

Programme Structure

Sharda School of Engineering & Technology

Department of Biotechnology

M.Sc Genetic Engineering Programme code: SET0206 (Batch: 2023-2025)

The components of the curriculum

Course Component	Curriculum Content (% of total number of credits of the programme)	Total number of contact hours	Total number of credits
Basic Sciences	2.38%	2	2
Engineering Sciences	26.19%	25	22
Humanities and Social sciences	2.38%	4	2
Programme Core	47.61%	51	40
Programme Electives	9.54%	8	8
RBL and Dissertation	11.9%	24	10

Department of Biotechnology Sharda School of Engineering & Technology Sharda University, Greater Noida M.Sc Genetic Engineering <u>Programme Structure</u> Academic Year: 2023-2024

TERM: I

S.	Paper	Course	Course	Te	aching l	Load		Type of course
No.	ID	Code		L	Т	Р	Credits	1. CC 2. AECC 3. SEC 4. DSE
THEO	RY SUBJE	CTS						
1.	16638	MGE101	Advanced Cell Biology	4	0	0	4	CC
2.	16639	MGE102	Structure and Function of Biomolecules	4	0	0	4	AECC
3.	16640	MGE103	Molecular Biology	4	0	0	4	AECC
4.	16641	MGE104	Molecular cloning	4	0	0	4	AECC
5.	30055	MST111	Biostatistics	2	0	0	2	SEC
PRACT	FICAL							
6	16642	MGP101	Advanced Cell Biology lab	0	0	4	2	SEC
7	16643	MGP102	Macromolecules lab	0	0	4	2	SEC
8	16644	MGP103	Molecular Biology Lab	0	0	4	2	SEC
9		MGP106	Research Based Learning - I	0	0	2	0	CC (Qualifying)
			TOTAL CREDITS				24	

TERM: II

S. Paper		Course Code	Course	Tea	aching	Load	Credits	Type of Course
No.	ĪĎ			L	Т	Р	Credits	
ГНЕ	ORY SUB	SJECTS						
1.	16834	MGE105	Advances in Immunology	4	0	0	4	AECC
2.	16835	MGE106	Metabolic Pathways	4	0	0	4	AECC
3.	16836	MGE107	Techniques in Biology	4	0	0		DSE
		MGE110	Animal Biotechnology	4	0	0	4	DSE
4.	16837	MGE108	Bioinformatics	4	0	0	4	SEC
5.	16838	MGE109	Transgenic Organisms	4	0	0	4	AECC
PRA	CTICAL							
6.	16839	MGP104	Techniques in Biology Lab	0	0	4	2	CC
7.	16840	MGP105	Bioinformatics lab	0	0	4	2	SEC
8	16119	CCU101	Community connect	0	0	4	2	SEC
9.		MGP107	Research Based Learning - II	0	0	2	0	CC (Qualifying)
			TOTAL CREDITS				26	

TERM: III

S.	Paper	Course	Course	Те	aching l	Load	Credits	Type of Course
No.	ID	Code		L	Т	Р	Creans	
THE	ORY SUBJ	ECTS						
1.	16846	MGE201	Industrial Microbiology	4	0	0	4	AECC
2.	16847	MGE202	Genomics and Proteomics	4	0	0	4	AECC
3.	16848	MGE203	Cancer and Stem Cell Biology	4	0	0	4	CC
4.	16849	MGE204	Clinical Biotechnology	4	0	0		DSE
		MGE206	Plant Biotechnology	4	0	0	4	DSE
5.	16850	MGE205	Enzyme Technology	4	0	0	4	CC
PRAG	CTICAL							
6.	16851	MGP201	Industrial Microbiology lab	0	0	4	2	SEC
7.	16852	MGP202	Genomics and Proteomics lab	0	0	4	2	SEC
8.		MGP203	Dissertation-Part I/Research Based Learning - III	0	0	4	2	CC
			TOTAL CREDITS				26	

TERM: IV

S.	Paper	Course	Course	Teaching Load		Teaching Load		Teaching Load		Type of Course
No.	ID	Code		L	Т	P	Credits			
PRAC	PRACTICAL									
1			Dissertation-Part II/Research Based					CC		
1.		MGP205	Learning - IV	0	0	16	08			
	TOTAL CREDITS						08			

Course Modules

(M.Sc Genetic Engineering)

SU/SSET/MSc Genetic Engineering

MGE101 Advanced Cell Biology

Sch	ool: SSET	Batch: 2023-25		
Prog	gramme: MSc	Current Academic Year: 2023-24		
Bra	nch: Genetic	Semester:1		
Eng	ineering			
1	Course Code	MGE101		
2	Course Title	Advance Cell Biology		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Core		
5	Course	(1) Many of the advancements in modern science are	the result of a	
	Objective	better understanding of cellular components and their func	tions.	
		(2) At the end of the course, the students can gain in-depth		
		cell biology, which provides information about the		
		structure and function of organelles and other cellular co	omponents and	
		their biological activities.		
6	Course	After successfully completion of this course students will		
	Outcomes	CO1:Analyze the structure, function of plasma membrane, cytoplasm		
		and its composition.		
		CO2:Inspect the structure and function of various intracellular organelles		
		CO3:Examine the concept of cytoskeleton and its regulato	•	
		CO4:Discuss the structure of chromatin and chromosomes		
		CO5:Discuss the general principles of cell communication and roles of different adhesion molecules	, cell adhesion	
		CO6:Develop the in-depth knowledge of cell biology, v	arious cellular	
		organelles, their structure and function	arious certulai	
7	Course	The focus of cell biology is the study of the structure and	function of the	
Ĺ	Description	cell. In this course, we will cover topics such as plas		
	2 comption	structure and composition, transport, cell organelles, cy		
		cell movement, structure of chromatin, chromosome		
		principle of cell communication, cell adhesion and role	-	
		adhesion molecules.		
8	Outline syllabus		CO Mapping	
	Unit 1	Cellular organization	CO1, CO6	
	А	Plasma Membrane and its Functions in Transport	CO1, CO6	
	В	Exocytosis and Endocytosis	CO1, CO6	
	С	Cytoplasm and its Composition, electrical properties of	CO1, CO6	
		membranes		
	Unit 2	Intracellular organelles	CO2, CO6	
	А	Structure and function of Cell wall, nucleus,	CO2, CO6	

SU/SSET/MSc Genetic Engineering

	mitochondria	
В	Structure and function of Golgi bodies, lysosomes,	CO2, CO6
	endoplasmic reticulum,	
C	Structure and function of peroxisomes, plastids, vacuoles,	CO2, CO6
Unit 3	chloroplast Cytoskeleton and Cell Dynamics	CO3, CO6
A	Structures and assembly of Cytoskeleton and its	CO3, CO6
	Regulation	005,000
В	Molecular Motors, microfilaments and microtubules	CO3, CO6
С	Role of cytoskeleton in motility	CO3, CO6
Unit 4	Organization of Gene and chromosome	CO4, CO6
А	Structure of chromatin and chromosomes,	CO4, CO6
	Heterochromatin, Euchromatin, transposons	
В	Gene concept, Structural and numerical alterations of	CO4, CO6
	chromosomes.	
С	Cell cycle; mitosis and meiosis and their regulation	CO4, CO6
Unit 5	Cellular communication	CO5, CO6
А	General principles of cell communication, cell adhesion	CO5, CO6
	and roles of different adhesion molecules	
В	Gap junctions, extracellular matrix, integrins	CO5, CO6
C	Neurotransmission and its regulation	CO5, CO6
Mode of	Theory	
examinatio		
Weightage		
Distributio		
Text book		
	University Press India; First edition, ISBN: 978-0198075516	
	2.Rastogi S.C (Ed.) (2008), <i>Cell Biology</i> . Newagepublishers, ISBN: 978-8122416886	
Other	1. Cox, Michael & Nelson, David (Eds) (2000),	
References		
	company New York 4th edition. ISBN: 978-1429234146	
	2.Garrett Grisham (Ed) (1999), Biochemistry.	
	International student's edition. Cengage Learning, 3'rd edition, ISBN: 978-1133108795	
	5.Karp G (Ed.) (2016), Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. ISBN:	

978-0470042144

6.De Robertis E.D.P & De Robertis E.M.F (Eds.) (2006), *Cell and Molecular Biology*. ISBN: 978-8184734508

7.Cooper, G.M. and Hausman, R.E (Eds) (2013), *The Cell: A Molecular Approach*. Sinauer Associates, Inc.; 6 edition, ISBN: 978-1605351551

MGE203 Cancer and Stem Cell Biology

Scho	ool: SSET	Batch: 2023-25	
Prog	gramme: MSc	Current Academic Year: 2023-24	
Bran	nch: Genetic	Semester: III	
Engi	ineering		
1	Course Code	MGE203	
2	Course Title	Cancer and Stem Cell Biology	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
	Course Status	Core	
5	Course	(1) To learn the biology and genetics of cancer and the g	enetic basis of
	Objective	cancer therapy.	
		(2) To learn the basics of stem cell biology and its	application in
		healthcare	
	~		
6	Course	After successfully completion of this course students will b	be able to:
	Outcomes	CO1:Discuss on biology and genetics of cancer	
		CO2:Examine the signaling pathways and therapeu	tic resistance
		involved in cancer	1
		CO3:Categorize the various mechanism of angiogenesis an	
		CO4:Examine knowledge about stem cells and their charac	cteristics,
		embryonic stem cells and stem cell niche.	a anainaanina
		CO5:Discuss about the applications of stem cells in tissu and treatment of human diseases	ie engineering
		CO6:Discuss Cancer biology and Stem cell applications.	
7	Course	This course provides understanding about the causes and	mechanism of
<i>'</i>	Description	cancer and its spread and therapeutics. It also elaborates a	
	Desemption	cells, their types and application in tissue engineering	
		treatment.	
8	Outline syllabus		CO Mapping
	Unit 1	Introduction to Cancer	CO1, CO6
	А	Definition of cancer, history of cancer research, DNA	CO1, CO6
		stability and its role in cancer development	
B Growth		Growth factors and their role in cancer, Overview of the	CO1, CO6
		hallmarks of cancer.	
	С	Physical and chemical carcinogens.	CO1, CO6
	Unit 2	Gene Expression and Cancer	CO2, CO6
	А	Proto-oncogenes, oncogenes and tumor suppressor genes,	CO2, CO6
		Mechanisms of oncogene activation, Role of growth	

	factors and re	ceptors in carcinog	enesis,			
В		1 0	as, p53, myc, Rb, mTor	CO2, CO6		
	pathways,					
С	Telomeres, ce	llular immortalizat	ion, and Apoptosis	CO2, CO6		
Unit 3	Metastasis ar	nd Angiogenesis		CO3, CO6		
А	Metastasis; N	Migration & Inva	sion, Metastasis steps,	CO3, CO6		
	•	Aesenchymal Trans				
В			EGF, Stroma interaction;	CO3, CO6		
	1	Tumor-Stroma l	Interaction on Tumor			
	Development,					
С		-	rocess, Prevention and	CO3, CO6		
	treatments for					
Unit 4		nd Their Types	proliferation, medical	CO4, CO6		
А	Properties c	CO4, CO6				
	applications o					
В	• 1	n cells- embryoni	c stem cell, Adult stem	CO4, CO6		
~	cell,					
C	Cancer Stem o		C U	CO4, CO6		
Unit 5		Applications of St		CO5, CO6		
А			ication of stem cells in	CO5, CO6		
D		diseases, Immunotl	* *			
В			ssue remodelling, cancer	CO5, CO6		
0		development of sc				
C Mada af		gal issues in use of	stem cells.	CO5, CO6		
Mode of examination	Theory					
	СА	MTE	ETE			
Weightage Distribution	-					
Text book/s*		25%25%50%1.Bunz F (Ed.) (2016), Principles of Cancer Genetics, (2016) Springer Science, Second Edition, ISBN: 978-94-				
1 CAL DOOK/S'						
	024-1357-1					
Other		1) (2004) Stom C	ells Handbook, Humana			
References	,	l Edition, ISBN: 15				
 1.0101010000	l					

MGE205 Enzyme Technology

Sch	ool: SSET	Batch: 2023-25	
Prog	gramme: MSc	Current Academic Year: 2023-24	
Bran	nch: Genetic	Semester: III	
Eng	ineering		
1	Course Code	MGE205	
2	Course Title	Enzyme Technology	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
	Course Status	Core	
5	Course	This course will result in understanding of	
	Objective	(1) The importance and role of Enzymes in biological pro	cesses
		(2) Kinetics, Mechanism & Regulation of enzymes	
		(3) Applications of enzymes in Medical, Biotechnologi	cal, industrial
		and Agricultural fields.	
6	Course	After successfully completion of this course students will b	
	Outcomes	CO1:Discuss the nature, power and purification of enzyme	
		CO2:Inspect the steady state and pre-steady state	kinetics and
		mechanism of enzyme action.	
		CO3:Examine and appreciate the intricate mechanism	n of enzyme
		regulation and inhibition.	
		CO4:Analyze and appreciate the application of e	enzymes and
		immobilized enzymes	
		CO5:Discuss the different applications of enzymes in diff	ferent areas of
		health, industry and in food industry.	1 / 1
		CO6:Discuss all the basic information necessary to	
		appreciate and utilize enzymes in their higher studies ar	nd research in
7		biotechnology.	. 1
7	Course	This course will provide the basic understanding of the	
	Description	properties of Enzymes. The students will learn, isolation,	
		enzymes and would also learn about the mechanism and	
		students will be able to appreciate the application of enzymetry sectors including Biotechnology.	nes in various
8	Outling gullabug	sectors including Biotechnology.	CO Monning
0	Outline syllabus Unit 1	Introduction to Enzymes	CO Mapping CO1, CO6
		Enzyme as biocatalysts, classification, nomenclature of	CO1, CO6
	A	enzyme as biocatalysts, classification, nomenciature of enzymes	CO1, CO0
	В	extraction, isolation and large scale production and	CO1, CO6
		purification of enzymes.	ŕ
L	1		

1	C	Cofactors and their role in enzyme activity	CO1, CO6		
	Unit 2	Mechanism of Enzyme Action	CO2, CO6		
	А	Concept of active site and energetics of enzyme-substrate	CO2, CO6		
		complex formation, specificity of enzyme action;			
		kinetics of enzyme action			
	В	estimation of Michaelis-Menten's parameters;	CO2, CO6		
	С	multi-substrate reactions-mechanisms & Kinetics, Hill's	CO2, CO6		
		Plot, Scatchard Plot			
	Unit 3	Regulation of Enzymes and their inhibition	CO3, CO6		
	А	Enzyme inhibition, Enzyme Inhibitors, Competitive,	CO3, CO6		
		uncompetitive and non-competitive inhibition.			
	В	Mechanism, general principles, theories with examples of	CO3, CO6		
		Chymotrypsin and Lysozyme, Feedback inhibition,			
		allosteric and cooperativity, Isoenzymes, Covalent and			
		non-covalent modification:			
	С	examples of Glycogen phosphorylase, Aspartate	CO3, CO6		
		transcarbamoylase.			
	Unit 4	Immobilized Enzymes	CO4, CO6		
	А	Immobilization of enzyme and whole cells; Methods of	CO4, CO6		
		immobilization -ionic bonding, adsorption, covalent			
		bonding (based on R groups of amino acids),			
		microencapsulation and gel entrapment.			
	В	Process design and operation strategies for immobilized	CO4, CO6		
		enzyme reactors, Immobilization of multiple enzyme			
		system and immobilized enzymes in industrial processes.			
	С	Enzymes modification and site directed mutagenesis.	CO4, CO6		
	Unit 5	Applications of Enzymes	CO5, CO6		
	А	Importance of enzymes in diagnostics, Enzyme pattern in	CO5, CO6		
		diseases like Myocardial infarctions (SGOT, SGPT &			
		LDH).			
	В	Use of isozymes as markers in cancer and other diseases.	CO5, CO6		
		Enzymes in immunoassay techniques.			
	С	Enzymes used in detergents, use of proteases in food,	CO5, CO6		
		leather and wool industries, starch hydrolyzing enzymes,			
		uses of lactase in dairy industry, glucose oxidase and			
		catalase in food industry.			
	Mode of	Theory			
	examination				
	Weightage	CA MTE ETE			
	Distribution	25% 25% 50%			
	Text book/s*	1.Price and Stevenson (Eds) (2009), Fundamentals Of			
		Enzymology, 3rd Edition, Oxford University Press.			

	ISBN: 978-0198064398	
Other	1.Cox, Michael & Nelson, David (Eds) (2000),	
References	Lehninger Principles of Biochemistry. W.H. Freeman	
	company New York 4th edition. ISBN: 978-1429234146	

MGP106 Research Based Learning I

Scho	ol: SSET	Batch: 2023-25			
	ramme: MSc	Current Academic Year: 2023-24			
Bran	ch: Genetic	Semester I			
Engi	neering				
1	Course Code	MGP106			
2	Course Title	Research Based Learning 1	Research Based Learning 1		
3	Credits	Audit Based			
4	Contact Hours (L- T-P)	(0-0-2)			
	Course Status	Compulsory			
5	Course Objective	(1) Develop an interest towards research			
6	Course Outcomes	CO1: Design and develop the research-based inver	-		
		out onproblems in molecular biology and interdiscipli	-		
		CO2: Examine and compare a research article with	a review article		
		or a survey-based article			
		CO3: Develop the capacity to follow research articles			
		CO4: Discuss the various components of Gene	tic Engineering		
		referred in research articles			
		CO5: Explain the important results of research finding	gs		
		CO6: Elaborate the research findings in written and v			
7	Course Description	U I I			
		member. Intended for students interested in studying to			
		in regularly available courses. Format and grading ar			
the supervising faculty member and the audit members then a					
0		by the Head of Department.	CO		
8	Outline		CO Mapping		
	Part 1	Introduction to various research problems	Mapping CO1, CO6		
		·			
	Part 2	Identify a research question	CO2, CO6		
	Part 3	Literature survey	CO3, CO6		
	Part 4	Report writing	CO4, CO6		
			004,000		
	Part 5	Presentation	CO5, CO6		
	Mode of	1. Rubric assessment			
	Examination	 2. Monthly Presentation to be audited by supervisor 			

	3. Mid Term Presentation and End Term	
	Presentation	
Text book/s*	10 Recent International Journal Articles of repute.	
Other References	-	

MGP107 Research Based Learning II

Schoo	ol: SSET	Batch: 2023-25			
Progr	amme: MSc	Current Academic Year: 2023-24			
Branc	ch: Genetic	Semester: II			
Engir	neering				
1					
2	Course Title	Research Based Learning 2			
3	Credits	Audit Based			
4	Contact Hours (L- T-P)	(0-0-2)			
	Course Status	Compulsory			
5	Course Objective	(1) Develop an interest towards research			
6	Course Outcomes	 CO1: Design and develop the research-based investigation carries out on problems in molecular biology and interdisciplinary science CO2: Examine and compare a research article with a review article or a survey-based article CO3: Develop the capacity to follow research articles CO4: Discuss the various components of Genetic Engineering referred in research articles CO5: Explain the important results of research findings CO6: Elaborate the research findings in written and verbal forms 			
7	Course Description				
8	Outline		CO		
	Part 1	Introduction to various research problems	Mapping CO1, CO6		
	Part 2	Identify a research question	CO2, CO6		
		× 1			
	Part 3	Literature survey	CO3, CO6		
	Part 4	Report writing	CO4, CO6		
	Part 5	Presentation	CO5, CO6		
	Mode of examination	 Rubric assessment Monthly Presentation to be audited by supervisor Mid Term Presentation and End Term Presentation 			

Text book/s*	10 Recent International Journal Articles of repute.	
Other References	-	

Scho	ol: SSET	Batch: 2023-25		
	amme: MSc	Current Academic Year: 2023-24		
	ch: Genetic	Semester: III		
Engir	neering			
1	Course Code	MGP203		
2	Course Title	Research Based Learning III/Dissertation Part I		
3	Credits	1		
4	Contact Hours (L- T-P)	(0-0-2)		
	Course Status	Compulsory		
5	Course Objective	(1) Develop knowledge of a specific area of specializa(2) Develop research skills especially in project writin presentation.		
6	Course Outcomes	 CO1: Design and develop the research-based inverout on problems in molecular biology and interdiscipl CO2: Examine and compare a research article with or a survey-based article CO3: Develop the capacity to follow research articles CO4: Discuss the various components of Genereferred in research articles CO5: Explain the important results of research finding CO6: Elaborate the research findings in written and weight of the search finding in written a	inary science a review article s etic Engineering	
7	Course Description	Reading in a field of special interest under the supervi member. Intended for students interested in studying t in regularly available courses. Format and grading are the supervising faculty member and the audit member by the Head of Department.	opics not offered determined by	
8	Outline		CO Mapping	
	Part 1	Introduction to various research problems	CO1, CO6	
	Part 2	Identify a research question	CO2, CO6	
	Part 3	Literature survey	CO3, CO6	
	Part 4	Report writing	CO4, CO6	
	Part 5	Presentation	CO5, CO6	
	Part 5	Presentation	(

MGP203 Research Based Learning III/Dissertation Part I

Mode of	1. Rubric ass	Rubric assessment		
examinati	2. Monthly F	Monthly Presentation to be audited by supervisor		
on	3. Mid Term	Mid Term Presentation and End Term		
	Presentation	Presentation		
Weightage	CA	CE (Viva)	ETE	
	25%	25%	50%	
Text book/s*	10 Recent Interna	10 Recent International Journal Articles of repute.		

MGP205 Research Based Learning IV/Dissertation Part II

Sch	ool: SSET	Batch: 2023-25	
Pro	gramme: M. Sc	Current Academic Year: 2023-24	
	nch: Genetic gineering	Semester III	
1	Course Code	MGP205	
2	Course Title	Research Based Learning IV/Dissertation Part II	
3	Credits	16	
4	Contact Hours (L- T-P)	(0-0-8)	
	Course Status	Compulsory	
5	Course Objective	 Develop knowledge of a specific area of sp Develop research skills especially in project presentation. 	
6	Course Outcomes	 CO1: Recognize research-based investigation problems in molecular biology and interdist CO2: Understand and compare a research ar article or a survey-based article CO3: Demonstrate capacity to follow research an CO4: Identify concepts of molecular biology articles CO5: Explain the important results of research findings in written and CO6: Discuss the research findings in written and CO6: Discus the research findings in written and CO6: Discus the resear	sciplinary science ticle with a review rticles referred in research indings
7	Course Description	Reading in a field of special interest under the sup member. Intended for students interested in studyi in regularly available courses. Format and gradin the supervising faculty member and the audit men by the Head of Department.	ng topics not offered g are determined by
8	Outline		CO Mapping
	Part 1	Introduction to various research problems	CO1, CO6
	Part 2	Identify a research question	CO2, CO6
	Part 3	Literature survey	CO3, CO6
	Part 4	Report writing	CO4, CO6

Mode of	4. Rubric ass	sessment		
examinati	5. Monthly F	Monthly Presentation to be audited by supervisor Mid Term Presentation and End Term Presentation		
on	6. Mid Term			
	Presentation			
Weightage	CA	CE (Viva)	ETE	
	25%	25%	50%	
Text book/s*	10 Recent Interna	10 Recent International Journal Articles of repute.		

Syllabus of Ability Enhancement Compulsory Courses

MGE102: Structure and Function of Biomolecules

Sch	ool: SSET	Batch: 2023-25		
Prog	gramme: MSc	Current Academic Year: 2023-24		
Bran	nch: Genetic	Semester:1		
Eng	ineering			
1	Course Code	MGE102		
2	Course Title	Structure and Function of Biomolecules		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Core		
5	Course	(1)This paper trains students to appreciate the salier	nt features of	
	Objective	biomolecules in the organization of life.		
		(2)It helps the students in understanding the classification,	functions and	
		application aspects of biomolecules.		
6	Course	After successfully completion of this course students will b	be able to:	
	Outcomes	CO1: Analyze the principles of biochemistry		
		CO2:Examine the structure, classifications and	function of	
		carbohydrates.		
		CO3:Discuss the structure, types and functions of lipids.		
		CO4:Explain the structure, classifications and function of p		
		CO5:Discuss structure, classifications and function of nu	ucleotides and	
		nucleic acids		
		CO6:Develop the in-depth knowledge about structure an	nd function of	
		various biomolecules		
7	Course	The focus of this subject is to understand the structure and		
	Description	various biomolecules namely carbohydrates, lipids, protei	ns and nucleic	
-		acids.		
8	Outline syllabus		CO Mapping	
	Unit 1	Principles of biochemistry	CO1, CO6	
	A	Structure of atoms, molecules and chemical bonds, Van	CO1, CO6	
		der Waals, electrostatic interaction		
	B	Hydrogen bonding, Hydrophobic interaction, pH, buffer	CO1, CO6	
	С	Reaction kinetics, thermodynamics, colligative properties	CO1, CO6	
	Unit 2	Carbohydrates	CO2, CO6	
	А	Classification of carbohydrates, Composition, structure	CO2, CO6	
		and function of Monosaccharides, oligosaccharides and		

SU/SSET/MSc Genetic Engineering

	polysaccharide	28				
В		functions of polysace ogen and chitin, Gly	charides such as starch, vertion and	CO2, CO6		
	glycosylation					
С		hemical properties of	of carbohydrates,	CO2, CO6		
	Gycosoaminoglycans and proteoglycans.			,		
Unit 3	Lipids					
А		structure and functi	on of lipids, fatty acids	CO3, CO6 CO3, CO6		
			nd their types, Sterols	, ,		
	and steroid hor					
В	Sphingolipids,	eicosanoids, vitami	ns. Action of pain	CO3, CO6		
		cal nature of blood g	_			
С		d to lipid metabolisn		CO3, CO6		
	characterizatio	on of lipids.				
Unit 4	Amino acids a	and proteins		CO4, CO6		
А	Structure and o	classification of ami	no acids, chemical and	CO4, CO6		
	physical prope	rties of amino acids				
В	Levels of prote	ein structure-primary	y, secondary	CO4, CO6		
		(Ramachandran plot, secondary structure, domains, motif				
		and folds), tertiary and quaternary				
C		Chemical synthesis of peptides. Methods of sequencing				
		proteins. Structure of	of hemoglobin,			
		llagen and keratin.				
Unit 5		nd Nucleic acids		CO5, CO6		
А		urines and Pyrimidin		CO4, CO6		
		ructure and function				
		different forms, RNA and their types				
В		Denaturation and renaturation of DNA, DNA				
		methylation and its role.				
C			enzyme cofactors and	CO5, CO6		
	regulatory mol	lecules.				
Mode o						
examin						
Weight	-	MTE	ETE			
Distribu		25%	50%			
Text bo			ds) (2000), Lehninger			
	1	Principles of Biochemistry. W.H. Freeman company				
	New York 4th edition. ISBN: 978-1429234146					
	Other 2. Jain JL (Ed.) (1994), Fundamentals of Biochemistry,					
Referen	References S.Chand and Company 4th edition,, ISBN: 978-					
	8121924535					

3. Chatterjea MN and Ranashinde (Eds.) (2005), <i>Textbook of Medical biochemistry</i> , Jaypee Brothers Medical Publisher (P) Ltd, 6th edition, ISBN: 978-93- 5025-484-4	
4. Pamela C. Champe, Richard A. Harvey (Eds.) (2007). <i>Lippincott's illustrated biochemistry</i> , Lippencott - Raven Publishers, 6th edition 2007., ISBN: 0397510918	
5. Voet D and Voet, JG (Eds.) (2004), <i>Biochemistry</i> , John Wiley & Sons, ISBN: 978-0471193500	

MGE103 Molecular Biology

Scho	ool: SSET	Batch: 2023-25				
	gramme: MSc	Current Academic Year: 2023-24				
	nch: Genetic	Semester: 1				
Eng	ineering					
1	Course Code	MGE103				
2	Course Title	Molecular Biology	Molecular Biology			
3	Credits	4				
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course Status	Compulsory				
5	Course	(1) To acquire a fundamental knowledge of central dogma	of life relating			
	Objective	processes of replication, transcription and translation.				
		(2) To understand the different theories of recombination.				
		(3) To learn about the fundamental concept of regulatory l	RNA.			
6	Course	CO1. Analyza the difference between probaryotic	and automatic			
6	Outcomes	CO1:Analyze the difference between prokaryotic replication, compare prokaryotic and eukaryotic transcrip	•			
	Outcomes	the functions of different types of RNA polymerases.				
		CO2:Elaborate the regulation of transcription and	identify post-			
		transcriptional modifications.	identify post			
		CO3: Explain the process of translation in prokaryotes an	d eukarvotes and			
		presence of post translational modification				
		CO4:Examine the process of recombination and forma	tion of Holliday			
		junction.	5			
		CO5:Inspect the role of viral oncogenes, cellular oncoge	enes and tumour			
		suppressor genes and proteins in cancer.				
		CO6:Discuss the various aspects of central dogma and DN	IA repair			
		mechanisms.				
7	Course	Molecular biology is a course to acquire a fundament				
	Description	central dogma of life relating processes of replication,	*			
		translation. To understand the different theories of recom	bination. To learn			
about the fundamental concept of regulatory RNA.		COM				
8	Outline syllabu		CO Mapping			
	Unit 1	DNA replication, repair and recombination	CO1, CO6			
	Α	Unit of replication, enzymes involved, replication origin	CO1, CO6			
	D	and replication fork, fidelity of replication				
	В	Extrachromosomal replicons, DNA damage and repair	CO1, CO6			
	C	mechanism	CO1 CO6			
	С	homologous and site-specific recombination	CO1, CO6			

U	nit 2	RNA synthes			
A	ATranscription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and terminationBRNA processing, RNA editing, splicing, and polyadenylation.				CO2, CO6
В					CO2, CO6
С		Structure and transport	function of different	types of RNA, RNA	CO2, CO6
U	nit 3	Protein synth	esis and processing		CO3, CO6
A		factors and th	eir regulation, elong	a complex, initiation gation and elongation e, aminoacylation of	CO3, CO6
В		tRNA-identity translational p		A synthetase, and	CO3, CO6
C				lational modification	CO3, CO6
U	nit 4	Control of ge	ne expression		CO4, CO6
A			1	role of chromatin in	CO4, CO6
В		Operons and t	heir regulation		CO4, CO6
C		Histone modif	ications and their effe	-	CO4, CO6
U	nit 5	Regulatory RNAs			CO5, CO6
A		Riboswitches,	RNAs as defense age	ents	CO5, CO6
В		editing, CRIS	m in bacteria, CRISP PRi and CRISPRa for	gene regulation.	CO5, CO6
C		of gene expres	function of miRNA n ssion by small RNAs, IAs and X-inactivatio	RNAi, long	CO5, CO6
	Iode of xamination	Theory			
W	/eightage	CA	MTE	ETE	
	istribution	25%25%50%1. Brown TA (Ed.) (1991), Molecular Biology Lab Fax. Bios Scientific Publishers Ltds., Oxford, 1991, ISBN: 97801213605591. James D. Watson et al., (Eds.). (1987), Molecular Biology of the Gene, Volume II (4th Edition) 4th Edition, Benjamin Cummings, ISBN: 978-0805396133			
T	ext book/s*				
	ther eferences				

SU/SSET/MSc Genetic Engineering

	 Darnell J, Lodish H and Baltimore D (Eds.) (1994), <i>Molecular Cell biology</i>, 2nd Edition, Scientific American Books, USA, 1994, ISBN: 978-0805396133 	
з	 978-0805396133 8. Alberts B, et al., (Eds.) (1994), <i>Molecular Biology of the Cell</i>, Garland publishing. Inc., 	
	New York, 2 nd Edition, ISBN: 0-8153-4072-9	

MGE 104 Molecular Cloning

Programme: MSc Current Academic Year: 2023-24 Branch: Genetic Engineering Semester: 01 1 Course Code MGE104 2 Course Title Molecular Cloning 3 Credits 4 4 Contact 4-0-0 Hours (L-T-P) Course Course Compulsory Status 5 5 Course (1) To understand the basic principles of cloning. (2) To learn about applications of PCR (big: 0) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO2:Analyze the different cobetween different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. 7 Course This course covers various enzymes used in Genetic manipulation, Cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping Instance the transformation CO4:Co6 A Restriction enzymes, DNA polymeras	Sch	ool: SSET	Batch: 2023-25			
MSc Semester: 01 Eragineering Semester: 01 2 Course Code MGE104 2 Course Title Molecular Cloning 3 Credits 4 4 Contact 4-0-0 Hours (L-T-P) Course Compulsory Status (1) To understand the basic principles of cloning. 5 Course (1) To understand the basic principles of cloning. (J) To learn about applications of PCR (3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering Outcomes CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course This course covers various enzymes used in Genetic manipulation, Cloning ugenomic libraries. It also gives conceptual idea about protein expression.						
Engineering 1 Course Code MGE104 2 Course Title Molecular Cloning 3 Credits 4 4 Contact 4-0-0 Hours (L-T-P) Course Course Compulsory Status	e					
Engineering 1 Course Code MGE104 2 Course Title Molecular Cloning 3 Credits 4 4 Contact 4-0-0 Hours (L-T-P) Course Course Compulsory Status			Semester: 01			
1 Course Code MGE104 2 Course Title Molecular Cloning 3 Credits 4 4 Contact 4-0-0 Hours (L-T-P) Course Course Compulsory Status (1) To understand the basic principles of cloning. 5 Course (1) To understand the basic principles of protein expression 6 Course (1) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering Outcomes CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO4:Elaborate the different methods of molecular cloning and protein expression 7 Course This course covers various enzymes used in Genetic manipulation, Cloning uspression. 8 Outline syllabus CO4 Mapping 4 Enzymes and vectors used in gene cloning CO1, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, alkaline phosphatase CO1, CO6						
3 Credits 4 4 Contact 4-0-0 Hours (L-T-P) Course Compulsory Status (1) To understand the basic principles of cloning. 5 Course (2) To learn about applications of PCR (3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. 7 Course This course covers various enzymes used in Genetic manipulation, cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping Image: Co1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, CO1, CO6			MGE104			
4 Contact Hours (L-T-P) 4-0-0 Course Objective Compulsory Status Compulsory 5 Course Objective (1) To understand the basic principles of cloning. (2) To learn about applications of PCR (3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course Outcomes CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description This course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6	2	Course Title	Molecular Cloning			
Hours (L-T-P) Course Compulsory 5 Course (1) To understand the basic principles of cloning. Objective (2) To learn about applications of PCR 6 Course (1) To elaborate different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description This course covers various enzymes used in Genetic manipulation, Cloning genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, CO1, CO6 CO1, CO6	3	Credits	4			
(L-T-P) Course Status Compulsory 5 Course Objective (1) To understand the basic principles of cloning. (2) To learn about applications of PCR (3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course Outcomes CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description This course covers various enzymes used in Genetic manipulation, Cloning yectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping 4 Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, CO1, CO6 An depoisomerase. C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6	4	Contact	4-0-0			
Course Status Compulsory 5 Course Objective (1) To understand the basic principles of cloning. (2) To learn about applications of PCR (3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course Outcomes CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description This course covers various enzymes used in Genetic manipulation, Cloning vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping Init 1 Enzymes and vectors used in gene cloning transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6		Hours				
Status 1) To understand the basic principles of cloning. 5 Course (1) To understand the basic principles of cloning. (2) To learn about applications of PCR (3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering 6 Course CO1:Inspect the ability of restriction endonucleases using polymerase chain reaction. CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. 7 Course This course covers various enzymes used in Genetic manipulation, Cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping 4 Enzymes and vectors used in gene cloning CO1, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, co1, CO6 CO1, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, co1, CO6 CO1, CO6		(L-T-P)				
5 Course (1) To understand the basic principles of cloning. 6 Objective (2) To learn about applications of PCR 6 Course CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering 6 Course CO2:Analyze the different strategies of cloning and enzymes used in genetic engineering CO2:Analyze the different types of cloning and expression vectors for genetic transformation. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. 7 Course This course covers various enzymes used in Genetic manipulation, Cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping 4 Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, CO1, CO6 CO1, CO6		Course	Compulsory			
Objective (2) To learn about applications of PCR (3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering 7 CO2:Analyze the different methods of molecular cloning and expression. 7 Course 7 Course 9 This course covers various enzymes used in Genetic manipulation, Cloning and expression. 7 Course 9 Unit 1 9 Enzymes and vectors used in gene cloning 4 Restriction enzymes, ligase, DNases, RNases, col, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, col, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, col, CO6		Status				
(3) To analyse different strategies of gene cloning (4) To elaborate different concepts of protein expression 6 Course Outcomes CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping Unit 1 Enzymes and vectors used in gene cloning A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6	5	Course	(1) To understand the basic principles of cloning.			
6 Course CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering 6 Outcomes CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. 7 Course CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course This course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, CO1, CO6 CO1, CO6		Objective	(2) To learn about applications of PCR			
6 Course Outcomes CO1:Inspect the ability of restriction endonucleases and other modification enzymes used in genetic engineering CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description This course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping 4 Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 8 Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6			(3) To analyse different strategies of gene cloning			
Outcomesenzymes used in genetic engineering CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression.7Course DescriptionThis course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression.8Outline syllabusCO Mapping4Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphataseCO1, CO68Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO6						
CO2:Analyze the difference between different vectors used in plants, bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description This course covers various enzymes used in Genetic manipulation, Cloning vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping Unit 1 Enzymes and vectors used in gene cloning CO1, CO6 A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6	6	Course	1 0	s and other modification		
bacteria and animal cells. CO3:Examine the gene amplification process using polymerase chain reaction. CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description This course covers various enzymes used in Genetic manipulation, Cloning vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping Unit 1 Enzymes and vectors used in gene cloning CO1, CO6 A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6 C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6		Outcomes				
CO3:Examine the gene amplification process using polymerase chain reaction.CO4:Elaborate the different types of cloning and expression vectors for genetic transformation.CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression.7Course Description8Outline syllabus8Outline syllabusCOEnzymes and vectors used in gene cloning transcriptase, terminal transferase, alkaline phosphatase8Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase.COPlasmid vectors, phage vectors, BAC vectors and CO1, CO6			•	vectors used in plants,		
reaction.reaction.CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression.7Course DescriptionThis course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression.8Outline syllabusCO Mapping4Enzymes and vectors used in gene cloning transcriptase, terminal transferase, alkaline phosphataseCO1, CO68Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO6						
CO4:Elaborate the different types of cloning and expression vectors for genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression.7Course DescriptionThis course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression.8Outline syllabusCO Mapping4Enzymes and vectors used in gene cloning transcriptase, terminal transferase, alkaline phosphataseCO1, CO68Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO60Plasmid vectors, phage vectors, BAC vectors and CO1, CO6						
genetic transformation. CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description B Polynucleotide kinase, ligase, DNases, RNases, cO1, CO6 and topoisomerase. C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6						
CO5:Discuss the genomic constructs and cDNA libraries. CO6:Analyze the different methods of molecular cloning and protein expression. 7 Course Description 8 Outline syllabus 8 Outline syllabus CO Mapping A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6						
CO6:Analyze the different methods of molecular cloning and protein expression.7Course DescriptionThis course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression.8Outline syllabusCO Mapping8Outline syllabusCO Mapping9Unit 1Enzymes and vectors used in gene cloning transcriptase, terminal transferase, alkaline phosphataseCO1, CO69BPolynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO60Plasmid vectors, phage vectors, BAC vectors and CO1, CO6CO1, CO6						
expression.7Course DescriptionThis course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression.8Outline syllabusCO Mapping8Outline syllabusCO Mapping9Unit 1Enzymes and vectors used in gene cloning transcriptase, terminal transferase, alkaline phosphataseCO1, CO69BPolynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO60Plasmid vectors, phage vectors, BAC vectors and CO1, CO6CO1, CO6						
7 Course This course covers various enzymes used in Genetic manipulation, Cloning 9 Description Vectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping 4 Enzymes and vectors used in gene cloning CO1, CO6 5 Vinit 1 Enzymes, terminal transferase, alkaline phosphatase 8 Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6 C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6				ar cloning and protein		
DescriptionVectors and expression vectors, PCR amplification, cDNA cloning and genomic libraries. It also gives conceptual idea about protein expression.8Outline syllabusCO Mapping4Enzymes and vectors used in gene cloningCO1, CO6ARestriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphataseCO1, CO6BPolynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO6CPlasmid vectors, phage vectors, BAC vectors and CO1, CO6CO1, CO6	7	Course	*	a manipulation Claning		
genomic libraries. It also gives conceptual idea about protein expression. 8 Outline syllabus CO Mapping Image: Marcon of the syllabus Enzymes and vectors used in gene cloning Image: A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 Image: B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6 Image: C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6	/					
8 Outline syllabus CO Mapping Unit 1 Enzymes and vectors used in gene cloning CO1, CO6 A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6 C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6		Description				
Unit 1 Enzymes and vectors used in gene cloning A Restriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphatase CO1, CO6 B Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase. CO1, CO6 C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6	8	Outline syllab				
ARestriction enzymes, DNA polymerases, reverse transcriptase, terminal transferase, alkaline phosphataseCO1, CO6BPolynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO6CPlasmid vectors, phage vectors, BAC vectors and CO1, CO6CO1, CO6	0					
transcriptase, phosphataseterminal transferase, alkalineBPolynucleotide kinase, and topoisomerase.CO1, CO6CPlasmid vectors, phage vectors, BAC vectors and CO1, CO6				CO1. CO6		
phosphataseBPolynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO6CPlasmid vectors, phage vectors, BAC vectors and CO1, CO6CO1, CO6		~ *	• • • •			
BPolynucleotide kinase, ligase, DNases, RNases, and topoisomerase.CO1, CO6CPlasmid vectors, phage vectors, BAC vectors and CO1, CO6CO1, CO6			1 ,			
and topoisomerase.CPlasmid vectors, phage vectors, BAC vectors and CO1, CO6		В		CO1, CO6		
C Plasmid vectors, phage vectors, BAC vectors and CO1, CO6				,		
		С		CO1, CO6		
plasmid incompatibility, and vectors for cloning in			plasmid incompatibility, and vectors for cloning in	7		

	yeast, and man	nmalian cells		
Unit 2				
A			nd cloning, checking	CO2, CO6 CO2, CO6
		0	PCR and restriction	
	digestion,			
В	Cloning using	adapters. TA	cloning, TOPO-TA	CO2, CO6
	cloning			
С	Screening me	thods-compleme	entation, insertional	CO2, CO6
	inactivation.			
Unit 3	Polymerase cl	nain reaction		CO3, CO6
А	PCR, factors	affecting PCR	, primer designing,	CO3, CO6
	Reverse transc	riptase-PCR,		
В	Real-time PCF	R, Nested PCR	and TaqMan probe,	CO3, CO6
	site directed m	utagenesis by P	CR,	
С	Screening by F	PCR, LAMP PC	R.	CO3, CO6
Unit 4	cDNA and Ge	nomic library		CO4, CO6
А	Construction	of cDNA libra	ary, genomic DNA	CO4, CO6
	library			
В	Vectors used	in the construct	ction of cDNA and	CO4, CO6
	genomic DNA	libraries		
С	Screening the	libraries using l	heterologous probes,	CO4, CO6
	Reporter genes			
Unit 5	Expression of	proteins		
А	-	-	on plasmid vector,	CO5, CO6
			tion, optimization of	
	-	protein express	ion, inclusion body	
	formation			
В			olding, solubilizing	CO5, CO6
		rotein in inclusio		
C			proteins with and	CO5, CO6
	without purific	ation ligands.		
Mode of	Theory			
	examination			
Weightage	CA	MTE 25%	ETE	
Distribution	25%	50%		
Text book/s*		F (Ed.) (2010 ysis, W. H		
	Genetic Anal			
	0716768879			
Other		, et al., (Eds.)		
References	Cloning: a l			
	Harbor Laboratory Press, New York, ISBN: 978-			
1-936113-41-5				

SU/SSET/MSc Genetic Engineering

MGE105 Advances in Immunology

Sch	ool: SSET	Batch: 2023-25			
Programme: MSc		Current Academic Year: 2023-24			
Branch: Genetic		Semester:11			
Eng	ineering				
1					
2	Course Title	Advances in Immunology			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course Status	Core			
5	Course	(1) This course is designed to impart the students the	importance of		
	Objective	immunology and its theoretical aspects and on the			
	_	immunology and Immuno technology.			
		(2) It also explains the various antigen-antibody reaction	ns involved in		
		vaccine development.			
6	Course	After successfully completion of this course students will be			
	Outcomes	CO1:Examine the deep foundation on host pathogen re-	elationship for		
		generation of immune response.			
		CO2: Analyze the deep foundation of Immune response.			
		CO3:Discuss the various functions of cells and organs of	of the immune		
		system			
		CO4:Elaborate how MHC recognizes self and non-self-molecules and			
		helps in generation of immune response.			
		CO5:Examine the genetic and molecular mechanisms associated with			
		autoimmunity and graft rejection and review clinical intervention			
		required in organ transplantation.			
		CO6:Discuss on the immune system works and also o			
7	Comme	system network and interactions during a disease or pathog			
7	Course	This course will cover the major topics in cellular			
	Description	including antigen recognition, antigen processing and pre-			
		and T cells, the events leading to the generation of antibo recentor diversity, antibody affector functions, the role of			
	receptor diversity, antibody effector functions, the role of CD4 a				
		T cell subsets and NK cells in immune responses, self-tolerance autoimmunity, the inflammatory response and the role of immunit			
		protection against pathogens and cancer.			
8			CO Mapping		
0	Unit 1	Microbes and parasites	CO Mapping CO1, CO6		
	A	Classification of pathogens-Bacteria, Fungi, Viruses,	CO1, CO0		
	11	Protozoa, Helminths, Arthropods and Prions;			
	В	Host-parasite relationship, modes of transmission, factors	CO1		
	D	1105t parasite relationship, modes of transmission, factors			

SU/SSET/MSc Genetic Engineering

	predisposing to microbial pathogenicity			
С	stages, pathological patterns, virulence and infectivity	CO1, CO6		
Unit 2	A Cell mediated cytotoxicity: Mechanism of T cell and NK			
А				
	Cell mediated lysis, Antibody dependent cell mediated			
	cytotoxicity and macrophage mediated cytotoxicity.BCytokines and their role in immune regulation,			
С	Biology of Complement system, Complement fixation	CO2, CO6		
	test and assessment of immune complexes in tissues.			
	Immune suppression and immune tolerance.			
Unit 3	Cells of the immune system	CO3, CO6		
A	Macrophages, B and T lymphocytes, Dendritic cells, Natural killer cells, Eosinophils, neutrophils and Mast cells.	CO3		
В	Organs of the immune system: Bone marrow, Spleen, lymph nodes, MALT.	CO3		
С	Haematopoiesis and differentiation, lymphocyte trafficking.	CO3, CO6		
Unit 4	Antibody and Antigen	CO4		
А	Antibody- biology, structure and functions in different	CO4		
	classes of immunoglobulin. Antigens, Biology of			
	superantigens.			
В	MHC structure and types, antigen recognition and	CO4		
	presentation, activation of B and T lymphocytes.			
С	Design of different kinds of vaccines.	CO4, CO6		
Unit 5	Hyper sensitivity reactions, Autoimmune disorders,			
	Transplantation immunology			
А	Hypersensitivities and their types	CO5		
В	Autoimmunity and autoimmune disorders	CO5		
С	MLR, HLA Typing, Bone marrow transplantation, Organ transplants.	CO5, CO6		
Mode of	Theory			
examination				
Weightage	CA MTE ETE			
Distribution	25% 25% 50%			
Text book/s*	1.GoldsbyRA(Ed.)(2006),KubyImmunology,Freeman,ISBN:9780716767640			
Other				
References				

MGE106 Metabolic Pathways

Sch	ool: SSET	Batch: 2023-25			
Programme: MSc		Current Academic Year: 2023-24			
Bra	nch: Genetic	Semester: II			
Eng	ineering				
1	Course Code	Code MGE106			
2	Course Title	Metabolic Pathways			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course Status	Core			
5	Course	(1) Understand the overall organization of the biochemic	al metabolism.		
	Objective	(2) Describe the structure and function of various b	biomolecules in		
		maintaining balance in body.			
6	Course	After successfully completion of this course students will			
	Outcomes	CO1:Explain the basic metabolic pathways of carbohydra			
		CO2:Elaborate different types of lipids and their metaboli			
		CO3:Discuss the metabolism of amino acids, and demon	strate how they		
		are responsible for protein building.			
		CO4:Elaborate nucleotide metabolism and synthesis of energy			
		compounds. CO5:Examine the various mechanisms responsible for the generation of			
	e generation of				
	ATP in plants and animals.				
		CO6:Inspect on metabolic pathways (catabolism and anabolism), the diversity and how these are specifically regulated and interrelated			
		interrelated in			
7	C	different cells	··1 1 1		
7	Course	The Biochemistry is designed to equip students			
	Description	understanding of the chemical and molecular event			
		biological processes. It helps students in understanding of functional aspects of different biomolecules. The Bioche			
		a foundation for careers in medicine, biotechnology, or	• 1		
		branches of the biological sciences.			
8	Outline syllabus		CO Mapping		
0	Unit 1	Metabolism of carbohydrates	CO1, CO6		
	A	Photosynthesis, Biosynthesis of starch, glycogen and	CO1, CO6		
		glucose,			
	В	Glycolysis, TCA cycle, Gluconeogenesis, Pentose	CO1, CO6		
		Phosphate pathway,			
	С	Glycogen metabolism-Glycogenesis, glycogenolysis	CO1, CO6		
	Unit 2	Lipid Metabolism	CO2, CO6		
	A	Lipid profile, degradation and biosynthesis and	CO2, CO6		

SU/SSET/MSc Genetic Engineering

	regulation of fatty acids			
В	Metabolism a	nd regulation of mem	brane lipids, Ketone	CO2, CO6
	bodies.	-	_	
С	Metabolism, regulation and fate of cholesterol.			CO2, CO6
Unit 3	Amino acid a	nd Protein metaboli	ism	CO3, CO6
А	Digestion and	absorption, Biosynth	esis and degradation	CO3, CO6
	of amino acid.			
В	Metabolism a	nd regulation of amm	onia as well as urea	CO3, CO6
	cycle.	-		
С	Metabolic n	etwork-Interrelations	hip of metabolisms	CO3, CO6
	Krebs cycle, a	mino acid synthesis.		
Unit 4	Metabolism o	of Nucleotides		CO4, CO6
А	Biosynthesis,	degradation and regul	lation of nucleotides	CO4, CO6
	and related me	olecules.		
В	Energy compo	ounds and its biosynth	nesis	CO4, CO6
С	ATP, NAD, N	ADP, FAD, Creatin	phosphates	CO4, CO6
Unit 5	Photophosph	orylation and Oxida	tive phosphorylation	CO5, CO6
А	Redox reactio	ns, standard oxidation	n reduction potential,	CO5, CO6
	mitochondrial	electron transport ch	ain,	
В	Oxidative pho	sphorylation, structur	re of ATP synthase,	CO5, CO6
	chemiosmotic	hypothesis, coupled	reaction, group	
	transfer			
C	Biological ene	ergy transducers.		CO5, CO6
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1.Cox, Mich			
	Lehninger			
	company			
	1429234146			
Other				
References	ences New York, ISBN: 978-1-118-91840-1			

MGE109 Transgenic Organisms

Sch	ool: SSET	Batch: 2023-25			
Programme: MSc		Current Academic Year: 2023-24			
Bra	nch: Genetic	Semester: II			
Eng	gineering				
1					
2	Course Title	Transgenic Organisms			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course Status	Core			
5	Course Objective	 (1) To learn <i>in vitro</i> regeneration, transformation, and gene editing of plants for the purpose of generating genetically modified plants for basic and applied research. (2) To learn <i>in vitro</i> techniques of animal cell and tissue culture for the purpose of generating genetically modified animals for basic and applied research. (3) To understand the mechanism of genetic engineering of microbes. 			
6	Course Outcomes	After successfully completion of this course students will be able to:CO1:Explain <i>in vitro</i> regeneration of plants from different explantsCO2:Discuss on the production of transgenic plantsCO3:Elaborate the various culture techniques employed in animalsystems.CO4:Acquire the knowledge about application of genetically modifiedanimals in the various fields of science.CO5:Illustrate use of microbes and techniques for manipulation andanalysis of microbial cells for the production of economically importantproducts.CO6:Acquire the students to the versatile tools and techniques employedin genetic engineering and transgenic organisms.			
7	Course Description	The student will achieve a sound knowledge on methodological repertoire which allows them to innovatively apply these techniques in in basic and applied fields of life science researches related to transgenic organisms.			
8	Outline syllabus	s CO Mappir			
	Unit 1	In Vitro Propagation of Plants	CO1, CO6		
	А	History of plant tissue culture, types of media and their preparation, plant hormones, direct and indirect organogenesis	CO1, CO6		

В	meristem, callus and suspension cell culture,	CO1, CO6		
	micropropagation, somatic embryogenesis			
С	protoplast fusion, somaclonal variation, and artificial seeds	CO1, CO6		
Unit 2	Transgenic Plants	CO2, CO6		
A	Difference between transgenic plants and genetically	CO2, CO6		
	edited plants. Transgenic crops for tolerance to abiotic	,		
	stress, engineering crops for male sterility and			
	modification of flower colour, flowering, fruit ripening			
	and senescence.			
В	Modern approaches for disease resistance. Cloning plant	CO2, CO6		
	genes, Comparative genomics positional cloning-RNAi-			
	mediated crop improvement.			
С	Examples of transgenic Plants	CO2, CO6		
Unit 3	Animal Cell Culture	CO3, CO6		
A	Different types of cell culture media, growth	CO3, CO6		
	supplements, serum free media, balanced salt solution,			
	Conditions required for culturing animal cells,	AAAAAAAAAAAAA		
В	Behaviour of cells in culture conditions, division, their	CO3, CO6		
	growth pattern, Estimation of cell number, Culture of			
	mammalian cells, tissues and organs, primary culture,			
С	secondary culture,Continuous cell lines, suspension cultures and	CO3, CO6		
C	cryopreservation.	003,000		
Unit 4	Applications of Animal Cell culture	CO4, CO6		
A	Animal cell culture for in vitro testing of drugs, testing of	CO4, CO6		
1	toxicity of environmental pollutants in cell culture,	001,000		
В	cell culture technology in production of human and	CO4, CO6		
-	animal viral vaccines and pharmaceutical proteins,			
С	Cloning of different animals, Cloning for conservation of	CO4, CO6		
	endangered species.	,		
Unit 5	Applications of Transgenic Microbes	CO5, CO6		
А	Significance of transgenic microbes, Overexpression and	CO5, CO6		
	tagging of recombinant proteins in E. coli.			
	Overexpression systems in S. cerevisiae, Baculovirus			
	overexpression system			
В	yeast one-hybrid assay, Yeast two hybrids system,	CO5, CO6		
С	Production of antibiotics, drugs, vitamins and therapeutic	CO5, CO6		
	peptides using microbes.			
Mode of	Theory			
examination				
Weightage	CA MTE ETE			

Distribution	25%	25%	50%			
Text book/s*	1.Primrose, S	B, (Ed.) (1994), Mole	cular Biotechnology,			
	Blackwell Sc	Blackwell Scientific Publishers, Oxford, ISBN: 978-				
	0632032334					
Other	1.Sambrook e	et al., (Eds.), (2000), 1	Molecular Cloning: a			
References	Laboratory 1	Manual, Cold Spring	Harbor Laboratory			
	Press, New Y	ork, ISBN: 978087969	93091			

MGE201 Industrial Microbiology

Sch	ool: SSET	Batch: 2023-25				
Prog	gramme: MSc	Current Academic Year: 2023-24				
Bra	nch: Genetic	Semester: III				
Eng	ineering					
1	Course Code	MGE201				
2	Course Title	Industrial Microbiology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Core				
5	Course	(1) To enable students bridge the gap between theoretical	concepts and			
	Objective	practical aspects in industrial microbiology.	•			
	U U	(2) To have In-depth knowledge and hands-on laboration	tory/industrial			
		skills required for employment or for creation of employn				
		product processing.				
6	Course	After successfully completion of this course students will b	be able to:			
	Outcomes	CO1:Discuss the design and functioning of bioreactors.				
		CO2:Elaborate the Kinetics of fermentation process.				
		CO3:Discuss the various steps and methods of recovery and	nd purification			
		of product.				
		CO4:Discuss the methods and challenges for production of				
		CO5:Elucidate the various methods of production	of enzymes,			
		biofertilizers, SCP and recombinant proteins.				
		CO6:Examine the various industrial application of Biotech				
7	Course	The challenge for biochemical engineers is to design com				
	Description	processes to make and efficiently separate instable pro-				
		recombinant proteins, from dilute complex fermentation				
		required pharmaceutical degree of purity. Therefore, the				
		systematic design of integrated downstream processes				
		theme of this course and will help students in quar	ititatively and			
8	Outline syllabus	systematically design an integrated industrial process.	CO Mapping			
0	Unit 1	Bioreactor Design	CO Mapping CO1, CO6			
	A	Fermenter structure-Construction material, Basic	C01, C00			
	11	components – Agitator, aerator, valves and steam traps,				
		seals, stirrer glands.				
	В	Measurement and control of parameters (on-line and off	CO1, CO6			
		line sensors) – temperature, flow rate, pressure, pH, DO,				
		gas analysis, computer control pathways.				
	С	Types of Fermenters Air-lift, stirred tank, tower,	CO1, CO6			
L		i jpes of refinences fin int, suffed tunk, tower,	$\circ\circ\circ\circ,\circ$			

SU/SSET/MSc Genetic Engineering

	fluidized bed, packed bed, pulsed, photo bioreactors, PFR.	
Unit 2	Kinetics of fermentation	CO2, CO6
А	Kinetics of Batch, fed-batch and continuous process;	CO2, CO6
В	Sterilization methods - batch sterilization, continuous sterilization of medium and air. Solid state and submerged; aerobic and anaerobic fermentation.	CO2, CO6
С	Development of inoculum for yeast, bacterial, mycelial and vegetative fungal processes. Transport phenomena - Mass transfer, heat transfer, oxygen transfer. Applications of fermentation technology	CO2, CO6
Unit 3	Downstream Processing	CO3, CO6
А	Biomass separation by centrifugation, filtration, flocculation and other recent developments	CO3, CO6
В	Cell disintegration: Physical, chemical and enzymatic methods. Extraction: Solvent, two phase, liquid extraction, whole broth, aqueous multiphase extraction.	CO3, CO6
С	Purification by different methods. Concentration by precipitation, ultra-filtration, reverse osmosis. Drying and crystallization	CO3, CO6
Unit 4	Production of primary and secondary metabolites	CO4, CO6
А	A brief outline of processes for the production of some commercially important primary metabolites	CO4, CO6
В	Production of citric acid, lactic acid, acetic acid, glutamic acid, aspartic acid	CO4, CO6
С	Production processes for various classes of secondary metabolites such as beta-lactams (penicillin, cephalosporin), aminoglycosides (streptomycin) macrolides (erythromycin)	CO4, CO6
Unit 5	Production of enzymes and other bioproducts	CO5, CO6
А	Production of industrial enzymes such as proteases, amylases, lipases	CO5, CO6
В	Production of biopesticides, biofertilizers, Single cell protein	CO5, CO6
С	Production of recombinant proteins with therapeutic and diagnostic applications	CO5, CO6
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Text book/s*	1.Stanbury et al., (Eds.) (2016), <i>Principles of</i> <i>Fermentation Technology</i> , Butterworth-Heinemann,	

	ISBN: 978-0080999531	
Other	1. Nielsen, et al., (Eds.) (2012), Bioreaction Engineering	
References	Principles, Plenum Press, ISBN: 9781461507673	

MGE202 Genomics and Proteomics

Programme: MSc Current Academic Year: 2023-24 Branch: Genetic Semester: III Engineering I 1 Course Code 2 Course Title 3 Credits 4 Contact Hours 4-0-0 (L-T-P) Course Status 5 Course 0bjective 0bjective 0bjective 0 0bloction 0bloctive 0bloction 0bloctive 0 0bloctive 0 0bloctive 0<	Scho	ool: SSET	Batch: 2023-25				
Branch: Genetic Engineering Semester: III 1 Course Code MGE202 2 Course Title Genomics and Proteomics 3 Credits 4 4 Contact Hours (L-T-P) 4-0-0 5 Course Status Core 5 Course Status Core 6 Course 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course Outcomes After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques coramonly e	Prog	gramme: MSc	Current Academic Year: 2023-24				
1 Course Code MGE202 2 Course Title Genomics and Proteomics 3 Credits 4 4 Contact Hours 4-0-0 (L-T-P) Course Status Core 5 Course 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course Outcomes After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.			Semester: III				
2 Course Title Genomics and Proteomics 3 Credits 4 4 Contact Hours (L-T-P) 4-0-0 5 Course Status Core 5 Course Status 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 2.The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping CO1, CO6	Eng	ineering					
3 Credits 4 4 Contact Hours (L-T-P) 4-0-0 5 Course Status Core 5 Course 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course Outcomes After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various ateps and methods of protein purification and analysis. CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO4.Dicco6 8 Outline syllabus CO4.Opring	-	-	MGE202				
4 Contact Hours (L-T-P) 4-0-0 5 Course Status Core 5 Course 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping Unit 1 Genome Sequencing Genome annotation, Candidate gene discover and data CO1, CO6	2	Course Title	Genomics and Proteomics				
(L-T-P) Course Status Core 5 Course 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 6 Course 2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course After successfully completion of this course students will be able to: 7 Coll:Discuss the various techniques and methods of protein purification and analysis. 7 Course Co:Di:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO 8 Outline syllabus CO 8 Genome Sequencing CO 8 Genome annotation, Candidate gene discover and data CO1, CO6	3	Credits	4				
Course Status Core 5 Course 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 2.The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course After successfully completion of this course students will be able to: 01:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping CO1, CO6 9 Genome Sequencing CO1, CO6 8 Genome Sequencing CO1, CO6 8 Genome Sequencing CO1, CO6 <t< td=""><td>4</td><td>Contact Hours</td><td>4-0-0</td><td></td></t<>	4	Contact Hours	4-0-0				
5 Course Objective 1. The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 6 Course 2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO4.Diapping CO1, CO6 4 Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6		(L-T-P)					
Objective organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. 2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course After successfully completion of this course students will be able to: Outcomes C01:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS C02:Elaborate the concept of microarray, TILLING, and advances in genome analysis. C03:Discuss the various steps and methods of protein purification and analysis. C04:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. C06:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus C0 Ampping Unit 1 Genome Sequencing conventional and new sequencing technologies, Strategies used in whole genome sequencing RoMaseq, C01, C06 A Overview of conventional and new sequencing technologies, Strategies used in whole genome C01, C06		Course Status	Core				
6 Course After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS 6 Course After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping CO1, CO6 A Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6	5	Course	1. The aim of this course is to teach genomics, proteomic	s using model			
2. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 6 Course After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping Unit 1 Genome Sequencing CO1, CO6 A Overview of conventional and new sequencing enome sequencing, NGS technologies, RNAseq. CO1, CO6 8 Genome annotation, Candidate gene discover and data CO1, CO6		Objective	organisms representing plants and animals. The course wi	ll cover recent			
6 Course After successfully completion of this course students will be able to: 6 Course Outcomes After successfully completion of this course students will be able to: 0 Outcomes CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping Unit 1 Genome Sequencing CO1, CO6 A Overview of conventional and new sequencing CO1, CO6 B Genome annotation, Candidate gene discover and data CO1, CO6			developments in genomics, gene expression and small RNA	As.			
biological systems. 6 Course After successfully completion of this course students will be able to: Outcomes 6 Course After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping CO1, CO6 A Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6 B Genome annotation, Candidate gene discover and data CO1, CO6							
6 Course Outcomes After successfully completion of this course students will be able to: CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping CO1, CO6 8 Outline syllabus CO Mapping CO1, CO6 8 Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6 8 Genome annotation, Candidate gene discover and data CO1, CO6				significance in			
Outcomes CO1:Discuss the various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping CO1, CO6 A Overview of conventional and new sequencing sequencing, NGS technologies, RNAseq, CO1, CO6 B Genome annotation, Candidate gene discover and data CO1, CO6							
Image: Note of the sequencing of	6						
CO2:Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3:Discuss the various steps and methods of protein purification and analysis. CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping Unit 1 Genome Sequencing CO1, CO6 A Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6 B Genome annotation, Candidate gene discover and data CO1, CO6		Outcomes	L	ons used for			
genome analysis.cO3:Discuss the various steps and methods of protein purification and analysis.CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications.7Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO Mapping CO1, CO64Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO68Genome annotation, Candidate gene discover and dataCO1, CO6							
CO3:Discuss the various steps and methods of protein purification and analysis.CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications.7Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO Mapping CO1, CO64Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6				d advances in			
analysis. analysis. CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications. 7 Course Description The objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science. 8 Outline syllabus CO Mapping Unit 1 Genome Sequencing CO1, CO6 A Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6 B Genome annotation, Candidate gene discover and data CO1, CO6			.				
CO4:Discuss the methods and challenges for protein engineering. CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications.7Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6				urification and			
CO5:Examine the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications.7Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO Mapping CO1, CO64Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6							
human diseases, drug development and in food industry. CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications.7Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6				0			
CO6:Discuss on Genomics and Proteomics including fundamentals, current techniques and applications.7Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6				proteomics in			
Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6				f.,			
7Course DescriptionThe objectives of this course include understanding the various aspects the diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6				rundamentals,			
Descriptionthe diversity and complexity of eukaryotic genomes, the historical and evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6	7	Course		arious aspects			
evolutionary perspective of genomic content, techniques commonly employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6	/		÷	-			
employed in studies of genomics and transcriptomics and applications derived from the knowledge provided by this science.8Outline syllabusCO MappingUnit 1Genome Sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6		Description					
8 Outline syllabus CO Mapping 9 Unit 1 Genome Sequencing CO1, CO6 1 A Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6 1 B Genome annotation, Candidate gene discover and data CO1, CO6							
8 Outline syllabus CO Mapping Unit 1 Genome Sequencing CO1, CO6 A Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq, CO1, CO6 B Genome annotation, Candidate gene discover and data CO1, CO6				a applications			
Unit 1Genome SequencingCO1, CO6AOverview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6	8	Outline syllabus		CO Manning			
AOverview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,CO1, CO6BGenome annotation, Candidate gene discover and dataCO1, CO6				11 0			
technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,BGenome annotation, Candidate gene discover and dataCO1, CO6							
sequencing, NGS technologies, RNAseq,BGenome annotation, Candidate gene discover and dataCO1, CO6			1 0	201, 200			
B Genome annotation, Candidate gene discover and data CO1, CO6							
, 6		В		CO1, CO6			
			mining, Transcription factor, Genome mapping by	,			

	genetic and physical technique.				
С	Evolution and	ohylogenetic relat	ionships of genomes in	CO1, CO6	
	prokaryotes and				
Unit 2	Structural and	Functional Gene	omics	CO2, CO6	
А	Advances in	research related	to human genome,	CO2, CO6	
			nome, wheat genome,		
	Comparative ge	nomics and SNP a	analysis.		
В			ction, Types of DNA-	CO2, CO6	
	microarrays- cD	NAs and Oligonu	cleotides spotted chips.		
С	TILLING as	a functional ger	nomics tool. In silico	CO2, CO6	
	genomics and m				
Unit 3	Scope of Prote			CO3, CO6	
А	Introduction and	d scope of proteor	mics; Protein separation	CO3, CO6	
	techniques: ion	-exchange, size-	exclusion and affinity		
	chromatography	techniques, S	DA-PAGE, Isoelectric		
	focusing (IEF),	2D PAGE for pr	oteome analysis; Image		
	analysis of 2D g	gels			
В	Protein chips a	CO3, CO6			
	biomedical application of proteomics				
С	Proteome databa	ase; Proteomics in	dustry.	CO3, CO6	
Unit 4	Protein Engine	ering		CO4, CO6	
А	Protein enginee	ering methods, R	ational design and site	CO4, CO6	
	directed mutage	enesis, directed m	utation, Receptor-based		
	QSAR methods	, Phage display, co	ell free translation		
В	Protein scaffo		f enzymes, chemical	CO4, CO6	
			rporation of unnatural		
	amino acids into	*			
C			uppressor tRNAs and	CO4, CO6	
			A synthetases, in vitro		
	evolution of pro				
Unit 5		Genomics and F		CO5, CO6	
A			nutritional genomics,	CO5, CO6	
		d methods of epig			
В			ogy, Drug discovery,	CO5, CO6	
С	Proteomics in b	iopolymer industr	y and food industry.	CO5, CO6	
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	25% 25% 50%				
Text book/s*	•		gam, P (Eds.) (2004),		
	Concepts and Techniques in Genomics and Proteomics,				
	Woodhead Publ	ishing, ISBN: 978	3-1907568107		

Other	1.Twy	man, R.M. ((Ed.) (2004),	Principles	of Protee	omics.
References	Bios	Scientific	Publisher,	Oxford,	ISBN:	978-
	18599	62732				

MGP105: Bioinformatics Lab

Sch	ool: SSET	Batch: 2023-25			
Prog	gramme: MSc	Current Academic Year: 2023-24			
Bran	nch: Genetic	Semester: II			
Eng	ineering				
1	Course Code	MGP105			
2	Course Title	Bioinformatics Lab			
3	Credits	2			
4	Contact Hours)-0-3			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective	To learn methods of Bioinformatics for understanding, de	termining and		
	_	interpreting data of different structures of proteins and other	er molecules		
6	Course Outcomes	CO1: Discuss the basics and applications of Bioinformatics	S,		
		CO2: Analyze the concepts of Protein characterization			
		CO3: Acquire the knowledge of protein structure prediction	n		
		CO4: Elaborate the various methods and applicat	ions towards		
		Phylogenetic analysis and sequence alignment			
		CO5: Examine the concepts of 3 D visualization of Protein	structure		
		CO6: Discuss the concept, branches, tools, and various ap	oplications for		
		Bioinformatics			
7	Course Description	This course will cover the major areas in Bioinform	natics namely		
		sequence analysis, phylogenetic analysis, structure pre-	dictions, drug		
		designing and discovery process.	-		
8	Outline syllabus		CO		
			Mapping		
	Unit 1	Introduction to Bioinformatics	CO1, CO6		
		Retrieval of Literatures from PubMed	CO1, CO6		
		Retrieval of Protein sequence from UniProt,	CO1, CO6		
	Unit 2	Characterization of proteins	CO2, CO6		
		Physico chemical characterization of Proteins	CO2, CO6		
		Detection of Phosphorylation and Glycosylation in	CO2, CO6		
		Proteins			
	Unit 3	Protein Structure prediction	CO3, CO6		
		Secondary structure prediction of Proteins	CO3, CO6		
		3D structure prediction	CO3, CO6		
	Unit 4	Sequence Alignment & Phylogenetic Analysis	CO4, CO6		
		Sequence Similarity Search- BLAST	CO4, CO6		
		Phylogenetic Tree construction	CO4, CO6		
	Unit 5	3D structure Visualization	CO5, CO6		
		Protein structure visualization by PyMOL	CO5, CO6		

	Secondary str	ructure visualization by	y PyMOL	CO5, CO6		
Mode of examination	Practical/Viv	a				
Weightage	CA	CA CE(VIVA) ETE				
Distribution	25%	25% 25% 50%				
Text book/s*	Bioinformatio	.Baxevanis A., Ouellette F.B.F (Eds.) (2004), Bioinformatics: A practical guide to the analysis of genes and proteins, Wiley-Interscience, ISBN: 978-0471478782				
Other Reference		Jin X (Ed.) (2006), <i>Essential Bioinformatics</i> , Cambridge niversity Press, ISBN: 978-0521600828				

Scho	ool: SSET	Batch: 2023-25			
Prog	gramme: MSc	Current Academic Year: 2023-24			
	ich: Genetic	Semester: III			
Engi	ineering				
1	Course Code	MGP201			
2	Course Title	Industrial Microbiology Lab			
3	Credits	2			
4	Contact Hours	0-0-3			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective	To enable students, bridge the gap between theoretical practical aspects in industrial settings. In-depth laboratory/industrial skills required for employment or employment in industrial microbiology area.	knowledge of		
6	Course Outcomes	CO1: Discuss the different sterilization methods.			
		 CO2: Prepare the stock solutions and bacterial growth culture media CO3: Examine the bacterial culture and growth curve analysis CO4: Discuss about Bioreactor/fermenter and Sauerkraut fermentation and CO5: Analyze the importance of industrially important bioactive compounds CO6: Develop the overall knowledge of industrial microbiology 			
7	Course Description	The practical course provides a deeper basis of mod microbiology.	dern industrial		
8	Outline syllabus		CO Mapping		
	UNIT 1	Introduction to sterilization techniques and media preparation	CO1, CO6		
		Different types of sterilization techniques	CO1, CO6		
		Preparation of nutrient agar and nutrient broth media for cultivation of microorganisms.	CO1, CO6		
-	UNIT 2	Isolation of microbes	CO2, CO6		
		Isolation of microorganisms from soil by serial dilution agar plating method	CO2, CO6		
		To obtain pure culture of microorganisms by pour, spread and streak plate method.	CO2, CO6		
	UNIT 3	Growth curve and Sauerkraut fermentation	CO3, CO6		
		Growth curve analysis of isolated cultures	CO3, CO6		
		To understand about Sauerkraut fermentation	CO3, CO6		
	UNIT 4	Cell disruption and Bioreactor	CO4, CO6		

MGP201: Industrial Microbiology Lab

	Cell Disruption	Cell Disruption Technique by Sonication			
	To understand	about components	of Bioreactor/fermenter	CO4, CO6	
UNIT 5	Enzyme proc	luction		CO5, CO6	
	Production of	protease enzyme		CO5, CO6	
	Production of	amylase enzyme		CO5, CO6	
Mode of examination		Practical/Viva			
Weightage	CA	CE(VIVA)	ETE		
Distribution	25%	25%	50%		
Text book/s	Manual a to Patie	1. Josephine AM, Granato PA (Eds.) (2018), Lab Manual and Workbook in Microbiology: Applications to Patient Care, McGraw Hill, ISBN: 978- 1260002188			

MGP202: Genomics and Proteomics Lab

Scho	ool: SSET	Batch: 2023-25				
	gramme: MSc	Current Academic Year: 2023-24				
	ich: Genetic	Semester: III				
	ineering					
1	Course Code	MGP202				
2	Course Title	Genomics and Proteomics Lab				
3	Credits	2				
4	Contact Hours	0-0-4				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	(1) To perform the Extraction and isolation of DNA from p	lant leaves.			
	Objective	(2) Visualization of isolated DNA on agarose gel electroph				
		(3) Extraction of proteins from given plant sample.				
		(4) Perform ion exchange chromatography.				
		(5) To visualize isolated proteins on SDS-PAGE				
6	Course	After finishing the course the students will be able to				
	Outcomes					
		CO1: Analyze the Extraction and isolation of DNA from pl				
		CO2: Discuss the importance of isolated DNA on	agarose gel			
		electrophoresis.				
		CO3: Elaborate the protein extractions from given plant	sample, using			
		ammonium sulphate precipitation method.				
		CO4: Examine the principle and applications	ion exchange			
		chromatography.				
		CO5: Inspect the the protein visualization on SDS-PAGE.	A and mustained			
		CO6: Discuss and understand the Extract and isolate DNA	A and proteins;			
7	Course	run agarose and SDS-PAGE To learn methods of extraction and isolation of DNA from	aivon complo			
/	Description	Extraction and isolation of proteins from given plant				
	Description	ammonium sulphate precipitation method. To run the S				
		order to visualize protein. To determine the concentration of proteins in				
		given samples.	f of proteins in			
8	Outline syllabus		CO Mapping			
	Unit 1	DNA Extraction	CO1, CO6			
		Perform the Extraction, quantification of DNA from	CO1, CO6			
		given sample and visualization of isolated DNA on	,			
		agarose gel electrophoresis				
	Unit 2	Protein Extraction	CO2, CO6			
		Extraction of proteins from given plant sample, using	CO2, CO6			

SU/SSET/MSc Genetic Engineering

	ammonium su	alphate precip	itation method.			
Unit 3	Ion Exchange	n Exchange Chromatography				
	Perform ion purification.	erform ion exchange chromatography for protein urification.				
Unit 4	SDS-PAGE				CO4, CO6	
	Casting and r isolated prote	U	S-PAGE for visuali	zation of	CO4, CO6	
Unit 5	Protein Estir	Protein Estimation				
	Determine the method.	Determine the total protein content by Lowry or Bradford method.				
Mode of examination	Practical/Viva	1				
Weightage	CA	CE(VIVA)	ETE			
Distribution	25%	25%	40%			
Text/Practical book/s*	1.Benjamin FL, (Ed.), (2019), <i>Biochemistry in the Lab</i> , CRC Press, ISBN 9781138589964					

Syllabus of Skill Enhancement Courses

MGE 108 Bioinformatics

Sch	ool: SSET	Batch: 2023-25				
Prog	gramme: MSc	Current Academic Year: 2023-24				
Brai	nch: Genetic	Semester: II				
Eng	ineering					
1	Course Code	MGE108				
2	Course Title	Bioinformatics				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Core				
5	Course	(1) To understand the various biological databases and soft	tware tools.			
	Objective					
		(2) Based on the available computational tools and database	ses, to solve			
		the various biological problem				
			11.			
6	Course					
	Outcomes	CO1:Discuss the basics, branches, and various applications of Bioinformatics				
		CO2: Analyze the importance, concepts and application	ns of various			
		biological databases				
		CO3:Examine the concepts, types, and uses of sequence	-			
		explore the various methods and advantages for phylogene	•			
		CO4:Acquire the knowledge about structure prediction	ons and their			
		importance.				
		CO5:Discuss the basics, types and various applications	s of computer			
		aided drug designing and discovery process.				
		CO6:Compile the overall understanding the concept, branches, tools, and				
7	Course	various applications for Bioinformatics				
/	Description	This syllabus will cover the important areas in Bioinform sequence analysis, molecular phylogenetic analysis				
	Description	sequence analysis, molecular phylogenetic analysis predictions, computer aided drug designing and discovery	,			
8	Outline syllabus	predictions, computer aided drug designing and discovery	CO Mapping			
0	Unit 1	Basics of Bioinformatics	CO Mapping CO1, CO6			
	A	Introduction to Bioinformatics, Scope of Bioinformatics,	CO1, CO6			
	11	Importance of Bioinformatics.				
	В	Different branches of Bioinformatics, Applications of	CO1, CO6			
		Bioinformatics	201, 200			
	С	PERL/Bio-PERL, Python/Bio-Python. Importance of	CO1, CO6			
L						

SU/SSET/MSc Genetic Engineering

	Computers in Bioinformatics.	
Unit 2	Biological Databases	CO2, CO6
A	Introduction to Databases and Biological Databases, Primary Databases, Secondary Databases and Composite Databases.	CO2, CO6
В	Nucleic acid sequence databases (GenBank, EMBL and DDBJ), Protein Sequence Databases (UniProt, PIR, TrEMBL, MIPS).	CO2, CO6
С	Secondary Protein Sequence Databases (Prosite, PFAM, BLOCKS), Structural Databases: PubChem, Drug Bank, ZINC, PDB, PDBSUM. Sequence/structure Submission	CO2, CO6
Unit 3	Sequence alignment and Phylogenetic analysis	CO3, CO6
A	Sequence Identity, Sequence similarity, Pairwise Sequence alignment, Methods in Pair-wise sequence alignment (DOTPLOT, Dynamic Programming, BLAST & FASTA), Multiple sequence alignment,	CO3, CO6
В	Methods in Multiple sequence alignment (Dynamic Programming, Progressive approach and Iterative Approach).	CO3, CO6
С	Concepts of Phylogenetic analysis, Distance and Character based methods.	CO3, CO6
Unit 4	Structural Bioinformatics	CO4, CO6
A	Protein structures, Experimental methods for protein structure determination (X-ray Crystallography, Nuclear Magnetic Resonance and Cryo electron microscopy),	CO4, CO6
В	In silico structure prediction methods: Homology modeling, Threading and Ab initio.	CO4, CO6
С	Importance and limitation of in silico structure prediction methods. Visualization Tools.	CO4, CO6
Unit 5	Drug designing and discovery	CO5, CO6
A	History, Concept of Molecular docking, Structure Based Virtual Screening, Ligand Based Virtual Screening, Pharmacophore modeling,	CO5, CO6
В	Quantitative Structure Activity Relationship (QSAR), Drug repurposing.	CO5, CO6
С	Molecular docking tools, Concept and applications of Molecular dynamics Simulations.	CO5, CO6
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Text book/s*	1.Baxevanis A., Ouellette F.B.F, (Eds.) (2004),	

	and	formatics: A proteins, 478782		-	• •	0	
Other		X (Ed.)					
Refere	nces Camb	oridge Unive	rsity Press,	ISBN: 978-	052160082	28	

Syllabus of Discipline Specific Elective Courses

Scho	ool: SSET	Batch: 2023-25				
Prog	gramme: MSc	Current Academic Year: 2023-24				
Branch: Genetic		Semester: II				
Engi	neering					
1	Course Code	MGE107				
2	Course Title	Techniques in Biology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Elective				
5	Course	(1) To develop and understanding of the principle, in	strumentation,			
	Objective	operation and applications of different analytical, separation	n			
		(2) Diagnostic techniques used in the fields of Biochemis	try, Molecular			
		Biology and Biotechnology.				
6						
6	Course	After successfully completion of this course students will be able to:				
	Outcomes	CO1:Apply microscopic techniques to identify differences				
		cell organelles and intracellular localization of protein				
		CO2:Apply chromatographic techniques for separating pi amino acids and hormones.	gments, drugs,			
		CO3:Apply the spectroscopy techniques (Absorption and	fluorescence			
		atomic and circular dichroism) to characterize pl				
		properties of biological molecules.	iysio enemicai			
		CO4:Elaborate various ways to study Ag-Ab interactions.				
		CO5:Examine the various techniques to study various interactions of				
		biomolecules at molecular level.				
		CO6: Develop and understanding the applications of different analytical,				
		separation techniques used in the field of Biotechnology.	-			
7	Course	Allow students to familiarize themselves with the specific				
	Description	of biomedical instrumentation and biotechnology tools				
		them to use and apply these techniques and equipme	ent's to solve			
		experimental problems.				
8	Outline syllabus		CO Mapping			
	Unit 1	Microscopic and Radiolabelling techniques	CO1, CO6			
	А	Visualization of cells and subcellular components by	CO1, CO6			

MGE107 Techniques in Biology

SU/SSET/MSc Genetic Engineering

	light microsco	ppy, resolving powe	er, microscopy of living				
	cells,						
В		transmission micro echniques for EM,	scopes, different fixation	CO1, CO6			
С		measurement of d	ifferent types of	CO1, CO6			
C			iology, incorporation of	001,000			
	radioisotopes						
	imaging of rac						
Unit 2		aphic techniques		CO2, CO6			
A	Classification	of Chromatograph	y, Column and Ion-	CO2, CO6			
	exchange chro	omatography					
В	Adsorption an	d Partition chroma	tography, Paper	CO2, CO6			
			Chromatography, Gel				
		romatography					
С	HPLC and GC						
Unit 3	Biophysical T	Techniques		CO3, CO6			
А			ible, fluorescence,	CO3, CO6			
		ircular dichroism					
В	NMR and ESI	CO3, CO6					
С		a resonance metho	ds.	CO3, CO6			
Unit 4	Histochemical and Immuno techniques			CO4, CO6			
А	Antibody gene	CO4, CO6					
	ELISA, RIA,	immunoprecipitati	on				
В			rescence microscopy	CO4, CO6			
С	detection of n	CO4, CO6					
		such as FISH and					
Unit 5		n Molecular Biolo		CO5, CO6			
А		lenge assay, Filter	CO5, CO6				
	extension assa						
В	DNA Helicase	Helicase Assay, Biochemical Fractionation and					
			DNA finger Printing				
С		,	t and Northern blotting	CO5, CO6			
Mode of	Theory						
examination							
Weightage	CA	MTE	ETE				
Distribution	25%	25%	50%				
Text book/s*	1.Wilson K. a	nd Walker J, (Eds	.) (2010), Principles and				
			and Molecular Biology,				
	-	• •	3N: 978-1316614761				
Other	<u> </u>		enore M, (Eds.) (2009),				
References			oaches for Biochemistry				
			N: 978-0470087664				
	•						

MGE204 Clinical Biotechnology

Scho	ool: SSET	Batch: 2023-25					
-	gramme: MSc	Current Academic Year: 2023-24					
	ich: Genetic	Semester: III					
Eng	ineering						
1	Course Code	MGE204					
2	Course Title	Clinical Biotechnology					
3	Credits	4					
4	Contact Hours	4-0-0					
	(L-T-P)						
	Course Status	Elective					
5	Course	athology and					
	Objective	pathogenesis.					
		(2) To acquire knowledge about the diagnostic methods	s of infectious				
		disease.					
6	Course	After successfully completion of this course students will b	be able to:				
	Outcomes	CO1:Categorize the various clinical aspects of infectious d					
		CO2:Examine the various factors involved in host pathoge					
		CO3:Discuss the pathogenesis of various infectious diseases.					
		CO4:Inspect the mode of actions of antibiotics, antimicrob	•				
		CO5:Discuss the different aspects and phases of clinical research.					
		CO6:Discuss overall mechanism of infectious diseas	ses and their				
		treatment.					
7	Course	This course provides understanding of molecular pathology					
	Description	mechanism against pathogens, pathogenesis, virulence					
		pathogens, diagnostic methods and treatment of infectious					
8	Outline syllabus		CO Mapping				
	Unit 1	Clinical Aspects of Infectious Diseases	CO1, CO6				
	А	Bacterial, Viral and Parasitic diseases, Disease pathology	CO1, CO6				
		and clinical spectrum, Clinical diagnosis of diseases;					
	В	Molecular genetics of the host and the pathogen,	CO1, CO6				
	C	Assays for the Diagnosis of bacterial, viral and parasitic	CO1, CO6				
		diseases by using ELISA, RT-PCR and Western blot					
	Unit 2	Host Pathogen Interaction	CO2, CO6				
	А	Different reservoirs and epidemiology of pathogenic	CO2, CO6				
		diseases, Different micro flora of skin, respiratory and					
		excretory tract and other parts of body, Factors					
		responsible for infection					
	В	Colonization of pathogens inside body, Transmission via	CO2, CO6				
		vector and without vectors,					
	С	Toxins produced by pathogens, their types and their	CO2, CO6				

SU/SSET/MSc Genetic Engineering

	mode of actio	n. Nosocomial infectior	18.			
Unit 3	Pathogenesis of Infectious Diseases			CO3, CO6		
A		res, diagnosis and tre s, Tetanus, Botulism	eatment of Malaria,	CO3, CO6		
В		Cholera, Plague, Tuberculosis, Measles, Mumps,				
С		orona viruses, HPV, De		CO3, CO6 CO3, CO6		
Unit 4	Antimicrobia	al Agents	•	CO4, CO6		
А		drugs, antibiotics and t	heir types,	CO4, CO6		
В		um and broad spectrum		CO4, CO6		
С	antiviral and a	antifungal agents. Antib	iotic resistance	CO4, CO6		
Unit 5	Clinical Rese	arch		CO5, CO6		
А	Origin and h research	nistory of drug develo	opment and clinical	CO5, CO6		
В	• • •	ses of clinical research, onal perspective,	clinical trials in	CO5, CO6		
С		leration and guidelines	of clinical research,	CO5, CO6		
Mode of examination	Theory	-				
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	1.Pommervill	e JC (Ed) (2012), C	Guide to Infectious			
		Diseases by Body System, Jones & Bartlett Learning, Second Edition, ISBN: 978-1449605919				
Other		and Fauci A (Eds)				
References	v	Diseases McGraw-Hill N: 978-1-259-83597-1	Education, Third			

MGE206 Plant Biotechnology

Sch	ool: SSET	Batch: 2023-2025
	gramme: M.Sc	Current Academic Year: 2023-2024
Branch: Genetic		Semester: 03
Eng	ineering	
1	Course Code	MGE206
2	Course Title	Plant Biotechnology
3	Credits	4
4	Contact	4-0-0
	Hours	
	(L-T-P)	
5	Course Status	Elective
6	Course	(1)The students are expected to understand the different techniques used
	Objective	in Plant Genetic Engineering like Agrobacterium-mediated gene delivery,
		direct gene transfer methods via PEG-mediated, electroporation, particle
		bombardment
		(2) To develop the knowledge and techniques for generating constructs
		for plant transformation and creating transgenic plants.,
		(3)To set up appropriate conditions for regeneration of transgenic plants
		from genetically manipulated cells, clonal propagation of horticultural
		and forest species, etc.
		(4)To develop the knowledge of conservation of germplasm of
		endangered plant species and other important plants.
7	Course	CO1: To comprehend the basic concept of plant genome engineering and
	Outcomes	Plant transformation.
		CO2:Gain knowledge on creating gene constructs for plant transformation
		and analyzing transgenic plants.
		CO3: To understand factors influencing transgene expression CO4: To learn about various approaches for gene editing and gene
		silencing in plants.
		CO5: To learn about various applications of transgenic plants.
		CO6: To learn about the versatile tools and techniques employed in
		genetic engineering and creating transgenic and genome edited plants.
8	Course	It helps students in understanding Plant genetic engineering – DNA
	Description	delivery methods: vector mediated method, increase knowledge about
		Androgenesis and gynogenesisThegenetic engineering courseprovides a
		foundation for careers in plant GE.
9	Outline syllabi	us CO

SU/SSET/MSc Genetic Engineering

		Mapping
Unit 1	Introduction to Genetic Engineering in plants	
А	Overview of plant genome and genome engineering	CO1,
В	Transgenesis, Cisgenesis and intragenesis, Comparison with	CO6
	breeding	
С	Plant transformation methods-direct and indirect. Transient	
	and stable transformation, Vectors for plant transformation,	
	Gateway vectors for plant transformation, superbinary and	
	ternary vectors.	
Unit 2	Gene constructs and analysis of transgenic plants	
А	Designing gene constructs - Promoters (inducible, constitutive	CO2,
	and tissue-specific) and heterologous promoters,	CO6
	polyAsignals; GAL4-UAS enhancer trapping	
	approach, Protein targeting signals; Cre-Lox system for gene	
	integration.	
В	Selectable and reportable markers, Marker free plants, Non-	
	antibiotic based selection. Trait stacking in transgenic crops-	
	challenges and opportunities.	
С	DNA and copy number genotyping (PCR and Southern),	
	RNA- and protein-based conformation (Real-time PCR,	
	Northern, Western, ELISA).	
Unit 3	Factors influencing transgene expression level	
А	Transcription and translation related issues, PTGS. Co-	CO3,
	suppression.Transgene stability	CO6
В	Position effect and methods to overcome gene silencing and	
q	improve gene expression in transgenic plants	
 С	Promoters and other elements to express transgenes	
Unit 4	Gene Editing and silencing in plants	
A	Genome editing technology, CRISPR/Cas etc.	CO4,
В	Gene silencing using artificial miRNAs, RNAi technology,	CO6
~	antisense RNA, lncRNA-based gene silencing	
С	Random mutagenesis methods (T-DNA, EMS, transpososns),	
 	Transgenic versus genome edited plants	
Unit 5	Applications of Transgenic Plants	
А	Health benefits of transgenic plants. Improved seed storage	CO5 and
	proteins; Improving and altering the composition of starch and	CO6
	plant oils; enhancement of micro-nutrients – beta carotene,	
	vitamin E, iron; Molecular pharming - production of	
P	antibodies and pharmaceuticals in plants	
В	Agricultural applications of transgenic plants. Herbicide	
	resistance; Pest resistance, Bt toxin, synthetic Bt toxin;	
	Protease inhibitor; and other plant derived insecticidal genes;	

	genetic impro engineering fo	nematode resistance; Crop Engineering for disease resistance; genetic improvement of abiotic stress tolerance, Genetic engineering for male sterility- Barnase-Barstar; Delayed fruit ripening; polygalacturanase, ACC synthase, ACC oxidase.				
C	•	ncerns of transgenic its, Regulation and app	plants; Global status of proval of GM Plants.			
Mode of	Theory/Jury/P	Theory/Jury/Practical/Viva				
examination						
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	1.Stewart C.N	N (Ed.) (2008), Pl	ant Biotechnology and			
	Genetics: Tech	hniques and Applicat	ions, Wiley-Interscience,			
	ISBN: 978-111	8820124				
Other	1. Bernard R	1. Bernard R.G, Pasternak J.J (Eds.) (2002), Molecular				
References	Biotechnology: Principles and Applications of Recombinant					
	DNA, Americ	an Society for Mic	crobiology, ISBN: 978-			
	1555812249					

MGE110 Animal Biotechnology

School: SSET		Batch: 2023-2025				
Programme: M.Sc		Current Academic Year: 2023-2024				
	ich: Genetic	Semester: 02				
	ineering	Semester. 02				
1	Course	MGE110				
1	Code	MOEIIO				
2	Course	A nimel Dista shu sla su				
2	Title	Se Animal Biotechnology				
3	Credits	4				
4						
-	Hours	0-0				
	(L-T-P)					
	Course	Elective				
	Status	Liceuve				
5	Course	To acquire a fundamental knowledge of animal cell cultu	re design and			
5	Objective	analysis of cell culture experiments; animal cell cloning, its applications and				
	objective	ethical issues.				
6						
C	Outcomes	CO1: Explain set up of an animal cell culture facility including equipments				
		and culture vessels required for animal cell culture				
		CO2: Inspect media preparation and primary cell culture techniques				
	CO3: Identify animal cell cloning procedures and risks a					
animal cell cloning						
CO4: Categorize different breeds of farm animals, their reprodu						
		improvement of livestock characteristics.	•			
		CO5: Examine differentiation status of stem cells and compa	m cells and compare properties of			
		embryonic stem cells and adult stem cells.				
		CO6: Justify the future perspectives, importance and ethical issues relate with animal cell cloning and transgenic animals.				
7	Course	This course covers Animal cell culture, its molecular biology, recombinant				
	Description	DNA technology; Stem Cells, production of tran	sgenic animals,			
L		reproductive biotechnology, biotechnology in animal breeding				
8	Outline syllabus		CO Mapping			
	Unit 1	Introduction and History of Animal Cell Culture				
	А	Introduction to cell culture and history of Animal cell	CO1, CO6			
		culture				
	В	Biosafety levels and designing of animal cell culture				
		laboratory				
	С	Important equipment and culture vessels required for animal				

	cell culture						
Unit 2	Development of Cel	l Culture					
А	Introduction to anima	al cell culture me	dia and types;	CO2, CO6			
	different cell culture	reagents					
В	Primary and secondar	ry cell culture; co	oncept of finite and				
	infinite cell lines, his						
	3D culture						
С	Primary cell culture:	methods to estab	lish primary cell				
	culture and its charac						
Unit 3	Maintenance of Cell						
А	Thawing, Passaging a	and Cryopreserva	ation of Cell Lines;	CO3, CO6			
			ility and growth curve				
	of cell lines						
В	Characterization of c	ell lines and com	mon contaminants of				
	cell line						
С	Determination of cell	l viability using c	lifferent cytotoxicity	1			
	assays	, ,					
Unit 4	Animal Breeds: Rep						
	Characterization						
А	Introduction to differ	ent breeds of far	n animals;	CO4, CO6			
	Cryopreservation of sperms and ova of livestock, artificial						
	insemination						
В	Super ovulation, in v						
	cryopreservation of e						
	splitting and embryo						
С	Genetic characterizat						
-	assisted breeding of 1						
Unit 5	Scale up of Animal						
	Transgenic Animals						
А	Scale up of monolayer and suspension culture: Concept of						
	fermenters in scale up of animal cell culture			CO5, CO6			
В	Animal Cloning: basi						
2		ng for conservation of endangered species					
С	-	1					
C	C Transgenic manipulation of animal embryos, and applications of transgenic animals Ethical, social and mora						
	issues related to clon						
Mode of							
examination	11001						
Weightage	CA	MTE	ETE				
Distribution	25%	25%	50%				
Text	1.Butler M (Ed.)						
book/s*	<i>Technology</i> , Garland						
DOOK/S.	rechnology, Garrand	SCICILC, ISDN	770-1037700473				

Other	1.Jenkins N (Ed.) (2006), Animal Cell Biotechnology:					
References	Methods and Protocols, Humana Press, ISBN: 0896035476					
	2. Freshney I.R (Ed.) (2005) Culture of Animal Cells: A					
	Manual of Basic Technique, Wiley, 2005. ISBN: 978-					
	1119513018					