

Programme Structure

Sharda School of Engineering & Technology

Department of Biotechnology

M. Tech – Biotechnology Programme code: SET0203 (Batch: 2023-2025)

The components of the curriculum

Course Component	Curriculum Content (% of total number of credits of the programme)	Total number of contact hours	Total number of credits
Basic Sciences	18.75%	14	14
Engineering Sciences	81.25%	19	19
Technical and communications skills	18.75%	10	6
Programme Core	62.5%	10	10
Programme Electives	37.5%	23	23
Project(s)	12.5%	52	26

Programme Structure - Department of Biotechnology M.Tech. in Biotechnology

I. Programme Details

Programme Name: M. Tech. Biotechnology

Programme Code: SET0203

Programme level	:	PG
Programme Duration	:	Two years
Minimum Credits for Programme	:	72
Maximum Credits for Programme	:	72

Programme Structure with Semester wise Credit distribution

Batch: 2023-2025

Programme / Branch: M. Tech. Biotechnology (Bio-Engineering & Bio-Informatics/Genetic Engineering/ Animal Biotechnology/Plant

iotechn	ology)		Te	erm/Sem.:	[Session	n: 2023-24
S.	Paper ID	Subject	Subjects	Т	eaching Lo	ad	Credits
No.		Code		L	Т	P	Creans
THEO	RY SUBJEC	TS					
1	16994	BTY621	Advanced Biochemistry	4	0	0	4
2	16995	BTY622	Molecular Cell Biology	4	0	0	4
3	16996	BTY623	Advances in Bioprocess Engineering	3	0	0	3
4	16997	BTY624	Applied Genetic Engineering	3	0	0	3
5	16998	BTY625	Enzyme Engineering and Technology	3	0	0	3
6	16999	BTY626	Microbiology	2	0	0	2
PRAC	TICALS			-		1	
7	17000	BTP624	Genetic Engineering and Microbiology Lab	0	0	4	2
	_II		TOTAL	1	1	1	21

Prog	Programme: M. Tech Biotechnology with specialization in Animal Biotechnology				rm/Sem.: II		Session: 2023-24	
S.	Paper ID	Subject	Subjects	Teach	ning Load		Credits	
No.	r aper 1D	Code	Subjects	L	Т	Р	Creatis	
THE	ORY SUBJE	CTS						
1	17121	BTY639	Animal Transgenic Technology	3	0	0	3	
2	17119	BTY637 Immunology and Vaccine Development		3	0	0	3	
3	17120	BTY638	Animal Cell Culture Technology	3	0	0	3	
4	17129	BTY636	Applied Bioinformatics	3	0	0	3	
5	16396	MRM001	Research Methodology	2	0	0	2	
6	17118	BTY635	Omics Technologies	4	0	0	4	
PRAG	CTICALS	L		ł				
7	17122	BTP638	Animal Cell culture Technology Lab	0	0	4	2	
8	16398	BTP606	Applied Bioinformatics lab	0	0	2	1	
9	16119	CCU101	Community connect	0	0	4	2	
10	17414	VAT604	Management of Lifestyle Disorders	0	0	0	0	
		1	TOTAL	1	I	1	23	

	Programme: M. Tech Biotechnology with specialization in Genetic Engineering			/Sem.: II	S	Session: 2023-24	
S. Paper ID		Subject Code	Subjects	Teaching Load			Credits
No.	No. Tuper ID Subject Cou		Subjects	L	Т	Р	
THE	ORY SUBJEC	CTS					
1	17123	BTY640	Transgenic Technology	3	0	0	3
2	17119	BTY637	Development		0	0	3
3	17129	BTY636	Applied Bioinformatics	3	0	0	3
4	16396	MRM001	Research Methodology	2	0	0	2
5	16041	BTY615	Cell and Tissue Engineering	3	0	0	3
6	17118	BTY635	Omics Technologies	4	0	0	4
PRAC	CTICALS						·
7	16398	BTP606	Applied Bioinformatics lab	0	0	2	1
8	16040	BTP614	Cell and Tissue Engineering Lab	0	0	4	2
9	16119	CCU101	Community connect	0	0	4	2
10	17414	VAT604	Management of Lifestyle Disorders	0	0	0	0
		1	TOTAL	I	I	I	23

S.		me: M. Tech Biotechnology with specialization in Bioengineering and Bioinformatics Term/Sem.: II Se Paper ID Subject Code Subjects Teaching Load L T P		Credits			
No.	Paper ID	Subject Code	Subjects		Т	P	
THE	ORY SUBJE	CTS					
1	15150	BTY613	Biological Database and their Management	3	0	0	3
2	17129	BTY636	Applied Bioinformatics	3	0	0	3
3	16671	BTY632	Computer Aided Drug Design	3	0	0	3
4	16396	MRM001	Research Methodology	2	0	0	2
5	16041	BTY615	Cell and Tissue Engineering	3	0	0	3
6	17118	BTY635	Omics Technologies	4	0	0	4
PRAC	CTICALS						
7	16040	BTP614	Cell and Tissue Engineering Lab	0	0	4	2
8	16398	BTP606	Applied Bioinformatics lab	0	0	2	1
9	16119	CCU101	Community connect	0	0	4	2
10	17414	VAT604	Management of Lifestyle Disorders	0	0	0	0
		I	TOTAL		I	I.	23

M. Tech Riotechnology with specialization in Rioengineering and Rioinformatics Term/Sem.: II Session: 2023-24

ъ

S.	Paper ID	Subject Code	Subjects	Teaching Load			— Credits
No.	raper ID	Subject Code	Subjects	L	Т	Р	Credits
THE	ORY SUBJE	CTS					
1	17129	BTY636	Applied Bioinformatics	3	0	0	3
2	17118	BTY635	Omics Technologies	4	0	0	4
3	17386	BTY644	Plant Molecular Physiology	3	0	0	3
4	17375	BTY641	Plant Tissue Culture and Genetic transformation	3	0	0	3
5	17376	BTY642	Plant Transgenic Technology	3	0	0	3
6	16396	MRM001	Research Methodology	2	0	0	2
PRAC	CTICALS						
7	16398	BTP606	Applied Bioinformatics Lab	0	0	2	1
8	17378	BTP631	Plant Biotechnology Lab	0	0	4	2
9	16119	CCU101	Community connect	0	0	4	2
10	17414	VAT604	Management of Lifestyle Disorders	0	0	0	0
		1	TOTAL	1	I	I	23

Programme: M. Tech Biotechnology with specialization in Plant Biotechnology Terr

Term/Sem.: II

Session: 2023-24

Programme / Branch: M. Tech. Biotechnology (Bio-Engineering & Bio-Informatics/Genetic Engineering/ Animal Biotechnology/Plant

Biotechno	ology)			Te	rm/Sem.: I	II Sessi	ion: 2023-24
S.	Paper ID	Subject Code	Subjects	T	Teaching Load		
No.				L	Т	Р	Credits
PRACT	PRACTICALS						
1	17230	BTP625	Seminar	0	0	4	2
2	17231	BTP626	Dissertation-1	0	0	20	10
	TOTAL						12

Programme / Branch: M. Tech. Biotechnology (Bio-Engineering & Bio-Informatics/Genetic Engineering/ Animal Biotechnology/Plant

Biotechno	ology)			Term/Sen	n.: IV	Sess	ion: 2022-23
S. No.	Paper ID	Subject Code	Subjects Teaching Load	Teaching Load			Credits
1.00				L	Т	Р	
PRAC	FICALS						
1	15358	BTP621	Dissertation-II	0	0	32	16
		•	TOTAL				16

8

	Plant Biotechnology	Animal Biotechnology	Genetic Engineering	Bioengineering and Bioinformatics
Programme Elective 1	Enzyme Engineering & Technology/ Industrial Biotechnology/ Downstream Processing	Enzyme Engineering & Technology/ Industrial Biotechnology/ Downstream Processing	Enzyme Engineering & Technology/ Industrial Biotechnology/ Downstream Processing	Enzyme Engineering & Technology/ Industrial Biotechnology/ Downstream Processing

Programme elective-2	Tolerance to abiotic plant stress/Immunology and Vaccine Development/Molecular Medicine/Protein Engineering/ Biological Database Management	Tolerance to abiotic plant stress/ Plant microbe interaction/ Immunology and Vaccine Development/Molecular Medicine/Protein Engineering/ Biological Database Management	Tolerance to abiotic plant stress/ Plant microbe interaction/ Immunology and Vaccine Development/Molecular Medicine/Protein Engineering/ Biological Database Management	Tolerance to abiotic plant stress/ Plant microbe interaction/ Immunology and Vaccine Development/M olecular Medicine/Protei n Engineering/ Biological Database Management

Programme Elective-3	Applied Bioinformatics/ Plant Microbe Interaction/ Metabolic Engineering/ Clinical Biotechnology	Applied Bioinformatics/ Plant Microbe Interaction/ Metabolic Engineering/ Clinical Biotechnology	Applied Bioinformatics/ Plant Microbe Interaction/ Metabolic Engineering/ Clinical Biotechnology	Applied Bioinformatics/ Plant Microbe Interaction/ Metabolic Engineering/ Clinical Biotechnology					
Specialization-1	Plant Tissue Culture and Genetic Transformation	Animal Cell culture technology	Cell and Tissue Engineering	Cell and Tissue Engineering					
Specialization-2	Plant Transgenic Technology	Animal Transgenic Technology	Transgenic Technology	Computer Aided Drug Design					
* This lab will be o	* This lab will be offered as Genetic Engineering and Microbiology Lab								

Course Modules (M. Tech – Biotechnology)

BTY 621: Advanced Biochemistry

Sch	ool: SSET	Batch: 2023-25		
	gramme:	Current Academic Year: 2023-24		
	ſech			
Bra	nch:	Semester: 1		
Bio	technology			
1	Course Code	BTY 621		
2	Course Title	Advanced Biochemistry		
3	Credits	4		
4	Contact Hours (LTP)	4-0-0		
	Course Status	Core		
5	Course Objective	1. Determine structure and functions of po- glycoproteins, peptidoglycans, amino acids and lipids	olysaccharides, s.	
		2. Demonstrate amino acid biosynthesis, fatty acid m nucleic acid biosynthesis.	etabolism and	
		3. Analyse role of proteins and metabolites in TCA cycl	le.	
		4. Design experiments to demonstrate different steps in photophosphorylation, photorespiration and phosphorylation	•	
6	Course Outcomes	After the successful completion of this course students wi CO1: Determine. properties of water, essential role of water		
		CO2: Evaluate detailed Protein Structure-function relation acids – structure and functional group properties CO3: Analyse the Glycobiology of Sugars, lipids and its uphysiology	-	
		CO4: Explanation and analysis of bioenergetics and meta CO5: Characterize the detailed role of Vitamins in cell M physiology CO6: Explanation of overall role of Biochemistry in heal	letabolism and	
7	Course Description	The course will cover structure and function of biologic protein structure, function and modification, enzyme kin study of metabolic pathways and their regulation wit genetics approach	cal molecules, netics, and the	
8	Outline syllabus		CO Mapping	
	Unit 1	Chemical basis of life: Water		
	А	properties of water, essential role of water for life on earth pH, buffer, maintenance of blood pH and pH of		

Unit 5	Role of vitamins & cofactors in metabolism.	
	proton gradient across thylakoid membrane	
С	oxidative phosphorylationPhotosynthesis – chloroplasts and two photosystems;	
	Synthase; shuttles across mitochondria; regulation of	
	transfer in oxidative phosphorylation; F1 -F0 ATP	
В	Oxidative phosphorylation; importance of electron	
	in metabolism	
	metabolism; oxidation of carbon fuels; recurring motifs	CO4, CO6
	free energy; coupled interconnecting reactions in	
A	Bioenergetics-basic principles; equilibria and concept of	
Unit 4	Bio-energetics	
	lipids- structure and properties of important members of storage and membrane lipids; lipoproteins	
С	glycolipids	
В	glycosylation of other biomolecules-glycoproteins and	CO3, CO6
11	reference to glycogen, amylose, and cellulose	
A	Sugars-mono, di, and polysaccharides with specific	
Unit 3	Glycobiology	
	molecular dynamic simulation.	
	diseases associated with protein folding, introduction to	
	protein folding, molten globule state, chaperons,	
	Levinthal paradox, cooperativity in protein folding, free energy landscape of protein folding and pathways of	
С	Levinthal paradox, acconstituity in protein folding free	
	folding: Anfinsen's Dogma	
	myoglobin, hemoglobin, chymotrypsin etc.; Protein	
	structure-function relationships in model proteins like	
В	Ramachandran plot, evolution of protein structure,	
	order structures	, 2 3 0
	structure of proteins, elucidation of primary and higher	CO2, CO6
A	and functional group properties, peptides and covalent	
A	Structure-function relationships: amino acids – structure	
Unit 2	Protein structure:	
	assemblies	
С	biomolecular hierarchy, macromolecules, molecular	
В	ionization and hydrophobicity, emergent properties of biomolecules in water	
	trypsin and alkaline phosphatase)	CO1, CO6
	gastric juice, pH optima of different enzymes (pepsin,	

А		Role of Vitamins & cofactors in Glycolysis,				
	Gluconeoge	Gluconeogenesis, Citric Acid Cycle, Fatty Acid				
	biosynthesis	biosynthesis and Fatty acid oxidation				
В		Amino acids metabolism, nucleotide biosynthesis. Roles of epinephrine and glucagon and insulin in glycogen metabolism				
С	logic and in	tegration of ce	ntral metabolism; entry/ exit			
	U	0	om central pathways;			
			gulation; steps for regulation;			
	1		sulin signaling.			
 Mode of	Theory	esponses and n	isum signamy.			
examination	Theory					
	<u></u>		5755			
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*	Nelson D.L	. and Cox M.M	I., "Lehninger Principles of			
	Biochemist	ry", W.H. Free	man, 2019.			
Other			nistry", W. H. Freeman,			
References	201					
	2. Wils					
			chemistry and Molecular			
		-	ge University Press, 2015.			

BTY622: Molecular Cell Biology

C - L		D-4-L 2022 25		
-	nool: SSET	Batch: 2023-25		
	gramme:	Current Academic Year: 2023-24		
-	<u>Fech</u>			
	anch:	Semester: 1		
	technology			
1	Course Code	BTY 622		
2	Course Title	Molecular Cell Biology		
3	Credits	4		
4	Contact Hours (LTP)	4-0-0		
	Course Status	Core		
5	Course Objective	On successful completion of this module students will be	able to:	
		 Determine the role of different types of channels asso trafficking of the molecules. 	ociated with	
		2. Predict the translocation of biomolecules between organelles	different cell	
		3. Visualize cells and cellular organelles using microsco	DDV.	
		4. Analyze metabolic activities of a cell and the	1.	
		metabolic energy in form of ATP	1	
		5. Characterize the functions of nucleus		
6	Course	After the successful completion of this course students wi	ll be able to:	
	Outcomes	CO1: Determine different types of cell membrane and the		
		translocation of biomolecules thru' membrane.		
		CO2: Determine the types of organelles and their specific	function	
		CO3: Analyse the metabolic activity of the cell and pro-	otein transport	
		process.		
		CO4: Explanation and analysis of bioenergetics and metal	bolic process	
		CO5: Characterize the functions of Nucleus and its a	activities thru'	
		cellular organelles		
		CO6: Explanation of the structure and function of cell or		
7	Course	Molecular cell biology is a unifying discipline that descr	ibes the	
	Description	structure and function of cells in all their genetic, biochemical,		
		developmental, physiological and pathophysiological aspe	ects.	
8	Outline syllabus		CO Mapping	
	Unit 1	Dynamic organization of cell		
	А	Cell membranes: structure of cell membranes and		
		concepts related to compartmentalization in eukaryotic cells		

В	Intracellular organelles: endoplasmic reticulum and	CO1, CO6
D	Golgi apparatus, lysosomes and peroxisomes, ribosomes,	001,000
	cellular cytoskeleton	
С	Mitochondria, chloroplasts and cell energetics; nuclear	
C	compartment: nucleus, nucleolus and chromosomes	
Unit 2	Chromatin structure and dynamics	
A A	Chromatin organization - histone and DNA interactome:	
Α	transcriptional initiation, elongation and termination in	
	Eukaryotes; Transcriptional control: promoters and	CO2, CO6
	enhancers, transcription factors as activators and	002,000
	repressors, epigenetic factors	
В	Post-transcriptional control: splicing and addition of cap	
	and tail, mRNA flow through nuclear envelope into	
	cytoplasm, mechanism of initiation, elongation and	
	termination in Eukaryotes	
С	Protein translation machinery, ribosomes-composition	
	and assembly; universal and mitochondrial genetic	
	codes, Iso-accepting tRNA	
Unit 3	Cellular transport and trafficking	
А	Molecular mechanisms of membrane transport, nuclear	
	transport, transport across mitochondria and chloroplasts	
В	Intracellular vesicular trafficking from endoplasmic	CO3, CO6
	reticulum through Golgi apparatus to lysosomes/cell	
	exterior	
С	Co- and post-translational modifications	
Unit 4	Cellular processes	
А	Cell cycle and its regulation; cell division: mitosis,	
	meiosis and cytokinesis; cell differentiation: cell-ECM	
	and cell-cell interactions	CO4, CO6
В	cell receptors and transmembrane signaling; cell motility	
	and migration	
C	Cell death: different modes of cell death and their	
	regulation.	
Unit 5	Genome instability and cell transformation	
A	Mutations, proto-oncogenes, oncogenes and tumour	
	suppressor genes, physical, intra-genic and inter-genic	
	suppression	CO5, CO6
В	Role of transposons in genome; viral and cellular	
	oncogenes; structure, function and mechanism of action	
C	Activation and suppression of tumor suppressor genes;	
	oncogenes as transcriptional activators.	
Mode of	Theory	
examination		
	CA MTE ETE	

Weightage	25%	25%	50%		
Distribution					
Text book/s*	Gerald K.,	"Cell and Mole	ecular Biology", John Wiley		
	and Sons, 2	nd Sons, 2006.			
Other	1. Coop	1. Cooper G.M., "The Cell: A Molecular			
References	Appr	Approach", Sinaner Associates, 2004.			
	2. Vern	2. Verma P.S. and Agarwal, V.K., "Cell Biology,			
	Gene	Genetics, Molecular Biology Evolution and			
	Ecole	ogy", S. Chand	l and Company, 2004.		

BTY623 Advances in Bioprocess Engineering

Sch	ool: SSET	Batch: 2023-25
Pro	gramme:	Current Academic Year: 2023-24
M. 1	Sech	
Bra	nch: BT	Semester: I
1	Course Code	BTY623
2	Course Title	Advances in Bioprocess Engineering
3	Credits	3
4	Contact Hours (LTP)	3-0-0
	Course Status	Core
5	Course Objective	 To enable students bridge the gap between theoretical concepts and practical aspects in industrial settings In-depth knowledge and hands-on laboratory/industrial skills required for employment or for creation of employment in bioprocess engineering. To enable students about nutritional values and increase yield of products by modifying microorganisms. Knowledge to produce antibiotics, vitamins, vaccines and organic solvents using a bioreactor.
6	Course Outcomes	 After successful completion of the course students will be able to- CO1: Able to understand the microbial growth and the effect of different factors on microbial growth. CO2: Design strategies for using bioreactors to address the needs of industry and to conduct scale-up methods for designing bioreactors CO3: Apply the models and mathematical equations to study about the working principles of Bioreactor. CO4: Understand and apply different strategies for the downstream processing to biomolecules at industrial level. CO5: Understand the industrial production of antibiotics, vitamins vaccines and dairy products. CO6: Understand and apply different bioprocess engineering methods and models for the production and optimization of important microbial products.
7	Course Description	The course concentrates on bioprocess engineering and bioreactor operation. A considerable part is devoted to the growth analysis using

		process analy connection to	rocess data in		
8	Outline syllabu	15			CO Mapping
	Unit 1	Microbial G	owth		Unit 1
	А	Kinetics of ce	ll growth		А
	В	Factors affect	ing the microb	ial growth	В
	С	Batch, fed bat	ch and continu	ious processes	С
	Unit 2	Design of Bio	reactors		Unit 2
	А	Types of bior	eactors		Α
	В	Design of con	nponents of Bi	oreactor (Main vessel,	В
		Sparger and N	(lixer)		
	С	Scale-up strat	egies of biorea	ctor	С
	Unit 3	Working of I	Bioreactor		Unit 3
	А	Heat transfer	in CSTR ferme	entor	А
	В	Mass transfer	in CSTR ferm	entor	В
	С	Monod mode	l		С
	Unit 4	Downstream	Processing		Unit 4
	А	Cell disruptio	n and Product	isolation	А
	В	Sedimentation	n, floatation, ad	dsorption and	В
		chromatograp	hy		
	С	Solvent extrac	ction		С
	Unit 5	Industrial A	oplications		Unit 5
	A	Industrial pro- acids	duction of alco	bhol, citric acid and amino	А
	В	Industrial pro	duction of enz	ymes and antibiotics	В
	С	Fermented da			С
	Weightage	CA	MTE	ETE	
	Distribution	25%	25%	50%	
	Text book/s*	Doran P.M., "Bioprocess Engineering Principles" Academic Press, 2012.			
	Other	1. Shuler M	M.L., "Biopr	ocess Engineering: Basic	
	References		, Pearson Edu	0 0	
		-	-	ochemical Engineering and	
			logy", Elsevie		

SHARDA UNIVERSITY

A+ NAAC

BTY624 Applied Genetic Engineering

School: SSET Batch: 2023-25 Programme: Current Academic Year: 2023-24 M.Tech Semester: 01 Biotechnology Semester: 01 Ocurse Code BTY624 2 Course Title Applied Genetic Engineering 3 Credits 5 (Lab + Theory) 4 Contact 3-0-4 Hours I. To acquire knowledge of principle and techniques involved in genetic engineering. 2. Course Status Core 5 Course 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the k	a 1			1		
M.Tech Semester: 01 Biotechnology Semester: 01 3 Course Title Applied Genetic Engineering 3 Credits 5 (Lab + Theory) 4 Contact 3-0-4 Hours (LTP)						
Branch: Biotechnology Semester: 01 1 Course Code BTY624 2 Course Title Applied Genetic Engineering 3 Credits 5 (Lab + Theory) 4 Contact Hours (LTP) 3-0-4 5 Course Status Objective Core 5 Course Objective 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabut		0	Current Academic Year: 2023-24			
Biotechnology Image: Status Probability of the p	-					
1 Course Code BTY624 2 Course Title Applied Genetic Engineering 3 Credits 5 (Lab + Theory) 4 Contact Hours (LTP) 3-0-4 5 Course Status Core 5 Course Status Comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hor genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired char-zt-ristics using genetic engineering CO6: Understand the basic methods of creating reco-timant genes, amplifying the same, creating libraries, engineering proteirs and finally apply the knowledge in creating transgenic products with zene delivery tools 7 Course Description The course covers fundamentals of genetic engineering transgenic products with zene delivery tools 8 Outline syllation Specific advanced applications for the benefit of mankint/ Bestription CO Mapping 8 Outline syllation Specific advanced applications for the benefit of mankint/ Bestription CO Mapping			Semester: 01			
2 Course Title Applied Genetic Engineering 3 Credits 5 (Lab + Theory) 4 Contact Hours (LTP) 3-0-4 Course Status Core 5 Course Status Core 5 Course Objective 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that Leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping 4 Enzymes and DNA labelling A CO1, CO6	Biot					
3 Credits 5 (Lab + Theory) 4 Contact Hours (LTP) 3-0-4 5 Course Status Core 5 Course 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping 101 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA	1	Course Code	BTY624			
4 Contact Hours (LTP) 3-0-4 5 Course Status Core 5 Course Objective 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping CO1, CO6 4 Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA		Course Title				
Hours (LTP) Course Status Core 5 Course Objective 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabut CO Mapping A Restriction Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA	3	Credits	5 (Lab + Theory)			
(LTP) Course Status Core 5 Course 1. To acquire knowledge of principle and techniques involved in genetic engineering. 6 Course 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 7 Course CO1: Know and apply the molecular tools, vectors, hosts of genetic engineering cosis 7 Course CO6: Understand the basic methods of genetic engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course The course covers fundamentals of genetic engineering transgenic organism for the benefit of mankind 8 Outline syllabut Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA	4	Contact	3-0-4			
Course Status Core 5 Course Objective 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping Init 1 Enzymes and DNA labelling CO6: conesive and blunt ends by restriction enzymes. DNA		Hours				
5 Course Objective 1. To acquire knowledge of principle and techniques involved in genetic engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA		(LTP)				
Objective engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course 9 Outline syllabus 8 Outline syllabus 4 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA		Course Status	Core			
Objective engineering. 2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course 9 Outline syllabus 8 Outline syllabus 4 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA	5	Course	1. To acquire knowledge of principle and techniques involved	ved in genetic		
2. To comprehend the basic strategies of cloning and expression so that may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description 8 Outline syllabus 4 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA		Objective		C		
may use it for changing the constitution of an organism for human benefit. 3. To know about applications of genetic engineering in industry and health sector 6 Course Outcomes 0.00000000000000000000000000000000000		5	2. To comprehend the basic strategies of cloning and expre	ssion so that		
6 Course Outcomes CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping 4 Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6						
6 Course CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation 6 Course CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping 4 Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6						
6 Course CO1: Know and apply the molecular tools, vectors, hosts for genetic manipulation 6 Course CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping 4 Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6			3. To know about applications of genetic engineering in ind	dustry and		
Outcomes manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabution A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA				5		
Outcomes manipulation CO2: Comprehend the basic principle of cloning and rDNA technology. CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabution A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA						
Image: Color C	6	Course	CO1: Know and apply the molecular tools, vectors, hos	sts for genetic		
CO3: Learn the optimization and technique of DNA amplification by PCR CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabut CO Mapping A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA		Outcomes	manipulation	_		
8 Outline syllabus CO4: Analyze gene and protein expression patterns CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6			CO2: Comprehend the basic principle of cloning and rDNA	A technology.		
CO5: Create transgenic organisms with desired characteristics using genetic engineering CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools Course The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind Outline syllabus CO Mapping Unit 1 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA			CO3: Learn the optimization and technique of DNA amplifi	cation by PCR		
8 Outline syllabus CO Mapping 8 Outline syllabus CO Mapping A Restriction Enzymes and blunt ends by restriction enzymes. DNA CO1, CO6			CO4: Analyze gene and protein expression patterns	-		
CO6: Understand the basic methods of creating recombinant genes, amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools Course The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind Outline syllabus CO Mapping Unit 1 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA			CO5: Create transgenic organisms with desired charac	teristics using		
amplifying the same, creating libraries, engineering proteins and finally apply the knowledge in creating transgenic products with gene delivery tools Course The course covers fundamentals of genetic engineering that leads to specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping Unit 1 Enzymes and DNA labelling CO Mapping A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6				-		
apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description 8 Outline syllabus Unit 1 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA			CO6: Understand the basic methods of creating recom	binant genes,		
apply the knowledge in creating transgenic products with gene delivery tools 7 Course Description 8 Outline syllabus Unit 1 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA			amplifying the same, creating libraries, engineering protein	ins and finally		
7 Course The course covers fundamentals of genetic engineering that leads to bescription 8 Outline syllabus CO Mapping Image: Market Mark				•		
Description specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping Unit 1 Enzymes and DNA labelling CO1, CO6 A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6						
Description specific advanced applications for the benefit of mankind 8 Outline syllabus CO Mapping Unit 1 Enzymes and DNA labelling CO1, CO6 A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6	7	Course	The course covers fundamentals of genetic engineering that	t leads to		
8 Outline syllabus CO Mapping Unit 1 Enzymes and DNA labelling CO Mapping A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA CO1, CO6						
Unit 1 Enzymes and DNA labelling A Restriction Enzymes and their types; Generation of cohesive and blunt ends by restriction enzymes. DNA	8	· · ·				
A Restriction Enzymes and their types; Generation of CO1, CO6 cohesive and blunt ends by restriction enzymes. DNA						
cohesive and blunt ends by restriction enzymes. DNA		-		CO1, CO6		
				- ,		
			modifying enzymes: DNA ligase, Klenow Enzyme, T4			

A	Principle and application of gene silencing; Gene silencing	CO5, CO6
Unit 5	Gene targeting and silencing	CO5 CO2
IInit 5	protein engineering by PCR	
	mutagenesis by PCR, Overlap extension PCR, Chimeric	
	Inverse PCR, Real-time PCR, TaqMan probe, site directed	
	primer design, RT PCR, Multiplex PCR, Nested PCR,	
	PCR, primer designing, Gene specific and degenerate	
C	PCR and its types and their applications: factors affecting	CO4, CO6
	qPCR, Principles in maximizing gene expression	
В	Study of Gene Expression, Northern and Western blotting,	CO4, CO6
	Methodologies to reduce formation of inclusion bodies	
	protein expression, inclusion body formation.	
	for codon optimization, optimization of induction of	
Α	Components of an expression plasmid vector, strategies	CO4, CO6
Unit 4	Gene Expression and <i>In vitro</i> DNA Amplification	
	Screening by PCR, LAMP PCR.	
	methods-complementation, insertional inactivation.	
C	Screening of libraries by colony hybridization, Screening	CO3, CO6
	and cDNA libraries, Jumping and hopping libraries	
В	Selection of transformants; Construction of genomic DNA	CO3, CO6
	Transformation)	
	recombinant DNA into host cells (different strategies of	
	adapters. TA cloning, TOPO-TA cloning, insertion of	
Α	Insertion of foreign DNA into vectors; Cloning using	CO3, CO6
Unit 3	Steps in Cloning	
	vectors	
	vectors, Ti and Ri as vectors, Yeast vectors, Shuttle	
	Baculovirus and Pichia vectors system, Plant based	
C	Expression vectors: His-tag and GST-tag based vectors,	CO2, CO6
	Adenovirus based vector	
	Animal Virus derived vectorsSV-40 & retroviral vectors,	
В	Cosmids; Artificial chromosome vectors (YACs; BACs);	CO2, CO6
D	and Replacement vectors	
	Bluescript vectors, Phagemids; Lambda vectors, Insertion	
Α	Plasmids; Bacteriophages; M13 mp vectors; PUC19 and	CO2, CO6
Unit 2	Vectors for Cloning	002 001
II	techniques	
	Radioactive and non-radioactive probes, Hybridization	
C	Labeling of DNA: Nick translation, Random priming,	CO1, CO6
C	Homopolymeric tailing	<u>CO1 CO(</u>
В	Cohesive and blunt end ligation; Linkers, Adaptors;	CO1, CO6
D		<u>CO1 CO(</u>
	phosphatase and other DNA modifying enzymes	

artificial miRNAs; Construction of siRNA and a miRNA vectors				NA
В	targeting: Mega nucleas	ses, CO5, CO6		
С	CRISPR-Cas	systems and its	s various applications	CO5, CO6
Mode of examination	Theory/Quiz			
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*		"Gene Clonin John Wiley &	ng and DNA Analysis: 25 Sons, 2010	An
Other	1. Old R.W	and Primrose	e S.B., "Principles of Ge	ene
References	Manipulat 2002. 2. Dale W., v to Genom	nes		
	Technolog	gy", John Wile	y, 2011.	

BTY625 Enzyme Engineering & Technology

School: SSET		Batch: 2023-25		
	gramme:	Current Academic Year: 2023-24		
M.T				
Bra	nch:	Semester: 01		
Biot	echnology			
1	Course Code	BTY625		
2	Course Title	Enzyme Engineering & Technology		
3	Credits	3		
4	Contact	3-0-0		
	Hours			
	(LTP)			
	Course Status	Core		
5	Course	With this Course the students		
	Objective	1. Will acquire knowledge fundamental Knowledge o	f Enzymes	
	5	2. Will get useful exploitation of enzymes physica	-	
		properties		
		3. Use Enzymes biocatalysts in the biotransformation		
-		Know the Industrial, Research and Therapeutic application	s of Enzymes.	
6	Course	CO1: Basics of Enzymes and its Classification	1.	
	Outcomes	CO2: Evaluate the role of substrates and cofactors in enzyr	ne kinetics.	
		CO3: Be able to rationally engineer enzymes		
		CO4: Be able to understand principles of enzyme immobili		
		CO5: Implement the use of enzymes for industrial applications		
_	0	CO6: Be able to apply engineering of enzymes to case stud		
7	Course	The course covers fundamentals of genetic engineering tha	t leads to	
0	Description	specific advanced applications for the benefit of mankind	COM :	
8	Outline syllabu		CO Mapping	
	Unit 1	Enzymes, coenzymes and cofactors	<u> </u>	
	А	Enzymes: Classification, mode of action, activation,	CO1, CO6	
		specificity, Source of enzymes; production, isolation and		
	-	purification of enzymes	201 201	
	В	Characterization in terms of pH, temperature, ionic	CO1, CO6	
		strength, substrate and product tolerance, effects of metal		
	~	ions; Coenzymes and cofactors		
	C	Coenzymes, classification of vitamins, role and	CO1, CO6	
		mechanism of action of some important coenzyme		
		(NAD+/NADP+, FAD, lipoic acid, tetrahydrofolate, B12-		
		coenzyme), role of cofactors with specific examples		
	Unit 2	Enzyme kinetics		
	А	Enzyme as biological catalysts; Enzyme action, active site,	CO2, CO6	
		functional group, enzyme substrate complex, cofactors,		

		Mishardia Mantan amatian IZ 1 XZ	
		Michaelis-Menten equation, Km and Vmax, enzyme inhibition; order of reaction, methods of plotting enzyme	
		kinetics data	
-	В	Enzyme turnover number. competitive, non-competitive,	CO2, CO6
	D	uncompetitive, irreversible; order of reaction, methods of	002,000
		plotting enzyme kinetics data; determination of Kcat, Km,	
		Vmax, Ki, Half-life, activation and deactivation energy	
		etc,	
-	С	Cross-linked enzyme aggregates, Cross linked enzymes,	CO2, CO6
	-	enzyme crystals, their use and preparation; Enzyme	,
		induction, repression, covalent modification, Isoenzymes,	
		allosteric effects	
	Unit 3	Enzyme engineering	
	А	Introduction, Random and rational approach of protein	CO3, CO6
		engineering; Enzyme modification and site-directed	
_		mutagenesis	
	В	Chemical modifications of proteins, Directed evolution	CO3, CO6
		and its application in Biocatalysis	
	С	Various approaches of creating variant enzyme molecules.	CO3, CO6
_	Unit 4	Immobilized enzymes	
	А	Immobilization of enzyme and whole cells; Methods of	CO4, CO6
		immobilization -ionic bonding, adsorption, covalent	
		bonding (based on R groups of amino acids),	
-		microencapsulation and gel entrapment.	
	В	Immobilization of multiple enzyme system and	CO4, CO6
		immobilized enzymes in industrial processes. Advantages	
		and disadvantages of immobilization; case studies; starch	
-	0	conversion; APA production	<u>CO4 CO(</u>
	C	Biotransformation using soluble as well as immobilized enzymes; Calculation of diffusional resistances and	CO4, CO6
		Thiele's modulus, multi-step immobilized enzyme systems	
	Unit 5	Applications of enzyme technology	
-	A	Importance of enzymes in diagnostics, Enzyme in organic	CO5, CO6
	Λ	solvents and ionic liquids: Various organic solvents and	005,000
		ionic liquids used in biocatalysis	
-	В	Potential in organic solvents and ionic liquids;	CO5, CO6
	2	Applications of enzymes in analysis. Use of proteases in	000,000
		food, leather and wool industries, starch hydrolyzing	
		enzymes	
	С	Uses of lactase in dairy industry, glucose oxidase and	CO5, CO6
		catalase in food industry.	,
	Mode of	Theory/Quiz	
	examination		
		CA MTE ETE	
		•	

Weightage Distribution	25%	25%	50%	
Text book/s*	,	/ Edition 7, I	ox, Lehninger Principles of Publisher:Freeman, W. H. &	

BTY 626: Microbiology

School: SSET		Batch: 2023-25		
	gramme:	Current Academic Year: 2023-24		
М.Т	Tech			
Bra	nch:	Semester: 1		
Biot	echnology			
1	Course Code	BTY 626		
2	Course Title	Microbiology		
3	Credits	2		
4	Contact Hours (LTP)	2-0-0		
	Course Status	Core		
5	Course Objective	This course is designed with objectives of fundamental microbial world on how microbes live, divide and cause course will also cover the vast diversity of microbes maintain their genomes	diseases. The	
6	Course Outcomes	 After the successful completion of this course students will be able to: CO1: Determine Morphology, structure, growth and nutrition of bacteria CO2: Evaluate Microbial taxonomy and evolution of diversity CO3: Analyse Sterilization, disinfection and antisepsis: physical and chemical methods for control of microorganisms CO4: Explanation properties of viruses, viral structure, taxonomy of virus, viral replication CO5: Characterize Host-pathogen interaction, ecological impact of microbes; symbiosis 		
7	Course Description	CO6: Explanation of overall role of Microbiology in health and disease The course covers microbial characteristics and common infectious agents and the diseases that they cause. The student will be able to evaluate methods used in the clinical microbiology lab and their regulation		
8	Outline syllabus		CO Mapping	
	Unit 1	Microbial characteristics:		
	А	Morphology, structure, growth and nutrition of bacteria, bacterial growth curve		
	В	bacterial culture methods; bacterial genetics: mutation and recombination in bacteria,	CO1, CO6	
	С	plasmids, transformation, transduction and conjugation; antimicrobial resistance		
	Unit 2	Microbial diversity:		

I		
A	Microbial taxonomy and evolution of diversity, classification of microorganisms, criteria for classification; classification of bacteria	CO2, CO6
В	Cyanobacteria, endospore forming bacteria,	
	Mycobacteria and Mycoplasma.	
С	Archaea: Halophiles, Methanogens; eukarya: algae,	
	fungi, slime molds and protozoa; extremophiles and unculturable microbes.	
	unculturable inicrobes.	
Unit 3	Control of microorganisms:	
A	Sterilization, disinfection and antisepsis	
B	physical and chemical methods for control of	
D	microorganisms	CO3, CO6
С	antibiotics, antiviral and antifungal drugs, biological	
	control of microorganisms.	
Unit 4	Virology:	
A	General properties of viruses, viral structure, taxonomy	
	of virus, viral replication	
В	cultivation and identification of viruses; sub-viral	CO4, CO6
	particles – viroids and prions. Cellular receptors and virus	,
	entry:	
С	Cellular interactions—clathrin coated pits, lipid rafts,	
	caveolae, endocytosis and virus uncoating mechanisms.	
Unit 5	Host-microbes interaction:	
A	Host-pathogen interaction, ecological impact of	
	microbes; symbiosis (Nitrogen fixation and ruminant	
	symbiosis)	CO5, CO6
В	microbes and nutrient cycles; microbial communication	
C	system	
C	bacterial quorum sensing; microbial fuel cells; prebiotics and probiotics.	
Mode of	Theory	
examination		
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Text book/s*	Hogg S. Essential Microbiology, John Wiley and Sons.	
	Cambridge University Press.2018	
Other	Prescott LM, Harley JP, Klein DA. Microbiology,	
References	McGraw Hill, 2018	
	7 7 7	1

Wilson K. and Walker J., "Principles and Techniques of Biochemistry and Molecular Biology", Cambridge	
University Press, 2015.	

BTY635 Omics Technologies

Scł	nool: SSET	Batch: 2023-2025		
Pro	ogramme: Tech	Current Academic Year: 2023-24		
	anch:	Semester: 02		
	otechnology			
1	Course Code	BTY-635		
2	Course Title	Omics Technology		
3	Credits	4		
4	Contact Hours (L-T-P)	4-0-0		
	Course Status	Core		
5	Course Objective	Understand genome mapping methods and genomic markers RAPD, RF analyses.		
		Discuss about gene expression analysis, micro array experimental identification and analysis of proteins.	-	
		Understand and discuss the various techniques like MALDI-TOF, Exchange, Reversed-phase, and size exclusion.	Affinity, Ion	
6	Course	After completion of course the students will be able to:		
	Outcomes	CO1: explain genome mapping methods, SNP analyses, and about mar CO2: illustrate complex protein mixtures using Nano-liquid chromatogr sequencing,Chromatin accessibility assays.		
		CO3: recall various techniques such as mass spectrometery, MALDI- MS analyses.		
		CO4: interpret bioinformatic analysis of large-scale microarray data for transcriptomics.	_	
		CO5: summarize basic aspects of Chain termination and chemical sequencing methods. Genome-wide association (GWA) analysis.	al degradation	
		CO6: develop an understanding of post-translational modification (PT) Characterization of protein interaction using yeast two-hybrid system microarrays.	· •	
7				
8	Outline syllabus		CO Mapping	
	Unit 1	Genomics and methods in genomics		
	А	Genome mapping methods (genetic and physical); RAPD, RFLP, SSR, SNP analyses; Fluorescence <i>in-situ</i> Hybridization (FISH) techniques.	CO1, CO6	
	В	Advances in gene finding and functional prediction; Chain termination and chemical degradation sequencing methods. Genome-wide	CO1, CO2	

	association (GWA) analysis; Comparative Genomic Hybridization (CGH).	
С	Massively parallel Signature Sequencing (MPSS); Whole genome shot-gun sequencing and its applications; Introduction of Next Generation Sequencing (NGS).	CO1, CO
Unit 2	Transcriptomics and methods in transcriptomics	
A	Gene expression analysis by cDNA and oligonucleotide arrays.	CO2, CO
В	Micro array experimental analysis and data analysis.	CO2, CO
С	Bioinformatic analysis of large-scale microarray data for comparative	CO2, CO
	transcriptomics. RNA-seq.	
Unit 3	Proteomics and methods in proteomics	
A	Over-view of strategies used for the identification and analysis of proteins; 2-DE of proteins for proteome analysis; Liquid chromatography separations in proteomics (Affinity, Ion Exchange, Reversed-phase, and size exclusion).	CO3, CO
В	Analysis of complex protein mixtures using Nano-liquid chromatography (Nano-LC) coupled to Mass-spectrometry analysis. Introduction to Mass spectrometers; MALDI-TOF and LC-MS analyses.	CO3, CO
С	Analysis of post-translational modification (PTM) of proteins; Characterization of protein interactions using yeast two-hybrid system and Protein microarrays.	CO3, CO
Unit 4	Metabolomics and methods in metabolomics	
А	Introduction to metabolic engineering, comprehensive models of	CO4, CO
	cellular reactions with stoichiometry and reaction rates.	
В	metabolic flux analysis of exactly/over/under determined systems; Shadow price, sensitivity analysis; Monitoring and measuring the metabolome.	CO4, CO
С	Methods for the experimental determination of metabolic fluxes by isotope labelling metabolic fluxes using various separation-analytical techniques; GC-MS for metabolic flux analysis.	CO4, CO
Unit 5	Epigenomics and methods in epigenomics	
Α	High throughput and single cell epigenomics, Histone modificationassays: ChIP-Chip and ChIP-Seq. DNA methylation assays.	CO5, CO
В	Restriction endonuclease-based methods-Non genome-wide approaches and genome wide approaches.	CO5, CO
С	Bisulfite sequencing. Chromatin accessibility assays. Direct detection methods.	CO5, CO
Mode of	Theory/Jury/Practical/Viva	
examination		
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Distribution		

Other	Delves P.J, Martin S.J., Burton D.R. and Roitt I.M., (2011) Roitt's	
References	Essential Immunology, Wiley	
	Paul B.W.E, "Fundamental Immunology", Lippincott Williams and	
	Wilkins, 2008.	

BTY642- Plant Transgenic Technology

	nool: SSET	Batch: 2023-2025			
	ogramme: Fech	Current Academic Year: 2023-24			
	anch:	Semester: 02			
	technology				
1	Course Code	BTY642			
2	Course Title	Plant Transgenic Technology			
3	Credits	3			
4	Contact Hours (L-T-P)	3-0-0			
	Course Status	Elective			
5	Course Objective	Discuss about the transgenic plants, health benefits of transgenic plants of antibodies and pharmaceuticals in plants. Understanding about genome engineering.	, production		
6	Course Outcomes	 CO1. To understand basics of transgenics and plant transformation methods CO2. To learn about selection and analysis of transgenic plants. CO3. To understand about factors influencing transgene expression level CO4. To learn about Gene Editing tools and silencing in plants CO5. To understand various applications of transgenic plants. CO6. To have overall understanding of methods and applications various aspect plant transgenics in research and industry. 			
7	Course Description	The course will help students to understand methodology and a transgenic technologies. With step-by-step methods on genome editing			
		a range of potential applications, improving crop yield.	Γ		
8	Outline syllabus		CO Mapping		
	Unit 1	Introduction to Transgenic Plants			
	А	Overview of plant genome and genome engineering	CO1, CO6		
	В	Transgenesis, Cisgenesis and intragenesis, Comparison with breeding	CO1, CO6		
	С	Plant transformation methods-direct and indirect.	CO1, CO6		
	Unit 2	Selection and analysis of transgenic plants			
	A	Selectable and reportable markers, Marker free plants, Non-antibiotic based selection.	CO2, CO6		
	В	DNA and copy number genotyping (PCR and Southern), RNA- and protein-based conformation (Real-time PCR, Northern, Western, ELISA).	CO2, CO6		
	С	Trait stacking in transgenic crops- challenges and opportunities.	CO2, CO6		
	Unit 3	Factors influencing transgene expression level			
	А	Transcription and translation related issues, PTGS. Co-suppression.	CO3, CO6		
	В	Position effect and methods to overcome gene silencing	CO3, CO6		
	С	Promoters and other elements to express transgenes.	CO3, CO6		
	Unit 4	Gene Editing and silencing in plants			

А	Genome editing technology, CRISPR/Cas etc.	CO4, CO6		
В	Gene silencing using artificial miRNAs, RNAi techno RNA, lncRNA-based gene silencing	logy, antisense CO4, CO6		
С	Random mutagenesis methods (T-DNA, EMS, Transgenic versus genome edited plants.	transpososns), CO4, CO6		
Unit 5	Applications of Transgenic Plants Health benefits of transgenic plants. Improved seed storage proteins;			
A	Health benefits of transgenic plants. Improved seed storage proteins; Improving and altering the composition of starch and plant oils; enhancement of micro-nutrients – beta carotene, vitamin E, iron; Molecular pharming - production of antibodies and pharmaceuticals in plants.			
В	Agricultural applications of transgenic plants. Herbicide resistance; Pest resistance, Bt toxin, synthetic Bt toxin; Protease inhibitor; and other plant derived insecticidal genes; nematode resistance; Crop Engineering for disease resistance; genetic improvement of abiotic stress tolerance, Genetic engineering for male sterility- Barnase- Barstar; Delayed fruit ripening; polygalacturanase, ACC synthase, ACC oxidase.			
С	Bio-safety concerns of transgenic plants; Global statu plants, Regulation and approval of GM Plants.	s of transgenic CO5, CO6		
Mode of examination	Theory/Jury/Practical/Viva			
Weightage	CA MTE ETE			
Distribution	25% 25% 50%			
Text book/s*	Neil Stewart 2008. Plant Biotechnology and Genetics: Techniques and Applications, Wiley.	Principles,		
Other References	1. Glick, B. R., Pasternak, J. J. (2010). Molecular Principles and applications of recombinant DNA. Wash ASM Press.			
	 Primrose, S. B., Twyman, R. M., Primrose, S. B., &a S. B. (2006). Principles of gene manipulation and geno MA: Blackwell Pub. Clarke, A.R. (2002) Transgenesis Techniques Princip Protocols Editors Springer. 	mics. Malden,		

BTY644 Plant Molecular Physiology

	iool: SSET	Batch: 2023-2025				
Programme:		Current Academic Year: 2023-24				
М.'	Tech	Semester: 02				
Bra	anch:					
Bio	otechnology					
1	Course Code	BTY644				
2	Course Title	Molecular Plant Physiology				
3						
4	Contact Hours (L-T-P)	3-0-0				
	Course Status	Elective				
5	Course	Discuss about the properties of water, transport processes in plant,	photosynthesis			
	Objective	Discuss about the properties of water, transport processes in plant, photosynthesis Understanding about lipid metabolism in plants, enhancing plant productivity. CO1: illustrate responses of plants to water, plant development.				
6	Course	CO1: illustrate responses of plants to water, plant development.				
	Outcomes	CO2: explain plant growth regulators, nitrogen and sulfur metabolism.				
		CO3: recall biotechnological applications of light signaling in plants.				
			sms and plant			
			1			
7	Course	The course will help students to understand plant water relations				
7	Course	1 1	-			
7	Course Description	processes of plants, different aspects of respiratory metabolisms and	l plant growth			
7		processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating	l plant growth			
	Description	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components.	l plant growth g physiological			
7 8	Description Outline syllabus	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components.	l plant growth g physiological			
	Description Outline syllabus Unit 1	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations	l plant growth g physiological CO Mapping			
	Description Outline syllabus	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components.	l plant growth gphysiological CO Mapping			
	Description Outline syllabus Unit 1	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant	l plant growth gphysiological CO Mapping			
	Description Outline syllabus Unit 1 A	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion	l plant growth g physiological CO Mapping CO1, CO6			
	Programme: M.TechCurr Runch: Bench: BiotechnologySema 	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates,	l plant growth g physiological CO Mapping CO1, CO6			
	Description Outline syllabus Unit 1 A	processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion	l plant growth g physiological CO Mapping CO1, CO6			
	Description Outline syllabus Unit 1 A B	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem loading. 	l plant growth g physiological CO Mapping CO1, CO6			
	Description Outline syllabus Unit 1 A B	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem 	l plant growth g physiological CO Mapping CO1, CO6 CO1, CO6			
	Description Outline syllabus Unit 1 A B C	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem loading. Responses of plants to water i.e. drought and flooding and salt-stress, crop improvement for tolerance to water stress and salt stress. 	l plant growth g physiological CO Mapping CO1, CO6 CO1, CO6			
	Description Outline syllabus Unit 1 A B C Unit 2	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem loading. Responses of plants to water i.e. drought and flooding and salt-stress, crop improvement for tolerance to water stress and salt stress. 	l plant growth g physiological CO Mapping CO1, CO6 CO1, CO6 CO1, CO6			
	Description Outline syllabus Unit 1 A B C Unit 2	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem loading. Responses of plants to water i.e. drought and flooding and salt-stress, crop improvement for tolerance to water stress and salt stress. Photosynthesis: Chlorophylls, Light absorption, emission, energy transfer, Z- scheme 	l plant growth g physiological CO Mapping CO1, CO6 CO1, CO6			
	Description Outline syllabus Unit 1 A B C Unit 2 A	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem loading. Responses of plants to water i.e. drought and flooding and salt-stress, crop improvement for tolerance to water stress and salt stress. Photosynthesis: Chlorophylls, Light absorption, emission, energy transfer, Z- scheme of photosynthesis, electron transfer, photophosphorylation. 	l plant growth g physiological CO Mapping CO1, CO6 CO1, CO6 CO1, CO6			
	Description Outline syllabus Unit 1 A B C Unit 2 A	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem loading. Responses of plants to water i.e. drought and flooding and salt-stress, crop improvement for tolerance to water stress and salt stress. Photosynthesis: Chlorophylls, Light absorption, emission, energy transfer, Z- scheme 	l plant growth g physiological CO Mapping CO1, CO6 CO1, CO6			
	Description Outline syllabus Unit 1 A B C Unit 2 A	 processes of plants, different aspects of respiratory metabolisms and regulations by hormones, biotechnological applications by manipulating components. Water relations Properties of water and solutions, cell water potential, soil plant atmosphere continuum. Transport processes in plant: active and passive transport systems, ion channels, driving forces and flow, transport of photo assimilates, transport of proteins and nucleic acids through phloem, phloem loading. Responses of plants to water i.e. drought and flooding and salt-stress, crop improvement for tolerance to water stress and salt stress. Photosynthesis: Chlorophylls, Light absorption, emission, energy transfer, Z- scheme of photosynthesis, electron transfer, photophosphorylation. CO2 fixation, C3, C4, CAM plants, environment and its impact on 	l plant growth g physiological CO Mapping CO1, CO6 CO1, CO6 CO1, CO6			

В	0	0	Auxin, Cytokinins, Gibberellins, Abscisic	CO3, CO6
С	Plant Hormo Strigolactone;	nes: Ethyl biosynthesi	stasis, transport, and signaling. ene, Jasmonic acid, Brassino steroid, is, homeostasis, transport, and signalling. on of hormonal signalling.	CO3, CO6
Unit 4		••		
А	Photoreceptors morphogenesis		omes, Cryptochromes, phototropins, photo-	CO4, CO6
В			hnological applications of light signalling in	CO4, CO6
Unit 5	Mineral nutri	tion and as	similations of inorganic nutrients:	
А	nitrogen and st cations.	ulfur metab	olism, and assimilation of other anions and	CO5, CO6
В	-	-	ts: fatty acid biosynthesis, membrane lipid ation, triacylglycerols, complex lipids.	CO5, CO6
С	Enhancing pla	nt productiv	vity and alleviation of N and S deficiency, mperature stress by altering membrane lipid	CO5, CO6
Mode of examination	Theory/Jury/Pr	ractical/Viva	a	
Weightage	CA N	MTE	ETE	
Distribution	25% 2	25%	50%	
Text book/s*	 Taiz, L., Zeiger, P. E. E., Mller, P. E. I. M., & Murphy, P. A. C. A. (2018). Fundamentals of plant physiology. Sinauer Associates. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). (2015). Biochemistry and molecular biology of plants (2nd ed.). Wiley-Blackwell. 			
Other				
References	(4th ed.) John	Wiley &am	p; Sons, Inc.	

BTY641 Plant Tissue Culture and Genetic Transformation

School: SSET		Batch: 2023-2025				
Programme: M.Tech Branch:		Current Academic Year: 2023-24				
		Semester: 02				
Bic	otechnology					
1	Course Code	BTY-641				
2	Course Title	Plant tissue culture and genetic transformation				
3	Credits	3				
4	Contact Hours (L-T-P)	3-0-0				
	Course Status	Elective				
5	Course Objective	suspension culture. Understanding about plant genetic engineering, synthesis of secondary	Discuss about the applications of plant tissue culture, protoplast culture, cell suspension culture. Understanding about plant genetic engineering, synthesis of secondary metabolites in			
6	Course Outcomes	plants and agrobacterium biology. CO1: illustrate plant genetic engineering – DNA delivery methods: vector mediated method CO2: explain DNA delivery methods CO3: recall Plant selectable markers; Reporter genes; Transient and stable transformation				
		CO4: interpret various vectors for plant transformation CO5: summarize basic production of alkaloids and other secondary me plants CO6:develop an understanding of the designing gene constructs.	tabolites in			
7	Course	The course will help students to understand lant genetic engineering – DNA	A delivery			
	Description	methods, applications of plant tissue culture, agrobacterium biology				
8	Outline syllabus		CO Mappin			
	Unit 1	Concepts and techniques in plant tissue culture				
	A	Tissue culture media; Plant hormones and morphogenesis; Direct and indirect organogenesis; Direct and indirect somatic embryogenesis.	CO1, CO6			
	В	Applications of plant tissue culture – Micropropagation of field and ornamental crops; Virus elimination by meristem culture, meristem tip culture and micrografting.	CO1, CO6			
	С	Wide hybridization - embryo culture and embryo rescue techniques; Ovule, ovary culture and endosperm culture; Artificial seeds.	CO1, CO6			
	Unit 2	In vitro culture methods and applications				
	A	Androgenesis and gynogenesis - production of androgenic and gynogenic haploids - diploidization; Callus culture and <i>in vitro</i> screening for stress tolerance and somaconal variation for other useful traits; Large-scale cell suspension culture –Synthesis of secondary metabolites in plants.	CO2, CO6			

В	Production of alkaloids and other secondary metabolites in plants and	CO2, CO6		
	yeasts, techniques to enhance secondary metabolite production.	,		
С	Protoplast culture - isolation and purification; Protoplast culture;	CO2, CO6		
	Protoplast fusion; Somatic hybridization - Production of Somatic	,		
	hybrids, maternal inheritance and cytoplasmic male sterility; Cybrids			
	– Applications; – causes and applications; haploid plants and their			
	uses in biotechnology and plant breeding.			
Unit 3	DNA delivery methods-Agrobacterium			
А	Plant genetic engineering – DNA delivery methods: vector mediated	CO3, CO6		
	method – Agrobacterium tumefaciens and direct DNA delivery			
	methods. Agrobacterium mediated method - Agrobacterium biology.			
В	Ti plasmid-based transformation; crown gall and hairy root disease,	CO3, CO6		
	Ti and Ri plasmids, T-DNA genes, borders, overdrive, chromosomal	,		
	and Ti plasmid virulence genes and their functions, vir gene			
	induction, mechanism of T-DNA transfer; Ti plasmid vectors, vir			
	helper plasmid, super virulence and monocot transformation.			
С	binary vector; genetic engineering of the Ti plasmid (Binary &	CO3, CO6		
-	cointegration), Vectors for chloroplast transformation and their difference	,		
	from Agrobacterium ones, Cre-Lox system for gene integration.			
Unit 4	DNA delivery methods-Direct DNA delivery methods			
А	Protoplasts using PEG; electroporation; laser-based DNA delivery,	CO4, CO6		
	particle bombardment; Vectors for direct DNA transfer.			
В	In planta transformation methods -Floral dip method, Chloroplast	CO4, CO6		
	transformation, expression using viral vectors.			
С	Agroinfiltration approach, Comparison with indirect method.	CO4, CO6		
Unit 5	Design of gene construct and advanced technologies.			
А	Designing gene constructs - Promoters (inducible, constitutive and	CO5, CO6		
	tissue-specific) and heterologous promoters, polyA signals; Protein			
	targeting signals.			
В	Plant selectable markers; Reporter genes; Transient and stable	CO5, CO6		
	transformation, Making chimeric gene construct, GAL4-UAS			
	enhancer trapping approach.			
С	Vectors for plant transformation, Gateway vectors for plant	CO5, CO6		
	transformation, super binary and ternary vectors.			
Mode of	Theory/Jury/Practical/Viva			
examination				
Weightage	CA MTE ETE			
Distribution	25% 25% 50%			
Text book/s*	1. Adrian S, Nigel WS, Mark RF (2008). Plant Biotechnology: The			
	genetic manipulation of Plants, Oxford University Press.			
	2. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture:			
	Theory and Practice. Elsevier Science Amsterdam. The Netherlands.			

	Other References	Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington	
--	------------------	---	--

BTY640: Transgenic Technology

School: SSET		Batch: 2023-2025				
	rogramme:	Current Academic Year: 2023-24				
M.Tech						
Bı	ranch:	Biotechnology				
1	Course Code	BTY640				
2	Course Title	Transgenic Technology				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Semester	2				
5	Course Objective	1. To learn in vitro regeneration, transformation, and gene ed the purpose of generating genetically modified plants for base research.	ic and applied			
		2. To learn in vitro techniques of animal cell and tissue cultur				
		of generating genetically modified animals for basic and appl				
		3. To understand the mechanism of genetic engineering of m	icrobes.			
 6 Course Outcomes 7 Course 		After successfully completion of this course students will be CO1: Understand in vitro regeneration of plants from differen CO2: Gain knowledge on the production of transgenic plants CO3: Elaborate to the various invitro technology in cloning CO4: Acquire the knowledge about application of genetically in the various fields of science. CO5: Illustrate use of microbes and techniques for manipulat microbial cells for the production of economically important CO6: Acquaint the students to the versatile tools and techni genetic engineering and transgenic organisms.	nt explants y modified animals tion and analysis of products. hiques employed in al repertoire which allo			
8	Description	related to transgenic organisms.				
	Unit 1	Propagation of Plants	CO1			
	А	History of plant tissue culture, types of media and their preparation				
	В	meristem, callus and suspension cell culture	1			
	С	protoplast fusion, somaclonal variation, and artificial seeds				
	Unit 2	Transgenic Plants	CO2,6			

A	Transgenic c	rops for toleran	ce to abiotic stress, engineering	
	crops	rops for toreful	tee to uplotte stress, engineering	
В	Modern appr			
	genes			
С		genomics posi	tional cloning-RNAi-mediated	
	crop improve	ement	-	
Unit 3	In vitro Tec	hnology		CO3
А			and development	
В	Transformati	on and Transfe	ction in cultured cells	
С	Application	of Invitro techn	ology in Modern genomics	
Unit 4	Transgenic	Animals		CO3,4, 6
А	Cell culture	for transgenic a	nimals	
В			chnology for generating	
	transgenic ar			
С	0	U , 1	oduction of human and animal	
 		s and pharmace	eutical proteins	
Unit 5	Transgenic	CO5,6		
A	expression a	nd tagging of re	ecombinant proteins in E. coli. in	
	S. cerevisiae			
В	Yeast one-h	ybrid assay, Ye	ast two hybrids system	
С			nicrobes, Production of	
		rugs, vitamins a	and therapeutic peptides using	
	microbes			
Mode of	Theory			
examination			202	
Weightage	CA	MTE	ETE	
 Distribution	25%	25%	50%	
Text book/s*	 Transgenesis Techniques Principles and Protocols Editors Alan R. Clarke Springer 2002 			
Other			2	
Other References			Γ. Maniatis, "Molecular Cloning: a Spring Harbor Laboratory Press,	
References	New York, 2		spring flatoor Laboratory Fless,	
	110W 10IK, 2000.			

School: SSET		Batch: 2023-2025	
Pro	ogramme:	Current Academic Year: 2023-24	
M.Tech			
Bra	anch:	Semester: 02	
Bio	otechnology		
1	Course Code	BTY613	
2	Course Title	Biological database and their management	
3	Credits	3	
4	Contact	3-0-0	
	Hours (LTP)		
	Course Status	Elective	
5	Course	1. This course surveys a wide range of biological databases an	d their
	Objective	access tools and enables students to develop proficiency in t	
	5	2. The course also focuses on the design of biological database	
		examines issues related to heterogeneity, interoperability, co	
		data structures, object orientation and tool integration.	_
6	Course	CO1: Review different biological databases and web based program	ming tools
	Outcomes	to make biological databases accessible.	
		CO2: Develop databases that store biological information (genom	-
		database, protein 3D structure database, gene expression profile molecular interaction database, etc).	e database,
		CO3: Develop computing tools for analyzing various kinds of bio	logical and
		experimental data, data mining from databases, computer simulation	
		systems and so on.	
		CO4: Develop ontologies necessary for data and knowledge des	cription of
		databases storing biological functions and integration of the basic d	
		CO5: Retrieve and interpret the data from different databanks (
		cDNA, rRNA, protein sequence, signal peptide and AIDS virus dat	
		CO6: Normalize database design and perform experiments usin	g SQL for
		specifying, authorization, viewing, encryption, structure indexing an	nd hashing.
		Design and distribute query processing recovery and operate mul	ti database
		and parallel databases systems.	
7	Course	To understand how the database is created and the ways to	-
	Description	Exploring the databases which contains the biological data. It also database design issues and also makes understand the way to protect	
8	Outline syllab		СО
			Mapping
	Unit 1	Introduction to Databases	

	•				001	
	А			dels, Basic concept of databases, Data	CO1	
_		independenc				
	В			acture of database management system	CO1	
	С	-		gram: Basic and advance concept,	CO1,	
		Application	of ER diagran	n in designing database system	CO6	
	Unit 2	Biological D	atabases I			
	А	Nucleic acid	sequence data	a banks, Genbank, EMBL, DDBJ	CO2	
	В	GenPept, nucleotide sequence databank			CO2	
Γ	С		1		CO2,	
		cDNA datab	ank		CO6	
	Unit 3	Biological D	atabases II			
Ē	А		equence data	bank	CO3	
Ē	В	rRNA data b			CO3	
	С			ks, Signal peptide data bank, NBRFPIR,	CO3,	
	0	SWISSPRO			CO6	
	Unit 4	Database Do			000	
-	A		0	3NF, 4NF, BCNF and 5NF	CO4	
F	B		, ,	, Security and integrity	CO4	
F	C				CO4,	
	C	Use of SQL for specifying, authorization, view, encryption, Storage structure indexing and hashing, Different types of file				
		organization				
	Unit 5	Distributed Database Structure				
-	A				CO5	
	A	recovery	sparency and a	autonomy, Distributed query processing	005	
Γ	В	Commit prot	ocol deadlock	k handling, Multi database system	CO5	
	С	-		and related issues, Web interface to	CO5,	
		database				
	Mode of	Theory/Jury/Practical/Viva				
	examination					
	Weightage	СА	MTE	ETE		
	Distribution	25%	25%	50%		
	Text book/s*			iological Databases", VSD Publications,		
	10At 000K/3	2012.	Russens., D	iological Databases, VDD I ublications,		
	Other	1. Chen	J.Y. and L	onardi S., "Biological Data Mining",		
	References		d Hall, 2009.			
		-		A.S., "Biological Database Modeling",		
1		Artech House, 2007.				

BTY615 Cell and Tissue Engineering

School: SSET		Batch: 2023-2025			
Programme:		Current Academic Year: 2023-24			
M.T					
Biot	echnology	Semester: Even(2 nd)			
1	Course Code	BTY615			
2	Course Title	Cell and Tissue Engineering			
3	Credits	3			
4	Contact	3-0-0			
	Hours				
	(LTP)				
	Course Status	Elective			
5	Course	1. To Study cell, tissue culture, media component			
	Objective	2. To Study Cell Viability and Kinetics			
	-	3. To Study Cell cloning, cell genetics			
		4. To Study industrial medical and agricultural applicatio	ns of cell and		
		tissue engineering.			
6	Course	After successfully completion of this course students will b	be able to:		
	Outcomes	1. Understand basics of Cell and Tissue culture, evalu	ate media and		
		aseptic techniques of establishing primary and S	Secondary cell		
		cultures.			
		2. Understand the concepts and Mechanism of			
		adherence, calculate growth kinetics parameter			
		cryopreservation technique for long term storing of			
		3. Evaluate Cell Characteristics, Cell Signaling, genet			
		continuous cell line from cells of different origin	and determine		
		their nutrient and environment requirements			
		4. Understanding Cell Cloning for Tissue Engineering	and Stem Cell		
		Therapy, Biomaterials for Cells			
		5. Understand Applications of Cell and Tissue Er	igineering for		
		Industrial, Agriculture medical applications	w by studying		
		6. Acquiring Acquaintance of Cell Culture Technolog cell, tissue culture, media component, cloning, cell			
		large scale industrial, agriculture and medical appli	0		
		and tissue engineering.	cations of cen		
7	Course	To acquire a fundamental and advanced knowledge of C	ell and Tissue		
	Description	Culture Technology by studying cell, tissue culture, med			
	Description	cloning, cell genetics and large scale industrial, agricultur	▲ ·		
		applications of cell and tissue engineering.			
		•			
8	Outline syllabu	IS	CO Mapping		
	Unit 1	Introduction to Cell and Tissue Culture	CO1,2		

Δ	History of Call Culture Call Tissue and organ culture	CO1
A	History of Cell Culture, Cell, Tissue and organ culture, Culture procedures	COI
В	Culture media and growth conditions, primary and	CO1
D	Secondary cultures	COI
С	Establishment and maintenance of cell lines and Risks in	CO2
C	a tissue culture laboratory and safety.	02
Unit 2	Cell Kinetics and Viability	CO2,3
A A	Cell cell communication, Characterization of cultured	CO2,3
Λ	cells morphology of cells	02
В	cell adhesion, proliferation, differentiation, Kinetics	CO2
D	involved in growth of cultured cells,	002
С	Cell viability, Methods for testing cell viability,	CO3
C	Cytotoxicity assays	005
Unit 3	Stem Cells and Cell Cloning	CO3,4
A	Introduction to Stem Cells and its Types	CO3
B	Methods of Cloning of Stem Cells	CO3
C	Stem Cells Applications	CO4
Unit 4	Biomaterials for Tissue Engineering	CO4,5
A	Biomaterials: Properties Of Biomaterials, Surface, Bulk,	CO4,5
11	Mechanical And Biological Properties	004
В	Types of Biomaterials, Biological and Synthetic	CO4
	Materials, Biopolymers	001
С	Applications Of	CO5
C	Biomaterials, Modifications of Biomaterials, Role Of	000
	Nanotechnology.	
Unit 5	Applications of Cell and Tissue Engineering	CO5,6
A	Industrial applications of Cell and Tissue Engineering	CO5,6
B	Medical Industrial applications of Cell and Tissue	CO5,6
	Engineering	, -
С	Food and Agriculture Industrial applications of Cell and	CO5,6
	Tissue Engineering	, ,
Mode of	Theory	
examination		
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Text book/s*	Butler M., "Animal Cell Culture and Technology",	
	Garland Science, 2008.	
	Bhojwani S.S., Dantu P.K., "Plant Tissue Culture: An	
	Introductory Text", Springer, 2013.	
Other	Jenkins N., "Animal Cell Biotechnology: Methods and	
References	Protocols", Humana Press, 2006.	
	Freshney I.R., "Culture of Animal Cells: A Manual of	
	Basic Technique", Wiley, 2005.	

BTY636 Applied Bioinformatics

Scł	nool: SSET	Batch: 2023-2025		
	ogramme:	Current Academic Year: 2023-24		
	Tech			
Bra	anch:	Semester: 02		
Bio	otechnology			
1	Course Code	BTY636		
2	Course Title	Applied bioinformatics		
3	Credits	3		
4	Contact Hours (LTP)	3-0-0		
	Course Status	Core		
5	Course Objective	 To acquire an advanced knowledge of bioinformatics tools used for designing and analyzing in silico experiments and different techniques. To attain knowledge about data storage model, retrieval of information and integration. To learn the procedure of sequence alignment and phylogenetic analysis by using different online and offline tool along with their algorithms. To understand about gene organization, genome sequencing, gene prediction methods and motif search methods. To have a clear cut idea about bioinformatics scope, concepts and major databases/tools/softwares with their algorithms used for various application 		
6	Course Outcomes	 CO1: Analyze sequence similarity search using BLAST. CO2: Examine phyolgenetic relationship using clustal and parsimony. CO3: Assess motif consensus by Markov model. CO4: Identify regulatory sequence by Meme. CO5: Determine structure of biomolecules by software (Pymol, Rasmol) and database. CO6: Compute structure of biomolecules using modeling and docking. Perform microarray and protein array analysis for drug target identification and gene prediction. 		
7	Course Description	To acquire a fundamental knowledge of basic computational biology by studying, designing and analyzing <i>in silico</i> experiments. To learn the procedure of sequence alignment and its application in molecular		

		ues used for gen				
8	Outline syllab			of biological databases.	CO Mapping	
0	Unit 1		lignment R	elated Problems		
	A			milarity matrices, pairwise	CO1	
	1	alignment,		initiativy matrices, pairwise	001	
	В	0		ltiple sequence alignment	CO1	
	C			distance based approaches,	CO1, CO6	
	C	parsimony	iogenetics.	distance bused upproaches,	001,000	
	Unit 2	Pattern An				
	A			onsensus, regular	CO2	
		expressions				
	В			entification using Meme	CO2	
	С				CO2, CO6	
	_		Gene finding: composition based finding, sequence motif based finding			
	Unit 3		elated Pro			
	А	Representat	ion of mole	cular structures (DNA,	CO3	
		-		dary structures, domains		
		and motifs	,,	5		
	В	Visualizatio	on software	(Pymol, Rasmol)	CO3	
	С			ation of structures (Xray	CO3, CO6	
		crystallogra				
	Unit 4	Structure				
	А	Ab initio st	ructure pred	iction: force fields,	CO4	
		backbone c	onformer ge	eneration by Monte Carlo		
		approaches				
	В	Protein stru	cture predic	tion by comparative	CO4	
		modeling a	pproaches (l	nomology modelling,		
		threading)				
	С	Protein liga	nd docking,	Computer aided drug	CO4, CO6	
		design (pha				
	Unit 5	Systemwid	e Analysis			
	А	Transcripto			CO5	
	В	-		, expression profiles, data	CO5	
		analysis, SA				
	C		•	omics: ¹³ C NMR based	CO5, CO6	
		metabolic f				
	Mode of	Theory/Jur	y/Practical/	Viva		
	examination		1			
	Weightage	CA	MTE	ETE		
	Distribution	25%	25%	50%		
	Text book/s*	Jin X., "Ess	ential Bioin	formatics", Cambridge		
		University 2				
			,			

Other	1. Mount D.W., "Bioinformatics: Sequence and	
References	Genome Analysis", Cold Spring Harbor	
	Laboratory Press, 2004.	
	2. Baxevanis A., Ouellette F.B.F., "Bioinformatics:	
	A practical guide to the analysis of genes and	
	proteins", WileyInterscience, 2004.	
	3. Bourne P.E., Gu J., "Structural Bioinformatics",	
	WileyBlackwell, 2009.	

BTY637 Immunology and Vaccine Development

Sch	ool: SSET	Batch: 2023-2025		
Programme: M.Tech Branch:		Current Academic Year: 2023-24		
		Semester: 02		
Bio	technology			
1	Course Code	rse Code BTY637		
2	Course Title	Immunology and Vaccine Development		
3	Credits	3		
4	Contact Hours (LTP)	3-0-0		
	Course Status	Elective		
5	Course Objective	 Understand anatomy of immune system, immunity and molecul various immune responses. Discuss about the structure and function of antibody and MHC. Understand and discuss the various immuno techniques, immun vaccines. 		
6	Course Outcomes	 CO1: Describe immune system, immunity and immune responses CO2: Explain structure and function of antibodies, BCR, TCR and reaction CO3: Discuss about the molecular basis of immune response. CO4: Explain various techniques in immunology. CO5: Demonstrate the principle behind the immunization; vaccine an CO6: Explain the organization and functioning immune system, imm vaccination and immunological techniques. 	d its types.	
7	Course Description	The course will help students to acquire a fundamental working knowled principles of immunology; to begin to understand how these principle process of immune function; and to develop the ability to solve probl immunology by making use of existing tools and techniques	es apply to the	
8	Outline syllabus		CO Mapping	
	Unit 1	Anatomy of Immune System		
	А	Cell mediated and humoral immunity; Innate and acquired immunity	CO1, CO6	
	В	Complement and inflammatory responses	CO1, CO6	
	С	Hematopoiesis and origin of primary and secondary lymphoid organs	CO1, CO6	
	Unit 2	Antibody and MHC		
	А	Structure and function of immunoglobulins	CO2, CO6	
	В	Major histo compatibility complex and Complement system	CO2, CO6	
	С	BCR, TCR and antigen antibody reaction	CO2, CO6	
_	Unit 3	Molecular Basis of Immune Response		
	А	Activation of T lymphocytes and B lymphocytes	CO3, CO6	

В	Cell mediate	ed, antibody	y mediated and macrophage mediated	CO3, CO6	
С					
Unit 4	Techniques i	Techniques in Immunology			
А	RIA and type	s of ELISA		CO4, CO6	
В	Immunofluor	Immunofluorescence and immunoelectron microscopy			
С	CMI Techniq	CMI Techniques			
Unit 5	Vaccinology				
Α	Vaccination a	Vaccination and types of vaccines			
В		Recombinant DNA and protein based vaccines, peptide and conjugate			
		vaccines			
C		Antibody engineering, catalytic antibody and generation of immunoglobulin gene libraries			
Mode of examination	Theory/Jury/				
Weightage	CA	MTE	ETE		
Distribution	25%	25%	50%		
Text book/s*	Kindt T.J., Os	sborne B.A. a	nd Goldsby R.A. (2006) Kuby Immunology,		
	W. H. Freema	 W. H. Freeman 1. Delves P.J, Martin S.J., Burton D.R. and Roitt I.M., (2011) Roitt's Essential Immunology, Wiley 			
Other	1. Delve				
References					
		2. Paul B.W.E, "Fundamental Immunology", Lippincott			
	Willia	ms and Wilk	ins, 2008.		

BTY639 Animal Transgenic Technology

Scł	hool: SSET	Batch: 2023-2025			
Programme: M.Tech Branch:		Current Academic Year: 2023-24			
		Semester: 02			
Bio	otechnology				
1	Course Code	BTY639			
2	Course Title	Animal Transgenic Technology			
3	Credits	3			
4	Contact Hours (L-T-P)	3-0-0			
	Course Status	Elective			
5	Course Objective	animals.	Discuss about the animal viral vectors and other vectors, production of transgenic animals. Understanding about transgenic markers and screening of transgenesis, and		
6	Course Outcomes	 CO1: explain production of transgenic animals. CO2: recall genome editing technology CO3:illustrate animal genome engineering. CO4: interpret various Engineering techniques for disease resistance. CO5: summarize basic aspects of production of useful proteins and oth transgenic animals. CO6:develop an understanding of the Selectable and reportable marker 	-		
7	Course	The course will help students to understand about animal genome engineer	ing,		
8	Description Outline syllabus	production of transgenic animals and application of transgenic animals	CO Mapping		
0	Unit 1	Vectors and design of gene constructs.	CO Mapping		
	A	Animal viral vectors and other vectors and artificial chromosomes used in transgenic production.	CO1, CO6		
	В	Promoters, heterologous promoters, polyA signals; Protein targeting signals; Plant selectable markers; Reporter genes.	CO1, CO6		
	С	Transient and stable transformation, Making chimeric gene construct, Vector design for transgene expression.	CO1, CO6		
	Unit 2	Animal transgenesis			
	A	Mechanism of transferring genes into specific animal tissues and cell lines.	CO2, CO6		
	В	Methods of transgenesis through gonads, gametes, transposon, retrovirus-mediated, through fertilized eggs or embryos, Stem cell mediated gene transfer, Somatic cell gene transfer.	CO2, CO6		

C	Production of transgenic animals (cattle, mice, sheep, goat, pig and	CO2, CO6	
	fish) and chimeras. Artificial insemination and embryo transfer.		
	Transgenic manipulation of animal embryo.		
Unit 3	Animal genome engineering		
А	All methodologies from random mutagenesis to the targeted	CO3, CO6	
	mutagenesis, Transposons and virus-mediated insertional		
	mutagenesis, chemical mutagenesis.		
В	ZFNs, TALENS and CRISPR-edited transgenic animals. Gene	CO3, CO6	
	silencing approaches-RNAi, antisense, Antisense peptide nucleic		
	acids (PNAs).		
Unit 4	Transgenic markers and screening of transgenesis		
A	β -galactosidase, firefly luciferase, secreted placental alkaline	CO4, CO6	
	phosphatase and green fluorescent protein (GFP) as markers,		
	selection markers.		
В	Analysis of transgene integration and copy number-PCR-based	CO4, CO6	
	genotyping, Southern.		
C	Evaluation of transgene expression-Northern Western blotting and	CO4, CO6	
	ELISA for transgene detection and expression.		
Unit 5	Application of transgenic animals		
А	Production of useful proteins and other products in transgenic	CO5, CO6	
	animals (production of regulatory proteins, blood products, vaccines,		
	hormones and other therapeutic proteins).		
В	Transgenic animals for disease resistance and increasing fecundity	CO5, CO6	
	vaccine and toxicity testing.		
Mode of	Theory/Jury/Practical/Viva		
examination	examination		
Weightage	CA MTE ETE		
Distribution	25% 25% 50%		
Text book/s*	ok/s* Animal Biotechnology-M.M. Ranga, Agrobios, 2000.		
Other	Other Animal Transgenisis and Cloning.Edited by		
References	References L.M.Houdebine,Wiley,USA		

BTY638-Animal Cell Culture Technology

Sch	ool: SSET	Batch: 2023-2025	
Programme:		Current Academic Year: 2023-24	
M.Tech			
Branch:		Semester: 02	
Bio	technology		
1	Course Code	BTY638	
2	Course Title	Animal Cell Culture Technology	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Elective	
5	Course	This course will result in understanding of	
	Objective	1. Students will understand gene transfer technologies for animals and	animal cell
		lines	
		2. To impart the knowledge on basic tissue culture techniques;	
		3. To apply the state of art knowledge of subject for the production of t	ransgenic
-	9	animals and production modern drug delivery or vaccination methods.	
6	Course	After successfully completion of this course students will be able to:	
	Outcomes	CO1: recall the history of animal cell culture and basic requirements of	animal cell
		culture laboratory	
		CO2: explain types of animal cell culture media and primary cell culture	
		CO3: identify processes in maintenance of cell lines and their character CO4: categorize methods and equipments related to scale up of animal	
		CO5: determine applications of animal cell culture	cen culture.
		CO6: elaborate methods of cell culture and their applications in field of	ç
		biotechnology	L
7	Course	This course provides a brief understanding about the animal cell techni	ques their set
,	Description	up requirements, scale up and their applications in various fields.	ques, men ser
8	Outline syllabus		CO Mapping
-	Unit 1	Animal Cell Culture: History and Requirements	CO1, CO6
	А	Introduction, importance, and history of cell culture development	CO1
	В	Designing of an animal cell culture laboratory and biosafety levels	CO1
	С	Equipments needed for animal cell culture laboratory: ; Laminar	CO1, CO6
		flow; CO ₂ incubator; Refrigerators and freezers; Centrifuge; Inverted	
		stage microscope; Liquid nitrogen freezers; and culture vessels for	
		animal cell culture	
	Unit 2	Animal Cell Culture Media and Primary Culture	CO2, CO6
	А	Media and reagents for cell culture: Types of media; media	CO2
		ingredients, buffering systems and Serum supplemented media	
	В	Introduction to different types of cell cultures: Primary and secondary	CO2
		cell culture; cell lines: finite vs infinite; Three dimensional cell	
		culture: histotypic, oragnotypic and organ culture	

С			iques: Methods of tissue disaggregation	CO2, CO6
	(mechanical and enzymatic) and establishment of primary cell culture			
Unit 3	Maintenanc	e of Cell Lin	es	CO3, CO6
А	Basic outline	of cell line n	naintenance: thawing, passaging, and	CO3
	cryopreserva	tion of cell lin	nes; Determination of cell viability and cell	
	counting under haemocytometer; growth curve of cell lines			
В	Characterizat	tion of cell lin	nes	CO3
С	Common con	ntamination fo	ound in cell lines and their eradication	CO3, CO6
Unit 4	Scale Up of	Animal Cell	Culture	CO4
А	Scale up in s	uspension cul	lture: Stirred and static suspension cultures,	CO4
	factors in sca	ling up; cont	inuous flow culture,	
В	stirrer culture	e; continuous	flow culture; air-lift fermenter culture	CO4
С			ng Roller bottle culture, multi-surface	CO4, CO6
	culture, mult	i-array disks,	spirals and tubes	
Unit 5	Applications of Animal Cell Culture			CO5, CO6
А	Application	of animal cell culture for in vitro testing of drugs: various		CO5
			eir interpretation	
В	Study of apo	ptosis in cell	lines: Use of flowcytometry based assays to	CO5
	ascertain aop			
C	Stem cell culture and applications of stem cell in medicine;			CO5, CO6
			technology in production of human and	
	animal viral	vaccines and	pharmaceutical proteins.	
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	Freshney I. C	Culture of \overline{An}	imal Cells: A Manual of Basic Technique,	
	5th Edition Publisher: Wiley-Liss, 2005 ISBN:			
	0471453293			
Other Nigel Jen, Animal Cell Biotechnology: Methods and protocols,				
References Humana Press				

BTY 632	Computer	Aided	Drug Design	

Sch	ool: SSET	Bit 052 Computer Alded Drug Design Batch: 2023-25		
Programme:		Current Academic Year: 2023-24		
M.1	0	Current Academic Tear. 2023-24		
	nch: Genetic	Semester: II		
Engineering		Semester. II		
1	Course Code	BTY 632		
2	Course Title	Computer Aided Drug Design		
3	Credits	3		
4	Contact Hours	3-0-0		
+	(L-T-P)	J-U-U		
	Course Status	Elective		
5			aretand	
5	Course	Upon completion of this syllabus, the student can able to und 1. Role of Bioinformatics/Chemo-informatics in drug		
	Objective	discovery process.	designing and	
		2. Different CADD techniques and their importance and appli	ications	
		3. Various strategies to design and develop the drug-like/lead-		
6	Course	CO1: To understand the basics of bioinformatics, chemo-ir		
C	Outcomes	how useful for drug designing and discovery process.		
		CO2: Acquire the knowledge about protein structure predic	ction methods.	
		structure visualizations and their importance.	,	
		CO3: Understand the principle, types and various application	ons of	
		computer aided drug designing and discovery process.		
		CO4: Explore the concept and SAR, QSAR and their impo	rtance in	
		ligand optimization.		
		CO5: Understand the principle and applications of molecul	ar dynamics	
		simulation.	2	
		CO6: Overall understanding the concept and applications for computer		
		aided drug designing and discovery process.	-	
7	Course	This syllabus covers the various components of comput	er aided drug	
	Description	designing and discovery process namely protein structur	re preparation,	
		ligand structure preparation, structural databases, virt	ual screening	
		techniques, SAR/QSAR, molecular mechanics and molec	ular dynamics	
		simulation.		
8	Outline syllabus		CO Mapping	
	Unit 1	Introduction	CO1, CO6	
	А	History of drug design, Stages of drug discovery and	CO1	
		development; Drug properties, likeness; Role of		
		Bioinformatics and Chemo-informatics;		
	В	Classification of Protein Structures – Primary, Secondary,	CO1	
		Super-secondary, Tertiary and Quaternary; Active Sites;		
		Allosteric Sites; Domains; Fold; Motif		
	C	Structural databases- PDB, PDBSUM, SCOP, CATH;	CO1, CO6	
		Chemical and Drug Molecule Databases – PubChem, Zinc		

	and DrugBank		
Unit 2	Preparation of Protein Structure	CO2, CO6	
А	Introduction to <i>in silico</i> and experimental protein structure determination methods;	CO2	
В	<i>In silico</i> Structure Prediction - Homology Modeling; Threading; Fold Recognition. Ab initio modeling;	CO2	
С	Model refinement and validation; Prediction of Binding site; Structure Visualization and Analysis tools.	CO2, CO6	
Unit 3	High throughput Virtual Screening and Molecular Docking	CO3, CO6	
А	Types of Virtual Screening methods; Structure Based Virtual Screening; Ligand Based Virtual Screening	CO3	
В	Library design; Concept of pharmacophore mapping and pharmacophore based Screening;	CO3	
С	Molecular Docking: Rigid and Flexible docking; Analysis of Protein-Ligand interactions.	CO3, CO6	
Unit 4	Quantitative Structure Activity Relationship (QSAR)	CO4	
А	SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters,	CO4	
В	experimental and theoretical approaches for the determination of physicochemical parameters such as Partition coefficient, Hammet's substituent constant and Tafts steric constant.	CO4	
С	Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like COMFA and COMSIA.	CO4, CO6	
Unit 5	Molecular Mechanics and Molecular Dynamics Simulations	CO5, CO6	
A	General features of molecular mechanics; Energy Minimization - local and global energy minima, saddle point, applications.	CO5	
В	Molecular dynamics simulation	CO5	
С	Understanding the structural stability of protein and protein-ligand complex.	CO5, CO6	
Mode of examination	Theory		
Weightage	CA MTE ETE		
Distribution	25% 25% 50%		
Text book/s*	book/s* Lednicer, D. (1998) "Strategies for Organic Drug Discovery Synthesis and Design"; Wiley International Publishers.		
Other References	Andrew R. Leach (2001). Molecular Modeling – Principles and Applications. Second Edition, Prentice Hall, USA		

