,CO6		
С	Typical torque operating poin operation.	e-speed curves nt, constant flu	of fan and pump loads, x operation, flux weakening	CO5,CO6
Mode of	Theory			
examination		1		
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1. G. K. Dube Drives", Pren 2. R. Krishnar Analysis and 2001.	 G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989. R. Krishnan, "Electric Motor Drives: Modelling, Analysis and Control", Prentice Hall, 2001. 		
Other References	 G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2002. W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001. 			

S	chool: SSI	ET Batch : 2023-2025	
P	rogramm	e: Current Academic Year: 2023-2024	
Μ	I.Tech		
B	ranch: EI	XE Semester: I/II	
1	Course	MPS122	
	Code		
2	Course	Extra High Voltage Transmission	
	Title		
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course	Elective	
	Status		
5	Course	I his course is designed to train the students to cater for the des	ign and R&D
_	Objectiv	requirements for the EHV AC and HVDC power lines.	
		After the completion of course student will be able to	
		CO1 : To introduce to the problems in EHV transmission and	calculate line
		parameters of EHV transmission line.	
	G	CO2: Methods of protection against overvoltages	
6	Course	CO3: Design passive shunt and series compensation	
	Outcom	CO4: Design of substation.	No HVDC sustame
		types	le II v DC systems
		CO6: Design compensation and protection of EHV system	
		cool. Design compensation and protection of Erry system.	
		Elicit the advantages of EHV AC transmission systems.	Aould students to
	G	acquire knowledge about HVDC Transmission systems. This	course gives idea
7	Course	about modern trends in HVDC Transmission and its applic	ation, Understand
	Descripti	on about the overvoltage and its effects on power system. Con	nplete analysis of
		harmonics and basis of protection for HVDC Systems.	
8	Outline s	yllabus	CO Mapping
	Unit 1	Introduction to EHV Transmission	
	А	Problems of EHV transmission	CO1
	В	calculation of impedance and capacitance matrices of 3-phase	CO1
		transmission line	
	C	Electrostatic and Electromagnetic field, calculation of corona	CO1
		current/loss, radio interference, audible noise interference	
	Unit 2	Computation and Protection against Over-Voltage	
	А	Causes of over voltages	CO2, CO6
	В	Methods of protection against switching surges	CO2,CO6
	С	Means of protection against lightning surges	CO2.CO6
	Unit 3	Series and Shunt Compensation	
	А	Effect of series capacitors, location of series capacitors	CO3,CO6
	В	Sub-synchronous resonance in series-capacitor compensated	CO3 CO6
		transmission lines	000,000
	C	Shunt compensation- conventional devices, static VAR	CO3.CO6

				MAAC SHARD	
	compensation:	TCR-FC, TC	R, TSC-TCR devices	anan daada at a	
Unit 4	Design of Subs	stations			
А	Types of substa	tions, layout	of substation	CO4	
В	bus bar arrangements, grounding system- types of grounding, design parameters			CO4	
С	designing a gro	unding grid, 1	measurement of soil resistivity	CO4	
Unit 5	HVDC System	S	· · · ·		
А	Types of HVD0	C systems		CO5	
В	Terminal equip	ment and their	ir operations	CO5	
С	Dc link control	and protectio	n	CO5	
of examin ation	CA	MTE			
weight	CA	MIE			
age Distrib ution	25%	25%	50%		
Text	Begamudre	R.D., "Extra	High Voltage Transmission Engine	eering", New Age	
book*	Internationa	ul(P) Ltd, New	v Delhi, 2003		
Other	1. Kundur P., "Power System Stability and Control", 2 nd Ed., Tata-McGraw Hill,				
Referen	New Delhi,	2008			
ces	2. Padiyar K.F 2005	R., "HVDC P	ower Transmission Systems", New	Age International,	

Scho	ool: SSET	Batch : 2023-2025	
Prog	gramme: M.	Current Academic Year: 2023-2024	
Tech	1.		
Brai	nch: EEE	Semester: I/II	
1	Course Code	EEE 452	
2	Course Title	Wind and Solar Energy Systems	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Department Elective	6 1
		The objective of the courses is to develop in-depth knowled	ge for the
		To develop an understanding of India and world renewal	bla anaray
	Course	scenario	ble ellergy
5	Objective	To design a power electronic equipped stand-alone PV s	vstem.
		To design a standalone wind power system.	<i>J</i> = = = = = = = = = = = = = = = = = = =
		To integrate a solar PV system and wind energy system	from
		electrical grid.	
		At the end of this course, students will demonstrate the abili	ty to
		1: Apply the fundamentals of physics for wind and solar po	wer
		generation.	
		2: Appreciate the advancements in turbine technologies and	topologies.
	Course	3: Integrate the power electronic interfaces for wind and sola	ar generation
6	Outcomes	5. Integrate the power electronic interfaces for which and sold	
	Outcomes	14: Understand and Identify modern advancements in solar pl and the battery energy storage.	notovoltaics
		5: Understand and solve issues related to the grid-integration	n of solar and
		wind energy systems	
		6: Design various aspects of wind and solar power generatio	n.
		The course is designed to familiarize and train the student wi	th the tools and
7	Course	techniques used to assess the solar energy and wind energy a	nd its potential
,	Description	at any location across the globe, so that a student is able	analyse a case
		quantitatively at the end of the term.	
8	Outline syllabu		CO Mapping
		History of wind power Indian and Clobal statistics. Wind	CO1
	A	history of whice power, mutan and Global statistics, whice	COI
	B	Betz limit Tip speed ratio stall and pitch control Wind	CO1 CO6
	D	speed statistics-probability distributions	001,000
	С	Wind speed and power-cumulative distribution functions	CO1
	Unit 2	Wind generator topologies	
	А	Review of modern wind turbine technologies, Fixed and	CO2
		Variable speed wind turbines	
	В	Induction Generators, Doubly-Fed Induction Generators	CO2
		and their characteristics, Permanent-Magnet Synchronous	
		Generators	
	C	Power electronics converters. Generator-Converter	CO2,CO3

	configuration	s, Converter C	Control	and a state of the		
Unit 3	The Solar R	esource and F	Energy Storage Systems			
А	Introduction,	solar radiation	n spectra, solar geometry	CO1, CO3		
В	Earth Sun an	gles, observer	Sun angles, solar day length,	CO1,		
	Estimation of	f solar energy	availability	CO3,CO6		
С	Impact of int	ermittent gene	ration – Battery energy storage	CO1, CO3		
	– solar therm	al energy stora	nge			
Unit 4	Solar photo	voltaic				
А	Technologies	-Amorphous,	monocrystalline,	CO4,CO6		
	polycrystallin	ne; V-I charact	eristics of a PV cell			
	PV module a	PV module and array				
В	Power Electr	onic Converte	rs for Solar Systems	CO4,CO6		
С	Various MPF	T methods		CO4,CO6		
Unit 5	Network Int	egration Issue	es			
А	Overview of grid code technical requirements, Fault ride-			CO5		
	through for wind farms - real and reactive power					
	regulation, vo	regulation, voltage and frequency operating limits				
В	Solar PV and	Solar PV and wind farm behaviour during grid				
	disturbances.	Power quality	v issues. Power system			
	interconnecti					
C	Hybrid and is	solated operati	ons of solar PV and wind	CO2,CO2		
	systems	systems				
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	G. M. Master	rs, "Renewable	e and Efficient Electric Power			
	Systems", Jo	hn Wiley and	Sons, 2004.			
Other	1. T. Ackern	1. T. Ackermann, "Wind Power in Power Systems", John				
References	Wiley and So	ons Ltd., 2005.				
	2. S. P. Suk	hatme, "Solar	Energy: Principles of Thermal			
	Collection and Storage", McGraw Hill, 1984.					
	3. H. Siegfri	ed and R. Wa	addington, "Grid integration of			
	wind energy conversion systems" John Wiley and Sons Ltd., 2006.					

School: SSET		Batch : 2023-2025						
Programme: M.	Tech.	Current Academic Year: 2023-20	24					
Branch: EEE		Semester: I/II						
Course Code	ECE946							
Course Title	Biomedica	l Instrumentation						
Credits	3							
Contact	3-0-0							
Hours								
(L-T-P)								
Course	Programm	e Elective						
Status	_							
Course	1.Getting k	nowledge electronics engineering ap	plications in					
Objective	Biomedica	l	L					
	2.Getting k	nowledge of interdisciplinary						
	3.Explorin	ig ideas on biomedical electronics and	l instrumentation					
	1							
Course	After succ	essful completion of this course the	student will be					
Outcomes	able to:	-						
	CO1:Knov	vledge of biomedical of sensors and o	engineering analogies in					
	human ana	tomy						
	CO2: Kno	CO2: Knowledge of different techniques of instruments for						
	recordingd	recordingdiagnostic systems						
	CO3: Knov	CO3: Knowledge of different techniques of instruments for patient						
	monitoring	monitoringsystems						
	CO4: Kno	CO4: Knowledge of different techniques of instruments for imaging						
	systems	ystems						
	CO5: Kno	nowledge of different techniques of instruments for therapeutic						
	systems							
	CO6:Ident	CO6:Identify, explain and judge patient safety issues related to						
	biomedical	instrumentation.						
Course	The Biome	The Biomedical Instrumentation subject gives knowledge about electronics						
Description	equipment	equipments which are used in medical field. It is also give details about						
	how touse	ow touse these equipments to diagnose the problems of human body. It is						
	a theoretic	al subject and very interesting also. Si	ince wehave lot of					
	developmentin technologies, there are lots of developments inmedical							
	also. So, th	also. So, this subject leads you to become an entrepreneur in the field of						
	biomedical							
	equipment	s marketing or service or distribution.						
Outline syllab	bus		CO Mapping					
Unit 1	Introducti	on to BMI and its sensors						
А	Brief desci	iption of human body; Engineering ir	n CO1,CO6					
B Silver-silver chloride electrode; CO1,CO6								
	microelect	rodes; Jellies andCreams						
С	Sensors an	d electrodes of BMI	CO1,CO6					
Unit 2	Biomedica	l Recorder Systems						
			<u>I</u>					

A	Electrocard	liograph; V	ector cardiograph;	CO2,CO6	
В	Electroenc	ephalograph	; Electromyograph;	CO2,CO6	
С	Spirometry	1	· · ·	CO2,CO6	
Unit 3	Patient M	onitoring S	ystems		
A	Cardiac M	CO3,CO6			
В	BP & Tem	CO3,CO6			
С	Respiration	n rate, blood	flow measurement	CO3,CO6	
Unit 4	Medical Imaging, Patient Care and Monitoring				
A	Diagnostic X-rays and CAT			CO4,CO6	
В	MRI	MRI			
C	Medical			CO4,CO6	
Unit 5	Biomedica				
A	Pace makers; Defibrillators			CO5,CO6	
В	Ultrasonic	Ultrasonic therapy unit;			
С	Pain relief system			CO5,CO6	
Mode of examination	Theory				
Weightage	CA	MTE	ETE		
Distribution	25%	25%	50%		
Fext book/s*	Khandpur R. S., "Handbook on Biomedical Instrumentation", 2 nd Ed.,				
Other	1. Cromwell L., Weibell F. J. and Pfeifer E. A., "Biomedical				
References	 Instrumentation and Measurements", Prentice Hall of India, 2003 2. Geddes L. A. and Baker L. E., "Principles of Applied Biomedical Instrumentation" John Wiley & Sons 1989-JSBN:9780471608998 				