

Program and Course Structure

Department of Electrical and Electronics Engineering

M.Tech in Electrical and Electronics Engineering

Program Code: SET0407

1. Standard Structure of the Program at University Level

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship

Mission of the School

- 1. To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conductive and enriching learning environment.
- 2. To product technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities and uphold ethical values.
- 3. To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- 4. To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

1.2.1 Vision and Mission of the Department

Vision of the Department of Electrical and Electronics Engineering

To become an internationally acclaimed destination of academic excellence in the discipline of Electrical, Electronics, and Communication Engineering by promoting research, innovation, and entrepreneurship to serve society.

Mission of the Department Electrical and Electronics Engineering

M1-To provide comprehensive technical knowledge in Electrical, Electronics and Communication Engineering.

M2- To facilitate and foster the industry-academia collaboration to enhance technical skills and employability.

M3- To promote interdisciplinary and multi-disciplinary research, innovations and entrepreneurship to serve society.

M4- To develop core values, professional ethics and lifelong learning skills through interactive support systems.

1.3 Programme Educational Objectives (PEO)

1.3.1 Writing Programme Educational Objectives (PEO)

The Educational Objectives of UG Program in Electrical and Electronics Engineering are:

PEO1: The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.

PEO2: Graduates will be motivated for research and higher education and support their entrepreneurial learning.

PEO3: Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.

PEO4: The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems

1.3.2 Map PEOs with School Mission Statements:

No.	PEO statement	School missions			
		Mission statement	Mission statement	Mission	Mission
		I	2	statement 3	statement 4
I	PEO1: The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.	3	2	2	3
2	PEO2: Graduates will be motivated for research and higher education and support their entrepreneurial learning.	2	3	3	2
3	PEO3: Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.	2	3	2	3
4	PEO4: The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems	-2	3	2	2

1.3.2.1 Map PEOs with Department Mission Statements:

DEPARTMENT PEOS DEPT OF EEE MISSION STATEMENTS	1. The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.	2. Graduates will be motivated for research and higher education and support their entrepreneurial learning.	3. Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.	4. The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems.	
M1-To provide comprehensive technical knowledge in Electrical, Electronics and Communication Engineering.	3	3	2	3	11/12
M2- To facilitate and foster the industry-academia collaboration to enhance technical skills and employability.	2	3	2	3	10/12
M3- To promote interdisciplinary and multi-disciplinary research, innovations and entrepreneurship to serve society.	2	2	3	3	10/12
M4- To develop core values, professional ethics and lifelong learning skills through interactive support systems.	2	2	2	3	9/12
	9/12	10/12	9/12	12/12	83.3%

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

1.3.3 Program Outcomes (PO's)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO8: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO9: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO10: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs for M.Tech in EEE

PSO1:To be able to critically investigate complex power system scenarios and arrive at possible solutions, by applying the acquired theoretical and practical knowledge.

PSO2:To be able to work on well-defined projects by interpreting available power system data to provide real time solutions pertaining to power system issues.

PSO3 : To be able to identify optimal solutions for improvising power transfer capability, enhancing power quality and reliability

1.3.4 Mapping of Program Outcome Vs Program Educational Objectives

Mapping	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	2	2	1	-	1
PO2	-	3	-	-	1
PO3	3	3	2	2	3
PO4	3	2	2	1	1
PO5	2	3	1	-	2
PO6	2	1	1	3	1
PO7	-	1	2	3	3
PO8	-	2	-	-	2
PO9	3	3	2	2	3
PO10	3	2	2	1	1
PSO1	3	2	-	1	-
PSO2	3	3	2	2	3
PSO3	3	2	-	1	-

1. Slight (Low)

2. Moderate (Medium)

3.Substantial(high)

M.Tech in Electrical and Electronics Engineering COURSE STRUCTURE

Department of Electrical and Electronics Engineering M.TECH in Electrical and Electronics **Engineering** Course Structure for batches admitted in session and onwards Weekly Contact Semester Credits Labs T P L **Courses** Optimiz MEMS, ation Smart Techniq Electiv Electiv Electiv Sensors e 2 (3-5 2 4 21 19 ues in e 1 (3e 3 (3and 1-0) 4 0-0)3Enginee 0-2)4WSN (3ring (3-0-2)41-0) 4 Researc Commu Electi h Elective Electiv Electiv nity PLC and Elective I ve 8 Method 2 e 7 (3-Connect 32 SCADA(4 (3-1-0) 5 (3-1e 6 (3-26 (3-0ology 3-0-2) 4 0)40-0)30-2)4(0-0-4)0) 3 (0-0-4)2 Dissertati I Seminar Ι 0 0 24 12 (0-0-4)on -1 (0-Ι 2 0-20) 10 Disserta I tion -II 3 2 0 0 0 32 16 V (0-0-32)16

TOTAL CREDITS

73

Lis	t Of Elective		
	With Specialization in Power Systems	With Specialization in Instrumentation and Control	With Specialization in Industrial Automation
1	Extra High Voltage Transmission	Advanced Control Engineering And Controllers	Advanced Control Engineering And Controllers
2	Modeling & Analysis Of Power System	Smart Power Grid And Micro grid	Smart Power Grid And Micro grid
3	Power Systems Operation & Control	Biomedical Instrumentation	Electrical Drives
4	Power System Reliability Assessment	Intelligent Actuators And Mechatronics	Intelligent Actuators And Mechatronics
5	Smart Power Grid And Micro grid	Virtual Instrumentation	Virtual Instrumentation
6	FACTS Devices And Systems	Analog And Digital Signal Processing	Digital Signal Processing Techniques
7	Digital Relaying For Power Systems	Industrial Network Protocols And IoT	Industrial Network Protocols And IoT
8	Power Quality	Robotics And Industrial Robots	Robotics And Industrial Robots
9	Wind And Solar Energy Systems	Embedded Systems	Embedded Systems
1 0	Wireless Sensor Networks And Application	Industrial Instrumentation	Mechatronics of Robotics
1 1 1	Sustainable Energy Electrical And Hybrid	Analog And Digital Communication Techniques	Wind And Solar Energy Systems Electrical And
1 1 3	Vehicles Distributed Generation Technology	Sustainable Energy	Hybrid Vehicles

Scho	ool: SET					
	gram: M.Tech					
	nch:EEE(Power	Semester:1				
syste	•					
1	Course Code	MIC104				
2	Course Title	Optimization Techniques in engineering				
3	Credits	4				
4	Contact Hours	3-1-0				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	This course provides the students with:				
	Objective	 Knowledge of solving linear and nonlinear Algebraic equations Knowledge of solving differential equations Introduction to various concepts of Optimization Techniques. Awareness to the importance of optimizations in real scenarios; Knowledge of various classical and modern methods of constrained and unconstrained problems in both single and multivariable. Knowledge of Various Evolutionary Techniques Ideas to solve Integer Programming. 				
6	Course Outcomes	CO1:Solve various linear and nonlinear Algebraic equations CO2: Solve various Differential equations				
		CO3: Formulate optimization problems				
		CO4: Apply the concept of optimality criteria for various type of				
		optimization problems and solve various constrained and				
		unconstrained problems				
		CO5: Know various Evolutionary Techniquesand Solve integer				
		Programming problems.				
		CO6: Apply Optimization Techniques in real time applications				
7	Course Description	Optimization is the process of obtaining the best result under given circumstances. In design, construction and maintenance of any engineering system, engineers have to take many technological and managerial decisions at several stages. The ultimate goal of all such decisions is either to minimize the effort required or to maximize the desired benefit. A number of optimization methods have been developed for solving different types of optimization problems.				
8	Outline syllabus	CO Mapping				

Unit 1	Algebraic Equa						
A		ons-Bisection me	ons. Iterative methods for solving ethod, Regulafalsi method, Newton	CO1,CO6			
В	Fixed Point meth	Fixed Point method, Two equation Newton Raphson method.					
С	Iterative method seidel method	s for solving line	ear equations-Jacobi method, Gauss-	CO1,CO6			
Unit 2	Differential Equ	iations					
A	Finite difference	method		CO2,CO6			
В	Euler's method			CO2,CO6			
С	Runga-kutta met	CO2,CO6					
Unit 3	Optimization P	roblems					
A	Requirements for problem	r the optimization	n methods, Types of optimization	CO3,CO6			
В			ion, Necessary and sufficient method for optimal solution.	CO3,CO6			
С	Simplex method	CO3,CO6					
Unit 4	Optimization T						
A	Lagrange multip	lier, Kuhn-tuckeı	conditions	CO4,CO6			
В	Newtons method	,Interior Penalty	function method,	CO4,CO6			
С	Rosen Gradient 1	projection metho	d	CO4,CO6			
Unit 5	Evolutionary To	echniques and 1	nteger Programming				
A	Genetic Algorith methods	m, Particle swar	m and ant colony optimization	CO5,CO6			
В	Branch and Bour	nd method		CO5,CO6			
С	cutting plane me	thod		CO5,CO6			
Mode of examination	Theory						
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	Hill 2 Rao S.S, "E	Balagurusamy, E., "Numerical methods", Tata McGraw Hill 2 Rao S.S, "Enginering Optimization: Theory and Practice", wiley					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO104.1	3	1	2								2		
CO104.2	2	3		1							2		
CO104.3	2	3	2								2		2
CO104.4	2	3	1	2			1				3	2	2
CO104.5	2	3	2	2			1				2	2	2
CO104.6	2	3	2	2			1				2	1	1

Schoo	ol: SET							
Progr	ram: M.Tech							
Brane	ch: EEE/EE	Semester: 1						
1	Course Code	MIA112						
2	Course Title	MEMS, Smart Sensors and WSN						
3	Credits	3						
4	Contact Hours	3-0-0						
	(L-T-P)							
	Course Status	Compulsory /Elective/Open Elective						
5	Course	To provide students with:						
	Objective	basic principles and techniques of MEMS and Smart Sens	sors					
		2. knowledge of various fabrication and machining process	of MEMS along with					
		its benefits in relation to applications						
		3. Knowledge in wireless sensor networks and to apply this	knowledge in various					
		industrial application like environmental monitoring, stru	ictural health and					
		greenhouse monitoring						
6	Course	CO1: To be able to understand architecture of smart sensors alon	ng with differences					
	Outcomes	among smart, intelligent and network sensors.						
		CO2: To be familiar with the important concepts MEMS a	and smart sensor					
		fabrication technologies.	. t d:ff					
		CO3: To be able to select and apply the MEMS and smart sensors applications.	to different					
		CO4: To understand principles of wireless sensor networks and d	lifferentiate among					
		various wireless network protocols.	anterentiate among					
		CO5:To apply principles of WSN in various industrial, environmen	ital and					
		Societalapplications.						
		CO6: To develop smart sensor and WSN based solution to real life	e problems.					
7	Course							
	Description	This course is aimed at equipping students with basic knowledge						
		MEMS (Micro electro Mechanical System), Smart sensor and its various fabrication						
		techniques. This course also enables the student with appropriate	e knowledge of					
0	O41'	Wireless sensor network and its applications in industry.	COMercia					
8	Outline syllabus	Daging of MEMC and Count Consons	CO Mapping					
	Unit 1 A	Basics of MEMS and Smart Sensors Overview of measurement system, transducers, sensors,	CO1					
	A	actuators and signal conditioners	COI					
	В	Definition, working principle and construction of MEMS	CO1					
	C	Definition and architecture of smart sensor; different levels	CO1					
		of integration in smart sensors; Differences between smart,						
		intelligent and network sensors; Advantages of smart						
		sensors						
	Unit 2	MEMS and Smart Sensor Technologies						
	A	Micro-machining processes: materials for micro-	CO2					
		machining, wafer bonding, bulk and surface						
								

	micromachini	nσ					
В		•	thin film technologies	CO2			
C	Monolithic IC		umi imi teemiologies	CO2			
Unit 3			Smart Sensors	002			
A			d constructional details of	CO3,CO6			
	-		tion and pressure sensors	003,000			
В							
	smart tempera	CO3,CO6					
С			constructional details of a	CO3,CO6			
	smart humidit			,			
Unit 4	· · · · · · · · · · · · · · · · · · ·	sor Network (V	WSN)				
A			N, Network topologies; seven-	CO4,CO6			
	layer OSI mo	del of commun	ication system				
В	Zgbee (IEEE -	- 802.15.4) pro	tocol, Merits of Zigbee over	CO4,CO6			
	Wi-Fi (IEEE -	-802.11) and B	Bluetooth for WSN,				
		Wireless sense					
C	Sensor and act	tuator network	(SAN) - homogeneous and	CO4,CO6			
	heterogeneous						
	WSN Applica	itions in Indus	try				
Unit 5							
A			se studies on WSN	CO5,CO6			
_		nvironment mo		207.201			
В		_	tural health and Equipment	CO5,CO6			
	health monitor		. 1	005.006			
C		onitoring and o	control	CO5,CO6			
Mode of	Theory/Jury/P	racti					
examination	cal/Viva	MTE	ETE				
Weightage Distribution	CA 30%		ETE				
Text book/s*		20%	d Transdycers', Prentice Hell				
Text book/s			d Transducers", Prentice-Holl,				
	2 nd Edition,						
	-		ding Smart Sensors", Artech				
	House, 2 nd E	Edition, 2000.					
	5 E.H. Calla	away, "Wire	less Sensor Networks :				
	Architecture	and Protocols'	,				
Other	1. H.K. V	Verma, e-mono	ograph on "Smart Sensors", at				
References			apter 1 – Basics of Smart				
	-		ensor Technologies, Chapter 3				
		of Smart Sens					
	-	ma, e-mono					
			ograph on "WSN", at <u>hapter 1 – Wireless Sensor</u>				
			eless Sensor Node, <u>Chapter 3 –</u>				
 1	INCLWOIK, CI	$\frac{1}{2}$	Acas Belisui Muue, Chapter 3 –				

Applications of Wireless Sensor Networks.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PSO1	PSO2	PSO3
CO112.1	3	1	-	2	1	-	-	1	-	2	3	3	2
CO112.2	3	1	-	2	1	-	-	2	-	2	3	3	2
CO112.3	1	2	3	2	2	1	-	2	-	3	1	2	1
CO112.4	3	1	-	2	1	-	-	1	-	2	3	3	-
CO112.5	1	2	3	2	2	1	-	2	-	2	-	2	1
CO112.6	1	2	3	2	2	1	-	2	-	1	-	2	1

SET	1							
	gram: M.Tech							
	nch: EEE	Semester: I						
1	Course Code	MIA113						
2	Course Title	Intelligent Actuators and Mechatronics						
3	Credits	3						
4	Contact Hours (L-T-P)	3-0-0						
	Course Status	Department Elective						
5	Course	Discussing of basic components of actuators and mechatro	onics					
	Objective	• Discussing of electronics and digital circuits concepts of the	ne subject					
		• Explaining concept of intelligent and smart system	3					
		Discussing of interfacing concepts of mechatronics system	ıs					
		Giving case studies and exploring knowledge on designing						
6	Course Outcomes	CO1: Getting knowledge on basic components of actuators and mechatronics CO 2: Exploring knowledge and getting design concepts of circuits CO 3: Identifying concepts smart and intelligent on mechatronics systems CO 4: Able to design of interfacing circuits for the subject CO 5: Able to design of tailor-made systems CO6: Develop a simulation model for simple physical systems and explain						
7	Course	mechatronics design process The field of mechatronics has braddened the scope of the tradesign process.	ditional field					
'	Description	of eletromechanics. The subject is made to know modern tre						
	Bescription	mechatronics system, hybrid of different engineerings, stand						
		mechatronics systems.						
8	Outline syllabu	S	CO Mapping					
	Unit 1	Introduction						
	A	Definitions: Mechatronics & actuator; Overview of sensors, current & voltage sources; Grounding	CO1					
	В	Solenoids, relays, electrical motors for actuators	CO1					
	С	Basics of open loop and closed loop systems , block diagram of	CO1					
		mechatronics system ; Scope of the course						
	Unit 2	Overview of Analog and Digital Electronics	CO2					
	A	Active electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers						
	В	Display systems, measurement systems, testing and calibration	CO2					
	С	Combination logic and logic classes; Flip-flops and their	CO2					
	II:4 2	applications; Microcontroller concepts						
	Unit 3	Smart and Intelligent Actuators	002					
	A	Definitions: Smart and intelligent actuators; Architecture and	CO3					

	operation of sm	nart actuator						
В	Intelligent actu	ator without fee	edback sensor in detail	CO3				
С	Intelligent actu	Intelligent actuator with feedback sensor in detail						
Unit 4	Mechanical-Ele	ctronic Interfac	ing					
A	•	Concept of three-state (tri-state) outputs; Interfacing of pushbutton, keyboard and sensors Interfacing of relays, solenoids, DC, AC motors and special motors to microcontroller						
В	_							
С	Selecting of mo	tor for actuator	rs .	CO4				
Unit 5	Case studies &	Design Exercise	1					
A	Case study 1: N	lechatronic desi	gn of a coin counter; Case study	CO5				
В	Case study 2: N handling systen		conveyor based material	CO5				
С	Design exercise	on mechatroni	c system	CO5				
Mode of examination	Theory							
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	David G, Alcia	tore et al., "Int	troduction to Mechatronics and					
	Measurement S	Measurement Systems", Tata McGraw Hill, 2003						
Other	1. W.Bolto	on, "Mechatron	ics ", Pearson Education, 2005					
References	2. Godfre	y C. Onwubolu,	"Mechatronics", Elsevier, 2005					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Schoo	ol: SET							
Progr	am: M.Tech							
	ch: EEE/EE	Semester: 1						
1	Course Code	MIA112						
2	Course Title	MEMS, Smart Sensors and WSN						
3	Credits	3						
4	Contact Hours	3-0-0						
	(L-T-P)							
	Course Status	Compulsory /Elective/Open Elective						
5	Course	To provide students with:						
	Objective	4. basic principles and techniques of MEMS and Smart Sensors						
		5. knowledge of various fabrication and machining process	of MEMS along with					
		its benefits in relation to applications						
		6. Knowledge in wireless sensor networks and to apply this knowledge						
		industrial application like environmental monitoring, structural healt						
		greenhouse monitoring						
		greenings monitoring						
6	Course	CO1: To be able to understand architecture of smart sensors alon	g with differences					
	Outcomes	among smart, intelligent and network sensors.						
		CO2: To be familiar with the important concepts applicabl	e to MEMS and					
		their fabrication						
		CO3: To be able to select and apply the MEMS and smart sensors	to different					
		applications.						
		CO4: To understand principles of wireless sensor networks and d	lifferentiate among					
		various wireless network protocols.	tal and					
		CO5:To apply principles of WSN in various industrial, environmen societalapplications.	tai ailu					
7	Course	зостемаррисатонз.						
'	Description	This course is aimed at equipping students with basic knowledge	on of					
	Bescription	MEMS (Micro electro Mechanical System), Smart sensor and its v						
		techniques. This course also enables the student with appropriate						
		Wireless sensor network and its applications in industry.	_					
8	Outline syllabus		CO Mapping					
	Unit 1	Basics of MEMS and Smart Sensors						
	A	Overview of measurement system, transducers, sensors,	CO1					
		actuators and signal conditioners						
	В	Definition, working principle and construction of MEMS	CO1					
	С	Definition and architecture of smart sensor; different levels	CO1					
		of integration in smart sensors; Differences between smart,						
		intelligent and network sensors; Advantages of smart						
	TT 1/ C	sensors						
	Unit 2	MEMS and Smart Sensor Technologies	002					
	A	Micro-machining processes: materials for micro-	CO2					
		machining, wafer bonding, bulk and surface						
		micromachining						

	В	IC Technolog	ies: thick film	thin film technologies	CO2			
	C	Monolithic IC		min iniii teemologies	CO2			
	Unit 3			Smart Sensors	002			
<u> </u>	A			d constructional details of	CO3			
		<u> </u>		tion and pressure sensors				
	В			constructional details of a	CO3			
		smart tempera		J J				
	С			constructional details of a	CO3			
		smart humidit						
	Unit 4		sor Network (
	A	Need and adva	antages of WS	N, Network topologies; seven-	CO4			
[layer OSI mo	CO4					
Γ	В		Zgbee (IEEE – 802.15.4) protocol, Merits of Zigbee over					
		3	Wi-Fi (IEEE – 802.11) and Bluetooth for WSN,					
			architecture of Wireless sensor node					
	C	Sensor and ac	CO4					
		heterogeneous						
	11 E	WSN Applica						
	Unit 5	G	COS					
	A			se studies on WSN	CO5			
	D		nvironment mo	onitoring ctural health and Equipment	COS			
	В		CO5					
	С	Greenhouse m			CO5			
	Mode of	Theory/Jury/P	nonitoring and o	COHUOI	CO3			
	examination	THEOLY/JULY/P	ractical/VIVa					
	Weightage	CA	MTE	ETE	+			
	Distribution	30%	20%	50%	+			
				d Transducers", Prentice-Holl,				
	50010 5	2 nd Edition,		, remice from,				
		,		ding Smart Sangara" Autoch				
		_		ding Smart Sensors", Artech				
			Edition, 2000.	1 0 37 1				
		8 E.H. Call	•					
			and Protocols					
	Other			ograph on "Smart Sensors", at				
	References	www.profhkv	erma.info, Ch	apter 1 - Basics of Smart				
		Sensor, Chapt	er 2 – Smart S	ensor Technologies, Chapter 3				
		- Case Studies	s of Smart Sens	Sors.				
			rma, e-mono					
			*	Chapter 1 – Wireless Sensor				
				eless Sensor Node, Chapter 3 –				
			-	ensor Networks.				
		Case StudiesH.K. Ver www.profhleNetwork, Cl	s of Smart Sens rma, e-mono cverma.info, C hapter 2 – Wire	sors. ograph on "WSN", at Chapter 1 – Wireless Sensor Poless Sensor Node, Chapter 3 –				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET		
	gram: M.Tech		
	nch: EEE/EE	Semester: 1	
1	Course Code	MIA117	
2	Course Title	Advanced Control Engineering and Controllers	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	Compulsory	
5	Course Objective	To provide students with: 1. some advanced concepts in Control Systems Engineering and the applications 2.A theoretical understanding of advanced linear control systems including the principles of digital control. 3 understanding of performing stability analysis of digital control. 4. knowledge of Analog controller, computer based controller and controller	and strategies,
6	Course Outcomes	After completion of this course students will be able to: CO1:Understand advanced concepts and approaches to control sy CO2: Understand industrial controllers of continuous and discontinuous and advanced control concepts of cascaded and feed forward CO3: design, develop and operate analog controllers, both electron pneumatic types. CO4: Design develop and operate computer based control system CO5: Understand simulate and design artificial intelligence based system.	inuous types rd controls. onic and
7	Course Description	This course introduces systematic approaches to the design and a advance control systems for industrial applications.	inalysis of
8	Outline syllabus		CO Mapping
_	Unit 1	Overview of Control System	8
	A	Elements of control systems; Concept of open loop and closed loop systems; Examples and application of open loop and closed loop systems	CO1
	В	Brief idea of multivariable control systems; Concept of stability and necessary conditions, Routh-Hurwitz criteria and limitations. Correlation between time and frequency responses	CO1
	С	State variable modelling of linear discrete systems, controllability and observability; Nonlinear control systems; Fundamentals-common nonlinearities (saturation, deadzone, relay, on-off nonlinearity, backlash, hysteresis	CO1
	Unit 2	Controller Principles	
	A	Process Characteristics; Control system parameters: error,	CO2

	variable rang	o control na	ramatar ranga control lag doad						
	time, cycling	e, control pai	rameter range, control lag, dead						
В		s controller r	nodes: two-position mode, multi-	CO2					
			s controller modes						
С			derivative control modes;	CO2					
		•	: proportional-integral (PI),						
	•	proportional-derivative (PD) and three mode controller (PID);							
		Cascaded and feed-forward controls							
Unit 3	Analog Contr		a controls						
A	Introduction;		ures	CO3					
В			ror detector, single mode and	CO3					
		composite mode controller;							
С	·	Pneumatic controllers: proportional, proportional-integral							
		(PI), proportional-derivative (PD) and PID controller.							
Unit 4	Computer Ba		,						
A	Introduction;	Digital applic	cations: alarms, two-position	CO4					
	control								
В	Computer ba	Computer based controller							
С	hardware cor	hardware configurations, software requirements							
Unit 5		Intelligent Control Systems							
A	Fuzzy-logic co	Fuzzy-logic control system: Fuzzy set theory, basic fuzzy set							
	operations, for	operations, fuzzy relations, fuzzy logic controller, methods of							
	determinatio	determination of membership functions							
В	Methods of c	lefuzzificatio	n, fuzzy rule base, design of fuzzy	CO5					
	logic control	system.							
С	Neural-netwo	ork control sy	stem: Artificial neural networks,	CO5					
	operation of	a single artifi	cial neuron, network architecture	,					
	learning in ne	ural network	ks, back-propagation, Neurofuzzy						
	control								
Mode of	Theory/Jury/	Practical/Viv	va						
examinatio		1							
Weightage	CA	MTE	ETE						
Distribution		20%	50%						
Text book/									
			ess Control Instrumentation						
	Technology,"	Technology,"8th Edition Pearson.							
	_	2. I.J. Nagrath and M. Gopal, "Control Systems Engineering,"							
	4th Edition, N	4th Edition, New Age International Publishers.							
Other									
References			N. Deepa, "Principles of soft						
	computing," Wiley India Pvt. Limited.								
	2. S.Rajashek	2. S.Rajashekaran and G.A. VijayalakshmiPai, " Neural							

	Nwtworks, Fuzzy logic, and Genetic Algorithms," PHI Pvt.	
	Limited.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	ı	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET							
Prog	gram:							
M.T								
	nch: I&A and	Semester: II						
1&0								
1	Course Code	MIC101						
2	Course Title	Analog and Digital Signal Processing						
3	Credits	4						
4	Contact	3-1-0						
	Hours							
	(L-T-P)	C						
	Course	Compulsory						
5	Status Course							
3	Objective	To provide the student with						
	Jojechie	Concepts so as to categorise various types of Sign	ale and Systems					
			•					
		2. In-depth knowledge so that implemention of circ	uits related to linear					
		applications of the opamp are acheivable.						
		3. Basic understanding for the implementatoion of active filters using						
		opamp.						
		4. Strong foundation for designing of Digital Syste	ems both FIR and IIR					
		and analyses of systems using DFT and FFT.						
6	Course Outcomes	CO1: To categorise the various types of signals and system	ns and to perform					
	Outcomes	various mathematical operations on signals.						
		CO2: To differentiate and design various applications of o	p-amp.					
		CO3: To design and implement various types of digital filt	ers.					
		CO4: To do frequency analysis using DFT and FFT.						
7	Course							
	Description	The course content of this subject includes introduction of						
		It also covers the various linear and nonlinear applications						
		the content elaborates the designing and implementation of	f digital filters along					
		with DFT and FFT as the main frequency tool.						
8	Outline syllab	us	CO Mapping					
	Unit 1	Introduction to Signals and Systems CO1						
	A	Continuous-time and discrete-time signals and their						
	mathematical representation, analog and digital signals,							
		manematical representation, analog and digital signals,						

	analog signal processing (ASP) and digital signal	
	processing (DSP)	
В	Signal , Continuous time signals (CT signals), discrete	
	time signals (DT signals) - Step, Ramp, Pulse, Impulse,	
	Exponential, Classification of CT and DT signals -	
	periodic and aperiodic, Even and Odd, Power and Energy	
	Invertible and Non-invertible, Deterministic and Random	
С	System, Basic Types of Systems- Causal and Non-causal,	
	Stable and Unstable, Static and Dynamic.Linear and	
	Non-Linear Time Variant and Time Invariant, Basic	
	operations on signals - addition, multiplication, shifting,	
	folding, etc.	
Unit 2	Linear Applications of Opamp	CO2
A	Operational amplifier: block diagram, equivalent circuit,	
	ideal and practical operational amplifier; inverting and	
	non-inverting amplifier circuits	
В	Practical Integrator and Differentiator circuits,	
С	Summing and differential amplifier circuits; Instrumentation amplifier	
Unit 3	Opamp based Filters	CO2
A	Passive and active filters, their comparison; frequency	
	response of low- pass, high- pass, band- pass, band- stop and notch filters and their use in instrumentation;	
В	Active filters: Basic low- pass filter circuit, first and	
C	second order low- pass and high- pass Butterworth filters	
С	Band- pass filter, Band reject (notch) filter, Concept of	
	higher order filter realization	
Unit 4	Digital Filters	CO3
A	Design of Digital Filters Design of FIR Filters:	
	Symmetric and Anti-symmetric FIR Filters. Design of	
	Linear phase FIR Filter using Windows, Gibbs	
	phenomenon.	
В	Design of IIR Filters: Design by Approximation of	

	Derivatives, Ir	npulse Invariar	nce and by Bilinear					
	Transformatio	n.						
С	Direct form-1	and form-2	realizations, Cascade and					
	Parallel real	izations, recu	arsive and non-recursive					
	methods of rea	methods of realizations.						
Unit 5	Frequency An	Frequency Analysis						
A	Digital Fourier	transform (DF	Γ),					
В	DFT algorithm	for frequency a	analysis					
С	Fast Fourier tra	ansform (FFT),	FFT algorithm for frequency					
	analysis.	analysis.						
Mode of	Theory							
examination			Γ					
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1.Ramakant A.		-Amp and Linear Integrated					
		n Education, 4th I	Eattion nic Circuits", 4th Edition, Oxford					
	University Press.	ni, microciccii oi	ne circuis , in Banton, Oxford					
	•	and D.G. Manolo	akis, "Digital Signal Processing,					
		ithms, and Applic	ations", Pearson Education,					
	3	D. III. C. I	11 D D 1 ((D)					
Other	I.A. Y. Oppennei Signal Processing		and J. R. Buck, "Discrete Time					
References			d Design with Analog Integrated					
	Circuits, PHI,2 nd	Edn.2006						
			rabel, "Microelectronics", 2 nd					
	Edition ,TMH, 20	008						
	1.							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	ı	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	=	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	1	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	- 1	2		ı	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Prepared by : Department of EEE

Departmental Electives:

Scho	ool:	
Prog	gram:	
Brai	nch: EEE	Semester:
1	Course Code	MIC008
2	Course Title	Virtual Instrumentation
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Elective/Open Elective
5	Course Objective	 Introduction to the various models of Virtual Instruments, their comparison with traditional instruments and major application areas of VI. Introduction to basics of LabVIEW VI Programming techniques like loops, arrays, clusters, plotting and Strings and files. Basics of signal conditioning techniques along with DAQ hardware and software and various signal processing techniques available in LABVIEW. Advanced concepts in LabVIEW with main concepts of real time applications in Image acquisition and Motion control. Building of Virtual Instruments with various types of controls and indicators. Configuring DAQ card and acquisition of real time signals from sources and sensors. Simulate a signal in LabVIEW and generate a virtual source using DAQ cards.
6	Course Outcomes	 CO1: Understand various models and areas of application of Virtual Instrumentation. CO2: Understand various components of LabVIEW required for the development of VI. CO3: Understand and apply various programming functions of LabVIEW like loops, arrays, clusters and file I/Os for building of simple Virtual instruments. CO4: Understand the concepts of Data acquisition hardware and software and to apply basic signal processing techniques available in LabVIEW. CO5: Able build VI for simulated and real time applications.
7	Course	
	Description	The course content of this subject includes an introduction to graphical

		extensively elaborate building of VI by us Use of strings and I/a and various signal pro-	e the Ging loop O are alrocessin ations n	so focuses on introduction to traphical programming languages, arrays, clusters etc. have less elaborated in this course, g techniques are also covered to the control and Image accepted in this course.	uage .In Unit 3, been dealt with. Data acquisition ed in this course.						
8	Outline syllabu	S			CO Mapping						
	Unit 1	Introduction			CO1						
	A	model, deployment mod	del	- design model, prototype							
	В	Building blocks of VI; Virtual instrument versus traditional instrument, Hardware and software in VI									
	C	C Graphical system Design using LabVIEW; Graphical programming and Textual programming									
	Unit 2	Graphical system Desi			CO2						
	A	<u> </u>		ponents of VI Software - Front windows, Icon /connector							
	В	*									
	С	Sub VIs, Express VIs a program	nd VIs, v	wires; Data types, Data flow							
	Unit 3	Programming Technic	ques		CO3,CO5						
	A	Modular Programming and block diagram	in Lab V	View; Building VI front panel	,						
	В	Loops – for and while LabVIEW, Arrays in Lab	•	ocal and Global variables in							
	С	Clusters in LabVIEW; clusters, Plotting data in LabVIEW		on between arrays and EW, Strings and File I/O in							
	Unit 4	Data Acquisition and	Signal I	Processing in LabVIEW	CO4						
	A			oning ,sampling and aliasing							
	В		re and so	oftware, DAQ modules and							
	С			rum, Correlation methods;							
	Unit 5	Advanced concepts i	in LabV	VIEW TEN	CO5,CO3,CO4						
	A	Data Socket, TCP/IP V			,						
	В	Serial interface buses -	RS 232,	RS485,USB							
	С	Concepts of real time sy control	ystems; I	mage acquisition; Motion							
	Mode of examination	Theory/Jury/Practical	/Viva								
	Weightage	CA MTE		ETE							

Distribution	30%	20%	50%							
Text book/s*		Jovitha Jerome, "Virtual Instrumentation and LABVIEW", PHI Learning								
Other References		1. C.L. Clark, "LabVIEW Digital Signal Processing", TMH Publishing Company.								
		Technical Manu and National Inst	als for DAQ Modu truments	lles, Advantech						
		4. <u>www.profhkverma.info:</u> Chapter 2: Technologies/ Protocols for Wired Sensor Network								
		5. NI USER MANUAL http://www.ni.com/pdf/manuals/376445b.pdf								
	6.	www.ni.com	_	_						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	_	1	_	_	_		1	3	3	
	3	1	1		1			_		1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET								
Prog	gram: M.Tech								
Bran	nch: EEE/EE	Semester: 1I							
1	Course Code	MIA116							
2	Course Title	Industrial Network Protocols and IoT							
3	Credits	3							
4	Contact Hours (L-T-P)	3-0-0							
	Course Status	Compulsory /Elective/Open Elective							
5	Course Objective	 To provide students with: 7. basic principles network communications and communication system models and it's seven layers. 8. In depth knowledge of wired and wireless network protocols. 9. With the concept of IoT, M2M and IIoT along with typical applications thereo 							
6	Course Outcomes	Outcomes those used in industry. CO2: have in-depth knowledge of industrial wired network protocols and their comparative merits and limitations. CO3:To be able to apply Ethernet/IP protocol for industrial control and automation applications. CO4: To be able to select and apply wireless network protocol for instrument control and automation for industrial and societal applications. CO5: To be able to apply the concepts of IoT and design and develop IoT systems for							
7	Course Description	This course is aimed at equipping students with in-depth knowledge network protocols, both wired and wireless types and a working know concepts and systems.							
8	Outline syllabus		CO Mapping						
	Unit 1	Basics	11 0						
	A	Principles of analog and digital communication and their comparison; Asynchronous and synchronous data transmission; Simplex, half duplex and full duplex transmissions; Baseband and broadband communications; Signal transmission media: UTP,STP and coaxial cables, PLCC, optical fibres and radio link;	CO1						
	В	Concept of LAN, PAN, MAN, WAN and Internet; Error detection techniques: Parity check, check sum and CRC; LAN topologies; Role of data communication and networks in industrial automation; Field-level, control-level and enterprise-level networks;	CO1						
	С	ISO's seven-layer OSI model: significance, scope, functions of various layers; IEC's four-layer EPA model: significance, functions of various layers; MAC techniques: reservation,	CO1						

		selection and contention techniques, polling, token passing,	
		CSMA/CD; Special requirements of industrial network	
		protocols, list of important industrial wired and wireless	
		network protocols.	
	Unit 2	Industrial Wired-Network Protocols	
	A	Fieldbus: Meaning and characteristic features of fieldbus,	CO2
	A	popular fieldbuses.	CO2
		RS485 : Highlights, balanced–mode transmission in half duplex	
		and full duplex modes, MAC protocol, merits and limitations.	
		Modbus: Modbus protocol stack, Modbus address space and	
		object types, data transmission frame formats for	
		Modbus/RTU, Modbus/ASCII and Modbus/TCP, formats of	
		data requests and responses for main function codes (examples	
		only), merits and limitations of Modbus.	
	В	Foundation Fieldbus: FF protocol stack; physical layer,	CO2
	Ь	topologies supported, data link layer: FDLC and FMAC,	CO2
		application layer, merits and limitations of FF.	
	С	Distributed Network Protocol: DNP protocol stack, DNP	CO2
		version 3.3, physical layer and physical topologies, data link	002
		layer, pseudo-transport layer, application layer, merits and	
		limitations of DNP3.	
	Unit 3	Ethernet and Ethernet /IP	
	A	Ethernet: IEEE802.3, physical layer, speed variants of	CO3
		Ethernet, MAC and frame format; TCP/IP model; Ethernet	
		LAN components: repeater, bridge, router, gateway, hub and	
		switch; Merits and limitations of Ethernet for industrial	
		application	
	В	Common Industrial Protocol (CIP)	CO3
	С	Ethernet/IP: Adaption of Common Industrial Protocol (CIP)	CO3
		to standard Ethernet, UDP, comparison between standard	
		Ethernet and Ethernet /IP.	
	Unit 4	Industrial Wireless Network Protocols	
	A	Zigbee: Special features, IEEE802.15.4, data rates, ISM-	CO4
		frequency bands used and bandwidths, full-function and	
		reduced-function devices, PAN coordinator, MAC protocol	
		and data transfer types	
	В	Wireless network topologies	CO4
	С	Comparison of Zigbee with Wi-Fi and Bluetooth.	CO4
		IoTand Industrial IoT	
	Unit 5		
	A	IoT concept and definition; Technologies behind IoT;	CO5
	В	CISCO's 7-tier IoT reference model; Components of IoT	CO5
		devices; M2M communication; Relation between IoT, M2M	
		and IIoT; Modified OSI model for IoT/M2M/IIoT;	l l

C	Examples of a	CO5							
Mode of examination	Theory/Jury/I	Theory/Jury/Practical/Viva							
Weightage	CA	CA MTE ETE							
Distribution	30%	20%	50%						
Text book/s*			a and Computer Communications", ntice Hall, 2007.						
			John D. McDonald, "Power System", CRC Press, 2015.						
	_		of Things: Architecture and Design ill Education, 2017.						
Other									
References	Industrice 2. S.K. Si McGra 3. M.M.S Techni 4. H.K. WWW.F Technology Technology 5. H.K. WWW.F	ry", Newnes, 200 ngh, "Industrial w-Hill, 2003. . Anand, "Electro ques", Prentice I Verma, Senso profhkverma.info plogies/Protocols blogies/Protocols Verma,	Instrumentation and Control", Tata onic Instruments and Instrumentation Hall, 2004. Or Networks, e-monograph at Chapter 2 – Wired Network Chapter 3 – Wireless Network Chapter 3 – Wireless Network Chapter 4: Network Technologies						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET							
Prog	gram: M.Tech							
-	nch:EEE	Semester:II						
1	Course Code							
2	Course Title	Robotics and Industrial Robots						
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course Status	Elective /Compusory						
5	Course	1.To understand the construction industrial robotics						
	Objective	2.To explore knowledge on selection of end-effectors of ro	botics					
		3.To get knowledge of electrical drive systems of industria						
		4.To know types of sensors of industrial robotics						
		5.To understand of electrical and electronics interfacings						
		6.To study about applications of industrial robots						
6	Course	CO1: Basic construction of robot and robotics components						
	Outcomes	CO2: Understanding interfacing & building techniques of i						
	Outcomes	CO3: Knowing different types of actuators of robotics						
		CO4: Getting knowledge of robotics sensors and transduce	rs					
		CO5: Developing interfacing circuits for robotics application						
7	Course	This course gives coverage of robotics components, archite	ecture, and					
	Description	electronics interfacing circuits knowledge. Students can als	o practice					
		programming of robotics using embedded C on open sourc						
		going through this subject. Finally students are able to do t	ailor-made					
		projects on robotics engineering						
8	Outline syllabu		CO Mapping					
	Unit 1	Introduction to Robotics and Motion Analysis						
	A	Historical background; Laws of robotics and robot definitions;	CO1					
	В	Robotics systems and robot anatomy: Basic diagram, basic	CO1					
		components and their uses; Specifications of robots.	G0.1					
	С	Position representation; Forward and reverse transformation:	CO1					
	TI . 4 0	2 & 3 DOF						
	Unit 2	Robot End-Effectors, Robot Drives and Actuators						
	A	Classification of end-effectors; Mechanical grippers, Magnetic	CO2					
		grippers and vaccum grippers; Gripper force analysis.						
	В	Functions of drive systems; Electrical drives: DC, BLDC motors,	CO2,CO3					
		AC motors, stepper motor, piezoelectric actuators;	~ ~ ~					
	С	Drive Mechanisms: rack and pinion, ball screws, gear trains	CO2					
	TI *4 3	and harmonic drive.						
	Unit 3	Sensors of Robotic System	GO 4					
	A	Uses of sensors in robotics; Shaft Encoders (linear and	CO4					

	rotational);								
В	Proximity Sens	ors (inductive a	nd capacitive); Tactile sensors;	CO4					
С	Basic block dia	gram of vision s	systems of robotic system.	CO4					
Unit 4	Controlling Te	chnologies of Ir	ndustrial Robots						
A	Basics of PC int	Basics of PC interfacings							
В	Microcontrolle	Microcontroller interfacings							
С	Robot languag	Robot languages and classification; Robot software.							
Unit 5	Industrial Rob	ot Applications							
A	Material handl	ing robots		CO6					
В	Welding Robot	:S		CO6					
C	Assembling rol	oots		CO6					
Mode of	Theory								
examination									
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	1.S.R. Deb and	S. Deb, "Roboti	ics Technology and Flexible						
	Automation", S	Automation", Second edition, McGraw Hill, 2011.							
Other	2. Mikell P Gr	2. Mikell P Groover et al., "Industrial Robotics", fifth print,							
References	McGraw Hill, S	pecial Indian Ed	lition, 2013						

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	ı	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET								
Prog	gram: M.Tech								
Brai	nch: EEE/EE	Semester: 1							
1	Course Code	MIA117							
2	Course Title	Advanced Control Engineering and Controllers							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Compulsory							
5	Course	To provide students with:							
	Objective	1. some advanced concepts in Control Systems Engineering and t	heir						
	_	applications							
		2.A theoretical understanding of advanced linear control systems	and strategies,						
		including the principles of digital control.							
		3 understanding of performing stability analysis of digital control	-						
		4. knowledge of Analog controller, computer based controller an	d intelligent						
		controller							
6	Course	After completion of this course students will be able to:	at a see de ataux						
	Outcomes	CO1: Understand advanced concepts and approaches to control s							
		CO2: Understand industrial controllers of continuous and discontinuous types and advanced control concepts of cascaded and feed forward controls.							
		CO3: design, develop and operate analog controllers, both electrons							
		pneumatic types.	offic aria						
		CO4: Design develop and operate computer based control system	ıs.						
		CO5: Understand simulate and design artificial intelligence based							
		system.							
7	Course	This course introduces systematic approaches to the design and a	nalysis of						
	Description	advance control systems for industrial applications.							
8	Outline syllabus		CO Mapping						
	Unit 1	Overview of Control System							
	A	Elements of control systems; Concept of open loop and	CO1						
		closed loop systems; Examples and application of open loop							
		and closed loop systems							
	В	Brief idea of multivariable control systems; Concept of	CO1						
		stability and necessary conditions, Routh-Hurwitz criteria and							
		limitations. Correlation between time and frequency							
		responses							
	С	State variable modelling of linear discrete systems,	CO1						
		controllability and observability; Nonlinear control systems;							
		Fundamentals-common nonlinearities (saturation, dead-							
		zone, relay, on-off nonlinearity, backlash, hysteresis							
	Unit 2	Controller Principles							
	A	Process Characteristics; Control system parameters: error,	CO2						
		variable range, control parameter range, control lag, dead							

	time, cycling							
В	Discontinuous	controller r	nodes: two-position mode, multi-	CO2				
	position mode	; Continuou	s controller modes					
С	proportional,	proportional, integral and derivative control modes; Composite Control modes: proportional-integral (PI),						
	proportional-o	derivative (P	D) and three mode controller (PID);					
	Cascaded and	feed-forwar	rd controls					
Unit 3	Analog Contro	ollers						
A	Introduction;	General feat	tures	CO3				
В	Electronics co	ntrollers : er	ror detector, single mode and	CO3				
	composite mo	de controlle	er;					
C	Pneumatic co	ntrollers: pro	oportional, proportional-integral	CO3				
	(PI), proportio	(PI), proportional-derivative (PD) and PID controller.						
Unit 4	Computer Bas	ed Control						
A	Introduction;	Digital applic	cations: alarms, two-position	CO4				
	control							
В	Computer bas	Computer based controller						
C	hardware con	figurations,	software requirements	CO4				
Unit 5	Intelligent Co	Intelligent Control Systems Fuzzy-logic control system: Fuzzy set theory, basic fuzzy set operations, fuzzy relations, fuzzy logic controller, methods of determination of membership functions						
A	Fuzzy-logic co							
	operations, fu							
	determination							
В	Methods of de	Methods of defuzzification, fuzzy rule base, design of fuzzy logic control system.						
	logic control s							
C	Neural-netwo	rk control sy	stem: Artificial neural networks,	CO5				
	operation of a	single artifi	cial neuron, network architecture,					
	learning in ne	ural network	ks, back-propagation, Neurofuzzy					
	control							
Mode of	Theory/Jury/I	Practical/Viv	va					
examination			- Tarana					
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*								
			ess Control Instrumentation					
	Technology,"8							
	_	2. I.J. Nagrath and M. Gopal, "Control Systems Engineering,"						
	4th Edition, New Age International Publishers.							
Other								
References			N. Deepa, "Principles of soft					
	computing," V	Viley India P	vt. Limited.					
	2. S.Rajasheka	ran and G.A	VijayalakshmiPai, " Neural					
	Nwtworks,Fuz	zy logic, and	l Genetic Algorithms," PHI Pvt.					

	Limited.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO3	101	102	103	104	103	100	107	100	10)	1010	1501	1502	1503
CO113.1	3	1	1	-	1	-	ı	ı	-	1	3	3	ı
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	ı	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Schoo	ol: SET									
Progr	ram: M.Tech									
Bran	ch: EEE/EE	Semester: 1								
1	Course Code	MIA112								
2	Course Title	MEMS, Smart Sensors and WSN								
3	Credits	3								
4	Contact Hours	3-0-0								
	(L-T-P)									
	Course Status	Compulsory /Elective/Open Elective								
5	Course	To provide students with:								
	Objective	10. basic principles and techniques of MEMS and Smart Sens	sors							
		11. knowledge of various fabrication and machining process	of MEMS along with							
		its benefits in relation to applications								
		12. Knowledge in wireless sensor networks and to apply this	knowledge in various							
		industrial application like environmental monitoring, stru	=							
		greenhouse monitoring	iocarar ricarcii arra							
		greenhouse monitoring								
6	Course	CO1: To be able to understand architecture of smart sensors alor	ng with differences							
	Outcomes	among smart, intelligent and network sensors.								
		CO2: To be familiar with the important concepts applicable	e to MEMS and							
		their fabrication								
		CO3: To be able to select and apply the MEMS and smart sensors to different								
		applications.								
		CO4: To understand principles of wireless sensor networks and c	lifferentiate among							
		various wireless network protocols .								
		CO5: To apply principles of WSN in various industrial, environmen	ntal and societal							
7	C	applications.								
7	Course	This course is aimed at equipping students with basic knowledge	on of							
	Description	, ,, ,								
		MEMS (Micro electro Mechanical System), Smart sensor and its various fabrication techniques. This course also enables the student with appropriate knowledge of								
		Wireless sensor network and its applications in industry.	c knowledge of							
8	Outline syllabus	, and the approximation of the state of the	CO Mapping							
	Unit 1	Basics of MEMS and Smart Sensors								
	A	Overview of measurement system, transducers, sensors,	CO1							
		actuators and signal conditioners								
	В	Definition, working principle and construction of MEMS	CO1							
	C	Definition and architecture of smart sensor; different levels	CO1							
		of integration in smart sensors; Differences between smart,								
		intelligent and network sensors; Advantages of smart								
		sensors								
	Unit 2	MEMS and Smart Sensor Technologies								
	A	Micro-machining processes: materials for micro-	CO2							
		machining, wafer bonding, bulk and surface								
_		micromachining								

В	IC Technologies: thick film, thin film technologies	CO2
С	Monolithic IC technology	CO2
Unit 3	Case studies of MEMS and Smart Sensors	
A	Principles, characteristics and constructional details of MEMS based smart acceleration and pressure sensors	CO3
В	Principle, characteristics and constructional details of a smart temperaturesensor	CO3
С	Principle, characteristics and constructional details of a smart humidity sensor	CO3
Unit 4	Wireless Sensor Network (WSN)	
A	Need and advantages of WSN, Network topologies; seven- layer OSI model of communication system	CO4
В	Zgbee (IEEE – 802.15.4) protocol, Merits of Zigbee over Wi-Fi (IEEE – 802.11) and Bluetooth for WSN, architecture of Wireless sensor node	CO4
С	Sensor and actuator network (SAN) - homogeneous and heterogeneous SAN	CO4
	WSN Applications in Industry	
Unit 5		
A	Spectrum of applications; Case studies on WSN application: Environment monitoring	CO5
В	Condition monitoring - Structural health and Equipment health monitoring	CO5
С	Greenhouse monitoring and control	CO5
Mode of examination	Theory/Jury/Practical/Viva	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	 9 D. Patranabis, "Sensors and Transducers", Prentice-Holl, 2nd Edition, 2003. 10 Randy Frank, "Understanding Smart Sensors", Artech House, 2nd Edition, 2000. 11 E.H. Callaway, "Wireless Sensor Networks: Architecture and Protocols" 	
Other References	 H.K. Verma, e-monograph on "Smart Sensors", at www.profhkverma.info, Chapter 1 - Basics of Smart Sensor, Chapter 2 - Smart Sensor Technologies, Chapter 3 - Case Studies of Smart Sensors. H.K. Verma, e-monograph on "WSN", at www.profhkverma.info, Chapter 1 - Wireless Sensor Network, Chapter 2 - Wireless Sensor Node, Chapter 3 - Applications of Wireless Sensor Networks. 	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Sch	nool: SET								
Pro	gram: B.Tech								
Bra	nch:EEE/EE/ECE	Semester: 2							
1	Course Code	EEE331							
2	Course Title	PLC and SCADA							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Compulsory /Elective/Open Elective							
5	Course Objective	To provide students with:							
	3	1. The conceptual as well as practical knowledge of the Indu	ıstrial						
		Automation & latest technologies being used to achieve Inc							
		Automation.							
6	Course Outcomes	The students should be able to							
		CO1: understand the concepts of computer based Industrial	Control.						
		including PLC, DCS and SCADA.	,						
		CO2: understand hardware of PLC and ladder programmin	g for PLC.						
		CO3: use various PLC functions and develop PLC program	•						
		industrial control and automation applications.							
		CO4: understand the purpose, layout, components and fund	ctions of						
		SCADA systems and use the knowledge for the operation of							
		SCADA systems in Industry							
		CO5: design SCADA system including layout, communica	tion system						
		and software.							
7	Course								
	Description	This course is aimed at equipping students with appropriate knowledge and							
		skills required in configuring, programming and operating Indus							
		automation systems with the use of Industrial Field Instruments, PLC and							
		SCADA systems.							
8	Outline syllabus	T	CO Mapping						
	Unit 1	Computer Based Industrial Control							
	A	Microprocessor/microcontroller based industrial controller:	CO1						
	D	concept and configuration	CO1						
	В	Computer based industrial controller: concept and configuration	CO1						
	С	Introduction to direct digital control (DDC), distributed control	CO1						
		system (DCS) and supervisory control and data acquisition	COI						
		(SCADA)							
	Unit 2	PLC Basics							
	A	Introduction to PLC, PLC versus	CO2						
		microprocessor/microcontroller/computer; Advantages and							
		disadvantages of PLC							
	В	Hardware, internal architecture and physical forms of PLC; CO3							
		Digital inputs/ outputs; Analog inputs/ outputs							
	C	PLC programming: ladder programming, function blocks,	CO2						

	Instruction list	s, Sequential f	unction chart, mnemonic					
	programming	1	*					
Unit 3	PLC Functions							
A		Registers: holding, input and output registers; Timers and timer functions; Counters and counter functions Data handling functions; Bit functions;						
В	Data handling							
С	Advanced functions	Advanced functions; PLC programming using various						
Unit 4	SCADA Basics	Layout and F	unctions					
A			purpose;Controlled / uncontrolled llycontrolled objects in controlled	CO5				
В		Layout and parts of SCADA system; Detailed block schematic of SCADA system						
С	Functions of S transmission, a data processin	CO5						
Unit 5	SCADA Design							
A	Master Termin multiprocessor of MTU; Rem / layout; RTU	CO5						
В	MTU-RTU co communicatio	CO5						
С			ARDWARE, Communication and	CO5				
Mode of examination	Theory/Jury/	Practical/Viv	a					
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1. J.W. Webb a Prentice-Hall I 2 Stuart A. B (SCADA), 4th Ed 2010.							
Other References	Controllers, Pe 2. W. Boston, Elsevier). 3. H.K. Verma, www.profhky	earson Edition Programmable . SCADA, e-mo erma.info, Cha	kworth, Programmable Logic Logic Controllers, Newnes,(nograph at pter 1: Basics of SCADA, Chapter m, Chapter 3: Hardware of SCADA					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PSO1	PSO2	PSO3
CO331.1	3	3	-	1	-	-	-	-	-	2	1	-	1
CO331.2	3	3	-	1	2	-	-	-	-	2	1	2	1
CO331.3	3	3	-	1	2	-	-	-	-	2	3	2	1
CO331.4	3	3	-	1	-	-	-	-	-	2	1	-	1
CO331.5	2	2	3	3	3	-	-	-	-	2	3	2	1
CO331.6	2	3	3	2	32	-	-	-	-	2	2	2	1

Scho	ool: SET								
Prog	ram: B.Tech								
Bran									
1	Course Code								
2	Course Title	Advanced Control Engineering and Controllers							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status								
5	Course	To provide students with:							
	Objective	1. some advanced concepts in Control Systems Engineering and the	neir						
	3	applications							
		2.A theoretical understanding of advanced linear control systems	and strategies,						
		including the principles of digital control.							
		3 understanding of performing stability analysis of digital control	systems.						
		4. knowledge of Analog controller, computer based controller and	d intelligent						
		controller							
6	Course	After completion of this course students will be able to:							
	Outcomes	CO1: Understand advanced concepts and approaches to control s							
		CO2: Understand industrial controllers of continuous and discontinuous types							
		and advanced control concepts of cascaded and feed forward controls.							
		CO3: design, develop and operate analog controllers, both electronic and							
		pneumatic types. CO4: Design develop and operate computer based control systems.							
		CO5: Understand simulate and design artificial intelligence based							
		system.	Control						
		CO 6: Industrial experiences in control engineering							
7	Course	This course introduces systematic approaches to the design and a	nalvsis of						
	Description	advance control systems for industrial applications.	,						
8	Outline syllabus	, , , , , , , , , , , , , , , , , , , ,	CO Mapping						
	Unit 1	Overview of Control System	11 8						
	A	Elements of control systems; Concept of open loop and	CO1						
		closed loop systems; Examples and application of open loop							
		and closed loop systems							
	В	Brief idea of multivariable control systems; Concept of	CO1						
		stability and necessary conditions, Routh-Hurwitz criteria and							
		limitations. Correlation between time and frequency							
		responses							
	С	State variable modelling of linear discrete systems,	CO1						
		controllability and observability; Nonlinear control systems;							
		Fundamentals-common nonlinearities (saturation, dead-							
		zone, relay, on-off nonlinearity, backlash, hysteresis							
	Unit 2	Controller Principles							
	A	Process Characteristics; Control system parameters: error,	CO2						
		variable range, control parameter range, control lag, dead							

	time, cycling	 g		
В			nodes: two-position mode, multi-	CO2
			s controller modes	
C			derivative control modes;	CO2
			: proportional-integral (PI),	
		•	D) and three mode controller (PID);	
		nd feed-forwar	d controls	
Unit 3	Analog Con			
A	Introduction	n; General feat	ures	CO3
В	Electronics	controllers : er	ror detector, single mode and	CO3
	composite r			
C	Pneumatic o	controllers: pro	pportional, proportional-integral	CO3
	(PI), proport			
Unit 4	Computer B	Based Control		
A	Introduction	n; Digital applic	cations: alarms, two-position	CO4,CO6
	control			
В	Computer b	ased controlle	r	CO4,CO6
С	hardware co	software requirements	CO4,CO6	
Unit 5	Intelligent C	Control System	is	
A	Fuzzy-logic	CO5,CO6		
	operations,			
	determinati			
В	Methods of	CO5,CO6		
	logic contro			
С	Neural-netv	CO5,CO6		
	operation of			
	learning in r			
	control			
Mode of	Theory/Jury	y/Practical/Viv	va	
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*				
	1. Curtis D.	Johnson "Proce	ess Control Instrumentation	
	Technology,	"8th Edition Pe	earson.	
	2. I.J. Nagra			
	4th Edition, I	New Age Interr	national Publishers.	
Other				
References	1. S.N. Sivan	nandam and S.I	N. Deepa, "Principles of soft	
	computing,'	' Wiley India P	vt. Limited.	
	2. S.Raiashe	karan and G A	. VijayalakshmiPai, "	
		1		

	Pvt. Limited.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Bra 1 2	gram: M.Tech nch: EEE		
Bra 1 2			
2	nen. Eee	Semester:	
	Course Code		
	Course Title	Demand side management of smart grid	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
_	Course Status		
5	Course Objective	 To introduce the concept of demand-side management for rescommercial and industrial energy users. To give an overview of the different types of demand-side means and to indicate their benefits. To outline information dissemination on demand-side management for rescommercial and industrial energy users. To provide an overview of the major implementation challer 	neasures. and monitoring, gement.
6	Course	programmes CO1: To be able to define demand-side management.	
	Outcomes	 CO2: To understand the different types of demand-side management their suitability to various energy users. CO3: To be aware of the benefits of good reliable data collection for performance analysis, and as an essential part of energy auditi CO4: To appreciate the need for effective information dissemination CO5: To understand the challenges facing the implementation of dermanagement CO6: To be able to design housekeeping and preventative maintenar commerce and industry can be used to reduce energy demand. 	regular ng nand-side nce in
7	Course Description	Demand-side management (DSM) has been traditionally seen reducing peak electricity demand so that utilities can delay be capacity. In fact, by reducing the overall load on an electricity networious beneficial effects, including mitigating electrical system reducing the number of blackouts and increasing system reliable benefits can also include reducing dependency on expensive in reducing energy prices, and reducing harmful emissions to the Finally, DSM has a major role to play in deferring high investment transmission and distribution networks. Thus DSM applied to electric systems provides significant economic, reliability and environmental	building further work, DSM has m emergencies, bility. Possible mports of fuel, e environment. is in generation, city
8	Outline syllabu		CO Mapping
	Unit 1	Energy Scenarios	CO1
	A	Energy Conservation, Energy Audit, Energy Scenarios,	CO1
ŀ	В	Energy Consumption, Energy Security,	CO1

C	Energy Strategy	/, Clean Develor	oment Mechanism	CO1						
Unit 2	Energy Audit									
A	Definition of Er	nergy Audit, Plac	ce of Audit,	CO2						
В	Energy – Audit Project Financii		inancial Analysis, Sensitivity Analysis,	CO2						
С	Energy Monitor	ring and Trainin	g Solar power plant	CO2						
Unit 3	Electrical-Load	Management		CO3						
A	Electrical Basics	s, Electrical Load	d Management,	CO3						
В	Variable- Frequ	ency Drives, Ha	rmonics and its Effects,	CO3						
С	Electricity Tarif	f, Power Factor,	Transmission and Distribution Losses	CO3						
Unit 4	Demand side N	/lanagement		CO4, CO6						
A	Scope of DSM, Implementation		M concept, DSM planning and	CO4, CO6						
В	_	Load management as a DSM strategy, Applications of Load Control, End use energy conservation,								
С	· ·	Fariff options for DSM, customer acceptance, implementation issues, mplementation strategies, DSM and Environment								
Unit 5	Energy Conserv	_		CO5,CO6						
A	Motivation of e		tion, Principles of Energy conservation,	CO5, CO6						
В	Energy conserv transmission ar		ies, EC in SSI, EC in electrical generation,	CO5, CO6						
С		d and commerci	ial sectors, EC in transport, EC in	CO5, CO6						
Mode of examination	Theory									
Weightage	CA	MTE	ETE							
Distribution	30%	20%	50%							
Text book/s*		0,	wer for a sustainable future, third edition, le, Oxford University Press, 2013.							
Other References	Chowd		Distribution Networks, S. Chowdhury, S.P. ssley, The Institution of Engineering and J.K, 2009							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Scho	ool: SET								
Prog	gram: B.Tech								
Brai	nch:EEE	Semester:							
1	CourseCode								
2	CourseTitle	DigitalRelaying forPowerSystems							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Compulsory							
5	CourseO	1. tounderstandtheconcept							
	bjective	ofdigitalprotectionandcomputerrelayingforpowersystem.							
		2. toacquireanin-							
		depthknowledgeondifferentgenerationsofprotectiverelays							
		3. toidentifydifferentcomponentsofanumericalrelay							
		4. to apply discrete Fourier transform technique in Power							
		SystemProtection							
		5. todesignanddevelop relayalgorithmsfor protectionofpower							
		systemapparatus							
6	CourseOu	CO1: To compare, analyses the advantages and disadvantage	e of all the						
	tcomes	three generations of protective relay and also identify t							
	teomes	components of a numerical relay	ne different						
		CO2: To develop relay algorithms based on relaying signals							
		CO3: To develop algorithm for digital protection of generate	or						
		CO4: To develop algorithm for digital protection of							
		transformer							
		CO5: To apply ANN for protection of transmission line and							
		power transformer							
		CO6: To design and evaluate protection algorithms for protection	ction of any						
<u> </u>		power system component							
7	CourseDes	The first and foremost driving force for advances in relay							
	cription	theneedtoimprove reliability. In turn, this implie							
		dependabilityaswellassecurity. This need to improve reliability							
		velopment of digital relaying. In this course, the stude	ints will have						
		anexposure to the three generations of protective relays.	na aynasad						
		Throughout the course, students will have an opportunity to be exposed							
		todifferent numerical techniques for protection of generators, transformersandtransmissionlines.							
		amistormersundumismissionimes.							
8	Outlinesyllabus	S	COMapping						
	Unit1	IntroductionandArchitectureofDigitalRelay	11 8						
	A	Threegenerationsofprotectiverelays:electromechanical,	CO1						
		staticanddigital/numerical							
		5 mil validati Simil italii vii vai							

В	architectureand elementsofadigitalrelay	CO1						
С	Multifunctionalrelays,managementrelaysandIEDRelays	CO1						
Unit2	RelayAlgorithmsandMathematicalBasis							
A	RelayAlgorithmsbased onpuresinusoidalrelaying signals,distortedrelayingsignalsanddifferentialequationrepre sentationofsystem;	CO2 &CO6						
В	Ztransform,sineandcosineFourierseries,Fourier TransformandDFT	CO2 &CO6						
С	Walshfunctions, digital filters, windows and windowing.	CO2 &CO6						
Unit3	DigitalRelayingforGenerator							
A	Various protectionfunctions:differential,statorearthfault, lossofexcitationandreversepower protection	CO3&CO6						
В	frequency protection, over and under voltage protection							
С	Γ							
Unit4	DigitalRelaying forTransformer							
A								
В	stabilizingofdifferentialprotectionduringmagnetizing inrushcurrent	CO4						
С	Numericalprotectionoftransformer	CO4						
Unit5	ArtificialIntelligenceBasedNumericalProtection	CO5						
A	TypesofNeuralNetworkModels,ArtificialNeural Network,DesignProcedureandConsideration	CO5						
В	ApplicationofANNtotransmissionlineprotection	CO5						
С	ANNbasedpowertransformerprotection							
Modeof examination	Theory							
Weightage	CA MTE ETE							
Distribution	30% 20% 50%							
Textbook/s* OtherRefer	1. Arun G Phadke and James S. Thorp,							
ences	G.Chothani, "ProtectionandSwitchgear", Oxford.							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	=	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	ı	ı	ı	ı	ı	2	ı	-

	nool: SET										
	ogram: M.Tech										
	anch: EEE	Semester:									
1	Course Code										
2	Course Title	Distributed Generation Technology									
3	Credits	3									
4	Contact Hours	3-0-0									
	(L-T-P)										
	Course Status										
5	Course	To introduce the concept of distributed generation, microgrids, electric ve	ehicles and								
	Objective	energy storage.	1.1								
		To familiarize the students with renewable generation system modelling,	and their grid								
		integration issues.	ons for DC								
		To impart an understanding of economics, policies and technical regulation	טט וטו צווע								
5	Course	CO1: Analyse the concept and importance of distributed generation.									
J	Outcomes	CO2: Understand different renewable energy sources, micro-grid and sto	rage								
	Outcomes	Devices.	. 486								
		CO3: Evaluate the technical impact of DG in power system									
		CO4: Analyze the operation and control strategies for grid connected and off-grid									
		System.									
·											
		CO5: Evaluate the effect of DG placement in the existing system									
 7	Course	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration	ovoltaic system								
7	Course Description	CO5: Evaluate the effect of DG placement in the existing system	ples of control ms, installatio								
-		CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards.	ples of control of ms, installation								
7	Description	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards.	ples of control ms, installatio outed generatio								
	Description Outline syllabu	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards.	ples of control ms, installation puted generation CO Mappin								
-	Outline syllabu Unit 1	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Is Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed	ples of control ms, installatio outed generatio CO Mappin CO1								
	Outline syllabu Unit 1 A	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation	ples of control ms, installatio outed generation CO Mappin CO1 CO1								
	Outline syllabu Unit 1 A B C Unit 2	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation	control CO1 CO1 CO1								
	Outline syllabu Unit 1 A B C Unit 2 A	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution systemeterconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant	control col col col col col col col col col c								
	Outline syllabu Unit 1 A B C Unit 2 A B	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant	CO Mappin CO1 CO1 CO1 CO2 CO2								
	Outline syllabu Unit 1 A B C Unit 2 A	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution systemeterconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant	control col col col col col col col col col c								
	Outline syllabu Unit 1 A B C Unit 2 A B	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant Small hydro other alternate DG Technical impacts of DG	CO Mappin CO1 CO1 CO1 CO2 CO2								
	Outline syllabu Unit 1 A B C Unit 2 A B C Unit 3 A	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant Small hydro other alternate DG Technical impacts of DG Transmission systems, Distribution systems	CO Mappin CO1 CO1 CO2 CO2 CO2 CO2 CO3 CO3								
	Outline syllabu Unit 1 A B C Unit 2 A B C	CO5: Evaluate the effect of DG placement in the existing system CO6: Industrial experiences in renewable energy integration This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant Small hydro other alternate DG Technical impacts of DG	CO Mappin CO1 CO1 CO2 CO2 CO2 CO2 CO3								

	distribution sy	ystems							
Unit 4	Operation ar	nd Economi	c aspects of DGs	CO4, CO6					
A	De-regulation	of power sy	ystem	CO4, CO6					
В			es, Reactive power control, Harmonics, lability of DG based systems	CO4, CO6					
С			tet facts, issues and challenges	CO4, CO6					
Unit 5	Grid integra	tion of DGs		CO5,CO6					
A	Optimal place	Optimal placement of DG sources in distribution systems							
В	V 1	Different types of interfaces, Inverter based DGs and rotating machine based interfaces, Aggregation of multiple DG units							
С	Energy storag	ge elements,	Batteries, ultra capacitors, flywheels	CO5, CO6					
Mode of examination	Theory								
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*			Power for a sustainable future, third edition Boyle, Oxford University Press, 2013.	1,					
Other References	Chowd		ve Distribution Networks, S. Chowdhury, S.P Crossley, The Institution of Engineering and n, U.K, 2009	7.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Sch	ool: SET						
Pro	gram: B.Tech						
Bra	nch:EEE	Semester:					
1	Course Code						
2	Course Title	Operation and Control of smart grid					
3	Credits	3					
4	Contact Hours	3-0-0					
	(L-T-P)						
	Course Status						
5	Course Objective	The objective of the subject on smart grid technologies is to and optimize distributed energy resources to achieve a more reliable grid, enable active participation of consumers with environmental constraints	e efficient and				
6	Course Outcomes	The students should be able to					
		CO1: Identify different tools and approaches to modelling a CO2: Apply Optimal Power Flow (OPF) solutions to evalu performance of a power system with renewable energing CO3: Analyze power system dynamics (frequency stability) to a power balance.	ate the gy sources.				
		CO5: Identify control-room technologies for system-wide rem protection, and risk management of smart grid cyber sec	 3: To familiarize the students with modelling of smart grids components. 05: Identify control-room technologies for system-wide remote monitoring, protection, and risk management of smart grid cyber security 6: Able to design, implementation, evaluation and management of smart electricity infrastructure 				
7	Course Description	Smart grid communications and control, covering several specifield of smart grid including advanced metering infrastructive response, distributed storage, vehicle-to-grid systems measurement, smart grid cyber security, etc	ctures, demand				
8	Outline syllabus		CO Mapping				
	Unit 1	Modeling of Smart Grids					
	A	Operating principles and models of smart gird components,;.	CO1				
	В	Key technologies for generation, networks, loads and their control capabilities decision-making tools	CO1				
	С	Hardware, Software, Communication. Approaches to estimation, scheduling, management and control of next generation smart grid	CO1				
	Unit 2	Smart Grid Communications					
	A	Two-way Digital Communications Paradigm,Network Architectures	CO2				
	В	IP-based Systems, Power Line Communications	CO3				
	С	Advanced Metering Infrastructure,	CO2				
	Unit 3	Security and Privacy					
	A	Cyber Security Challenges in Smart Grid,Load Altering Attacks	CO4				

В	False Data Inje	ction Attack	s, Defense Mechanisms	CO4			
С	Privacy Challer	Privacy Challenges Data handling functions; Bit functions					
Unit 4	t 4 IoT for power systems						
A	Internet of thir	gs for electr	icity infrastructure and energy	CO5,CO6			
	management.						
В	SCADA, Deman	d response,	AMI, IoT aided smart grid,	CO5,CO6			
C	Big data for po	wer system a	and introduction to data analytic	cs. CO5,CO6			
Unit 5	Flexible AC tra	nsmission sy	ystem (FACTS)				
A	Congestion ma reactive power	-	nd loadability enhancement, ion,.	CO5,CO6			
В	concept of seri working princip	concept of series compensation, shunt compensation, FACTS: working principle					
С	-	Classification, series controllers, shunt controllers, series- series controllers, series-parallel controllers					
Mode of examination		Theory/Jury/Practical/Viva					
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*		l .	k Jenkins, Kithsiri Liyanage,				
Tent oodii s		•	okoyama, "Smart Grid:				
	_		ions", John Wiley & sons inc,				
	2015.	татррпсас	ions , somi whey a sons me,				
		noh. "Smart	Grid: Fundamentals of design an	d			
			is Inc, IEEE press 2012				
Other References			"Smart Grid: Integrating				
			& Efficient Energy", Academic				
	Press, 2012.		3. .				
	2.ClarkW.Gell	ings, "The s	smart grid: Enabling energy				
		•	esponse", Fairmont Press Inc,				
		SCADA, e-m	onograph at ww.profhkverma.in	fo,.			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

(School: SET							
Pro	gram: B.Tech							
Bra	nch:EEE	Semester:						
1	Course Code							
2	Course Title	Robotics and Industrial Robots						
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course Status							
5	Course	1.To understand the construction industrial robotics						
	Objective	2.To explore knowledge on selection of end-effectors of ro	botics					
		3.To get knowledge of electrical drive systems of industria	l robotics					
		4.To know types of sensors of industrial robotics						
		5.To understand of electrical and electronics interfacings						
		6.To study about applications of industrial robots						
6	Course	CO1:Basic construction of robot and robotics components						
	Outcomes	CO2:Understanding interfacing & building techniques of re	obots					
		CO3:Knowing different types of actuators of robotics						
		CO4:Getting knowledge of robotics sensors and transducer						
		CO5:Developing interfacing circuits for robotics application	ons					
		CO 6: Industrial experiences in Robotics						
7	Course	This course gives coverage of robotics components, archite	ecture and					
•	Description	electronics interfacing circuits knowledge. Students can als						
	1	programming of robotics using embedded C on open sourc						
		going through this subject. Finally students are able to do to						
		projects on robotics engineering						
8	Outline syllabi	us	CO Mapping					
	Unit 1	Introduction to Robotics and Motion Analysis						
	<u> </u>	Historical hashman and Laura of the Control of the	CO1					
	A	Historical background; Laws of robotics and robot definitions;	CO1					
	В	Robotics systems and robot anatomy: Basic diagram, basic	CO1					
	С	components and their uses; Specifications of robots. Position representation; Forward and reverse transformation:	CO1					
		2 & 3 DOF						
	Unit 2	Robot End-Effectors, Robot Drives and Actuators						
red l	by : Department o	Classification of end-effectors; Mechanical grippers, Magnetic	CO2					
. cu l	В	Functions of drive systems; Electrical drives: DC, BLDC motors,	CO2,CO3 P					
		AC motors, stepper motor, piezoelectric actuators;	002,003					
	С	Drive Mechanisms: rack and pinion, ball screws, gear trains	CO2					
		and harmonic drive.						
	1		1					
	Unit 3	Sensors of Robotic System						

	rotational);	rotational);						
В	Proximity Sensors (inductive and capacitive); Tactile sensors;							
С	Basic block dia	gram of vision	systems of robotic system.	CO4				
Unit 4	Controlling Te	chnologies of I	ndustrial Robots					
A	Basics of PC int	terfacings		CO5				
В	Microcontrolle	r interfacings		CO5				
С	Robot languag	es and classific	ation; Robot software.	CO5				
Unit 5	Industrial Rob	ot Application	s					
A	Material handl	CO6						
В	Welding Robot	:S		CO6				
С	Assembling rol	oots		CO6				
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1.S.R. Deb and	1.S.R. Deb and S. Deb, "Robotics Technology and Flexible Automation", Second edition, McGraw Hill, 2011.						
	Automation", S							
Other	2. Mikell P Gr	oover et al.,	"Industrial Robotics", fifth print,					
References	McGraw Hill, S	pecial Indian E	dition, 2013					

repared by : Department of EEE	Page 6

Sch	ool:SET							
	gram: B.Tech							
Bra	nch:EEE	Semester:I/II						
1	CourseCode							
2	CourseTitle	Smart PowerGridandMicro-Grid						
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course Status							
5	CourseO	Tounderstandtheconceptsofsmartpowergridandmicr	ogrid					
	bjective	2. Toacquireindepthknowledgeofsmartdistribution, dis	tributionautoma					
		tion,smarttransmissionandsubstationautomation						
		3. Toidentifyvariouscomponentsofsmartgridandmicros	grid					
		4. Toapplyprinciplesofautomationtotransmissionand d						
		5. To designsmartmicrogridforagivenapplication						
6	CourseOu	CO1: To understand concept, motivation and benefits of S	mart Power					
	tcomes	Grid						
		CO2: To develop knowledge of demand-side management	as a tool of					
		smart distribution						
		CO3:To design advanced metering infrastructure for Distri	ribution					
		Automation						
		CO4: To design AC, DC and hybrid micro grids						
		CO5:To design phasor measurement and develop wide area						
		Monitoring system using PMU CO6: Industrial experiences in renewable energy integration in distribution						
		system	IISUIDUUOII					
7	CourseDes	The course deals with the concept of smart power gr	id and includes					
	cription	invdepthstudyofitsitsvariouscomponents,namelysmartdistri						
	Cription	onautomationandmanagement,advancedmeteringinfrastruct						
		,smartmicrogrid,smarttransmissionandsubstationautomation						
8	Outlinesyllabu	<u> </u>	COMapping					
	Unit1	Introduction toSmartPowerGrid(4hours)	11 0					
	A	Traditionalpowergrid,Smartpowergrid(orsmartgrid)	CO1					
		concept andobjectives						
	В	Benefitsofsmartpowergrid,traditional-gridandsmart-	CO1					
		gridcomparison						
	С	Stake-holdersinsmart-griddevelopment, Smart grid	CO1					
		solutions.						
	Unit2	SmartDistribution	1 005					
	A	Demand-sidemanagement:Energyefficiency,timeofuse	CO2					
		andspinningreserve						

В	Demandresponse:MarketdrivenDRandoperation-drivenDR,incentive-basedDRandTOU-basedratesDR	CO2
	university, meeting to consequences and the consequences are the consequ	

<u> </u>	Distributed as a set in European Libertale and	CO2
С	Distributedgeneration, Energystorage, Use of plugged electric and hybridelectric vehicles	CO2
Unit3	DistributionAutomationandManagement	
A	Overview of distribution system, Components of DA:	CO3
	customer automation, feed erau to mation and	
	substation	
	automation, Distribution control centre(DCC)	
В	Distribution	CO3
	managementsystem(DMS),Outagemanagement system	
	(OMS)- unplanned and	
	plannedoutages, Assetmanagement	
	system(AMS),Customerinformationsystem(CIS)	
С	Meaning and benefits of advanced metering, Structure and components of AMI, AMI integration with DA, DMS and OMS.	CO3
Unit4	SmartMicrogrid	
A	Definition, components and benefits of microgrid	CO4,CO6
В	Typesofmicrogrid:AC,DCandhybrid,Modesof	CO4,CO6
	operation:grid-connectedandisland modes	
C	Meaningofsmartmicro grid, Microgridoperation and	CO4,CO6
	control	
Unit5	SmartTransmissionandSubstationAutomation	G0. G0.
A	Meaningandchallengesofsmarttransmission	CO5,CO6
В	Phasormeasurementunit:concept,layout,componentsand	CO5,CO6
	applications, Wide area monitoring system: concept	
С	and impacton EMS and DMS Needofsubstationautomation(SA), Technical issuesof	CO5,CO6
C	SA,SAarchitecture,SAfunction.	CO3,CO6
Modeof	Theory	
examination		
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Textbook/s*	1.MiniS.Thomasand JohnD.	
	McDonald,PowerSystem SCADA and Smart	
	Grids, CRC Press,2015.	
OtherRefer	JanakEknayakeatel.,SmartGrid:TechnologyandApp	
ences	lications, John Wileyand Sons, 2012	
	2. H.K.Verma,e-Monographon"Smart–	
	Grid", www.profhkverma.info	
	Site , www.promeronia.inio	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	=	-	=	-	ı	-	-	-	2
CO.3	3	2	2	2	=	-	=	-	ı	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	ı	-	2	-	2
CO.5	1	2	2	1	=	-	-	-	ı		3	2	2
CO.6	3	3	3	2	-	-	-	-	ı	-	2	-	-

Sch	ool:	School of Engineering and Technology						
	gram:	Current Academic Year:						
Branch: EEE		Semester:						
1	Course Code							
2	Course Title	Virtual Instrumentation						
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course							
	Status							
5	Course Objective	 9. Introduction to the various models of Virtual Instruments, their comparison with traditional instruments and major application areas of VI. 10. Introduction to basics of LabVIEW 11. VI Programming techniques like loops, arrays, clusters, plotting and Strings and files. 						
		 Basics of signal conditioning techniques along with DAQ hardware and software and various signal processing techniques available in LABVIEW. Advanced concepts in LabVIEW with main concepts of real time applications in Image acquisition and Motion control. Building of Virtual Instruments with various types of controls and indicators. Configuring DAQ card and acquisition of real time signals from sources and sensors. Simulate a signal in LabVIEW and generate a virtual source using DAQ cards. 						
6	Course Outcomes	CO1:Understand various models and areas of application of Virtual Instrumentation. CO2: Understand various components of LabVIEW required for the development of VI. CO3: Understand and apply various programming functions of LabVIEW like loops, arrays, clusters and file I/Os for building of simple Virtual instruments. CO4: Understand the concepts of Data acquisition hardware and software and to apply basic signal processing techniques available in LabVIEW. CO5: Understand the real time applications of LabVIEW in motion control and Image acquisition. CO6:Able to build VI for simulated and real time applications.						
7	Course Description	The course content of this subject includes an introduction to graphical system design. This course also focuses on introduction to LabVIEW which extensively elaborate the Graphical programming language .In Unit 3, building of VI by using loops, arrays, clusters etc. have been dealt with. Use of strings and I/O are also elaborated in this course. Data acquisition and various signal processing techniques are also						

		covered in this course. Two real time applications motion control and Image acquisition by using LabVIEW have been elaborated in this								
		course.	ition by usin	g Labview nave been elai	orated in this					
8	Outline syllabus									
	TT:4 1	Introduction	Mapping CO1							
	Unit 1		cal system design model - design model, prototype							
	A	model, deployn	nent model							
	В	Building blocks instrument, Har		l instrument versus traditional tware in VI						
	С	Graphical syste programming a		g LabVIEW; Graphical ogramming						
	Unit 2	Graphical syst			CO2,CO6					
	A	Advantages of	LabVIEW; Co	mponents of VI Software - From windows, Icon /connector						
	В			olbars, Palettes, Front panel diagram – terminals, nodes,						
	С	Sub VIs, Expre program	ss VIs and VIs	, wires; Data types, Data flow						
	Unit 3	Programming	Techniques		CO3,CO6					
	A		amming in Lat	View; Building VI front panel						
	В	Loops – for and LabVIEW, Arra								
	С	Clusters in Lab clusters, Plottin LabVIEW								
	Unit 4	Data Acquisiti	Data Acquisition and Signal Processing in LabVIEW							
	A	Transducers and	CO4,CO6							
	В	Basics of DAQ drivers for build								
	С	Fourier transfor Windowing & 1								
	Unit 5	Advanced con		WIFW	CO5, CO6					
	A	Data Socket, To			003, 000					
		Serial interface								
	В									
	С	control		; Image acquisition; Motion						
	Mode of examination	Theory/Jury/P	ractical/Viva							
	Weightage	CA	MTE	ETE						
	Distribution	30%	20%	50%						
	Text book/s*		Jerome, "Virt IEW", PHI Le	ual Instrumentation and arning						
	Other References	TMH Publishin	g Company.	Digital Signal Processing",						
		and Na	tional Instrum							
		9. <u>www.p</u>								

Protocols for Wired Sensor Network	
10. NI USER MANUAL	
http://www.ni.com/pdf/manuals/376445b.pdf	
11. www.ni.com	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	2	2