

Program and Course Structure

Department of Electrical and Electronics Engineering

M.Tech in Electrical and Electronics Engineering

Program Code: SET0407

1. Standard Structure of the Program at University Level

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship

Core Values

4. Seeking beyond boundaries

- Integrity
- Leadership
- Diversity
- Community

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship

Mission of the School

- 1. To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conductive and enriching learning environment.
- 2. To product technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities and uphold ethical values.
- 3. To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- 4. To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

1.2.1 Vision and Mission of the Department

Vision of the Department of Electrical and Electronics Engineering

To become an internationally acclaimed destination of academic excellence in the discipline of Electrical, Electronics, and Communication Engineering by promoting research, innovation, and entrepreneurship to serve society.

Mission of the Department Electrical and Electronics Engineering

M1-To provide comprehensive technical knowledge in Electrical, Electronics and Communication Engineering.

M2- To facilitate and foster the industry-academia collaboration to enhance technical skills and employability.

M3- To promote interdisciplinary and multi-disciplinary research, innovations and entrepreneurship to serve society.

M4- To develop core values, professional ethics and lifelong learning skills through interactive support systems.

1.3 Programme Educational Objectives (PEO)

1.3.1 Writing Programme Educational Objectives (PEO)

The Educational Objectives of UG Program in Electrical and Electronics Engineering are:

PEO1: The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.

PEO2 : Graduates will be motivated for research and higher education and support their entrepreneurial learning.

PEO3 : Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.

PEO4: The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems

1.3.2 Map PEOs with School Mission Statements:

No.	PEO statement	School missions			
		Mission statement	Mission statement	Mission	Mission
		1	2	statement 3	statement 4
I	PEO1: The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.	3	2	2	3
2	PEO2 : Graduates will be motivated for research and higher education and support their entrepreneurial learning.	2	3	3	2
3	PEO3 : Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.	2	3	2	3
4	PEO4 : The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems	-2	3	2	2

1.3.2.1 Map PEOs with Department Mission Statements:

DEPARTMENT PEOs DEPT OF EEE MISSION STATEMENTS	1. The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.	2. Graduates will be motivated for research and higher education and support their entrepreneurial learning.	3. Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.	4. The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems.	
M1-To provide comprehensive technical knowledge in Electrical, Electronics and Communication Engineering.	3	3	2	3	11/12
M2- To facilitate and foster the industry- academia collaboration to enhance technical skills and employability.	2	3	2	3	10/12
M3- To promote interdisciplinary and multi-disciplinary research, innovations and entrepreneurship to serve society.	2	2	3	3	10/12
M4- To develop core values, professional ethics and lifelong learning skills through interactive support systems.	2	2	2	3	9/12
	9/12	10/12	9/12	12/12	83.3%

1. Slight (Low) 2. Moderate (Medium)

3. Substantial (High)

1.3.3 Program Outcomes (PO's)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO8: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO9: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO10: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs for M.Tech in EEE

- **PSO1:**To be able to critically investigate complex power system scenarios and arrive at possible solutions, by applying the acquired theoretical and practical knowledge.
- **PSO2:**To be able to work on well-defined projects by interpreting available power system data to provide real time solutions pertaining to power system issues.
- **PSO3** : To be able to identify optimal solutions for improvising power transfer capability, enhancing power quality and reliability

1.3.4 Mapping of Program Outcome Vs Program Educational Objectives

Mapping	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	2	2	1	-	1
PO2	-	3	-	-	1
PO3	3	3	2	2	3
PO4	3	2	2	1	1
PO5	2	3	1	-	2
PO6	2	1	1	3	1
PO7	-	1	2	3	3
PO8	-	2	-	-	2
PO9	3	3	2	2	3
PO10	3	2	2	1	1
PSO1	3	2	-	1	-
PSO2	3	3	2	2	3
PSO3	3	2	-	1	-

1. Slight (Low)

2. Moderate (Medium)

3.Substantial(high)

Department of Electrical and Electronics Engineering M.TECH in Electrical and Electronic Engineering												ronics			
	Course Structure for batches admitted in session and onwards														
Semester		Courses										Т	Р	Weekly Contact	Credits
Ι	Optimiz ation Techniq ues in Enginee ring (3- 1-0) 4	MEMS, Smart Sensors and WSN (3- 0-2) 4	Electiv e 1 (3- 0-2) 4	Electiv e 2 (3- 1-0) 4	Electiv e 3 (3- 0-0) 3				5	2	1 5	2	4	21	19
I I	PLC and SCADA(3-0-2) 4	Elective 4 (3-1-0) 4	Elective 5 (3-1- 0)4	Electiv e 6 (3- 0-2) 4	Electiv e 7 (3- 0-0) 3	Electi ve 8 (3-0- 0) 3	Commu nity Connect (0-0-4) 2	Researc h Method ology (0-0-4) 2	6	4	1 8	2	1 2	32	26
I I I	Seminar (0-0-4) 2	Dissertati on -1 (0- 0-20) 10							0	2	0	0	2 4	24	12
I V	Disserta tion -II (0-0-32) 16								0	1	0	0	3 2	32	16
				Т	OTAL C	REDITS	5								73

M.Tech in Electrical and Electronics Engineering <u>COURSE STRUCTURE</u>

Lis	t Of Elective		
	With Specialization in Power Systems	With Specialization in Instrumentation and Control	With Specialization in Industrial Automation
1	Extra High Voltage Transmission	Advanced Control Engineering And Controllers	Advanced Control Engineering And Controllers
2	Modeling & Analysis Of Power System	Smart Power Grid And Micro grid	Smart Power Grid And Micro grid
3	Power Systems Operation & Control	Biomedical Instrumentation	Electrical Drives
4	Power System Reliability Assessment	Intelligent Actuators And Mechatronics	Intelligent Actuators And Mechatronics
5	Smart Power Grid And Micro grid	Virtual Instrumentation	Virtual Instrumentation
6	FACTS Devices And Systems	Analog And Digital Signal Processing	Digital Signal Processing Techniques
7	Digital Relaying For Power Systems	Industrial Network Protocols And IoT	Industrial Network Protocols And IoT
8	Power Quality	Robotics And Industrial Robots	Robotics And Industrial Robots
9	Wind And Solar Energy Systems	Embedded Systems	Embedded Systems
1 0	Wireless Sensor Networks And Application	Industrial Instrumentation	Mechatronics of Robotics
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \end{array} $	Sustainable Energy Electrical And Hybrid	Analog And Digital Communication Techniques	Wind And Solar Energy Systems Electrical And Hybrid Vabialas
$\frac{2}{1}$	Distributed Generation Technology	Sustainable Energy	nyonu venicies

Scho	ool: SET	
Prog	gram: M.Tech	
Brai	nch:EEE(Power	Semester:1
syste	em)	
1	Course Code	MIC104
2	Course Title	Optimization Techniques in engineering
3	Credits	4
4	Contact Hours (L-T-P)	3-1-0
	Course Status	Compulsory
5	Course	This course provides the students with:
	Objective	 Knowledge of solving linear and nonlinear Algebraic equations Knowledge of solving differential equations Introduction to various concepts of Optimization Techniques. Awareness to the importance of optimizations in real scenarios; Knowledge of various classical and modern methods of constrained and unconstrained problems in both single and multivariable. Knowledge of Various Evolutionary Techniques Ideas to solve Integer Programming.
6	Course Outcomes	CO1:Solve various linear and nonlinear Algebraic equations
		CO3: Formulate optimization problems
		CO4: Apply the concept of optimality criteria for various type of
		optimization problems and solve various constrained and
		unconstrained problems
		CO5: Know various Evolutionary Techniquesand Solve integer
		Programming problems.
		CO6: Apply Optimization Techniques in real time applications
7	Course	
	Description	Optimization is the process of obtaining the best result under given circumstances. In design, construction and maintenance of any engineering system, engineers have to take many technological and managerial decisions at several stages. The ultimate goal of all such decisions is either to minimize the effort required or to maximize the desired benefit. A number of optimization methods have been developed for solving different types of optimization problems.
8	Outline syllabus	CO Mapping

Unit 1	Algebraic Equa	tions							
А	Introduction of A non linear equati Raphson method	Algebraic Equatio ons-Bisection me , secant method.	ns. Iterative methods for solving thod, Regulafalsi method, Newton	CO1,CO6					
В	Fixed Point meth	od, Two equation	n Newton Raphson method.	CO1,CO6					
С	Iterative methods seidel method	s for solving line	ar equations-Jacobi method, Gauss-	CO1,CO6					
Unit 2	Differential Equ	ations							
А	Finite difference	method		CO2,CO6					
В	Euler's method			CO2,CO6					
С	•)	CO2,CO6							
Unit 3	Optimization P	roblems							
А	Requirements for problem	r the optimizatior	methods, Types of optimization	CO3,CO6					
В	Feasible solution optimality condition	Feasible solution and feasible region, Necessary and sufficient optimality conditions, Graphical method for optimal solution.							
С	Simplex method	implex method and Dual Simplex method							
Unit 4	Init 4 Optimization Techniques								
А	Lagrange multip	lier, Kuhn-tucker	conditions	CO4,CO6					
В	Newtons method	,Interior Penalty	function method,	CO4,CO6					
С	Rosen Gradient	projection method	1	CO4,CO6					
Unit 5	Evolutionary T	echniques and I	nteger Programming						
А	Genetic Algorith methods	m, Particle swarr	n and ant colony optimization	CO5,CO6					
В	Branch and Boun	nd method		CO5,CO6					
С	cutting plane me	thod		CO5,CO6					
Mode of examination	Theory								
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	 Balagurusar Hill Rao S.S, "E Practice", w 	 Balagurusamy, E., "Numerical methods", Tata McGraw Hill Rao S.S, "Enginering Optimization: Theory and Practice" wiley 							
	, , , , , , , , , , , , , , , , , , , ,	5							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO104.1	3	1	2								2		
CO104.2	2	3		1							2		
CO104.3	2	3	2								2		2
CO104.4	2	3	1	2			1				3	2	2
CO104.5	2	3	2	2			1				2	2	2
CO104.6	2	3	2	2			1				2	1	1

Scho	ol· SFT									
Prog	ram: M Tech									
Brar	ch. EEE/EE	Semester 1								
1	Course Code	MIA112								
$\frac{1}{2}$	Course Title	MFMS Smart Sensors and WSN								
3	Credits	3								
1	Contact Hours	3-0-0								
-	(I -T-P)	5-0-0								
	Course Status	Compulsory /Flective/Open Flective								
5	Course	To provide students with:								
5	Objective	1. basic principles and techniques of MEMS and Smart Sens	sors							
	Objective	2 knowledge of various fabrication and machining process	of MEMS along with							
		its honofits in relation to applications								
		2. Knowledge in windless concern activations								
		3. Knowledge in wireless sensor networks and to apply this	knowledge in various							
		industrial application like environmental monitoring, stru	ctural health and							
		greenhouse monitoring								
6	Course	CO1: To be able to understand architecture of smart sensors alon	g with differences							
0	Outcomes	among smart intelligent and network sensors								
	Outcomes	CO2: To be familiar with the important concepts MEMS a	ind smart sensor							
		fabrication technologies.								
		CO3: To be able to select and apply the MEMS and smart sensors	to different							
		applications.								
		CO4: To understand principles of wireless sensor networks and d	ifferentiate among							
		various wireless network protocols.								
		CO5:To apply principles of WSN in various industrial, environmen	tal and							
		Societalapplications.								
		CO6: To develop smart sensor and WSN based solution to real life	e problems.							
7	Course		_							
	Description	This course is aimed at equipping students with basic knowledge	on of							
		MEMS (Micro electro Mechanical System), Smart sensor and its v	arious fabrication							
		techniques. This course also enables the student with appropriate	e knowledge of							
0	Outline cullebus	wireless sensor network and its applications in industry.	CO Monning							
0	Unit 1	Basics of MEMS and Smart Sansars								
		Overview of measurement system transducers sensors	CO1							
	Π	actuators and signal conditioners	COI							
	B	Definition working principle and construction of MEMS	CO1							
	C	Definition and architecture of smart sensor: different levels	CO1							
		of integration in smart sensors. Differences between smart								
		intelligent and network sensors: Advantages of smart								
		sensors								
	Unit 2	MEMS and Smart Sensor Technologies								
	A	Micro-machining processes: materials for micro-	CO2							
		machining, wafer bonding, bulk and surface								

	mioromoshining	1
D	Interonnacionalization the second sec	CO2
D C	Monolithia IC technology	CO2
	Case studies of MEMS and Smooth Sensors	02
	Case studies of MEMIS and Smart Sensors	CO2 CO6
A	MEMS based emert appalention and measure sensors	005,000
D	NiEWIS based small acceleration and pressure sensors	CO2 CO6
D	Principle, characteristics and constructional details of a	005,000
C	Dringiple, characteristics and constructional details of a	CO3 CO6
C	smart humidity sensor	003,000
Linit 4	Wireless Sonsor Network (WSN)	
	Need and advantages of WSN Network topologies: seven	CO4 CO6
	layer OSL model of communication system	04,000
B	Z_{gbee} (IEEE $= 802.15.4$) protocol Merits of Zighee over	CO4 CO6
D	Wi-Fi (IFFF = 802.11) and Bluetooth for WSN	04,000
	architecture of Wireless sensor node	
С	Sensor and actuator network (SAN) - homogeneous and	CO4.CO6
	heterogeneous SAN	
	WSN Applications in Industry	
Unit 5	II III III III III III III III III III	
А	Spectrum of applications; Case studies on WSN	CO5,CO6
	application: Environment monitoring	
В	Condition monitoring - Structural health and Equipment	CO5,CO6
	health monitoring	
С	Greenhouse monitoring and control	CO5,CO6
Mode of	Theory/Jury/Practi	
examination	cal/Viva	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	3 D. Patranabis, "Sensors and Transducers", Prentice-Holl,	
	2^{nd} Edition, 2003.	
	4 Randy Frank, "Understanding Smart Sensors", Artech	
	House, 2 nd Edition, 2000.	
	5 E.H. Callaway "Wireless Sensor Networks	
	Architecture and Protocols"	
Other	1 HV Vorme a monograph on "Smort Songare" at	
Deferences	1. H.K. verma, e-monograph on Smart Sensors, at	
I References	www.proinkverma.inio, Chapter 1 – Basics of Smart	
	<u>Sensor</u> , <u>Chapter 2 – Smart Sensor Technologies</u> , <u>Chapter 3</u>	
	<u>– Case Studies of Smart Sensors.</u>	
	2. H.K. Verma, e-monograph on "WSN", at	
	www.profhkverma.info, Chapter 1 – Wireless Sensor	
	<u>Network</u> , Chapter 2 – Wireless Sensor Node, <u>Chapter 3 –</u>	

	Applications of Wireless Sensor Networks.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PSO1	PSO2	PSO3
CO112.1	3	1	-	2	1	-	-	1	-	2	3	3	2
CO112.2	3	1	-	2	1	-	-	2	-	2	3	3	2
CO112.3	1	2	3	2	2	1	-	2	-	3	1	2	1
CO112.4	3	1	-	2	1	-	-	1	-	2	3	3	-
CO112.5	1	2	3	2	2	1	-	2	-	2	-	2	1
CO112.6	1	2	3	2	2	1	-	2	-	1	-	2	1

SET	1		
Prog	gram: M.Tech		
Brai	nch: EEE	Semester: I	
1	Course Code	MIA113	
2	Course Title	Intelligent Actuators and Mechatronics	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Department Elective	
5	Course	• Discussing of basic components of actuators and mechatro	onics
	Objective	• Discussing of electronics and digital circuits concepts of the	ne subject
		• Explaining concept of intelligent and smart system	-
		• Discussing of interfacing concepts of mechatronics system	18
		• Giving case studies and exploring knowledge on designing	
6	Course Outcomes	CO1: Getting knowledge on basic components of actuators a mechatronics	ind
		CO 2: Exploring knowledge and getting design concepts of c	circuits
		CO 3: Identifying concepts smart and intelligent on mechatro	onics systems
		CO 4: Able to design of interfacing circuits for the subject	
		CO6: Develop a simulation model for simple physical system	na and avalain
		mechatronics design process	ns and explain
7	Course	The field of mechatronics has braddened the scope of the tra	ditional field
/	Description	of electromechanics. The subject is made to know modern tre	nds on
	Description	mechatronics system hybrid of different engineerings stand	alone
		mechatronics systems	ulone
8	Outline syllabu		CO Mapping
	Unit 1	Introduction	
	A	Definitions: Mechatronics & actuator; Overview of sensors,	CO1
		current & voltage sources; Grounding	
	В	Solenoids, relays, electrical motors for actuators	CO1
	С	Basics of open loop and closed loop systems , block diagram of	CO1
		mechatronics system ; Scope of the course	
	Unit 2	Overview of Analog and Digital Electronics	CO2
	Α	Active electronic devices for mechatroics, basics of operation	
		amplifiers and instrumentation amplifiers	
	B	Display systems, measurement systems, testing and calibration	CO2
	C	Combination logic and logic classes; Flip-flops and their	CO2
		applications; Microcontroller concepts	
	Unit 3	Smart and Intelligent Actuators	
	A	Definitions: Smart and intelligent actuators; Architecture and	CO3

	operation of sm	nart actuator		
В	Intelligent actu	ator without fee	dback sensor in detail	CO3
С	Intelligent actu	ator with feedba	ack sensor in detail	CO3
Unit 4	Mechanical-Ele	ectronic Interfac	ing	
А	Concept of thre	e-state (tri-state	e) outputs; Interfacing of	CO4
D	pushbutton, ke	yboard and sens		<u> </u>
В	Interfacing of r	elays, solenoids,	DC, AC motors and special	CO4
	motors to micro	ocontroller		
С	Selecting of mo	tor for actuator	S	CO4
Unit 5	Case studies &	Design Exercise		
А	Case study 1: N	lechatronic desi	gn of a coin counter; Case study	CO5
В	Case study 2: N	lechatronics for	conveyor based material	CO5
	handling system	n		
С	Design exercise	on mechatroni	c system	CO5
Mode of	Theory			
examination	-			
Weightage	СА	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	David G, Alcia	tore et al., "Int	roduction to Mechatronics and	
	Measurement S	Systems", Tata N	AcGraw Hill, 2003	
Other	1. W.Bolt	on, "Mechatroni	ics ", Pearson Education, 2005	
References	2. Godfre	y C. Onwubolu, '	"Mechatronics", Elsevier, 2005	
		•	· · · · ·	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET		
Prog	ram: M.Tech		
Brai	nch: EEE/EE	Semester: 1	
1	Course Code	MIA112	
2	Course Title	MEMS, Smart Sensors and WSN	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Compulsory /Elective/Open Elective	
5	Course	To provide students with:	
	Objective	4. basic principles and techniques of MEMS and Smart Sens	sors
		5. knowledge of various fabrication and machining process	of MEMS along with
		its benefits in relation to applications	
		6. Knowledge in wireless sensor networks and to apply this	knowledge in various
		industrial application like environmental monitoring, stru	ctural health and
		greenhouse monitoring	
6	Course	CO1: To be able to understand architecture of smart sensors alor	g with differences
	Outcomes	among smart, intelligent and network sensors.	
		CO2: To be familiar with the important concepts applicable	e to MEMS and
		their fabrication	
		CO3: To be able to select and apply the MEMS and smart sensors	to different
		applications.	
		CO4: To understand principles of wireless sensor networks and c	lifferentiate among
		Various Wireless network protocols .	tal and
		societalapplications	
7	Course		
'	Description	This course is aimed at equipping students with basic knowledge	on of
	Desemption	MEMS (Micro electro Mechanical System), Smart sensor and its v	arious fabrication
		techniques. This course also enables the student with appropriate	e knowledge of
		Wireless sensor network and its applications in industry.	-
8	Outline syllabus		CO Mapping
	Unit 1	Basics of MEMS and Smart Sensors	
	А	Overview of measurement system, transducers, sensors,	CO1
		actuators and signal conditioners	
	В	Definition, working principle and construction of MEMS	CO1
	C	Definition and architecture of smart sensor; different levels	CO1
		of integration in smart sensors; Differences between smart,	
		intelligent and network sensors; Advantages of smart	
		sensors	
	Unit 2	MEMS and Smart Sensor Technologies	
	Α	Micro-machining processes: materials for micro-	CO2
		machining, water bonding, bulk and surface	
		micromachining	

D	IC Technologies: thick film this film technologies	CO2
B	Manalithia IC tashnala su	
U	Monontine IC technology	02
	Case studies of MEMIS and Smart Sensors	
A	Principles, characteristics and constructional details of	003
D	MEMS based smart acceleration and pressure sensors	002
В	Principle, characteristics and constructional details of a	03
G	smart temperaturesensor	002
C	Principle, characteristics and constructional details of a	003
T T •/ A	smart numicity sensor	
Unit 4	Wireless Sensor Network (WSN)	004
А	Need and advantages of WSN, Network topologies; seven-	CO4
D	layer USI model of communication system	
В	Zgbee (IEEE – 802.15.4) protocol, Merits of Zigbee over	CO4
	W1-F1 (IEEE $-$ 802.11) and Bluetooth for WSN,	
0	architecture of Wireless sensor node	CO.4
C	Sensor and actuator network (SAN) - homogeneous and	CO4
	neterogeneous SAN	
	WSN Applications in Industry	
Unit 5	Constraint of an align the set of a set of the set WCN	CO5
А	Spectrum of applications; Case studies on WSN	COS
D	application: Environment monitoring	CO5
В	Condition monitoring - Structural health and Equipment	05
 C	Creanhouse monitoring and control	CO5
 L Mada of	Theory/Jum/Drastical/Viva	05
Mode of	Theory/Jury/Practical/Viva	
 Weightege		
Distribution	$\begin{array}{c cccc} CA & MIE & EIE \\ \hline 200/ & 200/ & 500/ \\ \hline \end{array}$	
 Distribution	50% 20% 50%	
Text DOOK/S	D. Fatialiaois, Sensors and Hansducers, Frenuce-Holl,	
	2 Edition, 2003.	
	7 Randy Frank, "Understanding Smart Sensors", Artech	
	House, 2 nd Edition, 2000.	
	8 E.H. Callaway, "Wireless Sensor Networks :	
	Architecture and Protocols"	
Other	3. H.K. Verma, e-monograph on "Smart Sensors" at	
References	www.profikverma.info_Chapter 1 - Basics of Smart	
	Sanson Chapter 2 Smart Sanson Technologies Chapter 2	
	Sensor, Chapter 2 – Smart Sensor Technologies, Chapter 3	
	<u>– Case Studies of Smart Sensors</u> .	
	4. H.K. Verma, e-monograph on "WSN", at	
	www.profhkverma.info, Chapter 1 – Wireless Sensor	
	Network, Chapter 2 – Wireless Sensor Node, <u>Chapter 3 –</u>	
	Applications of Wireless Sensor Networks.	

						1							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	_
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
													-
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
													1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
											_		2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	_
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2
													-
	L	1	L	L			1	l	1				

Scho	ool: SET		
Prog	gram: M.Tech		
Brai	nch: EEE/EE	Semester: 1	
1	Course Code	MIA117	
2	Course Title	Advanced Control Engineering and Controllers	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	Compulsory	
5	Course Objective	To provide students with: 1. some advanced concepts in Control Systems Engineering and th applications 2.A theoretical understanding of advanced linear control systems including the principles of digital control. 3 understanding of performing stability analysis of digital control 4. knowledge of Analog controller, computer based controller and controller	neir and strategies, systems. d intelligent
6	Course Outcomes	 After completion of this course students will be able to: CO1:Understand advanced concepts and approaches to control sy CO2: Understand industrial controllers of continuous and discontia and advanced control concepts of cascaded and feed forware CO3: design, develop and operate analog controllers, both electron pneumatic types. CO4: Design develop and operate computer based control system CO5: Understand simulate and design artificial intelligence based system. 	vstem designs nuous types rd controls. onic and is. control
7	Course	This course introduces systematic approaches to the design and a advance control systems for industrial applications	nalysis of
8	Outline syllabus		CO Manning
	Unit 1	Overview of Control System	CO mapping
	A	Elements of control systems; Concept of open loop and closed loop systems; Examples and application of open loop and closed loop systems	CO1
	В	Brief idea of multivariable control systems; Concept of stability and necessary conditions, Routh-Hurwitz criteria and limitations. Correlation between time and frequency responses	CO1
	С	State variable modelling of linear discrete systems, controllability and observability; Nonlinear control systems; Fundamentals-common nonlinearities (saturation, dead- zone, relay, on-off nonlinearity, backlash, hysteresis	CO1
	Unit 2	Controller Principles	
	А	Process Characteristics; Control system parameters: error,	CO2

	verieble ren	an control nor	amatar range central lag dead	
	time, cycling	ge, control par g	ameter range, control lag, dead	
В	Discontinuc position mo	us controller n de: Continuou	nodes: two-position mode, multi- s controller modes	CO2
С	proportiona Composite proportiona Cascaded a	II, integral and Control modes II-derivative (Pl nd feed-forwar	derivative control modes; proportional-integral (PI), D) and three mode controller (PID d controls); CO2
Unit 3	Analog Con	trollers		
А	Introduction	n; General feat	ures	CO3
В	Electronics	controllers : er	ror detector, single mode and	CO3
	composite r	node controlle	r;	
С	Pneumatic ((PI), propor	controllers: pro tional-derivativ	portional, proportional-integral ve (PD) and PID controller.	CO3
Unit 4	Computer E	Based Control		
A	Introduction control	n; Digital applic	ations: alarms, two-position	CO4
В	Computer b	ased controlle	r	CO4
С	hardware co	onfigurations, s	oftware requirements	CO4
Unit 5	Intelligent (Control System	S	
A	Fuzzy-logic operations, determinati	control system fuzzy relations on of member	: Fuzzy set theory, basic fuzzy set , fuzzy logic controller, methods o shin functions	f CO5
В	Methods of logic contro	defuzzification	, fuzzy rule base, design of fuzzy	CO5
С	Neural-netw operation o learning in r control	vork control sy f a single artific neural network	stem :Artificial neural networks, cial neuron, network architecture, s, back-propagation, Neurofuzzy	CO5
Mode of examination	Theory/Jur	y/Practical/Viv	/a	
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1. Curtis D. Technology 2. I.J. Nagra 4th Edition	Johnson "Proce ,"8th Edition Pe th and M. Gopa New Age Interr	ess Control Instrumentation arson. al, "Control Systems Engineering," national Publishers.	,
Other				
References	1. S.N. Sivar computing,	andam and S.I ' Wiley India P	N. Deepa, "Principles of soft /t. Limited.	
	2. S.Rajashe	karan and G.A.	VijayalakshmiPai, " Neural	

	Nwtworks, Fuzzy logic, and Genetic Algorithms," PHI Pvt.	
	Limited.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Sch	ool: SET		
Pro	gram:		
M.T	'ech		
Bra	nch: I&A and	Semester: II	
		NUC101	
1	Course Code	MIC101	
2	Course Title	Analog and Digital Signal Processing	
3	Credits	4	
4	Lours	3-1-0	
	(I T P)		
	(L-1-1)	Compulsory	
	Status	Compusory	
5	Course	To provide the student with	
U	Objective	To provide the student with	
		1 Concepts so as to categorise various types of Sign	als and Systems
		2 In-depth knowledge so that implemention of circ	uits related to linear
		applications of the onamp are acheivable	and related to mean
		2 D i l t l' f t i l t t i	с .: С1, ·
		3. Basic understanding for the implementation o	f active filters using
		A Strong foundation for designing of Digital Syste	ame both FID and IID
		and analyses of systems using DFT and FFT	
6	Course	CO1: To categorise the various types of signals and systen	ns and to perform
	Outcomes	various mathematical operations on signals.	
		CO2: To differentiate and design various applications of o	p-amp.
		CO3: To design and implement various types of digital filt	ers.
		CO4: To do frequency analysis using DFT and FFT.	
7	Course Description	The course content of this subject includes introduction of It also covers the various linear and nonlinear applications the content elaborates the designing and implementation of with DFT and FFT as the main frequency tool.	signals and systems. of the opamp. Also f digital filters along
8	Outline syllab	us	CO Mapping
	Unit 1	Introduction to Signals and Systems	CO1
	А	Continuous-time and discrete-time signals and their	
		mathematical representation, analog and digital signals,	

	Derivatives. In	npulse Invaria	nce and by Bilinear							
	Transformatic	n								
~	Transformatio	·II.								
С	Direct form-	l and form-2	realizations, Cascade and							
	Parallel real	izations, rec	ursive and non-recursive							
	methods of rea	methods of realizations.								
Unit 5	Frequency Ar	Frequency Analysis								
A	Digital Fourier	transform (DF	Т),							
В	DFT algorithm	for frequency	analysis							
С	Fast Fourier tra	ansform (FFT),	FFT algorithm for frequency							
	analysis.									
Mode of	Theory									
examination		1								
Weightage	CA	MTE	ETE							
Distribution	30%	20%	50%							
Text book/s*	1.Ramakant A.	Gayakwad, "Op	p-Amp and Linear Integrated							
	2 Sedra and Smi	th. "Microelectro	eannon nic Circuits". 4th Edition. Oxford							
	University Press.									
	3. G. Proakis	and D.G. Manol	akis, "Digital Signal Processing,							
	Principals, Algor	rithms, and Applic	cations", Pearson Education,							
 Other	J.A. Y. Onnenhei	n. R. W. Schater (und J. R. Buck, "Discrete Time							
References	Signal Processin	g", PHI 1999								
iterences	2.Michael Jacob	"Applications ar	nd Design with Analog Integrated							
	Circuits, PHI,2 nd	Edn.2006	ughal "Migraphatuoniag" 2nd							
	Edition ,TMH. 20	in unu Arvin G 008	rubei, Microelectronics , 2							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Departmental Electives:

School:		
Pro	gram:	
Bra	nch: EEE	Semester:
1	Course Code	MIC008
2	Course Title	Virtual Instrumentation
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course	Elective/Open Elective
	Status	
5	Course Objective	 Introduction to the various models of Virtual Instruments, their comparison with traditional instruments and major application areas of VI. Introduction to basics of LabVIEW VI Programming techniques like loops, arrays, clusters, plotting and Strings and files. Basics of signal conditioning techniques along with DAQ hardware and software and various signal processing techniques available in LABVIEW. Advanced concepts in LabVIEW with main concepts of real time applications in Image acquisition and Motion control.
		 Building of Virtual Instruments with various types of controls and indicators. Configuring DAQ card and acquisition of real time signals from sources and sensors. Simulate a signal in LabVIEW and generate a virtual source using DAQ cards.
6	Course Outcomes	 CO1: Understand various models and areas of application of Virtual Instrumentation. CO2: Understand various components of LabVIEW required for the development of VI. CO3: Understand and apply various programming functions of LabVIEW like loops, arrays, clusters and file I/Os for building of simple Virtual instruments. CO4: Understand the concepts of Data acquisition hardware and software and to apply basic signal processing techniques available in LabVIEW. CO5: Able build VI for simulated and real time applications.
7	Course	
	Description	The course content of this subject includes an introduction to graphical

		system design. This course also focuses on introduction to extensively elaborate the Graphical programming lang building of VI by using loops, arrays, clusters etc. have Use of strings and I/O are also elaborated in this course, and various signal processing techniques are also covere Two real time applications motion control and Image acc	to LabVIEW which iguage .In Unit 3, we been dealt with. se. Data acquisition ered in this course.		
		LabVIEW have been elaborated in this course.			
8	Outline syllabu	18	CO Mapping		
	Unit 1	Introduction	CO1		
	А	Graphical system design model - design model, prototype model, deployment model			
	В	Building blocks of VI; Virtual instrument versus traditional instrument, Hardware and software in VI			
	С	Graphical system Design using LabVIEW; Graphical programming and Textual programming			
	Unit 2	Graphical system Design using LabVIEW	CO2		
	A	Advantages of LabVIEW; Components of VI Software - Front panel windows, Block diagram windows, Icon /connector pane			
	В	Creating and saving a VI; Toolbars, Palettes, Front panel controls and indicators, Block diagram – terminals, nodes, functions			
	С	Sub VIs, Express VIs and VIs, wires; Data types, Data flow program			
	Unit 3	Programming Techniques	CO3,CO5		
	А	Modular Programming in Lab View; Building VI front panel and block diagram			
	В	Loops – for and while loops, Local and Global variables in LabVIEW, Arrays in LabVIEW,			
	C	Clusters in LabVIEW; Conversion between arrays and clusters, Plotting data in LabVIEW, Strings and File I/O in LabVIEW			
	Unit 4	Data Acquisition and Signal Processing in LabVIEW	CO4		
	А	Transducers and Signal conditioning ,sampling and aliasing			
	В	Basics of DAQ hardware and software, DAQ modules and drivers for building virtual instruments			
	C	Fourier transforms; Power spectrum, Correlation methods; Windowing & filtering			
	Unit 5	Advanced concepts in LabVIEW	CO5,CO3,CO4		
	Α				
	В				
	C	Concepts of real time systems; Image acquisition; Motion control			
	Mode of examination	Theory/Jury/Practical/Viva			
	Weightage	CA MTE ETE			

Distribution	30%	20%	50%					
Text book/s*	2. Jov LA	2. Jovitha Jerome, "Virtual Instrumentation and LABVIEW", PHI Learning						
Other References	1. C.L. TMH Publ	1. C.L. Clark, "LabVIEW Digital Signal Processing", TMH Publishing Company.						
	3. Te	3. Technical Manuals for DAQ Modules, Advantech and National Instruments						
	4. <u>wv</u> Pro	4. <u>www.profhkverma.info:</u> Chapter 2: Technologies/ Protocols for Wired Sensor Network						
	5. NI htt	5. NI USER MANUAL http://www.ni.com/pdf/manuals/376445b.pdf						
	6. wv	ww.ni.com						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Sch	ool: SET								
Prog	gram: M.Tech								
Bra	nch: EEE/EE	Semester: 1I							
1	Course Code	MIA116							
2	Course Title	Industrial Network Protocols and IoT							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Compulsory /Elective/Open Elective							
5	Course	To provide students with:							
	Objective	7. basic principles network communications and communication	n system models						
		and it's seven layers.							
		8. In depth knowledge of wired and wireless network protocols.							
		9. With the concept of IoT. M2M and IIoT along with typical app	lications thereof.						
6	Course	CO1: To be able to understand the principles and types of data netwo	orks, especially						
	Outcomes	those used in industry.							
		CO2: have in-depth knowledge of industrial wired network protocols	and their						
		comparative merits and limitations.							
		CO3:To be able to apply Ethernet/IP protocol for industrial control an	d automation						
		applications.							
		CO4: To be able to select and apply wireless network protocol for inst	rument control						
		and automation for industrial and societal applications.	laT austama far						
		industrial societal environmental and demostic applications	ior systems for						
7	Course								
/	Description	This course is aimed at equipping students with in-depth knowledge various industrial							
	Description	network protocols, both wired and wireless types and a working know	vledge of the IoT						
		concepts and systems.	C						
8	Outline syllabus		CO Manning						
0	Unit 1	Region							
		Dasies Drinciples of analog and digital communication and their	CO1						
	A	comparison: Asynchronous and synchronous data	COI						
		transmission: Simpley half dupley and full dupley							
		transmissions: Baseband and broadband communications:							
		Signal transmission media: UTP STP and coaxial cables							
		PLCC, optical fibres and radio link:							
	В	Concept of LAN, PAN, MAN, WAN and Internet: Error	CO1						
	-	detection techniques: Parity check, check sum and CRC: LAN	001						
		topologies; Role of data communication and networks in							
		industrial automation: Field-level, control-level and enterprise-							
		level networks;							
	С	ISO's seven-layer OSI model: significance, scope, functions of	CO1						
		various layers; IEC's four-layer EPA model: significance,							
		functions of various layers; MAC techniques: reservation.							

	selection and contention techniques, polling, token passing,	
	CSMA/CD; Special requirements of industrial network	
	protocols, list of important industrial wired and wireless	
	network protocols.	
Unit 2	Industrial Wired–Network Protocols	
A	Fieldbus: Meaning and characteristic features of fieldbus, popular fieldbuses.	CO2
	RS485 : Highlights, balanced–mode transmission in half duplex	
	and full duplex modes, MAC protocol, merits and limitations.	
	Modbus: Modbus protocol stack, Modbus address space and	
	object types, data transmission frame formats for	
	Modbus/RTU, Modbus/ASCII and Modbus/TCP, formats of	
	data requests and responses for main function codes (examples	
	only), merits and limitations of Modbus.	
В	Foundation Fieldbus : FF protocol stack; physical layer,	CO2
	topologies supported, data link layer: FDLC and FMAC,	
	application layer, merits and limitations of FF.	
С	Distributed Network Protocol: DNP protocol stack, DNP	CO2
	version 3.3, physical layer and physical topologies, data link	
	layer, pseudo-transport layer, application layer, merits and	
	limitations of DNP3.	
Unit 3	Ethernet and Ethernet /IP	
А	Ethernet: IEEE802.3, physical layer, speed variants of	CO3
	Ethernet, MAC and frame format; TCP/IP model; Ethernet	
	LAN components: repeater, bridge, router, gateway, hub and	
	switch; Merits and limitations of Ethernet for industrial	
	application	
В	Common Industrial Protocol (CIP)	CO3
С	Ethernet/IP: Adaption of Common Industrial Protocol (CIP)	CO3
	to standard Ethernet, UDP, comparison between standard	
	Ethernet and Ethernet /IP.	
Unit 4	Industrial Wireless Network Protocols	
А	Zigbee: Special features, IEEE802.15.4, data rates, ISM-	CO4
	frequency bands used and bandwidths, full-function and	
	reduced-function devices, PAN coordinator, MAC protocol	
	and data transfer types	
В	Wireless network topologies	CO4
С	Comparison of Zigbee with Wi-Fi and Bluetooth.	CO4
	IoTand Industrial IoT	
Unit 5		
А	IoT concept and definition; Technologies behind IoT:	CO5
В	CISCO's 7-tier IoT reference model: Components of IoT	CO5
-		
	devices: M2M communication: Relation between IoT. M2M	

С	Examples of	CO5						
Mode of examination	Theory/Jury/I							
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1. Willia 8 th Edi 2. Mini S	 William Stallings, "Data and Computer Communications", 8th Edition, Pearson Prentice Hall, 2007. Mini S. Thomas and John D. McDonald, "Power System 						
	SCADA	and Smart Grids	5", CRC Press, 2015.					
	3. Raj Ka Princip	3. Raj Kamal, "Internet of Things: Architecture and Design Principles", Mc Graw Hill Education, 2017.						
Other References	 David Indust S.K. Si McGra M.M.S Techni H.K. <u>www.j</u> Techni H.K. <u>www.j</u> Deploy 	Bailey and Ed ry", Newnes, 200 ngh, "Industrial w-Hill, 2003. . Anand, "Electro ques", Prentice H Verma, Senso profhkverma.info plogies/Protocols Diogies/Protocols Verma, profhkverma.info yed in SCADA S	win Wright, "Practical SCADA for 19. Instrumentation and Control", Tata onic Instruments and Instrumentation Hall, 2004. For Networks, e-monograph at 1, <u>Chapter 2 – Wired Network</u> 5, <u>Chapter 3 – Wireless Network</u> 5. SCADA, e-monograph at 1, Chapter 4: Network Technologies systems.					

						-							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET								
Prog	gram: M.Tech								
Brai	nch:EEE	Semester:II							
1	Course Code								
2	Course Title	Robotics and Industrial Robots							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Elective /Compusory							
5	Course	1.To understand the construction industrial robotics							
	Objective	2. To explore knowledge on selection of end-effectors of ro	botics						
		3. To get knowledge of electrical drive systems of industria	l robotics						
		4. To know types of sensors of industrial robotics							
		5 To understand of electrical and electronics interfacings							
		6. To study about applications of industrial robots							
6	Course	CO1: Basic construction of robot and robotics components							
0	Outcomes	CO2: Understanding interfacing & building techniques of t	obots						
		CO3: Knowing different types of actuators of robotics							
		CO4: Getting knowledge of robotics sensors and transduce	rs						
		CO5: Developing interfacing circuits for robotics application	ons						
7	Course	This course gives coverage of robotics components, archite	ecture, and						
	Description	electronics interfacing circuits knowledge. Students can also	o practice						
		programming of robotics using embedded C on open sourc	e software after						
		going through this subject. Finally students are able to do tailor-made							
		projects on robotics engineering							
8	Outline syllabu	S	CO Mapping						
	Unit 1	Introduction to Robotics and Motion Analysis							
	А	Historical background; Laws of robotics and robot definitions;	CO1						
	В	Robotics systems and robot anatomy: Basic diagram, basic	CO1						
	9	components and their uses; Specifications of robots.							
	С	Position representation; Forward and reverse transformation:	COI						
	TI:4 0	2 & 3 DUF							
	Unit 2	Robot End-Effectors, Robot Drives and Actuators							
	А	Classification of end-effectors; Mechanical grippers, Magnetic	CO2						
		grippers and vaccum grippers; Gripper force analysis.							
	В	Functions of drive systems; Electrical drives: DC, BLDC motors,	CO2,CO3						
		AC motors, stepper motor, piezoelectric actuators;							
	C	Drive Mechanisms: rack and pinion, ball screws, gear trains	CO2						
	TT • 4 O	and harmonic drive.							
	Unit 3	Sensors of Robotic System	<u> </u>						
	А	Uses of sensors in robotics; Shaft Encoders (linear and	CO4						

	rotational);						
В	Proximity Sens	ors (inductive	and capacitive); Tactile sensors;	CO4			
С	Basic block dia	gram of vision	systems of robotic system.	CO4			
Unit 4	Controlling Te	chnologies of I	ndustrial Robots				
А	Basics of PC int	terfacings		CO5			
В	Microcontrolle	r interfacings		CO5			
С	Robot languag	es and classific	ation; Robot software.	CO5			
Unit 5	Unit 5 Industrial Robot Applications						
А	Material handl	CO6					
В	Welding Robot	S		CO6			
С	Assembling rol	oots		CO6			
Mode of	Theory						
examination							
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	1.S.R. Deb and	1.S.R. Deb and S. Deb, "Robotics Technology and Flexible Automation", Second edition, McGraw Hill, 2011.					
	Automation", S						
 Other	2. Mikell P Gr	oover et al	"Industrial Robotics". fifth print.				
References	McGraw Hill, S	pecial Indian E	dition, 2013				

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET							
Prog	gram: M.Tech							
Bra	nch: EEE/EE	Semester: 1						
1	Course Code	MIA117						
2	Course Title	Advanced Control Engineering and Controllers						
3	Credits	3						
4	Contact Hours	3-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	To provide students with:						
	Objective	1. some advanced concepts in Control Systems Engineering and the	neir					
		applications						
		2.A theoretical understanding of advanced linear control systems	and strategies,					
		including the principles of digital control.						
		3 understanding of performing stability analysis of digital control	systems.					
		4. knowledge of Analog controller, computer based controller and	d intelligent					
	0	controller						
6	Course	After completion of this course students will be able to:	ustam dasigns					
	Outcomes	CO1: Understand advanced concepts and approaches to control s	ystem designs					
		co2: Onderstand industrial controllers of continuous and discontinuous type						
		CO3: design develop and operate analog controllers both electro	nic and					
		pneumatic types.						
		CO4: Design develop and operate computer based control system	s.					
		CO5: Understand simulate and design artificial intelligence based	control					
		system.						
7	Course	This course introduces systematic approaches to the design and a	nalysis of					
	Description	advance control systems for industrial applications.						
8	Outline syllabus		CO Mapping					
	Unit 1	Overview of Control System						
	А	Elements of control systems; Concept of open loop and	CO1					
		closed loop systems; Examples and application of open loop						
		and closed loop systems						
	В	Brief idea of multivariable control systems; Concept of	CO1					
		stability and necessary conditions, Routh-Hurwitz criteria and						
		limitations. Correlation between time and frequency						
		responses						
	C	State variable modelling of linear discrete systems,	CO1					
		controllability and observability; Nonlinear control systems;						
		Fundamentals-common nonlinearities (saturation, dead-						
		zone, relay, on-off nonlinearity, backlash, hysteresis						
	Unit 2	Controller Principles						
	Α	Process Characteristics; Control system parameters: error,	CO2					
		variable range, control parameter range, control lag, dead						

	time, cycli						
В	Discontinu	ous controller m	nodes: two-position mode, multi-	CO2			
	position m	ode; Continuou	s controller modes				
С	proportion	al, integral and	derivative control modes;	CO2			
	Composite	Control modes:	proportional-integral (PI),				
	proportion	al-derivative (PI	D) and three mode controller (PID)	;			
	Cascaded a	and feed-forwar	d controls				
Unit 3	Analog Co	ntrollers					
А	Introductio	on; General feat	ures	CO3			
В	Electronics	controllers : er	ror detector, single mode and	CO3			
	composite	mode controlle	r;				
С	Pneumatic	controllers: pro	portional, proportional-integral	CO3			
	(PI), propo	rtional-derivativ	e (PD) and PID controller.				
Unit 4	Computer	Based Control					
А	Introductio	on; Digital applic	ations: alarms, two-position	CO4			
	control						
В	Computer	based controller	r	CO4			
С	hardware	hardware configurations, software requirements					
Unit 5	Intelligent	Intelligent Control Systems					
А	Fuzzy-logic	control system	: Fuzzy set theory, basic fuzzy set	CO5			
	operations	, fuzzy relations	, fuzzy logic controller, methods of	F			
	determina	tion of members	ship functions				
В	Methods o	f defuzzification	, fuzzy rule base, design of fuzzy	CO5			
	logic contr	ol system.					
C	Neural-net	work control sy	stem :Artificial neural networks,	CO5			
	operation	of a single artific	cial neuron, network architecture,				
	learning in	neural network	s, back-propagation, Neurofuzzy				
	control						
Mode of	Theory/Ju	ry/Practical/Viv	'a				
examination			[
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*							
	1. Curtis D	Johnson "Proce	ess Control Instrumentation				
	Technolog	Technology,"8th Edition Pearson.					
	2. I.J. Nagr	2. I.J. Nagrath and M. Gopal, "Control Systems Engineering,"					
	4th Edition,						
Other							
References	1. S.N. Siva	1. S.N. Sivanandam and S.N. Deepa, "Principles of soft					
	computing	", Wiley India Pv	/t. Limited.				
	2. S.Rajash	ekaran and G.A.	VijayalakshmiPai, "Neural				
	Nwtworks,	Fuzzy logic, and	Genetic Algorithms," PHI Pvt.				

Limited.

COURSE ARTICULATION MATRIX

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	-
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Prepared by : Department of EEE

Scho	ool: SET			
Prog	gram: M.Tech			
Brai	nch: EEE/EE	Semester: 1		
1	Course Code	MIA112		
2	Course Title	MEMS, Smart Sensors and WSN		
3	Credits	3		
4	Contact Hours (L-T-P)	3-0-0		
	Course Status	Compulsory /Elective/Open Elective		
5	Course Objective	To provide students with: 10. basic principles and techniques of MEMS and Smart Sens 11. knowledge of various fabrication and machining process its bapefits in relation to applications	sors of MEMS along with	
		12. Knowledge in wireless sensor networks and to apply this industrial application like environmental monitoring, strugreenhouse monitoring	knowledge in various Ictural health and	
6	Course Outcomes	 CO1: To be able to understand architecture of smart sensors alor among smart, intelligent and network sensors. CO2: To be familiar with the important concepts applicable their fabrication CO3: To be able to select and apply the MEMS and smart sensors applications. CO4: To understand principles of wireless sensor networks and or various wireless network protocols. CO5: To apply principles of WSN in various industrial, environment applications. 	ng with differences le to MEMS and to different differentiate among ntal and societal	
7	Course Description	This course is aimed at equipping students with basic knowledge MEMS (Micro electro Mechanical System), Smart sensor and its v techniques. This course also enables the student with appropriat Wireless sensor network and its applications in industry.	on of various fabrication e knowledge of	
8	Outline syllabus		CO Mapping	
	Unit 1	Basics of MEMS and Smart Sensors		
	А	Overview of measurement system, transducers, sensors, actuators and signal conditioners	CO1	
	В	Definition, working principle and construction of MEMS	CO1	
	С	Definition and architecture of smart sensor; different levels of integration in smart sensors; Differences between smart, intelligent and network sensors; Advantages of smart sensors	CO1	
	Unit 2	MEMS and Smart Sensor Technologies		
	Ā	Micro-machining processes: materials for micro- machining, wafer bonding, bulk and surface micromachining	CO2	

В	IC Technologies: thick film, thin film technologies	CO2
C	Monolithic IC technology	CO2
Unit 3	Case studies of MEMS and Smart Sensors	
A	Principles, characteristics and constructional details of MEMS based smart acceleration and pressure sensors	CO3
В	Principle, characteristics and constructional details of a smart temperaturesensor	CO3
С	Principle, characteristics and constructional details of a smart humidity sensor	CO3
Unit 4	Wireless Sensor Network (WSN)	
А	Need and advantages of WSN, Network topologies; seven- layer OSI model of communication system	CO4
В	Zgbee (IEEE – 802.15.4) protocol, Merits of Zigbee over Wi-Fi (IEEE – 802.11) and Bluetooth for WSN, architecture of Wireless sensor node	CO4
С	Sensor and actuator network (SAN) - homogeneous and heterogeneous SAN	CO4
	WSN Applications in Industry	
Unit 5		
A	Spectrum of applications; Case studies on WSN application: Environment monitoring	CO5
В	Condition monitoring - Structural health and Equipment health monitoring	CO5
С	Greenhouse monitoring and control	CO5
Mode of examination	Theory/Jury/Practical/Viva	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	 9 D. Patranabis, "Sensors and Transducers", Prentice-Holl, 2nd Edition, 2003. 	
	House, 2 nd Edition, 2000.	
	11 E.H. Callaway, "Wireless Sensor Networks : Architecture and Protocols"	
Other	5. H.K. Verma, e-monograph on "Smart Sensors", at	
References	<u>www.profhkverma.info</u> , <u>Chapter 1 – Basics of Smart</u> Sensor Chapter 2 – Smart Sensor Technologies Chapter 3	
	<u>– Case Studies of Smart Sensors</u> .	
	6. H.K. Verma, e-monograph on "WSN", at <u>www.profhkverma.info</u> , <u>Chapter 1 – Wireless Sensor</u> <u>Network</u> , Chapter 2 – Wireless Sensor Node, <u>Chapter 3 –</u> <u>Applications of Wireless Sensor Networks</u> .	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO113.1	3	1	1	-	1	-	-	-	-	1	3	3	_
CO113.2	2	3	2	3	-	2	1	-	-	1	3	3	2
CO113.3	2	1	3	3	2	3	1	2	-	2	3	2	1
CO113.4	1	2	1	-	2	1	-	2	-	1	3	2	2
CO113.5	2	1	3	1	-	2	-	-	-	2	3	2	-
CO113.6	2	3	2	2	2	1	2	1	-	2	3	2	2

Scho	ool: SET							
Prog	gram: B.Tech							
Brai	nch:EEE/EE/ECE	Semester: 2						
1	Course Code	EEE331						
2	Course Title	PLC and SCADA						
3	Credits	3						
4	Contact Hours	3-0-0						
	(L-T-P)							
	Course Status	Compulsory /Elective/Open Elective						
5	Course Objective	To provide students with:						
		1. The conceptual as well as practical knowledge of the Industrial						
		Automation & latest technologies being used to achieve Inc	lustrial					
		Automation.						
6	Course Outcomes	The students should be able to						
		CO1: understand the concepts of computer based Industrial	Control,					
		including PLC, DCS and SCADA.						
		CO2: understand hardware of PLC and ladder programmin	g for PLC.					
		CO3: use various PLC functions and develop PLC program	s for					
		industrial control and automation applications.						
		CO4: understand the purpose, layout, components and fund	ctions of					
		SCADA systems and use the knowledge for the operation	ation of					
		SCADA systems in Industry	. ,					
		CO5: design SCADA system including layout, communicat	tion system					
7	Carrier	and software.						
/	Course	This course is aimed at equipping students with appropriate kno	wledge and					
	Description	skills required in configuring programming and operating indust	trial					
		automation systems with the use of Industrial Field Instruments	PLC and					
		SCADA systems.) - 20 ana					
8	Outline syllabus		CO Mapping					
_	Unit 1	Computer Based Industrial Control						
	A	Microprocessor/microcontroller based industrial controller:	CO1					
		concept and configuration						
	В	Computer based industrial controller: concept and	CO1					
	~	configuration						
	С	Introduction to direct digital control (DDC), distributed control	CO1					
		(SCADA)						
	Unit 2	PIC Basics						
	A	Introduction to PLC, PLC versus	CO2					
	**	microprocessor/microcontroller/computer: Advantages and						
		disadvantages of PLC						
	В	Hardware, internal architecture and physical forms of PLC;	CO3					
		Digital inputs/ outputs; Analog inputs/ outputs						
	С	PLC programming: ladder programming, function blocks,	CO2					

	T ((' 1'	· · · · · ·						
	Instruction In	sts, Sequential	function chart, mnemonic					
Unit 3		<u>s</u>						
	Pagistors: h	15	d output registers: Timers and timer	CO4				
A	functions: C	ounters and cou	inter functions	04				
B	Data handlin	g functions: Bi	t functions:	CO4				
D		g functions, DI C r		CO4				
C	Advanced Iu	Functions						
Unit A		s Lavout and	Functions					
	Introduction	Definition on	d purposa:Controllad / uncontrollad	C05				
A	variables and	f remotely / loc	a purpose, Controlled objects in controlled	005				
	nlant	remotery / loc	anycontrolled objects in controlled					
B	L avout and r	parts of SCAD	A system: Detailed block schematic	C05				
В	of SCADA s	of SCADA system						
C	Functions of	SCADA syste	m: data acquisition and	C05				
e	transmission	monitoring c	ontrol data collection and storage	005				
	data processi	ing and calcula	tion, report generation					
	SCADA Desig	<u></u>						
Unit 5		5						
Δ	Master Term	CO5						
11	multiprocess	multiprocessor MTU single and dual computer configurations						
	of MTU; Re	mote Terminal	Unit (RTU): functions, architecture					
	/ layout; RT	U programming						
В	MTU-RTU o	communication	and RTU-field device	CO5				
	communicat	ion						
С	Design of SC	ADA system : H	IARDWARE, Communication and	CO5				
	Software.							
Mode of	Theory/Jury	/Practical/Viv	va					
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1. J.W. Webl	and R.A. Reis	Programmable Logic Controllers.					
	Prentice-Hal	l India						
	2 Stuart A.	Bover. Superv	isory Control and Data Acquisition					
	(SCADA), 4th	Edition. Intern	ational Society of Automation.					
	2010							
Other References	J.R. Hackwor	th and F.D. Ha	ckworth. Programmable Logic					
	Controllers	Pearson Editio	n					
	2. W. Bostor	. Programmah	le Logic Controllers, Newnes (
	Elsevier)	.,						
	3 HK Vorm	a SCADA a.m.	onograph at					
	J. H.K. VEIIII	u, JCADA, E-III Varma infa Ch	anter 1. Basics of SCADA Chapter					
	2. Eunctions		apice I. basics of SCADA, Chapter					
	2. FUNCTIONS	UI JCADA SYST	eni, chapter 5. naruware of SCADA					
	system.							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PSO1	PSO2	PSO3
CO331.1	3	3	-	1	-	-	-	-	-	2	1	-	1
CO331.2	3	3	-	1	2	-	-	-	-	2	1	2	1
CO331.3	3	3	-	1	2	-	-	-	-	2	3	2	1
CO331.4	3	3	-	1	-	-	-	-	-	2	1	-	1
CO331.5	2	2	3	3	3	-	-	-	-	2	3	2	1
CO331.6	2	3	3	2	32	-	-	-	-	2	2	2	1

Sch	ool: SET		
Pro	gram: B.Tech		
Bra	nch: EEE		
1	Course Code		
2	Course Title	Advanced Control Engineering and Controllers	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status		
5	Course	To provide students with:	
	Objective	1. some advanced concepts in Control Systems Engineering and the	heir
		applications	
		2.A theoretical understanding of advanced linear control systems	and strategies,
		including the principles of digital control.	
		3 understanding of performing stability analysis of digital control	systems.
		4. knowledge of Analog controller, computer based controller an	d intelligent
		controller	
6	Course	After completion of this course students will be able to:	
	Outcomes	CO1: Understand advanced concepts and approaches to control s	ystem designs
		CO2: Understand industrial controllers of continuous and discont	inuous types
		and advanced control concepts of cascaded and feed forwar	a controls.
		cos: design, develop and operate analog controllers, both electro	Dric and
		COA: Design develop and operate computer based control system).
		CO5: Understand simulate and design artificial intelligence based	l control
		system.	Control
		CO 6: Industrial experiences in control engineering	
7	Course	This course introduces systematic approaches to the design and a	nalysis of
	Description	advance control systems for industrial applications.	,
8	Outline syllabus		CO Mapping
	Unit 1	Overview of Control System	
	A	Elements of control systems; Concept of open loop and	CO1
		closed loop systems; Examples and application of open loop	
		and closed loop systems	
	В	Brief idea of multivariable control systems; Concept of	CO1
		stability and necessary conditions, Routh-Hurwitz criteria and	
		limitations. Correlation between time and frequency	
		responses	
	С	State variable modelling of linear discrete systems,	CO1
		controllability and observability; Nonlinear control systems;	
		Fundamentals-common nonlinearities (saturation, dead-	
		zone, relay, on-off nonlinearity, backlash, hysteresis	
	Unit 2	Controller Principles	
	А	Process Characteristics; Control system parameters: error,	CO2
		variable range, control parameter range, control lag, dead	

	time, cyclin	g					
В	Discontinuo	ous controller n	nodes: two-position mode, multi-	CO2			
	position mo	ode; Continuou	s controller modes				
С	proportiona	al, integral and	derivative control modes;	CO2			
	Composite	Control modes	: proportional-integral (PI),				
	proportiona	al-derivative (P	D) and three mode controller (PID)	;			
	Cascaded a	nd feed-forwar	d controls				
Unit 3	Analog Con	trollers					
A	Introductio	n; General feat	ures	CO3			
В	Electronics	Electronics controllers : error detector, single mode and					
	composite	mode controlle	r;				
C	Pneumatic	controllers: pro	portional, proportional-integral	CO3			
	(PI), propor	tional-derivativ	e (PD) and PID controller.				
Unit 4	Computer I	Based Control					
А	Introductio	n; Digital applic	ations: alarms, two-position	CO4,CO6			
	control						
В	Computer b	based controlle	r	CO4,CO6			
С	hardware c	hardware configurations, software requirements					
Unit 5	Intelligent	Intelligent Control Systems					
А	Fuzzy-logic	control system	: Fuzzy set theory, basic fuzzy set	CO5,CO6			
	operations,	fuzzy relations	, fuzzy logic controller, methods o	F			
	determinat	ion of member	ship functions				
В	Methods of	defuzzificatior	n, fuzzy rule base, design of fuzzy	CO5,CO6			
	logic contro	ol system.					
C	Neural-net	work control sy	stem : Artificial neural networks,	CO5,CO6			
	operation o	of a single artific	cial neuron, network architecture,				
	learning in	neural network	s, back-propagation, Neurofuzzy				
	control						
Mode of	Theory/Ing	xy/Dractical/Vix	10				
Mode of examination	Theory/Jur	y/Practical/VIV	/a				
Weightage	CA	MTE	ETE				
Distribution	20%	20%	50%				
Text book/s*	3070	2070	50%				
1CAT 000K/S	1 Curtis D	Johnson "Proc	ass Control Instrumentation				
	Technology	"8th Edition De	arson				
	2 LL Nagra	Technology, 8th Edition Pearson.					
	Ath Edition						
Other	Other						
References	1 C N Sivo						
		1. S.N. Sivanandam and S.N. Deepa, "Principles of soft					
	2. S.Rajashe	ekaran and G.A	. VijayalakshmiPai, "				
	NeuralNwt	Norks, Fuzzy log	ic, and Genetic Algorithms," PHI				

			Pvt. Limited.	
--	--	--	---------------	--

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Prepared by : Department of EEE

Sch	ool: SFT							
Pro	oram• M Tech							
Bra	nch. EEE	Semester:						
1	Course Code							
2	Course Title	Demand side management of smart grid						
2	Credits	2						
1	Contact Hours	3.0.0						
-	(I_T_P)	5-0-0						
	Course Status							
5	Course	• To introduce the concent of demand side management for re-	vidential					
5	Objective	• To introduce the concept of demand-side management for res	sidentiai,					
	Objective	commercial and industrial energy users.						
		• To give an overview of the different types of demand-side m	easures.					
		• To describe energy auditing and routine data collection a	and monitoring,					
		andto indicate their benefits.	_					
		• To outline information dissemination on demand-side manage	pement					
		To provide an evention of the major implementation shaller	somether DSM					
		• To provide an overview of the major implementation chanel	iges for DSIM					
		programmes						
6	Course	CO1: To be able to define demand side management						
0	Outcomes	CO2: To understand the different types of demand-side management	measures and					
	Outcomes	their suitability to various energy users	incasures and					
		CO3: To be aware of the benefits of good reliable data collection for	regular					
		performance analysis and as an essential part of energy auditi	ng					
		CO4. To appreciate the need for effective information dissemination						
		CO5: To understand the challenges facing the implementation of der	nand-side					
		management	inuna siac					
		CO6: To be able to design housekeeping and preventative maintenar	ice in					
		commerce and industry can be used to reduce energy demand.						
7	Course	Demand-side management (DSM) has been traditionally seen	as a means of					
	Description	reducing peak electricity demand so that utilities can delay b	ouilding further					
	1	capacity. In fact, by reducing the overall load on an electricity net	work, DSM has					
		various beneficial effects, including mitigating electrical syster	n emergencies,					
		reducing the number of blackouts and increasing system relia	bility. Possible					
		benefits can also include reducing dependency on expensive in	nports of fuel,					
	reducing energy prices, and reducing harmful emissions to the environment							
	Finally, DSM has a major role to play in deferring high investments in generation							
	transmission and distribution networks. Thus DSM applied to electricity							
	systems provides significant economic, reliability and environmental benefits							
8	Outline syllabu	IS	CO Mapping					
	Unit 1	Energy Scenarios	CO1					
	А	Energy Conservation, Energy Audit, Energy Scenarios,	CO1					
	В	Energy Consumption, Energy Security,	CO1					

C	Energy Strategy, Clean Development Mechanism	CO1				
Unit 2	Energy Audit					
А	Definition of Energy Audit, Place of Audit,	CO2				
В	Energy – Audit Methodology, Financial Analysis, Sensitivity Ar Project Financing Options,	nalysis, CO2				
С	Energy Monitoring and Training Solar power plant	CO2				
Unit 3	Electrical-Load Management	CO3				
А	Electrical Basics, Electrical Load Management,	CO3				
В	Variable- Frequency Drives, Harmonics and its Effects,	CO3				
С	Electricity Tariff, Power Factor, Transmission and Distribution	Losses CO3				
Unit 4	Demand side Management	CO4, CO				
A	Scope of DSM, Evolution of DSM concept, DSM planning and Implementation	CO4, CO				
В	Load management as a DSM strategy, Applications of Load Control, End use energy conservation,					
С	Tariff options for DSM, customer acceptance, implementation issues, Implementation strategies, DSM and Environment					
Unit 5	Energy Conservation					
А	Motivation of energy conservation, Principles of Energy conservation	ervation, CO5, CO				
	Energy conservation planning,					
В	Energy conservation in industries, EC in SSI, EC in electrical ge transmission and distribution,	neration, CO5, CO				
С	EC in household and commercial sectors, EC in transport, EC i	n CO5, CO				
	agriculture, EC legislation					
Mode of	Theory					
examination						
Weightage	CA MTE ETE					
Distribution	30% 20% 50%					
Text book/s*	1. Renewable Energy- Power for a sustainable future, th Edited by Godfrey Boyle, Oxford University Press, 201	.3.				
Other References	1. Microgrids and Active Distribution Networks, S. Chow Chowdhury and P. Crossley, The Institution of Engine Technology London, U.K. 2009	/dhury, S.P. ering and				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Prepared by : Department of EEE

Scho	ool: SET								
Prog	gram: B .Tech								
Bra	nch:EEE	Semester:							
1	CourseCode								
2	CourseTitle	DigitalRelaying forPowerSystems							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Compulsory							
5	CourseO	1. tounderstandtheconcept							
	bjective	ofdigitalprotectionandcomputerrelayingforpowersystem.							
		2. toacquireanin-							
		depthknowledgeondifferentgenerationsofprotectiverelays							
		3. toidentifydifferentcomponentsofanumericalrelay							
		4. to apply discrete Fourier transform technique in Power							
		SystemProtection							
		5. todesignanddevelop relayalgorithmsfor protectionofpower							
		systemapparatus							
6	<u> </u>		6 11 4						
6	CourseOu	COI: 10 compare, analyses the advantages and disadvantage	es of all the						
	tcomes	acomponents of a numerical relay and also identify t	ne different						
	components of a numerical relay								
		CO2: To develop relay algorithm for digital protection of generate)r						
		CO4: To develop algorithm for digital protection of	Л						
		transformer							
		CO5: To apply ANN for protection of transmission line and							
		power transformer							
		CO6: To design and evaluate protection algorithms for protection of any							
		power system component							
7	CourseDes	The first and foremost driving force for advances in relay.	ing systems is						
	cription	theneedtoimprove reliability. In turn, this implies increasein							
	_	dependabilityaswellassecurity. Thisneedtoimprovereliabilityp	ropelledthede						
		velopment of digital relaying. In this course, the stude	nts will have						
		anexposure to the threegenerations of protective relays.							
		Throughout the course, students will have an opportunity to be exposed							
		todifferent numerical techniques for protection of generators,							
		transformersandtransmissionlines.							
0	Outline sullation		COManning						
ð	Juninesynabus	S Introduction and A robitacture of Digital Dalay	COlviapping						
		Throadeneration of fanote ativeral average last are as her is a	CO1						
	A	inreegenerationsorprotectiverelays:electromechanical,	COI						
		staticanddigital/numerical							

В	architecturean	d elementsofac	ligitalrelay	CO1					
С	Multifunction	alrelays,manag	ementrelaysandIEDRelays	CO1					
Unit2	RelayAlgorit	hmsandMathe	ematicalBasis						
А	RelayAlgorith signals,distort sentationofsys	msbased onput edrelayingsign tem:	resinusoidalrelaying alsanddifferentialequationrepre	CO2 &CO6					
В	Ztransform,sin Transformand	neandcosineFor DFT	urierseries,Fourier	CO2 &CO6					
С	Walshfunction	ns, digital filters,	windowsandwindowing.	CO2 &CO6					
 Unit3	DigitalRelayi	ngforGenerat	or						
А	Various protection lossofexcitation	ctionfunctions: onandreversepc	differential,statorearthfault, ower protection	CO3&CO6					
В	Abnormalfreq freque protection	Abnormalfrequencyandvoltageprotection:overandunder frequency protection, over and under voltage protection							
С	Numericaldiff	erentialprotect	ionofgenerator	CO3&CO6					
Unit4	DigitalRelayi	DigitalRelaying forTransformer							
А	Typesoffaults considerations	CO4							
В	stabilizingofdi inrushcurrent	CO4							
С	Numericalpro	CO4							
Unit5	ArtificialIntel	ligenceBasedN	umericalProtection	CO5					
А	TypesofNeura Network,Desi	lNetworkMode	els,ArtificialNeural dConsideration	CO5					
В	Applicationof	ANNtotransmi	ssionlineprotection	CO5					
С	ANNbasedpov	wertransformer	protection						
 Modeof examination	Theory		1						
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Textbook/s*	 Arun C "Comp forPov k. Badrir otectio publisl 								
OtherRefer ences	1.Bhavesh G.Cho	Bhalja, R.P. M thani, "Protecti	laheswari and Nilesh onandSwitchgear",Oxford.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Prepared by : Department of EEE

Droc	ool: SET								
LLU1 I	gram: M.Tech								
Bra	nch: EEE	Semester:							
1	Course Code								
2	Course Title	Distributed Generation Technology							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status								
5	Course	To introduce the concept of distributed generation, microgrids, electric ve	hicles and						
	Objective	energy storage.							
	U	To familiarize the students with renewable generation system modelling,	and their grid						
		integration issues.							
To impart an understanding of economics, policies and technical regulations for DG									
integration									
6	Course	CO1: Analyse the concept and importance of distributed generation.							
	Outcomes	CO2: Understand different renewable energy sources, micro-grid and stor	rage						
		Devices.							
		CO3: Evaluate the technical impact of DG in power system	<i>cc</i>						
		CO4: Analyze the operation and control strategies for grid connected and off-grid							
		System.							
		COS: Evaluate the effect of DG placement in the existing system	CO5: Evaluate the effect of DG placement in the existing system						
7	Course	This syllabus gives an overview of distributed energy resources, photo	voltaic systems						
/	Description	small hydro fuel cells energy storage technologies: wind turbines Princip	nles of control of						
	Description	distributed generation systems: Electric nower distribution system	ms installation						
		interconnection and integration: Economic and financial aspects of distrib	uted generation.						
		the regulatory environment and standards.							
8	Outline syllabu	lS	CO Mapping						
	Unit 1	Introduction to Distributed Generation	CO1						
Ī	A	Concept of DG and, its definition, Current scenario in distributed	C01						
		generation							
	В	Need for distributed generation	CO1						
	С	Advantage and limitation of DG	CO1						
	Unit 2	Renewable based Distributed generation							
	А	Wind power plant	CO2						
	В	Solar power plant	CO2						
	С	Small hydro other alternate DG	CO2						
	TI 24 2	Technical impacts of DG	CO3						
	Unit 3	1							
	A A	Transmission systems, Distribution systems	CO3						
	A B	Transmission systems, Distribution systems Impact of DGs upon protective relaying	CO3 CO3						

	distribution systems								
Unit 4	Operation and Eco	CO4, CO6							
А	De-regulation of pov	ver syste	m	CO4, CO6					
В	Voltage control tech Power quality issues	niques, F , Reliabi	Reactive power control, Harmonics, lity of DG based systems	CO4, CO6					
С	Economic impacts:	Sconomic impacts: Market facts, issues and challenges							
Unit 5	Grid integration of	CO5,CO6							
A	Optimal placement of	Optimal placement of DG sources in distribution systems							
В	Different types of int machine based interf	CO5, CO6							
С	Energy storage elem	Energy storage elements, Batteries, ultra capacitors, flywheels							
Mode of examination	Theory	Theory							
Weightage	CA MTE	1	ETE						
Distribution	30% 20%		50%						
Text book/s*	2. Renewable En Edited by God								
Other References	2. Microgrids and Chowdhury ar Technology, Lo	 Microgrids and Active Distribution Networks, S. Chowdhury, S.P. Chowdhury and P. Crossley, The Institution of Engineering and Technology, London, U.K, 2009 							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Prepared by : Department of EEE

Sch	ool: SET		
Pro	gram: B.Tech		
Bra	nch:EEE	Semester:	
1	Course Code		
2	Course Title	Operation and Control of smart grid	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status		
5	Course Objective	The objective of the subject on smart grid technologies is t and optimize distributed energy resources to achieve a more reliable grid, enable active participation of consumers with environmental constraints	o integrate e efficient and more
6	Course Outcomes	 The students should be able to CO1: Identify different tools and approaches to modelling a CO2: Apply Optimal Power Flow (OPF) solutions to evalu performance of a power system with renewable energy CO3: Analyze power system dynamics (frequency stability) to a power balance. CO3: To familiarize the students with modelling of smart grids CO5: Identify control-room technologies for system-wide reme protection, and risk management of smart grid cyber sec CO6: Able to design, implementation, evaluation and manage electricity infrastructure. 	a Smart Grid. ate the gy sources. achieve active components. ote monitoring, urity ment of smart
7	Course Description	Smart grid communications and control, covering several spec field of smart grid including advanced metering infrastruc response, distributed storage, vehicle-to-grid systems measurement, smart grid cyber security, etc	ial topics in the tures, demand , wide area
8	Outline syllabus		CO Mapping
	Unit 1	Modeling of Smart Grids	
	А	Operating principles and models of smart gird components,;.	CO1
	В	Key technologies for generation, networks, loads and their control capabilities decision-making tools	CO1
	С	Hardware, Software, Communication. Approaches to estimation, scheduling, management and control of next generation smart grid	CO1
	Unit 2	Smart Grid Communications	
	A	Two-way Digital Communications Paradigm, Network Architectures	CO2
	В	IP-based Systems, Power Line Communications	CO3
	С	Advanced Metering Infrastructure,	CO2
	Unit 3	Security and Privacy	
	Α	Cyber Security Challenges in Smart Grid,Load Altering Attacks	CO4

В	False Data In	jection Attack	s, Defense Mechanisms	CO4			
С	Privacy Chall	Privacy Challenges Data handling functions; Bit functions					
Unit 4	IoT for powe	IoT for power systems					
А	Internet of th management	ings for electr	icity infrastructure and energy	CO5,CO			
В	SCADA, Dema	and response,	AMI, IoT aided smart grid,	CO5,CO6			
С	Big data for p	ower system	and introduction to data analytics.	CO5,CO			
Unit 5	Flexible AC ti	ransmission sy	rstem (FACTS)				
А	Congestion m reactive pow	nanagement a er compensat	nd loadability enhancement, on,.	CO5,CO			
В	concept of se working prine	concept of series compensation, shunt compensation, FACTS: working principle					
С	Classification series contro	Classification, series controllers, shunt controllers, series- series controllers, series-parallel controllers					
Mode of examination	Theory/Jury	Theory/Jury/Practical/Viva					
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	 book/s* 1. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", John Wiley & sons inc 2015. 2. James Momoh, "Smart Grid: Fundamentals of design analysis", John Wiley & sons Inc IEEE press 2012. 						
Other References	1.Fereidoon Renewable, Press, 2012. 2.ClarkW.Ge efficiency ar 2009.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Prepared by : Department of EEE

Schoo	l: SET									
Program	: B.Tech									
Branch:F	CEE	Semester:								
1 Cou	rse Code									
2 Cou	rse Title	Robotics and Industrial Robots								
3 Crea	lits	3								
4 Con	tact	3-0-0								
Hou	rs									
(L-1	C-P)									
Cou	rse Status									
5 Cou	rse	1.To understand the construction industrial robotics								
Obje	ective	2. To explore knowledge on selection of end-effectors of ro	botics							
		3. To get knowledge of electrical drive systems of industrial robotics								
		4. To know types of sensors of industrial robotics								
		5 To understand of electrical and electronics interfacings								
		6 To study about applications of industrial robots								
6 Cou	rse	CO1:Basic construction of robot and robotics components								
Out	comes	CO2:Understanding interfacing & building techniques of robots								
		CO3:Knowing different types of actuators of robotics								
		CO4:Getting knowledge of robotics sensors and transducers								
		CO5:Developing interfacing circuits for robotics applications								
		CO 6: Industrial experiences in Robotics								
7 Cou	rse	This course gives coverage of robotics components, architecture, and								
Dese	cription	electronics interfacing circuits knowledge. Students can also practice								
		programming of robotics using embedded U on open source software after								
		going unrough this subject. Finally students are able to do tailor-made								
8 Out	ine syllabi	projects on robotics engineering								
0 Uuu Uni	1110 Synabl 1 1	Introduction to Robotics and Motion Analysis								
UIII	ι 1									
Δ		Historical background: Laws of robotics and robot definitions:	CO1							
R		Robotics systems and robot anatomy: Basic diagram, basic	CO1							
D		components and their uses: Specifications of robots	001							
С		Position representation: Forward and reverse transformation:	CO1							
Ũ		2 & 3 DOF	001							
Uni	t 2									
		Robot End-Effectors, Robot Drives and Actuators	C02							
red by : De	partment o	FEF	02							
B		Functions of drive systems: Electrical drives: DC. BLDC motors	CO2.CO3 Pa							
		AC motors stepper motor niezoelectric actuators:	202,200							
С		Drive Mechanisms: rack and pinion. ball screws. gear trains	CO2							
С		Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive.	CO2							
C	t 3	Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive. Sensors of Robotic System	CO2							

	rotational);							
В	Proximity Sense	ors (inductive a	nd capacitive); Tactile sensors;	CO4				
С	Basic block diag	Basic block diagram of vision systems of robotic system.						
Unit 4	Controlling Teo	hnologies of In	dustrial Robots					
А	Basics of PC int	Basics of PC interfacings						
В	Microcontrolle	CO5						
С	Robot language	Robot languages and classification; Robot software.						
Unit 5	Industrial Robo							
А	Material handl	CO6						
В	Welding Robot	CO6						
С	Assembling rob	Assembling robots						
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1.S.R. Deb and	S. Deb. "Roboti	cs Technology and Elexible					
	Automation". S	econd edition.	McGraw Hill, 2011.					
Other	2. Mikell P Gr	oover et al "I	ndustrial Robotics", fifth print.					
References	McGraw Hill, S	pecial Indian Ed	ition, 2013					

Course Articulation Matrix

Sch	ool:SET									
Prog	gram: B .Tech									
Bra	nch:EEE	Semester:I/II								
1	CourseCode									
2	CourseTitle	Smart PowerGridandMicro-Grid								
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course Status									
5	CourseO	1. Tounderstandtheconceptsofsmartpowergridandmicro	grid							
	bjective	2. Toacquireindepthknowledgeofsmartdistribution, distribution, distribut	ibutionautoma							
		tion.smarttransmissionandsubstationautomation								
		3 Toidentifyyariouscomponentsofsmartgridandmicrog	rid							
		4 Toannlynrinciplesofautomationtotransmissionand di	stribution							
		 To design amount micro and design and discussion and	Sulfution							
		5. To designsmartinicrogridioragivenapplication								
6	CourseOu	CO1: To understand concept, motivation and benefits of Sn	nart Power							
	tcomes	Grid								
		CO2: To develop knowledge of demand-side management as a tool of								
		smart distribution								
		CO3:To design advanced metering infrastructure for Distribution								
		Automation								
		CO4: To design AC, DC and hybrid micro grids								
		CO5:To design phasor measurement and develop wide area								
		Monitoring system using PMU								
		CO6: Industrial experiences in renewable energy integration in distribution								
		system								
7	CourseDes	The course deals with the concept of smart power grid	and includes							
	cription	invdepthstudyofitsitsvariouscomponents, namelysmartdistrib	ution,distributi							
		onautomationandmanagement, advanced metering infrastructu	ire							
0		,smartmicrogrid,smarttransmissionandsubstationautomation								
8	Outlinesyllabu		COMapping							
	UnitI	Introduction toSmartPowerGrid(4hours)								
	A	Concept and objectives	COI							
	В	Benefitsofsmartpowergrid,traditional-gridandsmart- gridcomparison	CO1							
	С	Stake-holdersinsmart-griddevelopment, Smart grid solutions.	CO1							
	Unit2	SmartDistribution								
	А	Demand-sidemanagement:Energyefficiency,timeofuse	CO2							
		andspinningreserve								

В	Demandresponse:MarketdrivenDRandoperation- drivenDR incentive-basedDRandTOU-basedratesDR	CO2	
	unvendre, meentive basedDrand 100 basedratesDre		

	С	Distributedge	neration,Energy	vstorage,Useofplugged	CO2				
-	Unit3	Distribution	utomationan	Management					
	A	Overview of d customer auto substation automation. D	listribution syst mation, feed er	em, Components of DA: rau to mation and trol centre(DCC)	CO3				
	В	Distribution managements (OMS)- unpla plannedoutage system(AMS)	ystem(DMS),O nned and es,Assetmanage ,Customerinfor	Putagemanagement system ement rmationsystem(CIS)	CO3				
	С	Meaning and andcomponen andOMS.	CO3						
	Unit4	SmartMicrog	grid						
	А	Definition, con	CO4,CO6						
	В	Typesofmicro operation:grid	CO4,CO6						
	С	Meaningofsm control	CO4,CO6						
	Unit5	SmartTransn	nissionandSub	stationAutomation					
	А	Meaningandcl	nallengesofsma	rttransmission	CO5,CO6				
	В	Phasormeasur applications, V and impactor	ementunit:conc Wide area moni FMS and DMS	cept,layout,componentsand toring system: concept	CO5,CO6				
	С	Needofsubstat SA,SAarchite	ionautomation cture,SAfunction	(SA),Technical issues of on.	CO5,CO6				
	Modeof examination	Theory							
	Weightage	CA	MTE	ETE					
	Distribution	30%	20%	50%					
	Textbook/s*	1.MiniS.T McDo Grids,							
	OtherRefer ences	1. Janak lication 2. H.K.V Grid",	 JanakEknayakeatel.,SmartGrid:TechnologyandApp lications,JohnWileyandSons,2012 H.K.Verma,e-Monographon"Smart– Grid",www.profhkverma.info 						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	_	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	-	-

Sch	ool:	School of Engineering and Technology
Pro	gram:	Current Academic Year:
Bra	nch: EEE	Semester:
1	Course Code	
2	Course Title	Virtual Instrumentation
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course	
	Status	
5	Course	9. Introduction to the various models of Virtual Instruments, their
	Objective	 comparison with traditional instruments and major application areas of VI. 10. Introduction to basics of LabVIEW 11. VI Programming techniques like loops, arrays, clusters, plotting and Strings and files. 12. Basics of signal conditioning techniques along with DAQ hardware and software and various signal processing techniques available in LABVIEW. 13. Advanced concepts in LabVIEW with main concepts of real time applications in Image acquisition and Motion control. 14. Building of Virtual Instruments with various types of controls and indicators. 15. Configuring DAQ card and acquisition of real time signals from sources and sensors. 16. Simulate a signal in LabVIEW and generate a virtual source using DAQ cards.
6	Course Outcomes	CO1:Understand various models and areas of application of Virtual Instrumentation. CO2: Understand various components of LabVIEW required for the development of VI. CO3: Understand and apply various programming functions of LabVIEW like loops, arrays, clusters and file I/Os for building of simple Virtual instruments. CO4: Understand the concepts of Data acquisition hardware and software and to apply basic signal processing techniques available in LabVIEW. CO5: Understand the real time applications of LabVIEW in motion control and Image acquisition.
7	Course	······································
	Description	The course content of this subject includes an introduction to graphical system design. This course also focuses on introduction to LabVIEW which extensively elaborate the Graphical programming language .In Unit 3, building of VI by using loops, arrays, clusters etc. have been dealt with. Use of strings and I/O are also elaborated in this course. Data acquisition and various signal processing techniques are also

		covered in thi	s course. Two	real time applications motion	n control and					
		Image acquisi	tion by using	LabVIEW have been elabor	rated in this					
		course.								
8	Outline syllabu	15			CO					
					Mapping					
	Unit 1	Introduction			CO1					
	А	Graphical syste								
		model, deployn	nent model							
	В	Building blocks	s of VI; Virtual i	nstrument versus traditional						
		instrument, Har	dware and softw	vare in VI						
	С	Graphical syste	m Design using	LabVIEW; Graphical						
		programming a	nd Textual prog	ramming						
	Unit 2	Graphical syst	em Design usin	g LabVIEW	CO2,CO6					
	А	Advantages of I	LabVIEW; Com	ponents of VI Software - Front						
		panel windows,	Block diagram	windows, Icon /connector						
		pane								
	В	Creating and sa	ving a VI; Toolt	pars, Palettes, Front panel						
		controls and inc								
	~	functions								
	C	Sub VIs, Expre	ss VIs and VIs,	wires; Data types, Data flow						
	T I 1 0	program	T 1 •		CO2 CO(
	Unit 3	Programming	Techniques		CO3,CO6					
	A	Modular Progra	Modular Programming in Lab View; Building VI front panel							
	D	and block diagr								
	В	Loops – for and								
	C	Clusters in Lab								
	C	clusters Plottin								
		LabVIEW	LabVIEW							
	Unit 4	Data Acquisiti	on and Signal	Processing in LabVIEW	CO4.CO6					
	A	Transducers and	d Signal conditio	oning sampling and aliasing	001,000					
	B	Basics of DAO	hardware and so	oftware DAO modules and						
	D	drivers for build	ling virtual instr	uments						
	С	Fourier transfor	ms; Power spec	trum, Correlation methods;						
	C	Windowing & f	filtering							
	Unit 5	Advanced con	ncepts in Laby	VIEW	CO5, CO6					
	А	Data Socket, To	CP/IP VI's syncl	nronization	,					
	В	Serial interface	buses - RS 232.	RS485.USB						
	C	Concepts of rea	1 time systems:	Image acquisition: Motion						
	C	control								
	Mode of	Theory/Jury/P	ractical/Viva							
	examination	Je se gere ge								
	Weightage	CA	MTE	ETE						
	Distribution	30%	20%	50%						
	Text book/s*	5070	2070	3070						
	TEAT DOOK/S	7. Jovitha	Jerome, "Virtua	I Instrumentation and						
		LABV	EW, PHI Lear	ning						
	Other	1. C.L. Clark	k, "LabVIEW D	igital Signal Processing",						
	Keterences	TMH Publishin	g Company.							
		8. Techni	cal Manuals for	DAQ Modules, Advantech						
		and Na	tional Instrumen	ts						
		9. www.p	rofhkverma.info	Chapter 2: Technologies/						
I										

	Protocols for Wired Sensor Network 10. NI USER MANUAL	
	http://www.ni.com/pdf/manuals/376445b.pdf 11. www.ni.com	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO.1	3	2	2	1	-	-	-	-	-	-	2	1	2
CO.2	3	1	2	2	-	-	-	-	-	-	-	-	2
CO.3	3	2	2	2	-	-	-	-	-	-	2	3	2
CO.4	3	1	2	2	-	-	-	-	-	-	2	-	2
CO.5	1	2	2	1	-	-	-	-	-		3	2	2
CO.6	3	3	3	2	-	-	-	-	-	-	2	2	2