Program and Course Structure
School of Engineering Technology
Department of Electrical, Electronics and
Communication Engineering

M.Tech in Electronics and Communication
Engineering with Specialization in
Digital Communication/VLSI
Technology/Electronic System Designing and
Management/Embedded Systems
Programme Code: SET0502
Batch -2021-23

1. Standard Structure of the Program at University Level

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School of Engineering and Technology

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship to provide sustainable solution to the needs of the society

Mission of the School

- 1. To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conducive and enriching learning environment.
- 2. To produce technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities.
- **3.** To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- **4.** To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

1.2.1Vision and Mission of the Department of Electrical, Electronics and Communication Engineering

Vision of the Department

To become an internationally acclaimed destination of academic excellence in the discipline of Electrical Electronics and Communication Engineering by promoting research, innovation and entrepreneurship to serve society.

Mission of the Department

M1-To provide comprehensive technical knowledge in Electrical, Electronics and Communication Engineering.

M2- To facilitate and foster the industry-academia collaboration to enhance technical skills and employability.

M3-To promote interdisciplinary and multi-disciplinary research, innovations and entrepreneurship to serve society.

M4- To develop core values, professional ethics and lifelong learning skills through interactive support systems.

1.3 Program Educational Objectives (PEO)

1.3.1 Writing Program Educational Objectives (PEO)

PEO1:To produce engineering post graduates who have the ability to demonstrate technical competence for helping develop solutions to the real world problems.

PEO2:To foster students to take individual responsibility and to work as a part of/lead a team towards the fulfillment of both individual and organizational goals

PEO3:To meet educational and industrial needs through effective communication of knowledge and ethics.

PEO4: To equip students to upskill through self-learning while pursuing their professional career and higher education

PEO5:To strengthen research activities.

1.3.2 Map PEOs with School Mission Statements:

PEO Statements	School	School	School	School
	Mission 1	Mission 2	Mission 3	Mission 4
PEO1	3	3	2	2
PEO2	1	1	2	3
PEO3	3	3	2	2
PEO4	1	2	3	2
PEO5	2	2	3	1

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

1.3.2.1 Map PEOs with Department Mission Statements:

PEO	Department	Department	Department	Department
Statements	atements Mission 1 Mission 2		Mission 3	Mission 4
PEO1	3	3	3	3
PEO2	3	2	2	2
PEO3	2	1	3	2
PEO4	1	1	2	1
PEO5	2	2	1	1

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

1.3.3 Program Outcomes (PO's)

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO8:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO9:** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO10:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs for M.Tech in ECE with specialization in Digital Communication

PSO1: knowing about recent trends in Advanced Communication security and able to solve real world problem using concepts of digital communication.

PSOs for M.Tech in ECE with specialization in VLSI Technology

PSO2: Ability to adapt to emerging multidisciplinary needs in area of design, prototyping etc. to add further value to the technological world of IC technologies.

PSOs for M.Tech in ECE with specialization in Embedded System

PSO3: knowledge and application of recent trends in embedded system.

1.3.4 Mapping of Program Outcome Vs Program Educational Objectives

Mapping	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	3	2	1	-
PO2	3	3	2	-	2
PO3	3	3	3	3 -	
PO4	3	3 3 2 -		2	
PO5	2	3	2	2	
PO6	1	2	3 3		2
PO7	1	1	1	2	1
PO8	-	-	2	2	1
PO9	2	1	3	-	3
PO10	-	-	2	2	2
PSO1	2	2	2	1	3
PSO2	2	1	3	3 2	
PSO3	2	1	3	2	3

- 1. Slight (Low)
- 2. Moderate (Medium)
- 3. Substantial (High)

1.3.5The components of the curriculum

Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core	18.1	17	13
Department Electives	40.2	29	29
Community Connect	2.8	2	2
Dissertation	36.1	52	26
Seminar	2.8	4	2

1.3.6.1 COURSE ATRICULATION MATRIX:

COs	PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO 8	PO9	PO1 0	PSO 1	PSO 2	PSO 3
ECE 687	3	2	2	2	2	2					3	1	1
ECE 684	3	2	1	2	2	2					3	2	2
ECE61 4	3	2	1	2	2	2					1	3	1
ECE61 2	3	2	2	2	2	2					1	3	1
ECE61 1	3	3	2	2	2	2					2	2	3
ECE81 4	3	3	2	2	2	2					2	2	3
ECP 684	3	3	2	2	2	2					3	2	2
ECE 619	3	3	2	2	2	2					3	3	3
ECE81	3	3	2	2	2	2					3	1	2
ECE82	3	3	2	2	2	2					3	2	2
ECE82 4	3	3	2	2	2	2					2	1	3
ECE82 5	3	3	2	3	2	2					1	2	3
ECP82 5	3	2	2	3	2	1					1	2	3
ECE82 6	3	3	2	2	2	2					1	3	2
ECE82 7	3	3	2	3	2	2					1	3	2
ECP82 7	3	3	2	3	3	2					1	3	2
CCU10	1	2	2	1	1	2	3	3	3	3	1	1	1
MRM0 01	1	2	2	2	1	2	2	3	3	3	1	1	1
ECE69 6	3	3	2	3	3	2	2	2	3	3	3	3	3
ECE69 8	3	3	2	3	3	2	2	2	3	3	3	3	3
ECE69 9	3	3	2	3	3	2	2	2	3	3	3	3	3

1-Slight (Low)		
2-Moderate (Medium)		
3-Substantial (High)		

School of Engineering and Technology

M.Tech in ECE Batch: 2021-23 TERM: I

			Teaching Load				Pre- Requisite/Co			
S. No.	Subject Code	Subjects	L	L T P	P	Credits	Requisite	 CC AECC SEC DSE 		
THEORY SUBJECTS										

1.	ECE 687	Mobile and Wireless Communication	3	0	0	3	AECC
2.	ECE 684	Discrete Time Signal Processing	3	0	0	3	AECC
3.		Department Elective -I	3	0	0	3	DSE
4.		Department Elective -2	3	1	0	4	DSE
5.		Department Elective -3	3	0	0	3	DSE
6.		Department Elective -4	3	0	0	3	DSE
Pra	ctical/Viva-V	oce/Jury					
7.	ECP 684	Discrete Time Signal Processing Lab	0	0	4	2	AECC
		TOTAL CREDITS		21			

SU/SET/M.Tech-ECE Page 13

.

¹ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

School of Engineering and Technology M.Tech in ECE

Batch: 2021-23 TERM: II

S. No.	Course Code	Course		achi Loac	_		Pre- Requisite/Co	Type of Course ² :		
				Т	P	Credits	Requisite	1.CC 2. AECC 3. SEC 4. DSE		
THEORY SUBJECTS										
1.	ECE 615	Internet of Things and Applications	3	0	0	3		AECC		
2.		Department Elective-5	3	0	0	3		DSE		
3.		Department Elective-6	3	1	0	4		DSE		
4		Department Elective-7	3	1	0	4		DSE		
5		Department Elective-8	3	0	4	5		DSE		
Prac	tical/Viva-V	Voce/Jury	'							
6.		Community Connect	0	0	4	2		SEC		
7.		Research Methodology	0	0	4	2		AECC		
	1	TOTAL CREDITS	23							

School of Engineering and Technology M.Tech in ECE Batch: 2021-23 TERM: III

¹ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

S. No.				Pre- Requisite/Co	Type of Course ³ : 1. CC			
			L	Т	P	Credits	Requisite	2. AECC 3. SEC 4. DSE
Prac	tical/Viva	-Voce/Jury						
1.		Seminar	0	0	4	2		SEC
2.		Dissertation-1	0	0	20	10		SEC
	,	TOTAL CREDITS	12					

School of Engineering and Technology M.Tech in ECE Batch: 2021-23

TERM: IV

S.	Course	Course	Teaching	Credits	Pre-	Type of
----	--------	--------	----------	---------	------	---------

³ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

SU/SET/M.Tech-ECE Page 15

-

No.	Code		Load				Requisite/Co	Course ⁴ :
			L	T	P		Requisite	1. CC
								2. AECC
								3. SEC
								4. DSE
Prac	ctical/Viva-Vo	oce/Jury						
1.		Dissertation- II	0	0	32	16		SEC
		TOTAL CREDITS				72		

2.1 Syllabus for Theory Subjects

School: SET	Batch: 2021-23
Program: M.Tech	Current Academic Year: 2021-22

⁴ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

Branch:	DC	Semester: I	
1	Course Code	ECE687	
2	Course Title	Computational Methods for Communication	
3	Credits	4	
4	Contact Hours	3-1-0	
	(L-T-P)		
	Course Status	Compulsory	
5	Course	1.To extend and formalise knowledge of the theory of prob	pability and
	Objective	random variables	
		2. To introduce new techniques for carrying out probability	y calculations
		and identifying probability distributions	
		3.To motivate the use of statistical inference in practical da	
_		4.To study elementary concepts and techniques in statistics	
6	Course	CO1: Familiarization of basic probability axioms and rules	
	Outcomes	moments of discrete and continuous random variables as w	
		familiar with common named discrete and continuous rand	
		CO2: Calculate probabilities, and derive the marginal and distributions of bivariate random variables.	conditional
		CO3: Derive the probability density function of transformations	otions of
		random variables and use these techniques to generate data	
		distributions.	i iroiii various
		CO4: Translate real-world problems into probability mode	els.
		CO5: Know discrete time Markov chains and methods of f	
		equilibrium probability distributions.	8
7	Course	The main objective of this course is to provide stu	idents with the
,	Description	foundations of probabilistic and statistical analysis mostly	
	F	applications in engineering and science like modeling,	
		computer networks etc.	1
		-	
8	Outline syllabus		CO Mapping
	Unit 1	Introduction to probability theory	CO1
	A	Experiments, Sample space, Events, Axioms	CO1
	В	Assigning probabilities, Joint and conditional, Baye's	CO1
		theorem	G01 G02
	C	Discrete random variables, Engineering example	CO1,C02
	Unit 2	Random variables, Distributions, Density functions	CO2
	A	CDF, PDF, Uniform Distribution, Gaussian Distribution	CO2
	В	Rayleigh, Rician types of random variables	CO2
	C	Expected value, Central moments, Conditional expected	CO2
	Unit 3	values Characteristics Functions	
		Characteristics Functions Probability generating functions	CO3
	A B	Probability generating functions Moment generating function	CO3
	С	Engineering applications	CO3
	Unit 4	Random process	CO3
	UIIII 4	Kanuom process	

A		Definition and	l characterisatio	n	CO4
В		Mathematical	CO4		
C				m processes, Properties of	CO4
		ACF		-	
Un	nit 5	Types of Ran	dom Process		
A		Binomial Prod	ess, Poisson Pr	ocess	CO4
В		Gaussian Proc	ess		CO4
С		Markov Proce	ess		CO5
	ode of amination	Theory			
	eightage	CA	MTE	ETE	
	stribution	30%	20%	50%	
	xt book/s*			ers, "Probability and	
		random p and comm 2004. 2. A.Papouli variables 2002			
Otl Re	her ferences	1. Peyton Z. Pand random s 2007.			
			l Woods, '' Prob on'' , PHI, 2001	pability, random processes	

COs	PO	PO1	PSO	PSO	PS								
	l	2	3	4	5	6	7	8	9	U	1	2	03
ECE687.	2	1	1	2	2	2	2	2	1	1	1		
1													
ECE687.	3	3	3	2	3	2	2	3	1	2	2		
2													

ECE687.	3	2	1	2	2	2	2	3	1	2	1	
3												
ECE687.	3	2	3	2	1	2	2	3	1	1	1	
4												
ECE687.	3	2	3	2	3	2	2	3	1	1	2	
5												
ECE687	3	2	2	2	2	2	2	3	1	1	2	

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

School: SET		Batch: 2021-23
Prograi	m: M.Tech	Current Academic Year: 2021-22
Branch	: DC	Semester: I
1 Course Code		ECE684
2	Course Title	Discrete Time Signal Processing
3	Credits	3
4	Contact	3-0-0

	Hours		
	(L-T-P)		
	Course Status	Compulsory	
5	Course Objective	 The objective of DSP is usually to measure, filter and compress continuous real-world analog signals. This course is the mathematical manipulation of an assignal to modify or improve it in some way. This is characterized by the representation of discrete discrete frequency, or other discrete domain signals sequence of numbers or symbols. 	information te time,
6	Course Outcomes	 After completing this course students will be able to Apply real time processing of audio and speech sign Do the sonar and radar signal processing, sensor arra processing, spectral estimation, statistical signal processing, for communications, control of sy biomedical signal processing, seismic data processin image processing etc. Use computing software package like MATLAB, an with digital processing tools available in MATLAB. Develop a signal processing system to analyze, pred manipulate real data. 	cessing. s behind stems, g, digital d acquainted ict and
7	Course Description	Digital Signal Processing (DSP) is concerned with the repreturant solution and manipulation of signals on a computer. A century advances, DSP has become an important field, and penetrated a wide range of application systems, such as confectionics, digital communications, medical imaging and softhe dramatic increase of the processing capability of signal principal microprocessors, it is the expectation that the importance and DSP is to accelerate and expand. Discrete-Time Signal Processing term including DSP as a special case. This course we the basic concepts and techniques for processing discrete-time a computer. By the end of this course, the students should be understand the most important principles in DSP	After half a has sumer o on. With processing ad role of cessing is a vill introduce me signal on
8	Outline syllab	us	CO Mapping
	Unit 1	Realisation of FIR Filters & IIR Filters	
	A	Implementation of Discrete-Time Systems Digital Filter Structure: Block Diagram representation.	CO1, CO2
	В	Signal Flow Graph Representation, FIR Digital Filter Structure.	CO1.CO3
	С	Direct-Form Structure, Cascade Form Structures.	CO2
	Unit 2	Fundamentals of Multirate Digital Signal Procesing	
	A	Basic Multirate operations- Decimation and Interpolation	CO2

	,Sampling, San Banks,	npling Rate Cor	nversion Digital Filter				
В	Two channel Q	Quadrature Mirro	or Filter bank,	CO1, CO3			
С	Multilevel Filte	er Banks		CO1.CO4			
Unit 3	Design of Digi						
A	and Antisymme	n of FIR Filters: Symmetric s, Design of Linear phase Frequency sampling	CO1,CO3				
В		Design of Optim	d Butterworth Filter, Gibbs num Equiripple Linear-	CO4			
С	Design of IIR I Derivatives	Filters: Design b	by Approximation of	CO5			
Unit 4	The Discrete	Fourier Transf	form & Efficient				
	Computation	of the DFT: FF	T Algorithm				
A	Basic elements Sampling recor	of Digital Sign struction and c	al Processing, Ideal oncept of aliasing, FT , Discrete Fourier	CO3,CO4			
В	Multiplication	Properties of DFT: Periodicity, Linearity, Symmetry, Multiplication of two DFT, Circular Convolution, circular correlation, multiplication of two sequences, Parseval's					
С	Decimation-in- frequency FFT	_	rithms & Decimation-in-	CO1, CO4			
Unit 5			and Applications.				
A			and characteristics,	CO4			
В			Critirean, The Window	CO41,			
	LMS Algortith	m		CO4			
С	- Hopf equation		hing and prediction, Wiener sing, Application to imation.	CO5			
Mode of examination	Theory						
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	References- 1. A. Y. Oppen 1. A. Y. Oppen 2. A. Y. Oppen "Discrete Time						
References	I.G. Proakis and Processing, Prir Pearson Educat						

2.S.Salivahanan, <u>A. Vallavaraj</u> "Digital Signal Processing" Tata McGraw-Hill Education ,2007	
--	--

Cos	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE684	2	1	1	2	2	2	1	3	1	1	2		
.1													
ECE684	3	2	1	2	2	2	1	3	1	1	3		
.2													
ECE684	3	2	1	2	2	2	1	3	1	1	3		
.3													
ECE684	3	2	1	2	2	2	1	3	1	1	3		
.4													
ECE684	3	2	2	2	2	2	2	3	2	3	3		
.5													
ECE684	3	2	1	2	2	2	1	3	1	1	3		

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

Advanced Digital Communication

School:	SET	Batch: 2021-23	
Progra	m: M.Tech	Current Academic Year: 2021-22	
Branch	: DC	Semester: I	
1	Course Code	ECE 685	
2	Course Title	Advanced Digital Communication	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Compulsory	
5	Course	Fundamentals of digital communication	
	Objective	Multiple access techniques-system	
6	Course	After completing this course, students will be able to:	
	Outcomes	CO1: Analyse Equivalent signal-optimum detection of random	m signal
		CO2: Analyse multiple access techniques for LAN	
		CO3: Analyse commercial applications	
		CO4: Analyse Fading-signal time spreading-time	
		CO5: Analyse the Equalisers	
7	Course		
	Description	Analyze various modulation, equalization, diversity and codin	
		techniques for communication systems. Compare performance	
		different types of modulation on different wireless application	
		channels. Design and demonstrate various modulation/coding	,
		equalization techniques and measure their performance.	
8	Outline syllabu	ls .	CO
			Mapping
	Unit 1	Detection and Estimation	
	A	Fundamentals of digital Communication-Model-response of	CO1
		bank of correlators	
	В	Poe correlation receiver-matched Filter-Estimation-	CO1
		maximum likelihood	
	C	Weiner-linear prediction-optimum detection of Equivalent	CO1
		signal-optimum detection of random signal	
	Unit 2	Multiplexing and multiple access	
	A	Multiple access techniques-system and architecture	CO2
	В	Access algorithms-multiple access techniques for	CO2
		INTELSAT	
	С	Multiple access techniques for LAN	CO2
	Unit 3	Spread spectrum Techniques	
	A	Spread spectrum overview-PN sequences	CO3
	В	DS spread Spectrum-Frequency hopping synchronization	CO3
	С	Jamming considerations- commercial applications-cellular	CO3
		systems	

Unit 4	Digital Com	munications thi	rough Fading Channels				
A	Path loss mo	del, Shadow Fad	ing	CO4			
В	Fading-signa	CO4					
С	Time variance	e caused by mot	ion	CO4			
Unit 5	Equaliser						
A	mitigating the	e degradation eff	fects of Fading.	CO5			
В	-Rake Receiv	ver er		CO5			
С	Viterbi equal	iser.		CO5			
Mode of examination	Theory/Jury/	Theory/Jury/Practical/Viva					
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	Communicat	Bernard Sclar and Pabitra kumar Ray "Digital Communications Fundamentals and Applications", Pearson Education,2nd edition,2001					
Other	1. Simon	ı Haykin, "Digit	al Communications", John				
References	Wiley	and sons,1998					
	2. 1. J. 1	Proakis, "Digitai	l Communications", McGraw				
	Hill,	4th edition,2007					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE685.1	2	2	1	2	1	1	1	2	2	2	2		
ECE685.2	3	3	3	2	2	2	2	3	2	2	2		
ECE685.3	3	2	1	2	2	1	1	2	2	3	3		
ECE685.4	3	2	3	2	2	1	1	2	2	2	3		
ECE685.5	3	2	3	2	2	1	1	2	2	3	2		
ECE685	3	2	1	2	2	2	1	3	1	1	3		

Neural Network

Scho	ool: SET	Batch: 2021-23							
Prog	gram: M. Tech	Current Academic Year: 2021-22							
Brar	nch: DC	Semester: I							
1	Course Code	ECE 688							
2	Course Title	Neural Network							
3	Credits	3							
4	Contact Hours (L-T-P)	3-0-0							
	Course Status	Departmental Elective							
5	Course Objective	Fundamental techniques and principles of neural computati Investigation of some common models and their application							
6	Course Outcomes	CO1: Analyse Organization of the Brain. CO2: Analyse Biological and Artificial Neuron Models. CO3: Single layer perceptron and designing of algorithms a of curve rate CO4: Multilayer perceptron and Back-propagation algorithm improvisation algorithm CO5: Radial-basis function networks and strategies CO6: Designing of Kohonen Self-Organising Maps.	_						
7	Course Description	Neural networks provide a model of computation drastically different from traditional computers. This course will provide learning and understanding of neural network architectures and algorithms, for applications in pattern recognition, image processing, and computer vision.							
8	Outline syllabus		CO Mapping						
	Unit 1	Neurons and Neural Networks							
	A	Artificial and biological neural networks, Artificial intelligence and neural networks	CO1						
	В	Biological neurons, Models of single neurons	CO2						
	С	Different neural network models	CO2						
	Unit 2	Single Layer Perceptrons							
	A	Least mean square algorithm	CO3						
	В	Learning curve	CO3						
	С	Learning rates, Perceptron	CO3						
	Unit 3	Multilayer Perceptrons	CO4						
	A	The XOR problem	CO4						
	В	Back-propagation algorithm	CO4						
	С	Heuristic for improving the back-propagation algorithm	CO4						
	Unit 4	Radial-Basis Function Networks	CO5						
	A	Interpolation	CO5						

В	Regula	arisation			CO5				
С	Learni	ng strate	gies		CO5				
Unit 5	Koho	nen Self-	Organising Ma	ips	CO6				
A	Self-o	rganising	g map		CO6				
В	The So	OM algo	rithm		CO6				
С	Learni	ng vecto		CO6					
Mode of examination	Theor	Theory							
Weightage	CA		MTE	ETE					
Distribution	30%		20%	50%					
Text book/s*	•	Founda	tion 2nd edition	works: A Comprehensive , (Prentice Hall, 1999)					
	•		rotra, C. Moha						
			ess, 1997.	tificial Neural Networks,					
Other	1.	The Ess	sence of Neural	Networks, R. Callan,					
References			e Hall Europe, 1						
	2.			Networks, R. Beale and T.					
			n, IOP Press, 199						
	3.			ıral Network, K Gurney,					
		UCL P1	ress, London, 19	97					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE688.1	2	2	1	2	2	2	2	2	2	1	2		
ECE688.2	3	3	3	2	2	2	2	2	2	2	2		
ECE688.3	3	2	1	2	2	2	2	2	2	2	2		
ECE688.4	3	2	3	2	2	2	2	2	2	2	2		
ECE688.5	3	2	3	2	2	2	2	2	2	2	2		
ECE688	3	2	2	2	2	2	2	2	2	2	2		

Normalized CO Average: (Level 1: 0 - 0.33; Level 2: 0.34 - 0.66; Level 3: 0.67 - 1)

1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

School: SET		Batch: 2021-23					
Program: M.Tech		Current Academic Year: 2021-22					
Branch: D.C		Semester:I					
1	Course Code	ECE686					

2	Course	Microwave Communication	
	Title	1 viiotowaye Communication	
3	Credits		
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course	Department Elective	
	Status		1 11 1
5	Course	1. To understand microwave and millimetre wave vacuum tub	e and solid
	Objective	state devices	
		2. To understand various type of antennas and their application	18
		3. To understand the designing of radio link	
6	Course	After completing this course, students will be able to:	
	Outcomes	CO1: The concept of microwave generation	
		CO2: Analyse impedance matching	
		CO3: Design and use of various antennas	
		CO4:Apply concepts microwave propagation	
7		CO5: Analyze the Effect of atmosphere on radio wave propagation	C 1 '
7	Course	This course is intended to introduce to students: (i) various types	
	Description	for generation of microwaves (ii) concepts of impedance matching	
		(iii) Scattering parameters (iv) Development of the free space com	nunication
		link equations (iv) Microwave propagation losses.	
8	Outline sylla	bus	CO
			Mapping
	Unit 1	Microwave and millimetre wave devices	Mapping
	Unit 1 A	Overview of microwave and millimetre wave vacuum tube	Mapping CO1
		Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes	CO1
		Overview of microwave and millimetre wave vacuum tube	
	A	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes	CO1
	A	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn	CO1
	A B C	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT.	CO1
	A B	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits	CO1 CO1
	A B C	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT.	CO1
	A B C Unit 2	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser.	CO1 CO1 CO2
	A B C Unit 2	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers,	CO1 CO1
	A B C Unit 2 A B	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters	CO1 CO1 CO2 CO2
	A B C Unit 2 A	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and	CO1 CO1 CO2
	A B C Unit 2 A B C	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters	CO1 CO1 CO2 CO2
	A B C Unit 2 A B	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and oscillator. Antennas	CO1 CO1 CO2 CO2 CO2
	A B C Unit 2 A B C	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and oscillator. Antennas Hertzian dipole, loop antenna, helical antenna, frequency	CO1 CO1 CO2 CO2
	A B C Unit 2 A B C Unit 3	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and oscillator. Antennas	CO1 CO1 CO2 CO2 CO2
	A B C Unit 2 A B C Unit 3 A	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and oscillator. Antennas Hertzian dipole, loop antenna, helical antenna, frequency independent antenna: log spiral and log periodic dipole antenna array.	CO1 CO1 CO2 CO2 CO2 CO3
	A B C Unit 2 A B C Unit 3	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and oscillator. Antennas Hertzian dipole, loop antenna, helical antenna, frequency independent antenna: log spiral and log periodic dipole antenna array. Babinet principle, waveguide slot antenna, micro-strip antenna,	CO1 CO1 CO2 CO2 CO2
	A B C Unit 2 A B C Unit 3 A	Overview of microwave and millimetre wave vacuum tube devices, limitations of microwave vacuum tubes Microwave and millimetre wave solid state devices, Gunn devices, IMPATT devices, and microwave and mm wave performance of IMPATT. Microwave and mm wave circuits Review of scattering matrix concept in the light of vector network analyser. Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and oscillator. Antennas Hertzian dipole, loop antenna, helical antenna, frequency independent antenna: log spiral and log periodic dipole antenna array.	CO1 CO1 CO2 CO2 CO2 CO3

Unit 4	Microwave	and mm wa	ve propagation							
A	Basic radio	wave propaga	ation mechanisms, Friis transmission	CO3 &						
	formula.			CO4						
В	Plane earth	propagation	model, Tropo-scatter systems, ionosphere	CO4						
	propagation									
C	Duct propag	Ouct propagation, microwave radio link and calculation of link								
	budget.	C								
Unit 5	Effect of at	mosphere on	radio wave propagation	CO5						
A	Effect on rac	dio wave pro	pagation due to rain, fog.	CO5						
В	Effect on rac	Effect on radio wave propagation due to snow, ice.								
С	Effect on rac	dio wave pro	pagation due to atmospheric gases,	CO5						
	Earth's mag	netic field.								
Mode of	Theory/Jury	/Viva								
examinat	on									
Weightag	e CA	MTE	ETE							
Distributi	on 30%	20%	50%							
Text	P Bhartia &	I J Bahl, Mi	llimeter wave engineering and							
book/s*	Applications	s, John Wiley	& Sons							
Other Reference	T David M Pozar Microwaya Engineering John Wiley & Sons									
	R E Collin,	Antenna & R	adio wave Propagation, McGraw Hill							
	Book Co.									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE686.1	3	3	2	1	2	2	2	2	2	2	2		
ECE686.2	3	3	2	2	2	2	2	2	2	2	2		
ECE686.3	3	3	3	2	2	2	2	2	2	2	2		
ECE686.4	3	2	1	2	2	2	2	2	2	2	3		
ECE686.5	3	2	3	2	2	2	2	2	2	2	3		
ECE686	3	3	3	2	2	2	2	2	2	2	2		

School: SET		Batch : 2021-23					
Progra	am: M. Tech	Current Academic Year: 2021-22					
Branch:D.C		Semester:II					
1	Course Code	ECE 687					
2	Course Title	Design of Communication Networks					

3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Department Elective	
5	Course	1. The objective of the course is to develop mathe	ematical models
	Objective	that allow the study of admission control, cong	estion control and
		pricing mechanisms used in emerging high-spe	eed and wireless
		network	
		2. primary focus of the course would be the International	
		3. models developed in this course will be motive	
		protocols and services in the Internet such as R	ED, ECN and
		Diff Serv	
6	Course	CO1: Demonstrate the understanding of Communicati	on Networks
	Outcomes	CO2: Configure Elements of Queueing Theory	
		CO3: Demonstrate the understanding of Internet Cong	estion Control
		CO4: Configure Traffic modelling CO5: Programming for communication networks	
7	Course	An introduction to networking, which is a technology	used to extend
,	Description	telecommunications connectivity for information distr	
	Description	geographic regions. Topics include architecture, design	
		implementation, as well as the influence of the state ar	
		regulatory environments.	10 10001001
8	Outline syllabu		CO Mapping
	Unit 1	Overview and Taxonomy of Communication	CO1
		Networks	
	A	circuit switched networks	CO1
	В	virtual-circuit switched networks	CO1
	C	Internet congestion control	CO1
	Unit 2	Elements of Queueing Theory	CO2
	A	Markov Chains, Poisson process	CO2
	В	M/M/1 queue, M/G/1 queue, multi-server queues	CO2
	С	Erlang-B formula, Little's law, P-K formula	CO2
	Unit 3	Internet Congestion Control	CO3
	A	optimization based framework, relation to TCP	CO3
·	В	linearized stability with round-trip delay	CO3
	C	Active Queue Management (AQM): Tail drop, RED	CO3
	Unit 4	Stochastic and Deterministic Traffic Modeling	CO4
	A	leaky bucket regulator and worst-case provisioning	CO4
	В	network calculus, Chern off bound and zero-buffer multiplexing	CO4
	С	large buffer behavior and effective bandwidth	CO4
	Unit 5	Stochastic dynamic programming	CO5
	A	Markov decision processes	CO5
	В	applications to optimal control of communication networks	CO5

С		(trunk reserva	e allocation for circuit tion), reduced load	CO5						
Mode of examination	Theory/Ju	ry/Practical/V	iva							
Weightage	CA	MTE	ETE							
Distribution	30%	20%	50%							
Text book/s*	"C	1. A. Kumar, D. Manjunath and J. Kuri, "Communication Networking: An Analytical Approach," Morgan Kaufmann Series in								
	Ne 2. R Th									
Other		•	stic Processes," Wiley, 1995.							
References	Pe Mo 3. J. De	Walrand and arformance Coorgan Kaufma Bucklew, "Lacision, Simulates York, NY,								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE687.1	3	3	2	1	2	2	2	2	2	2	2		
ECE687.2	3	3	2	1	2	2	2	2	2	2	2		
ECE687.3	3	3	3	1	2	2	2	2	2	2	2		
ECE687.4	3	2	1	1	2	2	2	2	2	2	3		
ECE687.5	3	2	3	1	2	2	2	2	2	2	3		
ECE 687	3	3	2	2	2	2	2	2	2	2	2		

School:	SET	Batch: 2021-23
Program: M.TECH		Current Academic Year: 2021-22
Branch	:D.C	Semester II
1	Course	ECE 690
	Code	
2	Course	Image Processing
	Title	
3	Credits	3

4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course Status	Department Elective				
5	Course	This course will introduce the fundamentals of stat	istical nattern			
	Objective	recognition. focus on generative methods such as those based on Bayes decision theory and related techniques of parameter estimation and density estimation. Methods of pattern recognition are useful in many applications such as information retrieval, data mining, document image analysis and recognition, computational linguistics, forensics, biometrics and bioinformatics.				
6	Course Outcomes	CO1: understanding of fundamental concepts in pate CO2: maximum likelihood estimation &Bayesian CO3: ability to apply mathematical and algorithmic designing pattern recognition systems while understand involved in design choice CO4: familiar with current techniques and skills for recognition applications. CO5: design and develop a pattern recognition systems specific application.	estimation c principles in ding the tradeoffs r practical pattern			
7	Course Description	Pattern recognition is the scientific discipline whose classification of objects into several categories or can be images (2D signals) or signal waveforms (1 of measurements that need to be classified. The objusing the generic term patterns. Pattern recognition machine intelligence systems.	classes. These objects D signals) or any type jects are referred			
8	Outline syllab		CO Mapping			
0	Unit 1	Pattern recognition fundamentals	CO Mapping			
	A	Basic concepts of pattern recognition, fundamental problems in pattern recognition system	CO1,CO2			
	В	design concepts and methodologies, example of automatic pattern recognition systems	CO1.CO3			
	С	A simple automatic pattern recognition model.	CO2			
	Unit 2	Bayesian decision theory				
	A	Minimum-error-rate classification, Classifiers, Discriminant functions	CO2			
	В	Decision surfaces, Normal density and discriminant functions	CO1, CO3			
	С	Discrete features, Missing and noisy features, Bayesian networks (Graphical models) and inferencing.	CO1.CO4			

J	Unit 3	Maximum-	-likelihood a		
		estimation			
A	A			estimation: Gaussian case,	CO2,CO3
			a Posteriori e		
E	В			aussian case, Problems of	CO4
		dimensiona	lity		
	\mathbb{C}	Dimensiona	ality reduction	CO5	
		analysis, Po	CA Expectat		
		Missing fea	itures		
J	U nit 4	Sequential			
I A	A		, Hidden Ma	arkov models, Dynamic	CO3,CO4
		Bayesian			
E	В	Non-param	etric techniq	ues for density estimation:	CO4
		Parzen-win	dow method	, K-Nearest Neighbor	
L		method			
	C	Linear disc	riminant fun	ctions: Gradient descent	CO1,CO4
		procedures,	Perceptron	criterion function,	
		Minimum-s	squared-error	r procedures.	
J	U nit 5			g and clustering	
A	A		ed maximun	CO4	
			ed Bayesian		
E	В			clustering, Algorithms for	CO4,CO5
		_	Kmeans, Hie	erarchical and other	
		methods			
	C			-dimensional	CO5
		-	on and mult	idimensional scaling	
		(MDS)			
	Mode of	Theory			
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Γext		_	principles: Julus T. Tou	
b	ook/s*			lez, Addision –Wesley.	
			_	and machine learning,	
			pher M. Bish		
	Other			heory of pattern	
F	References		gnition, Luc		
				pringer, 1996.	
				eation, Richard O. Duda,	
				d David G. Stork, Wiley,	
		200			
				cation, R.O.Duda,	
		P.E.	Hart and D.	G.Stork, John Wiley.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE690.1	3	3	2	2	2	2	2	2	2	2	2		
ECE690.2	3	3	2	2	2	2	2	2	2	2	2		
ECE690.3	3	3	3	2	2	2	2	2	2	2	2		
ECE690.4	3	2	1	2	2	2	2	2	2	2	3		
ECE90.5	3	2	3	2	2	2	2	2	2	2	3		
ECE690	3	3	2	2	2	2	2	2	2	2	2		

School:	SET	Batch: 2021-23
Progran	n: M. TECH	Current Academic Year: 2021-22
Branch:	D.C	Semester:I
1	Course	ECE 667
	Code	
2	Course	Data Communication
	Title	
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course	Departmental Elective

1	Status		
5	Course	This course will introduce knowledge of Fundamenta	ls of Digital
	Objective	Communication, Baseband pulse shaping, error detec	tion and
		correction codes, Synchronous and Asynchronous tra	nsmission
6	Course	CO1: Knowledge of Digital Communication	
	Outcomes	CO2: Knowledge of Baseband Transmission	
		CO3: Knowledge of Bandpass data transmission	
		CO4: Elaboration of Detection Codes	
		CO5: Knowledge of Asynchronous and synchronous	data transmission
7	Course	Students are expected to have a strong mathematical	_
	Description	an understanding of probability theory, understanding	_
		transmitting data over the network and how to resolve	e the conflicting
		issues arising in the course of transmission.	
8	Outline sylla		CO Mapping
	Unit 1	Introduction	
	A	Fundamentals of Digital Communication,	CO1
		Communication channel, Measurement of	
	-	information	0.04
	В	Encoding of source output, Shannon fano Encoding	CO1
		Algorithm	001
	C	Discrete and continues-channel, Entropy, Variable	CO1
		length codes, Data compression. Shannon-Hartley	
	11:4 2	Theorem Paralam I Data Transmission	
	Unit 2	Baseband Data Transmission Baseband Data Transmission, Baseband pulse	CO2
1		T Baseband Data Transmission Baseband bilise	
	A		CO2
		shaping	
	В	shaping Dubinary Baseband PAM, System many signaling	CO2
	В	shaping Dubinary Baseband PAM, System many signaling schemes	CO2
		shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler	
	В	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler	CO2
	B C Unit 3	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System	CO2
	В	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,	CO2
	B C Unit 3	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK	CO2 CO2
	B C Unit 3 A B	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes	CO2 CO2 CO3
	B C Unit 3 A	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of	CO2 CO2
	B C Unit 3 A B	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes	CO2 CO2 CO3
	B C Unit 3 A B C	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison	CO2 CO2 CO3
	B C Unit 3 A B C Unit 4	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK, FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison Error Detection and correction codes	CO2 CO2 CO3 CO3 CO3
	B C Unit 3 A B C Unit 4	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison Error Detection and correction codes Error Detection and correction codes Linear block	CO2 CO2 CO3 CO3 CO3
	B C Unit 3 A B C Unit 4 A	Shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK, FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison Error Detection and correction codes Error Detection and correction codes Linear block Encoding	CO2 CO2 CO3 CO3 CO3 CO4
	B C Unit 3 A B C Unit 4 A B	shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison Error Detection and correction codes Error Detection and correction codes Linear block Encoding Algebraic Codes Cyclic codes	CO2 CO2 CO3 CO3 CO3 CO4 CO4
	B C Unit 3 A B C Unit 4 A B C	Shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison Error Detection and correction codes Error Detection and correction codes Linear block Encoding Algebraic Codes Cyclic codes Convolution codes, Performance codes	CO2 CO2 CO3 CO3 CO3 CO4 CO4
	B C Unit 3 A B C Unit 4 A B C Unit 5	Shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK,FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison Error Detection and correction codes Error Detection and correction codes Linear block Encoding Algebraic Codes Cyclic codes Convolution codes, Performance codes Synchronous and Asynchronous transmission	CO2 CO2 CO3 CO3 CO3 CO4 CO4 CO4
	B C Unit 3 A B C Unit 4 A B C Unit 5	Shaping Dubinary Baseband PAM, System many signaling schemes Equalization Synchronisation Scrambler .Unscrambler Band Pass Data Transmission System Band Pass Data Transmission System ASK,PSK, FSK DPSK &PSK,MSK, Modulation schemes Coherent and non-coherent detector Probability of Error (PE), Performance Analysis and comparison Error Detection and correction codes Error Detection and correction codes Linear block Encoding Algebraic Codes Cyclic codes Convolution codes, Performance codes Synchronous and Asynchronous transmission Synchronous and Asynchronous transmission.	CO2 CO2 CO3 CO3 CO3 CO4 CO4 CO4

С		Architecture of computer network, OSI model, Data communication protocols.					
Mode of examination	Theory	1					
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*	Network	Behrouz.a.Forouzan,"Data Communication and Networking", Tata McGraw Hill, New Delhi,2006.					
Other References	India Edi 2. B.P.Lath Commur	 Simon Haykin,"Digital Communications", Wiley India Edition B.P.Lathi,"Modern Digital and Analog Communication Systems" Third edition,Oxford University Press 					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE667.1	3	3	2	2	2	2	2	2	2	3	2		
ECE667.2	3	3	2	2	2	2	2	2	2	3	3		
ECE667.3	3	3	3	2	2	2	2	2	2	3	3		
ECE667.4	3	2	1	2	2	2	2	2	2	3	3		
ECE667.5	3	2	3	2	2	2	2	2	2	3	3		
ECE667	3	3	2	2	2	2	2	2	2	3	3		

School: Sl	ET	Batch: 2021-23				
Program: M. Tech		Current Academic Year: 2021-22				
Branch:D.C		Semester: II				
1	Course Code	ECE 690				
2	Course Title	Cryptography				
3	Credits					
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course Status	Departmental Elective				
5	Course	1. To understand the various key distribution and management				
	Objective	schemes.				

6	Course Outcomes	 2. To understand how to deploy encryption techniqued data in transit across data networks 3. To design security applications in the field of Infortechnology CO1: classify the symmetric encryption techniques CO2: Discuss authentication applications CO3: Illustrate various Public key cryptographic techniques CO4: Summarize the intrusion detection and its solution overcome the attacks CO5: Basic concepts of system level security 	nniques				
7	Course Description	Understanding the fundamentals of Cryptography. Cryptography is a tremendous tool which provides basis for many security mechanisms					
8	Outline syllab		CO Mapping				
	Unit 1	Basic symmetric-key encryption	11 8				
	A	Overview of cryptography, One time pad and stream ciphers	CO2				
	В	Block ciphers, Block cipher abstractions: PRPs and PRFs	CO2				
	С	Attacks on block ciphers	CO1				
	Unit 2	Message integrity					
	A	Message integrity: definition and applications CBC-MAC and PMAC	CO2				
	В	Collision resistant hashing (Merkle-Damgard and Davies-Meyer. MACs from collision resistance)	CO2				
	С	Authenticated encryption: security against active attacks & intro to session setup using a key distribution center (KDC).	CO2				
	Unit 3	Public key cryptography					
	A	Arithmetic modulo primes	CO3				
	В	Cryptography using arithmetic modulo primes (vanilla key exchange (Diffie-Hellman); the CDH and discrete-log assumptions)	CO3				
	С	Public key encryption (semantically secure ElGamal encryption; CCA security)	CO3				
	Unit 4	Digital signatures					
	A	Digital signatures: definitions and applications How to sign using RSA.	CO4				
	В	More signature schemes and applications (Hash based signatures)	CO4				
	С	certificates, certificate transparency, certificate revocation	CO4				
	Unit 5	Challenge response authentication					
	A	Identification protocols: Password protocols, salts; one time passwords (S/Key and Secur	CO5				

	ID); challe	nge response	authentication.					
В	Authentica	ted key excha	ange and SSL/TLS session	CO5				
	setup							
С	1	ledge protoco		CO5				
Mode of	Theory/Jui	Theory/Jury/Practical/Viva						
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	Introduction	on to Modern	<i>Cryptography</i> (2nd edition)					
	by J. Katz	and Y. Linde	11.					
Other			duate Course in Applied					
References	<u>Cryptogra</u>	<u>ohy</u> (V 0.4) by	y D. Boneh and V. Shoup					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE690.1	2	1	2	2	2	2	1	2	2	2	2		
ECE690.2	3	2	2	1	2	2	1	2	2	2	3		
ECE690.3	3	2	2	2	2	2	1	2	2	2	3		
ECE690.4	3	2	2	2	2	2	1	2	2	2	3		
ECE690.5	3	2	2	2	2	2	2	3	2	3	3		
ECE690	3	3	2	2	2	2	2	2	2	3	3		

School:	SET	Batch: 2021-23							
Progran	n: M.Tech	Current Academic Year: 2021-22							
Branch:	D.C	Semester: II							
1	Course Code	ECE 669							
2	Course Title	Secured Communication							
3	Credits								
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Department Elective							
5	Course	1. To introduce the basic concept encryption techniques							
	Objective	2. To familiarise with the concept of private key and public key							
		cryptosystems.							

				ace the concept of Elliptic curves									
6	Course	A	fter complet	ing this course, students will be able to:									
	Outcomes	1. To	Understand	Cryptography attacks, Integer arithmetic	e, linear								
				congruence									
		2. To	Understand	encryption techniques									
				rstand Private key and public cryptosystem									
				Elliptica curves									
				thm problem on EC									
7	Course			mpered with their practical significance									
	Description			ooth researchers and system designers.	Learning is								
			d by streamli	ined derivations and assignments.									
8	Outline syllabu	IS			CO Mapping								
,	Unit 1	Introduct											
	A			tographic Attacks	CO1								
	В	Services	and Mechan	isms, Integer Arithmetic	CO1								
	C	Modular	Modular Arithmetic, Linear Congruence										
	Unit 2		cryption tec										
	A	Concept	Concept of cryptanalysis ,Symmetric key ,Block ciphers										
	В		Cryptographic algorithms , Features of DES, Stream ciphers,										
		Pseudo r	Pseudo random sequence generators, linear complexity										
	С	Non-line	ar combinati	on of LFSRs ,	CO2								
		Boolean	Boolean functions										
	Unit 3	Private l	key and Pub	lic key cryptosystems									
	A	Asymme	Asymmetic Key, One way functions, Primality Testing,										
		Factoriza	Factorization problem, Chinese Remainder Theorem, RSA										
		encryptic	on		CO3								
	В		Diffie Hellmann key exchange, Message authentication and										
		hash fun	etions										
	C			ecret sharing, features of visual	CO3								
				applications of cryptography									
	Unit 4	Elliptic of											
	A			ass equation	CO4								
	В		w, Point at I		CO4								
	С		urves over fi		CO4								
	Unit 5	Discrete	logarithm p	problem on EC	CO5								
	A	Elliptic c	urve cryptog	graphy	CO5								
	В	Diffie He	ellmann key	exchange over EC	CO5								
	С			ver EC, ECDSA	CO5								
	Mode of	Theory/J	ury/Viva										
	examination												
	Weightage	CA	MTE	ETE									
	Distribution	30%	20%	50%									
	Text book/s*	Text Boo	Text Books										
		Douglas A. Stinson, "Cryptography, Theory and Practice",											
		_		n &Hall, CRC Press Company,									

	Washington	
Other	Lawrence C. Washington, "Elliptic Curves", Chapman &	
References	Hall, CRC Press Company, Washington	
	David S. Dummit, Richard M. Foote, "Abstract Algebra",	
	John Wiley & Sons	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE669.1	3	3	2	3	2	2	2	3	2	2	3		
ECE669.2	3	3	2	3	2	2	2	3	2	2	3		
ECE669.3	3	3	3	3	2	2	2	3	3	2	3		
ECE669.4	3	2	1	3	2	2	2	3	3	2	3		
ECE669.5	3	2	3	3	2	2	2	3	3	2	3		
ECE669	3	3	2	3	2	2	2	3	3	2	3		

SET	1	Batch: 2021-23						
\mathbf{M} .	Tech	Current Academic Year: 2021-22						
ECF	P 684	Semester: I						
1	Course Code	ECP 684						
2	Course Title	Digital Signal Processing Lab						
3	Credits	2						
4	Contact Hours	0-0-4						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	• To understand the concept of sampling and reconstruction of						
	Objective	signals.						
		• To implement various transforms (DFT, FFT and Z transform) in						

	MATLAB and understand the concepts of these transforms.												
				ement the various structures o									
		systems	-										
		• To desi	gn and implen	nent FIR and IIR filters.									
6	Course	CO1: To imple	ment the conc	ept of sampling and reconstruc	ction.								
	Outcomes	CO2: To imple											
				erstand the difference between	linear and								
		circular convol											
		-	•	em function of a system using	MATLAB.								
		CO5: To imple		•									
7				types of structures for IIR syste									
7	Course			plementation of sampling and r									
	Description			also focuses on implementation flinear convolution. Implemen									
				of IIR and FIR filters are also									
		this course.	covered iii										
8	Outline syllabus		is course.										
	Unit 1		a-b) To understand the sampling theorem through the										
		sampling and re			C01 ,CO2								
				OFT of a sequence									
		,		•									
	Unit 2	a) To imple	ement the FFT	algorithm.	CO2								
		b) To obtai	n the FFT of §	given 1-D signal and plot.									
	Unit 3	a) To veri	fy linear and c	eircular convolution.	CO3,C04								
		b) To imp	lement a syste	m function and to plot the									
			o plot for sam										
	Unit 4	a-c) To obta	in direct reali	zation of FIR and IIR filters.	CO5								
	Unit 5			ystem Using Filter	C06								
		Coeffici	ents										
		b) To desig	n FIR filters ι	using windowing technique.									
			n IIR filters.										
	Mode of	Jury/Practical/V	Viva										
	examination			I ———									
	Weightage		MTE	ETE									
	Distribution)%	40%									
	Text book/s*			plakis, "Digital Signal									
		Processing, Pri Pearson Educat											
	Other												
	References	1. A. Y. O											
	Kelefellees		Processing", P	R. W. Schater and J. R. Buck,									
				al Processing", PHI									
		Discie	ic Time Signa	urrocessing, riii									

CO	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE684	3	2	2	2	2	1	1	1	2	-	2		
.1													
ECE684	3	1	2	2	2	1	1	1	2	1	2		
.2													
ECE684	3	3	2	3	2	1	1	1	2	2	2		
.3													
ECE684	3	3	2	3	2	1	1	1	2	1	2		
.4													
ECE684	3	3	3	3	2	1	1	1	2	2	2		
.5													
ECE	3	2	2	3	2	1	1	1	1	1	2		
684													

Sc	hool: SET	Batch : 2021-23
	ogram:	Current Academic Year: 2021-22
	.TECH	
Br	anch:D.C	Semester: II
1	Course Code	ECE771
2	Course	Information Theory and Coding
	Title	information Theory and Coding
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course	Elective
	Status	
5	Course	1. The main aim of this course is to make aware students with basics of
	Objective	probability theory.
		2. Will have knowledge of information theory which includes Entropy,
		Channel Capacity & S/N Ratio.
		3. Knowledge of various types of data compression techniques.
		4. Learn about various coding techniques like Hamming Codes, Cyclic &
		Convolution Codes.
6	Course Outcomes	CO1: Understand Probability theory, Bayes Theorem, Poisson Distribution Functions.
		CO2: Comprehend to measure information & its rate, about Gaussian Channel & B/W-SNR Tradeoffs and various types of channels.
		CO3: Apply the use of various coding & decoding techniques.
		CO4:Design of various communication channel with various coding techniques
		CO5: Apply different information coding
7	Course	Offers an introduction to the quantitative theory of information and its
	Description	applications to reliable, efficient communication systems. Topics include
		mathematical definition and properties of information, source coding theorem,
		lossless compression of data, optimal lossless coding, noisy communication
		channels, channel coding theorem, the source channel separation theorem,
		multiple access channels, broadcast channels, Gaussian noise, and time-varying channels.
		CHAILICIS.

8	Outline s	yllabus			CO Mapping								
	Unit 1	Probability the	ory										
	A	Definition and p Bayes theorem.	roperties of probability, con	ditional probability,	CO1, CO2								
	В	Random Variabl	e Types and Characteristics	of Random Variable.	CO1, CO2								
	С	Joint Distribution	n, Binomial, Poisson and No	ormal Distribution.	CO2								
	Unit 2	Information Th	eory		CO2								
	A	Rate of informat		by and its properties,	CO1								
	В		d Conditional Entropy.		CO1, CO3								
	С	Mutual Informat	ion, Channel Capacity.		CO3								
	Unit 3	Channel Capac	ity										
	A		hannel Capacity for Gaussian Channel, B/W-SNR trade off.										
	В	study of Channe	udy of Channels BSC										
	С	BEC, Cascaded	Channel etc.		CO2								
	Unit 4	Data Compress	Data Compression										
	A	Introduction, Va Properties.	riable Length Coding, Prefi	x Coding and	CO2								
	В	Shannon Fano C	oding.		CO1								
	С	Huffman Coding	g (Binary, Ternary Coding).		CO3								
	Unit 5	Introduction to	Coding										
	A	Linear Block Co	des Hamming Code , Single	e Parity Check bit Code	CO5								
	В	Cyclic Code: bas decoding.	sic Definitions and Propertion	es, Generation and	CO5								
	С	Convolutional C and decoding.	ode: basic Definitions and I	Properties, Generation	CO5								
	Mode of examin ation	Theory											
	Weight	CA	MTE	ETE									
	age Distrib ution	30%											
	Text book/s*	Haykin, Simor	, "Digital Communication'	, Wiley Publishers,3 rd Ed	lition								
	Other Referen ces	1. Abramson," Information Theory and Coding, TMH, 2 nd Edition											

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE771.1	2	1	2	2	2	2	2	2	2	3	2		
ECE771.2	3	2	2	1	2	2	2	2	2	3	3		
ECE771.3	3	2	2	2	2	2	2	2	2	3	3		
ECE771.4	3	2	2	2	2	2	2	2	2	2	3		
ECE771.5	3	2	2	2	2	2	2	3	2	3	3		
ECE771	3	3	2	2	2	2	2	2	2	3	3		

School	: SET	Batch: 2021-23						
Progra	ım: M. Tech	Current Academic Year: 2021-22						
Brancl		Semester: II						
1	Course	ECE 687						
	Code							
2	Course Title	Broad band Transmission Network						
3	Credits	3						
4	Contact	3-0-0						
•	Hours (L-T-P)							
	Course Status	Elective						
5	Course Objective	 To provide an overview of Wireless Communication networks area and its applications in communication engineering. To appreciate the contribution of Wireless Communication networks to overall technological growth. Analysing the various terminology, principles, devices, schemes, concepts, algorithms and different methodologies used in Wireles Communication Networks. 						
6	Course	CO1: Learning the main optical technologies such as SONET						
	Outcomes	CO2: Learning the Network design SDH frame structures overhead. CO3: Learning WDM optical transmission technologies. CO4: Learning WDM optical transmission Networks. CO5: Learning DWDM transmission Technologies.	& SDH					
7	Course Description	The continuous advance of current Information Society we possible without the adequate deployment of infrastructure broadband networks. This subject is aimed at analysing be communication technologies, networks and protocols empiricular information transport and access.	es such as roadband					
8	Outline syllal	bus	CO Mapping					
	Unit 1	SONET	CO1					
	A	Introduction, Synchronous and asynchronous SONET	CO1					
	В	Frame structure	CO1					
	С	SONET network configuration	CO1					
	Unit 2	SDH TECHNOLOGY						
	A	Introduction, standards, features & management.	CO2					
	В	Network design SDH frame structures	CO2					
	С	Supporting different rates, SDH overhead	CO2					
	Unit 3	Wavelength Division Multiplexing						
	A	WDM optical Transmission technologies, WDM conceptions	CO3					
	В	Unidirectional, Bi-directional WDM	CO3					
	С	WDM system composition, Advantages of WDM	CO3					

Unit 4	WDM trai	nsmission N	letwork					
A	Fiber dispe	rsion chrom	atic dispersion	CO4				
В	Polarizatio	Polarization mode dispersion						
С	Non-linear	Non-linearity effect of SMF, 4-wave mixing						
Unit 5		DWDM key Technologies						
A	Optical am	plifier		CO5				
В	Optical Mu	ıltiplexer &	Demultiplexer	CO5				
С	Optical sup	ervisory ch	annel, FEC technologies	CO5				
Mode of examination	Theory	Гheory						
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*		•	"WiMAX - Technology for ess", John Wiley, 2007					
Other References	2. H 3. H	Broadband BDH/SONE House. H. Wang. Handbook" H.G. Pe Networks: S	e and W. Kim. "Integrated Networks - TCP/IP, T and WDM/optics". Artech "Packet Broadband Network McGraw-Hill Professional. rros. "Connection-Oriented SONET/SDH, ATM, MPLS and works". Wiley.					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE687.1	2	1	2	3	2	2	2	2	3	3	2		
ECE687.2	3	2	2	3	2	2	2	2	3	3	3		
ECE687.3	3	2	2	3	2	2	2	2	3	3	3		
ECE687.4	3	2	2	3	2	2	2	2	3	2	3		
ECE687.5	3	2	2	3	2	2	2	3	3	3	3		
ECE687	3	3	2	3	2	2	2	2	3	3	3		

School	l: SET	Batch: 2021-23						
Progra	am: M. Tech	Current Academic Year: 2021-22						
Branc	h: D.C	Semester: II						
1	Course Code	ECE 773						
2	Course Title	MODERN TELECOM SWITCHING SY	STEMS					
3	Credits	3						
4	Contact Hours (L-T-P)	3-0-0						
	Course Status	Elective						
5	Course Objective	 Analysis of different basic components that are used in telephone exchanges Recognize and analyze single stage and a multistage network. Design of multistage network to reduce blocking of calls Demonstration of different types switching techniques that are used in exchanges such as time division time switching, time division space switching and combination of both types of switching. 						
6	Course Outcomes	On completion of this course, it is expected that the student will be able to CO1: Understand the main concepts of telecommunication network design. CO2: Analyze and evaluate fundamental telecommunication traffic models. CO3: Analyse the basic modern signalling system. CO4: Analyse traffic engineering CO5: Solve traditional interconnection switching system design problems. CO6: To compare telephone network, data network and integrated service						
7	Course Description	INDIA'S telecommunication industry is the second largest in the world. Telecommunication networks carry information signals among entities, which are geographically far apart. The entities are involved in the process of information transfer, which may be in the form of a telephone conversation (telephony) or a file transfer between two computers or message transfer between two terminals. In modern circuit switches this is done electronically in digital switches. If no circuit is available when a call is made, it will be blocked (rejected). When a call is finished a connection teardown is required to make the circuit available for another user.						
8	Outline syllab	Vilabus CO Mapping						
	Unit 1	Electronic space Division switching	11 0					
	A	Stored program control (SPC)	CO1, CO2					
	В	switching matrices, multistage switching	CO1, CO2					
	С	enhance services photonic switching	CO2					
	I.	1	1					

Unit 2	Time Divis	sion switch	ing	
A			nd time switching,	CO1, CO3
		d switching	, combination	
	switching			
В	T -S, T -S-		-	CO3
			g, PBX switching	
C	PBX netwo		tal PBX	CO3
Unit 3	Traffic En			
A	Traffic load	d, Grade of	service	CO4
В	Er. Jang's f			CO4
С	_	_	vitching systems,	CO4
	Blocking m	nodel		
Unit 4	Subscriber	· Loop, Dia	Illing Systems	
A	Switching l	•	routing,	CO5
	Transmissi	on plan		
В	numbering	plan, charg	ing plan	CO5
С	Signalling t	technique		CO5
Unit 5	Local Acce			
A	Digital sub			CO6
В	1		eless for local	CO6
	telephone s			
C		" wireless f	or local telephone	CO6
	services.			
Mode of	Theory/Viv	'a		
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text	Telecomm.			
book/s*	networks-			
Other			n - Taub & Schilling,	
References		Graw Hill		
			the Computers -	
		es Martin -		
			Guide to Telecomm -	
	Pea	rson Educa	h - Annabelz Dodd.	

Cos	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE	2	3	2	3	3	2	2	2	3	3	2		
773.													
1													
ECE	3	3	2	3	3	2	2	2	3	3	3		
773.													
2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
773.													
3													
ECE	3	3	2	3	3	2	2	2	3	2	3		
773.													
4													
ECE	3	3	2	3	3	2	2	3	3	3	3		
773.													
5													
ECE	3	3	2	3	3	2	2	2	3	3	3		
773													

School:	SET	Batch : 2021-23				
Progran	n: M.Tech	Current Academic Year: 2021-22				
Branch:	All	Semester: II				
1	Course Code	ECE820				
2	Course Title	Computational Agents for Artificial Intelligence				
3	Credits	4				
4	Contact Hours (L-T-P)	3-1-0				
	Course Status	Department Elective				
5	Course	The objectives of this course are to:				
	Objective	Provide fundamental knowledge about computational a for artificial intelligence.				
		2. Develop understanding of building blocks and logics systems based on artificial intelligence				
		3. Create system modelling and design skills for intelligence	artificial			
6	Course Outcomes	Upon successful completion of this subject, students shoulto:	ld be able			
		 Demonstrate fundamental understanding of computation of artificial intelligence. Apply problem solving agents as a tool to design intelligence based systems. Analyse algorithms of knowledge representation and for artificial intelligence. Perform the design of knowledge based systems. Comprehend the design of multiagent artificial in systems 	n artificial reasoning			
7	Course Description	As with any science being developed, Artificial Intelligence coherent, formal theory and a rambunctious experimental wing study of the design of intelligent computational agents. The course, the students will gain valuable skills at several level from expertise in the specification and design of intelligent skills for implementing, testing, and improving real software several challenging application domains	g. AI is the rough this els ranging agents to			
8	Outline syllabus		CO Mapping			
	Unit 1	Introduction to AI and its Agents	CO1			
	A	History of Artificial Intelligence, Applications of AI, Introduction to Intelligent Agents				
	В	Structure of Agents: Agent Program, Simple reflex, Model based, Goal based, Utility based, Learning agents				

С	Designing Agents and Agent Design Space, Agent Systems, Agent Function, Hierarchical Control Prototypical					
	, , , , , , , , , , , , , , , , , , , ,					
11	Applications of AI	CO1				
Unit 2	Problem Solving Agents	CO2				
A	Problem Solving Agents: Search Problems and Solutions,					
	Formulating Problems, Examples of Standardized and Real					
	World Problems					
В	Problem Solving as Search, State Spaces, Graph Searching,					
	Generic Search Algorithm					
C	Uninformed Search Strategies: Breadth-First, Depth-First,					
	Iterative Deepening, Lowest-Cost-First, Informed (Heuristic)					
	Search Strategies: Greedy Best-First, A* Search, Pruning the					
	Search Space					
Unit 3	Knowledge and Reasoning	CO3				
A	Logical Agents – Knowledge-based Agents, The Wumpus					
	World					
В	Logic, Propositional Logic, Effective Propositional Model					
	Checking					
C	Agents based on Propositional Logic – complete backtracking					
	algorithm, local search algorithm					
Unit 4	Ontologies and Knowledge-Based Systems	CO4				
A	Knowledge sharing, Flexible Representations - Choosing					
	Individuals and Relations, Graphical Representations					
В	Classes, Ontologies and Knowledge Sharing - Uniform					
	Resource Identifiers, Description Logic, Top-Level					
	Ontologies					
C	Implementing Knowledge-Based Systems - Base Languages					
	and Metalanguages, A Vanilla Meta-Interpreter, Expanding					
	the Base Language					
Unit 5	Multiagent Systems	CO5				
A	Multiagent Framework, Representation of Games – Normal					
	form, Extensive form					
В	Multiagent Decision Network, Computing Strategies with					
	Perfect Information					
С	Reasoning with Imperfect Information, Computing Nash					
	Equilibria, Group Decision Making, Mechanism Design					
Mode of	Theory					
examination	I .					
	CA MTE ETE					
Weightage	en mile bie					
Weightage Distribution						
	30% 20% 50%					
Distribution	30% 20% 50% * 1. Artificial Intelligence Foundations of					
Distribution	* 1. Artificial Intelligence Foundations of Computational Agents by David L. Poole and Alan K.					
Distribution	* 1. Artificial Intelligence Foundations of Computational Agents by David L. Poole and Alan K. Mackworth, Cambridge University Press					
Distribution	* 1. Artificial Intelligence Foundations of Computational Agents by David L. Poole and Alan K.					

References	Ingram short title	
	2. A First Course in Artificial Intelligence by Deepak	
	Khemani, McGraw Hill Education	

COURSE ARTICULATION MATRIX

Cos	РО	PO	PO1	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE820.	2	1	1	2	2	2	1	3	1	1	2		2
1													
ECE820.	3	2	1	2	2	2	1	3	1	1	3		2
2													
ECE820.	3	2	1	2	2	2	1	3	1	1	3		2
3													
ECE820.	3	2	1	2	2	2	1	3	1	1	3		2
4													
ECE820.	3	2	2	2	2	2	2	3	2	3	3		3
5													

School	l: SET	Batch: 2021-23					
Progra	am: M. Tech	Current Academic Year: 2021-22					
Branc	h:All	Semester:I					
1	Course Code	ECE 618					
2	Course Title	Mobile and Wireless Communication					
3	Credits	3					
4	Contact Hours (L-T-P)	3-0-0					
	Course Status	Compulsory					
5	Course Objective	 Introduce students about the aspects related to evolution of mobile radio communication and its fundamental. Explain interfernce and sysyem capacity and the techniques used for improving capacity in cellular systems. Familiarize students about GSM and CDMA system, their architecture, services and features. Explain the speech coding, mobile data networks, 4G and OFDM. 					
6	Course Outcomes	After completing this course students will be able to CO1: Develop deep understanding of various propagation models. CO2: Describe cellular concepts and its design, types of handoffs, and the relation between interference and system capacity and analyze the speech coding. CO3: Describe the speech coding CO4: Analyze GSM and CDMA system, their architecture, frame					

		structure and forward and reverse CDMA channel	and their						
		specifications.							
		CO5: Comprehend the mobile ad-hoc networks, new networks and the use of OFDM in 4G technique.	generation						
7	Course		annraaah						
/	Description	This course has been designed to provide a comprehensive towards the designing of cellular mobile communication s							
	Description	begins with the basic cellular system modeling and then	•						
		towards characterization and modeling of radio fading characterization							
		other design aspects of a complete cellular system. Intro-							
		Wireless and Cellular Communications systems and serv							
		course will also cover Frequency Reuse, channel Assignmen							
		Strategies, System Capacity, Turnking, Mobile Rad							
		propagation: large scale path loss and propagation mechan							
		model, Small-Scale fading and multipath, Rayleigh ar							
		Distributions, Multiple Access Techniques for	wireless						
		communications.							
8	Outline syllabu	ıs	CO						
			Mapping						
	Unit 1	Mobile Radio Propagation							
	A	Introduction to Radio Wave Propagation, Free Space	CO1						
		Propagation Model, Three Basic Propagation Mechanisms-							
		Reflection, Diffraction, Scattering							
	В	Reflection- Reflection from Dielectrics, Ground Reflection	CO1						
		Model, Diffraction- Fresnel Zone Geometry, Knife edge							
		Diffraction Model							
	C	Scattering- Radar Cross Section Model, Log distance Path	CO1						
		Loss Model, Log Normal Shadowing							
	Unit 2	Cellular concepts							
	A	Cellular concepts, Frequency reuse, channel assignment	CO2						
	-	strategies.	G0.2						
	В	Handoff strategies, interference and system capacity.	CO2						
	C	Improving coverage and capacity in cellular systems.	CO2						
	Unit 3	Speech Coding	002						
	A	Characteristics of speech signals, Quantization Techniques	CO2						
	В	Frequency Domain Coding of speech- Sub band Coding,	CO2						
	С	Adaptive transform coding Vo-coders, Linear Predictive Coders, GSM Codec	CO2						
	Unit 4	GSM system for mobile	CO2						
			~~4						
	A	GSM system for mobileServices and features, System	CO3						
	D	Architecture, Radio Sub system Channel types.	002						
	В	Frame Structure.CDMA Digital Cellular Standard (IS 95):	CO3						
		Frequency and Channel specifications.	CO2						
	C	Forward CDMA channel and reverse CDMA channel.	CO3						
	Unit 5	Mobile Adhoc Networks	CO4						

A	Mobile o	lata networks,	wireless standards IMT2000.	CO4				
В	4G, OFI	OM.		CO4				
С	Concept	of NGN.		CO4				
Mode of	Theory/J	Theory/Jury/Viva						
examination								
Weightage	CA	MTE	ETE					
Distribution	30	20	50					
Text book/s*			reless Communication-Principles and econd Edition (2009).					
Other References		1. Andrea Goldsmith, "Wireless Communications", Cambridge University press.						
		L Singal ," Hill Publicatio	Wireless Communications ",McGraw ns					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE	2	3	2	3	3	2	2	2	3	3	2		
618.1													
ECE	3	3	2	3	3	2	2	2	3	3	3		
618.2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
618.3													
ECE	3	3	2	3	3	2	3	2	3	2	3		
618.4													
ECE	3	3	2	3	3	2	3	3	3	3	3		
618.5													
ECE	3	3	2	3	3	2	2	2	3	3	3		
618							2						

School:	SET	Batch: 2021-23				
Progran	n: M.Tech	Current Academic Year: 2021-22				
Branch		Semester:I/II				
1	Course Code	ECE 612				
2	Course Title	Nano Technology				
3	Credits	3				
4	Contact Hours (L-T-P)	3-0-0				
	Course Status	Open-Elective				
5	Course Objective	Paraphrase the importance of nanoelectronics, technol nanoelectronics and limitations of existing CMOS to design of electronic circuits. The course tabulates strand analytical understanding of nano electronic capplications in design of electronic circuits.	echnologies for rong theoretical			
6	Course Outcomes	At the end of the course, students will demonstrate the CO1: Understand various aspects of nano-technology processes involved in making nano components and mater CO2: Leverage advantages of the nano-materials and a in solving practical problems. CO3: Understand various aspects of nano-technology a processes involved in making nano components and materi CO4: Leverage advantages of the nano-materials and in solving practical problems.	and the rial appropriate use and the			
7	Course Description	Understand and appreciate the importance of nanoele impact in next generation electronics and electronic Differentiate between MOS and emerging nanodevice	ronic products.			
		understand the advantages and limitations of MOS based circuit.				
8	Outline sylla	bus	CO Mapping			

Unit 1	Basics of Qu	uantum Mec	hanics	
A	Introduction	to nanotechn	ology, meso structures	CO1
В	Schrodinger	equation, De	nsity of States.	CO1
С	Particle in a	box Concepts	s, Degeneracy	CO1
Unit 2	Nanoscale N	MOSFETs		
A	Shrink-dowr Scaling	n approaches,	Introduction, CMOS	CO2
В		le MOSFET,	Finfets	CO4
С	Vertical MO	SFETs		CO4
Unit 3	CLASSICA	L PARTICI	LES	
A		ling, system i	ntegration limits	CO2
В	`	nneling Diod	le	CO3
С		ts, Quantum		CO2
Unit 4		LECTRON I		
A		on transistors		CO3
В		tube electron		CO3
С	Band-structu	ıre		CO1
Unit 5	FREE AND	CONFINE	DELECTRONS	
A	Transport de	vices, applica	ations	CO4
В	2D semicono	ductors and e	lectronic devices	CO3
С	Graphene, at	tomistic simu	lation	CO4
Mode of examination	Theory/Jury/			
Weightage	CA	MTE	ETE	
Distribution	30	20	50	
Text book/s*	1. G.W. Nanc 2. W. I Tech and N 1. K.E.			
References	2. J.H. Dime Univ 3. C.P.	Davies, The I ensional Sem ersity Press,	Physics of Low- iconductors, Cambridge 1998. Owens, Introduction to	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE 619.1	2	3	2	3	3	2	2	2	3	3	3		

ECE 619.2	3	3	3	3	3	2	2	2	3	3	3	
ECE 619.3	3	3	3	3	3	3	2	2	3	3	3	
ECE 619.4	3	3	2	3	3	3	2	2	3	2	3	
ECE 619.5	3	3	2	3	3	3	2	3	3	3	3	
CO2619	3	3	2	3	3	3	2	2	3	3	3	

School	: SET	Batch: 2021-23
Progra	am: M. Tech	Current Academic Year: 2021-22
Branc	h: D.C	Semester: II
1	Course Code	ECE 670
2	Course Title	RF and Micro-MEMS
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Open Elective
5	Course Objective	 Emphasizes on developing components and systems that would significantly improve the performance of existing RF, microwave and millimetre wave components. Fabrication of new components by a set of processes known as micromachining, primarily developed for conventional micro electromechanical systems (MEMS). Categorize Micro-switches, Planar, on-chip components, Transmission lines and other components, Classify Micromachined antennas, Micromachined phase shifters.
6	Course Outcomes	 CO1: Introduction to MEMS, concepts on miniaturization and fabrication CO2: Objectives of RF MEMS Switches: Intro, fabrication & basic design guidelines CO3: Identify Micromachined passive components, theory, features, tunable capacitors, inductors. CO4: Analysing RF filters & phase shifters. CO5: Analysis of Reliability & packaging, RF MEMS Packaging
7	Course Description	The objective of this course is t to gain knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques. This enables them to design, analysis, fabrication and testing the MEMS based components.

8	Outline syllab	us		CO Mapping
	Unit 1	Introduction		CO1
	A	RF MEMS for microway	e applications, MEMS	CO1
		technology and fabrication	on	
	В	Mechanical modeling of	MEMS devices	CO1
	С	MEMS materials and fab		CO2
	Unit 2	MEMS switches	-	
	A	Introduction to MEMS sv	witches	CO2
	В	Capacitive shunt and seri	es switches: Physical	CO2
		description, circuit mode	l and electromagnetic	
		modelling		
	С	Techniques of MEMS sw	vitch fabrication and	CO2
		packaging; Design of MI	EMS switches.	
	Unit 3	Inductors and Capacito	ors	
	A	Micromachined passive e		CO3
	В	Micromachined inductors	s: Effect of inductor	CO3
		layout, reduction of stray	capacitance of planar	
		inductors, folded inducto	rs, variable inductors and	
		polymer-based inductors		
	С	MEMS Capacitors: Gap-	tuning and area-tuning	CO3
		capacitors, dielectric tuna	able capacitors	
	Unit 4		nifters & Integration and	
		Packaging		
	A	Modeling of mechanical	CO4	
		filters, surface acoustic w		
		micromachined filters for		
		frequencies.		
	В	Various types of MEMS	phase shifters;	CO4
		Ferroelectric phase shifte	ers	
	C	Role of MEMS packages	, types of MEMS	CO5
		packages, module packag	ging, packaging materials	
		and reliability issues		
	Unit 5	Transmission Lines and		
	A	Micromachined transmis	sion lines, losses in	CO5
		transmission lines,		
	В	coplanar transmission lin	es, micromachined	CO5
		waveguide components		
	C	Micromachined antennas		CO5
		techniques to improve an	tenna performance,	
		reconfigurable antennas.		
	Mode of	Theory		
	examination			
	Weightage	CA MTE	50%	
	Distribution	30% 20%		
	Text	Varadan, V.K., Vinoy, K		
	book/s*	MEMS and their Applica	tions", John Wiley &	

	Sons.
Other	1. Rebeiz, G.M., "MEMS: Theory Design and
References	Technology", John Wiley & Sons.
	2. De Los Santos, H.J, "RF MEMS Circuit
	Design for Wireless Communications", Artech
	House.
	3. Trimmer, W., "Micromechanics & MEMS",
	IEEE Press
	4. Madou, M., "Fundamentals o
	Microfabrication", CRC Press.
	5. Sze, S.M., "Semiconductor Sensors", John
	Wiley & Sons.

Cos	P01	PO2	PO3	PO4	PO5	90d	PO7	P08	P09	PO10	PSO1	PSO2	PSO3
										H	F	F	
ECE	2	3	2	3	3	2	2	2	3	3	2		
670.1													
ECE	3	3	2	3	3	2	2	2	3	3	3		
670.2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
670.3													
ECE	3	3	2	3	3	2	2	2	3	2	3		
670.4													
ECE	3	3	2	3	3	2	2	3	3	3	3		
6705													
ECE	3	3	2	3	3	2	2	2	3	3	3		
670													

Scho	ool: SET	Batch: 2021-23							
Prog	gram: M.Tech	Current Academic Year: 2021-22							
Brar	nch: All	Semester: II							
1	Course	ECE619							
	Code								
2	Course Title	Internet of Things and Applications							
3	Credits	3							
4	Contact Hours (L-T-P)	3-0-0							
	Course Status	Compulsory							
5	Course Objective	 Emphasize the application areas of IOT Emphasize the blocks of Internet of Things Able to realize the revolution of Internet in McCloud & Sensor Networks Introduction to core technologies-RFID, Sensor Communication Networks 	r &						
6	Course Outcomes	CO1: Able to understand the vision of IoT from a gl CO2: Able to Determine the Market perspective of CO3: Able to know Key application areas CO4: Able to analyze various IoT Layers and their relaced CO5: Able to understand basic IoT application solutions.	IoT						
7	Course Description	IoT has become a game changer in the new economy where the customers are looking for integrated value & the IoT perspective in thinking and building solutions							
8	Outline syllal		CO Mapping						
	Unit 1	Basics Internet of things							
	A	Overview with application examples	CO1						

	В	Design Principles for connected devices	CO1
	С	Physical &logical Design, M2M Communication	CO1
	Unit 2	Basic Topologies & Network Toplogies	
	A	LAN topologies; Role of data communication and network in industrial automation, ISO's seven-layer	CO4
	В	OSI model: significance, scope, functions of all layers; IEC's four layers EPA model: significance, functions of all layers.	CO4
	С	MAC techniques; Network protocol, special requirements of industrial network protocols.	CO4
	Unit 3	Ethernet and Ethernet /IP	
	A	Standard Ethernet for high-speed LANs, governing standard IEEE802.3	CO3
	В	Physical layer, data link layer (Frame Format and MAC)	CO3
	С	TCP/IP suit Ethernet/IP: Adaption of Common Industrial Protocol (CIP) to standard Ethernet, CIDP, comparison between standard Ethernet and Ethernet /IP.	CO3
	Unit 4	Industrial Wireless Network Protocols	
	A	Zigbee: Special features, data rates, full-function and reduced function devices	CO5
	В	PAN coordinator, MAC protocol and data transfer types, Zigbee network topologies	CO5
•	С	Comparison of Zigbee with Wi-Fi and Bluetooth.	CO5
	Unit 5	Illustrative application Scenarios & concepts	
	A	Smart Waste management, Smart energy conservation	CO2
	В	Smart Urban planning, Sustainable urban Environment, Smart Medication & emergency handling	CO2
	С	Smart product management, Home automation	CO2
	Mode of examination	Theory	
	Weightage Distribution	CA MTE ETE 30% 20% 50%	
	Text book/s*	 E-book-Designing of Internet of things by-Adrian McEwen, Hakim Cassimally, Wiley Internet of Things by-A Bahga &Vijay Madisetti, University Press 	

COs	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE	2	3	2	3	3	2	2	2	3	3	2		
619.													
1													
ECE	3	3	2	3	3	2	2	2	3	3	3		
619.													
2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
619.													
3													
ECE	3	3	2	3	3	2	2	2	3	2	3		
619.													
4													
ECE	3	3	2	3	3	2	2	3	3	3	3		
619.													
5													
ECE	3	3	2	3	3	2	2	2	3	3	3		
619													

Sch	ool: SET	Batch: 2021-23						
Pro	gram: M.Tech	Current Academic Year: 2021-22						
Bra	nch: DC	Semester: II						
1	Course Code	ECP 685						
2	Course Title	Communication Lab						
3	Credits	2						
4	Contact Hours (L-T-P)	0-0-4						
	Course Status	Compulsory						
5	Course Objective	lab course is associated with the theory course, on Principles of Optical Fiber Communication System This laboratory course will enable students to relearnt in classroom to practical, handson experiperformed in a fiber optic communication laborator Take away the "fear factor" by providing expevarious equipment.	s. late what they have ments that will be ry.					
6	Course Outcomes	CO1: Analyzing the concept of analog communicat CO2: Measure loss and dispersion in optical fibers CO3: Measure the performance of analog fiber linl CO4: Analogies between electrical and optical com CO5: Analyzing the concept of microwave bench.	ΚS					
7	Course Description	This lab provides students with hands on practical efibers and show the practically the transfer of signa another and type of losses associate with it.						
8	Outline syllabus		CO Mapping					
	Unit 1	Analog Communication						
•		Amplitude shift keying	CO1					
		Frequency Shift Keying						
		Phase Shift Keying						
	Unit 2	Signal distortion in optical fibers						
		Study of Bending Loss. Study of Propagation loss in optical fiber	CO2					
	Unit 3	Optical Detectors/Link Design						

	Setting	up Fiber op	tics voice link.	CO3			
Unit 4	Optical	Networks					
	Setting	up of Fiber	Optic Voice Link using PWM.	CO4			
	Constru	ction of MI	UX and DEMUX for WDM				
	systems						
Unit 5	Microw	ave test be					
		Measurement of frequency and power in a					
			ich using Klystrone				
	Determi	nation of co	oupling and isolation				
	characte	ristics of a	microstrip directional coupler				
Mode of	Jury/Pra	ctical/Viva					
examination							
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s*							
Other	John M	John M. Senior, "Optical Fiber Communications",					
References	PEARS	ON, 3rd Ed	lition, 2010				

COs	P	PO	PO1	PSO	PSO	PSO							
	O	2	3	4	5	6	7	8	9	0	1	2	3
	1												
ECE685.1	2	3	2	3	3	2	2	2	3	3	2		
ECE	3	3	2	3	3	2	2	2	3	3	3		
685.2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
685.3													
ECE	3	3	2	3	3	2	2	2	3	2	3		
685.4													
ECE	3	3	2	3	3	2	2	3	3	3	3		
685.5													
ECE 685	3	3	2	3	3	2	2	2	3	3	3		

School:	CET	Batch :2021-23
	n: M.Tech	Current Academic Year: 2021-22
Branch		Semester: I
1	Course Code	ECE684
2	Course Title	Discrete Time Signal Processing
3	Credits	5
4	Contact Hours (L-T-P)	3-0-4
	Course Status	Compulsory
5	Course Objective	 The objective of DSP is usually to measure, filter and/or compress continuous real-world analog signals. This course is the mathematical manipulation of an information signal to modify or improve it in some way. This is characterized by the representation of discrete time, discrete frequency, or other discrete domain signals by a sequence of numbers or symbols.
6	Course Outcomes	 After completing this course students will be able to 6. Apply real time processing of audio and speech signal. 7. Do the sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing. 8. To develop the understanding about the mathematics behind signal processing, for communications, control of systems, biomedical signal processing, seismic data processing, digital image processing etc. 9. Use computing software package like MATLAB, and acquainted with digital processing tools available in MATLAB. 10. Develop a signal processing system to analyze, predict and manipulate real data.

7	Course Description	Digital Signal Processing (DSP) is concerned with the repretarnsformation and manipulation of signals on a computer. century advances, DSP has become an important field, and penetrated a wide range of application systems, such as concelectronics, digital communications, medical imaging and so the dramatic increase of the processing capability of signal microprocessors, it is the expectation that the importance at DSP is to accelerate and expand. Discrete-Time Signal Progeneral term including DSP as a special case. This course we the basic concepts and techniques for processing discrete-tial a computer. By the end of this course, the students should be understand the most important principles in DSP	After half a has asumer so on. With processing and role of cessing is a will introduce me signal on
8	Outline syllab	bus	СО
			Mapping
,	Unit 1	Realisation of FIR Filters & IIR Filters	
	A	Implementation of Discrete-Time Systems Digital Filter Structure: Block Diagram representation.	CO1, CO2
	В	Signal Flow Graph Representation, FIR Digital Filter Structure.	CO1.CO3
	С	Direct-Form Structure, Cascade Form Structures.	CO2
	Unit 2	Fundamentals of Multirate Digital Signal Procesing	
	A	Basic Multirate operations- Decimation and Interpolation ,Sampling, Sampling Rate Conversion Digital Filter Banks,	CO2
ľ	В	Two channel Quadrature Mirror Filter bank,	CO1, CO3
,	С	Multilevel Filter Banks	CO1.CO4
	Unit 3	Design of Digital Filters	
	A	Design of Digital Filters Design of FIR Filters: Symmetric and Antisymmetric FIR Filters, Design of Linear phase FIR Filter using Windows and Frequency sampling method	CO1,CO3
	В	Introduction to Chebyshev and Butterworth Filter, Gibbs phenomenon, Design of Optimum Equiripple Linear-phase FIR Filters	CO4
	С	Design of IIR Filters: Design by Approximation of Derivatives	CO5
	Unit 4	The Discrete Fourier Transform & Efficient Computation of the DFT: FFT Algorithm	
	A	Basic elements of Digital Signal Processing, Ideal Sampling reconstruction and concept of aliasing, Introduction to CTFT and DTFT, Discrete Fourier Transform.	CO3,CO4
	В	Properties of DFT: Periodicity, Linearity, Symmetry, Multiplication of two DFT, Circular Convolution, circular correlation, multiplication of two sequences, Parseval's	CO4

	theorem.								
С	Decimation-in-	Time FFT algo	rithms & Decimation-in-	CO1,CO4					
	frequency FFT	algorithms							
Unit 5	Adaptive Sign	al Processing a	and Applications.						
A	Adaptive syste	ms - definitions	and characteristics,	CO4					
В	Minimum Mea	n Square Error	Critirean,The Window	CO41,CO4					
	LMS Algortith	LMS Algortithm							
C		_	hing and prediction, Wiener	CO5					
		- Hopf equation, Voice Processing, Application to							
	Radar,DFT use	Radar,DFT use in Spectral Estimation.							
Mode of	Theory	Theory							
examination		T							
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	References-								
			Schater, "Digital Signal						
		Processing", PI							
			ater and J. R. Buck,						
0.1		_	sing", PHI 1999.						
Other			kis, "Digital Signal						
References		1 0	hms, and Applications",						
	Pearson Educat	Pearson Education, 4th ed., 2007.							
	2.S.Salivahanan	A Vallavarai	"Digital Signal						
	Processing"Tata		-						
	riocessing rate	ı MCGIAW-HIII	Education ,2007						

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PS	PS
												O2	O3
ECE 685.	2	2	1	2	1	1	1	2	2	2	2		

ECE	3	3	3	2	2	2	2	3	2	2	2	
685.												
2												
ECE	3	2	1	2	2	1	1	2	2	3	3	
685.												
3												
ECE	3	2	3	2	2	1	1	2	2	2	3	
685.												
4												
ECE	3	2	3	2	2	1	1	2	2	3	2	
685.												
5												
ECE	2.8	1.8	1.2	2	2	2	1.2	3	1.2	1.4	2.4	
685												

	1 CERT	D . I . 2024 22							
	ool: SET	Batch: 2021-23							
	gram: M.Tech	Current Academic Year: 2021-22							
Bra	nch: VLSI	Semester : I							
1	Course Code	ECE 611							
2	Course Title	Advanced Computer Architecture							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Department Elective							
5	Course	The aim of this course is to allow the students to develop an understanding							
	Objective	of the design methods, implementation techniques, modeling techniques,							
		and performance analysis of computer architectures.							
6	Course	After completing this course students should be able to							
	Outcomes	CO1: Classify parallel computer architecture schemes							
		CO2: Use instruction level parallelism to build components of a simple							
		computer							
		CO3: Explain how the various parts of a modern computer function							
		CO4: Exploit the advantages of an advanced computer memory having							
		virtual memory and cache							
		CO5: Evaluate the performance of pipelined computers							
		CO6: Describe the RISC characteristics of CPU							
7	Course	An overview of computer architecture, which stresses the underlying							
	Description	design principles and the impact of these principles							
		oncomputer performance. General topics include design methodology,							
		processor design, control design, memory organization, system							
		organization, and parallel processing							
8	Outline syllabu	CO Mapping							

Unit 1		to Computer a					
A			Computer Model, Program	CO1,CO2			
			rallel Architectural				
		•	n's & Feng's Classification				
		Metrics and Mo					
В			ad Synchronization	CO1,CO2			
C			rarchy, Basic and Intermediate	CO1,CO2			
			inciple;ILP: Basics, Exploiting				
TT 1/ 0	ILP, Limits or						
Unit 2		ry and Virtua		COA			
A			sociative caches, Evaluating	CO4			
В			ining Cache parameters,	COA			
D	policies.	Policies, imple	ementing LRU, Replacement	CO4			
С	1 -	nomory structu	are, Translation look aside	CO4			
		•	acement algorithms, Detail	CO4			
		virtual memory					
Unit 3	Pipeline tech		system.				
A		Pipelined comp	niters	CO5			
В			ipelined, Computers,	CO5			
		ibles and collis					
С			mance, Conditional branches	CO5			
			rnal forwarding and deferred				
	instructions.	1 /	8				
Unit 4	Multiprocessors						
A		fication of mul	tiprocessors,	CO3,CO4			
В			al algorithms on a vector	CO3,CO4			
	computer, Pip	elining in vect	or computers, Examples of				
	vector compu						
C			ions: General purpose	CO3,CO4			
			HEP, Data flow computers				
Unit 5	RISC compu	ters					
A		cture of the CP	PU,	CO6			
В	RISC characte			CO6			
С		MIPS-64 proc	essor	CO6			
Mode of	Theory						
examination		I					
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*							
	architecture, d						
0.1	India.	1 "" 11 1	<i>a</i> " " "				
Other	_		Computing", Newage				
References	References International Pvt. Ltd. 2. J. L. Hennessy and D. A. Patterson, "Computer						
	architecture: (и чиапинануе с	approach", Harcourt Asia,				

	Singapore. 3. Kain, "Advanced Computer Architecture: a system	
	Design approach", PHI.	

COs	P	P	P	P	P	P	P	PO	PO	РО	PS	PS	PS
	01	O2	O3	O4	O5	O6	Ο7	8	9	10	01	O2	O3
ECE6	3		2										
11.1													
ECE6	1	3										3	
11.2													
ECE6	3	1	1										
11.3													
ECE6		2	2									3	
11.4													
ECE6	2	1											
11.5													
ECE6		3	1									2	

11.6									
ECE6	2	2	1					2	
11									

1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

School: SET		Batch: 2021-23							
Program: M.Tech		Current Academic Year: 2021-22							
Branch:VLSI		Semester:I							
1	Course Code	ECE 612							
2	Course Title	Advanced Digital design using HDL							
3	Credits	4							
4	Contact	3-1-0							
	Hours								
	(L-T-P)								
	Course Status	Compulsory							
5	Course	The aim of this course are to develop advanced digital design skills,							
	Objective	introduce a design approach based on programmable logic, allow students							
		to gain experience in tackling both control and data oriented problems and							
		to show the power of VHDL as a tool for advanced digital design. Students							
		will also learn synthesis tools for direct digital implementation.							
6	Course	After completing this course students should be able to							
	Outcomes	CO1: Explain the VHDL design flow and design entities.							

7	Course	CO2: Analyze signal assignments with delay component declaration CO3: Describe the objects in VHDL and VHDL types CO4: Use effectively a modern hardware description language (VHDL) and computer aided design tools to implement designs in programmable chips. CO5: Use the Mentor Graphics Modelsim or Aldec for VHDL simulation also Explain Xilinx ISE for synthesis & implementation, Simulate for all the basic gate, multiplexor, encoder, decoder, half and full adder, subtractor. Advanced Digital Design: Advanced techniques in the design of						
	Description	digital systems. Hardware description languages, combinational and sequential logic synthesis and optimization methods, partitioning, mapping to regular structures. Emphasis on reconfigurable logic as an implementation medium.						
8	Outline syllabu	1	CO Mapping					
	Unit 1	Introduction and Hierarchy	- Compping					
	A	Origin of VHDL,VHDL basics, VHDL levels of abstraction, VHDL design flow, modeling hardware in VHDL,VHDL design entities, Entity declaration, Architecture, Using libraries and packages	CO1,CO2					
	В	Concurrent signal assignments, signal assignments with delay Component declaration, component instantiation, named port mapping, positional port mapping,	CO2					
	С	Direct instantiation, Configuration specifications, entity binding, port modes, VHDL process, processes sensitivity lists, test benches.	CO2					
	Unit 2	Data types and statements						
	A	Objects in VHDL, Constants, variable & signals, VHDL types, scalar types, Arrays, Records, Custom types subtypes, Tristate and resolved types	CO3					
	В	std_ulogic and std_logic, unsigned and signed ,attributes. Concurrent statements, Sequential statements, Conditional & selective signal assignments,	CO3					
	С	Generate statements, signal and variable assignments, synthesis of statements, latch inference, for loop.	CO3					
ļ [Unit 3	Simulation and Synthesis						
	A	How a VHDL simulator works, Event driven simulation, Delta delay, transport delay, inertial delay, reject, Combinational logic in process, Synchronous(clocked) process.	CO5					
	В	Basic gates like and, nor, xor etc multiplexor, encoder, decoder, half and full adder, half and full subtractor.	CO4,CO5					
	С	Flip flop, latches, synchronous and asynchronous Flip Flop, Synchronous and asynchronous counter, loadable up and down counter.	CO4,CO5					
	Unit 4	Finite State Machine(FSMs)						

A	Review of Mo	ore and Melay	state machine, Finite state	CO4					
	machines repr	esentation,							
В		to represent sta SM VHDL code	te like binary ,gray, one hot	CO4					
С	FSM example like 1101,100	:Sequence dete	ector for different sequence counter, FSM for flip flop and	CO4					
Unit 5	Subprograms	Subprograms and Packages							
A	functions and	Subprograms, functions, procedures, Differences between functions and procedures, subprogram declarations, backages, package declaration, package body							
В	Generic paran	Generic parameters, generic mapping, Configuration declarations, default binding, Assertion							
С		tion, Introducti	nics Modelsim or Aldec for on to Xilinx ISE for synthesis	CO5					
Mode of examination	Theory	,							
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	1 J.Bhasker, "	AVHDL Prime	er" Prentice Hall						
Other	1-Peter J. Ash	1-Peter J. Ashenden, "Designers guide to VHDL",							
References	Morgan Kaufr	nan Publishers							
		Roth Jr, "Digita Ison Learning,	al System Design using 2002						

COs	P	P	P	P	P	P	P	РО	PO	РО	PS	PS	PS
	01	O2	O3	O4	O5	O6	O7	8	9	10	O1	O2	O3
ECE	1	2	2										
612.													
1													
.EC		3	2										
E61													
2.2													
ECE	2	1										2	
612.													
3													
.EC		2	1									2	
E61													
2.4													
ECE		3	3										
612.													
5													
.EC	2	3	2									1	
E61													
2													

1-

Slight (Low)
2-Moderate (Medium)
3-Substantial (High)

School: S	SET	Batch : 2021-23						
Program	: M. Tech.	Current Academic Year: 2021-22						
Branch:	VLSI	Semester: II						
1	Course Code	ECE826						
2	Course Title	Low Power VLSI Design						
3	Credits	4						
4	Contact Hours	3-1-0						
	(L-T-P)							
	Course Status	Departmental Elective						
5	Course	To expose the students to the low voltage device modeling, low						
	Objective	voltage, low power VLSI CMOS circuit and system design.						

6	Course Outcomes	CO1: Explain the sources of power dissipation in CMOS CO2: Classify the special techniques to mitigate the power co in VLSI circuits CO3: Summarize the power optimization and trade-off tech	-							
		digital circuits. CO4: Illustrate the power estimation at logic and circuit level	iniques in							
		CO5: Summarize the power optimization and trade-off tecl	nniques in							
		semiconductor memories.	1							
7	Course	CO6: Explain the software design for low power in various level. This is a course on the design and applications of low power								
/	Description circuits. This course introduces various strategies and methodologies designing low power circuit and systems. It describes the many iss facing designers at architectural, logic, circuit and device levels presents some of the techniques that have been proposed to overce these difficulties.									
8	Outline of the	Syllabus	CO							
			Mapping							
,	Unit 1		601							
	A	Fundamentals, Need for Low Power Circuit Design	CO1, CO6							
	В	Sources of Power Dissipation—Switching Power Dissipation,	CO1,							
		Short Circuit Power Dissipation, Leakage Power Dissipation, Glitching Power Dissipation								
	С	Short Channel Effects—Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot Electron Effect.	CO1, CO6							
	Unit 2									
	A	Low-Power Design Approaches, Low-Power Design through Voltage Scaling: VTCMOS circuits, MTCMOS circuits	CO2, CO6							
	В	Architectural Level Approach—Pipelining and Parallel Processing Approaches.	CO2, CO6							
	С	Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, Mask level Measures	CO2, CO6							
	Unit 3	Zever measures, energic zever measures, massir iever measures	200							
	A	Low-Voltage Low-Power Adders, Introduction, Standard Adder Cells, CMOS Adder's Architectures	CO3, CO6							
•	В	Ripple Carry Adders, Carry Look-Ahead Adders, Carry Select	CO3,							
		Adders, Carry Save Adders	CO6							
	С	Low Voltage Low-Power Design Techniques-Trends of	CO3,							
		Technology and Power Supply Voltage, Low Voltage Low- Power Logic Styles	CO6							
	Unit 4									
	A	Introduction to Low-Voltage Low-Power Multipliers,	CO4,							
		Overview of Multiplication	CO6							
	В	Types of Multiplier Architectures: Braun Multiplier, Baugh-Wooley Multiplier	CO4, CO6							

С		plier Architectures: lace Tree Multiplier	Booth Multiplier,	CO4, CO6				
Unit 5								
A		Power Memories: Banology, Future Trend		CO5, CO6				
В		SRAM, Memory Cell, Pre-charge and Equalization CO5, ow Power SRAM Technologies CO6						
С	Basics of DRAM, Development of DR	Self-Refresh Circuit RAM.	, Future Trend and	CO5, CO6				
Mode of examination	Theory/Jury/Viva							
Weightage	age CA MTE ETE							
Distribution	30%	20%	50%					
Text book/s*	Circuits and System 387-71712-8, Onling 2. J. B. Kuo & Circuits", Wiley, 1 3. Sung-Mo Ka Integrated Circuits ISBN 978-0-070-5 4. Kiat-Seng Yeo, VLSI Subsystems 978-0-07-143786-8	ng, Yusuf Leblebic s – Analysis and Do 3077-5. Kaushik Roy, "Low- ", TMH Professional 3.	Print ISBN 978-0-1713-5. Coltage CMOS VLSI Coi, "CMOS Digital esign", TMH, 2011. Voltage, Low-Power Engineering. ISBN					
Other References	For System-on-Chi 978-0-387-71819-2 2. A. Bellaouar & Design, Circuits an 978-1-4615-2355-0 3. Anantha Chan IEEE Press/Wiley 33429-8. 4. Kaushik Roy, S Circuit Design", J 471-11488-8. 5. Gary K. Yea Design", Kluwer A	get al. "Low Power Mo ip Design" Springer, 20 4, Hardcover ISBN 978 M. A. Elmasry," Low and Systems", Kluwer, D Hardcover ISBN 978 drakasan, "Low Power International, 1998. harat C. Prasad, "Low John Wiley, & Sons, p, "Practical Low Forceademic Press, 2002. decover ISBN 978-0-799	008. E-Book ISBN 8-0-387-71818-7. power Digital VLSI 1996. E-Book ISBN 8-0-7923-9587-4 rer CMOS Design", ISBN: 978-0-780- Power CMOS VLSI 2000. ISBN: 978-0-					

COs	P	P	P	P	P	P	P	P	P	P	P	P	PS	PS	PS
	0	0	O	O	0	O	О	O	O	O	O	O	\mathbf{O}	O	О

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ECE826.	3	3	2	1	3	3	3	2	-	-	-	-	2	3	3
ECE826.	3	3	3	3	3	-	3	3	1	-	2	3	3	2	3
ECE826.	3	3	3	3	-	2	3	2	3	-	3	3	3	2	3
ECE826.	3	3	3	3	3	2		3	2	-	3	3	2	3	2
ECE826. 5	3	3	3	3	-	3		2	2	-	3	3	3	2	3
ECE826.	-	-	-	ı	3	3	2	3	3	-	3	3	2	3	2
ECE826	2.5	2.5	2.3	2.2	2.0	2.2	2.5	2.5	2.0	-	2.3	2.5	2.5	2.5	2.7

Scho	ool: SET	Batch: 2021-23
Prog	gram: M.Tech	Current Academic Year: 2021-22
Brai	nch: VLSI	Semester:II
1	Course Code	ECE 613
2	Course Title	Analog IC Design
3	Credits	3
4	Contact	3-1-0
	Hours	
	(L-T-P)	
	Course Status	Elective
5	Course	To learn fundamentals of CMOS and bipolar analog IC design and
	Objective	applications of analog integrated circuits. Design examples cover various
		common building blocks as well as complete power management
		applications including linear voltage regulators and PWM controllers for
		switched-mode power converters.
6	Course	After completing this course students will be able to
	Outcomes	CO1: Analyze bias circuit using CMOS current mirror.
		CO2: Design feedback and differential operational amplifier.
		CO3: Analyze stability of operational amplifier and Apply frequency
		compensation techniques for Amplifiers
		CO4: Analyze basic operation of PLL
		CO5: Use the concepts of Switched-Capacitor Circuits for analog IC
		design
7	Course	This course will introduce advanced concepts in analog circuit design
	Description	specifically relevant to CMOS IC design. It will cover circuit noise and

		mismatch, their analysis, and their impact on CMOS op-ar	
		prerequisites, the student is expected to have undergone a	
		basic circuit theory and analysis (b) signals and systems	* *
		analog circuits. At the end of this course, the student sho	
	0 11 11 1	design and analyze several types of CMOS op-amps at the tr	
8	Outline syllabu		CO Mapping
	Unit 1	MOS Device Physics	
	A	Basic MOS Device Physics: MOS IV Characteristics,	CO1
		Second order effects, Short-Channel Effects, MOS Device	
		Models, Review of Small Signal MOS Transistor Models,	
		MOSFET Noise.	
	В	Analog MOS Process: Analog CMOS Process (Double	CO1
		Poly Process), Digital CMOS Process tailored to Analog IC	
		fabrication, Fabrication of active devices, passive devices	
		and interconnects, Analog Layout Techniques, Symmetry,	
		Multi-finger Transistors,	
	C	Passive Devices: Capacitors and Resistors, Substrate	CO1
		Coupling, Ground Bounce.	
	Unit 2	Amplifiers and their frequency response	
	A	Single Stage Amplifiers: Common Source Stage, Source	CO2
		Follower, Common Gate Stage, Cascode, Folded Cascode.	
	В	Differential Amplifier: Single ended and Differential	CO2,CO3
		Operation, Qualitative and Quantitative Analysis of	
		Differential pair, Common Mode response, Gilbert Cell.	
	С	Frequency Response of Amplifiers: Miller Effect,	CO2
		Association of Poles with nodes, Frequency Response of	
		all single stage amplifiers.	
	Unit 3	Current sources and voltage references	
	A	Current Sources and Mirrors: Current Sources, Basic	CO3
		Current Mirrors, Cascode Current Mirrors, Wilson Current	
		Mirror, Large Signal and Small-Signal analysis.	
	В	Voltage References: Different Configurations of Voltage	CO3
		References, Major Issues,	
	С	Supply Independent Biasing, Temperature-Independent	CO3
		References.	
	Unit 4	Compensation in Operational amplifier	
	A	Operational Amplifier: General Considerations, Theory	CO3
		and Design, Performance Parameters,	
	В	Single-Stage Op Amps, Two-Stage Op Amps, Design of 2-	CO4
		stage MOS Operational Amplifier, Gain Boosting,	
		Comparison of various topologies, slew rate, Offset effects,	
		PSRR.	
	С	Stability and Frequency Compensation: General	CO3,C04
		Considerations, Multi-pole systems, Phase Margin,	- ,
		Frequency Compensation, Compensation Techniques.	
	Unit 5	Introduction to switched-capacitor	
		and ownerious to orinteness especials	l

A	Consideration		Sampling Switches, Speed nsiderations, Charge Injection	CO4, CO5							
D	Cancellation,	·, A 1· C	0 : 1 1 0 :	COL							
В	Integrator,	acitor Amplifie	ers, Switched- Capacitor	CO5							
С		Switched-Capacitor Common-Mode Feedback.									
Mode of	Theory	1									
examination											
Weightage	CA	CA MTE ETE									
Distribution	30%	20%	50%								
Text book/s*	Razavi B., "De	sign of Analog	CMOS Integrated Circuits",								
	Tata McGraw	Hill, 2008.									
			D.R., "CMOS Analog Circuit								
			Press, 2nd ed., 2002.								
Other	Johns D.A. and	Martin K., "A	nalog Integrated Circuit								
References	Design", John	Wiley, 2008.									
	2.Gray P.R., H	Iurst P.J., Lewi	s S.H. and Meyer R.G.,								
	"Analysis and	Design of Ana	log Integrated Circuits", John								
	Wiley, 5th ed.	, <i>2001</i> .									
		A., The Art of	Analog Layout, Prentice Hall,								
	<i>2005</i> .										

COs	P	P	P	P	P	P	P	PO	PO	PO	PS	PS
	O1	O2	O3	O4	O5	O6	Ο7	8	9	10	O1	O2
ECE	1	3										
613.												
1												
.EC		3	2	2								2
E61												
3.2												
ECE	1		2									
613.												
3												
ECE	2		1									3
613.												
4												
ECE	2	3	1	2								3
613.												
5												
ECE	1	2	1	1								2
613												

Batch:
2021-23
Current
Academ
ic Year:
2021-22
Semeste
r:I

1	C	ECE 614
	0	
	u	
	r	
	S	
	e	
	C	
	0	
	d	
_	e	D :
2	С	Device
	О	Modelin
	u	g and
	r	Circuit
	S	Simulati
	e	on
	T i	
	i	
	t	
	1	
	e	
3	С	3
	r	
	e	
	d i	
	t	
4	S	2.0.0
4	C	3-0-0
	O	
	n	
	t	
	a	
	c	
	t	
	Н	
	o	
	u	
	r	
	S	
	(
	s (L	
	т	
	_	
	- T - P	
) T.	
)	

	C	Elective
	0	
	u	
	r	
	S	
	e	
	S	
	t	
	a	
	t	
	u	
_	S	TD.
5	C	То
	0	expose
	u	students
	r	to the IC
	S	fabricati
	e	on
	0	complex
	b	ities and
	j	design
	e	methodo
	c	logies of
	t i	current
		and
	V	advance
	e	d IC
		design
		technolo
		gies
		using
		SPICE
		modellin
	<u> </u>	g
6	C	After
	0	
	u	
	r	
	S	
	e	
	O	
	u	
	t	
	c	
	0	
	m	
	e	

	S		
		CO1:	
		Explain the IC	
		the IC	
		fabricati	
		for IC	
		on steps for IC design,	
		concepts of	
		of	
		oxidatio	I

n for silicon dioxide growth for thick and thin films and Develop the wafer using various depositio n techniqu es like CVD, PVD, **MBE** and their types CO2: Use the Photolith ography for IC design transfer on the wafer and Explain the of need for planariza tion and chemical mechani cal polishin CO3: Outline the NMOS, **CMOS**

and Bipolar fabricati on process. create models of moderat ely sized BJT circuits that realize specified digital function s using SPICE CO4: Apply CMOS technolo gyspecific layout rules in the placeme nt and routing of transisto rs and intercon nect, and CO5: Apply the principle s of **HBT** and **HEMT** for design rule

checks, timing verificati on, worst case delay simulati on, setup and hold times for clocked devices 7 C This is a course o u on r modellin of S electroni D e devices with emphasi on r applicati i ons in circuit t simulati on. The o main topics are: Physical foundati of on semicon ductor devices; charge control; threshol d voltage; subthreshol

d phenome na; mobility; velocity saturatio n; shortchannel effects; parasitic s; physicall y based modellin of g common devices such as Si MOSFE T (CMOS) GaAs **MESFE** Τ, HEMT, and bipolar transisto rs; strength and weaknes ses of the models; paramete extractio n; applicati on of the models in SPICEtype circuit

		simulat	to
0	0-	rs. itline	C
8		llabus	C O
			M
			a
			p p i
			n
			g
	U	Intro	
	n	ducti	
	i	on to	
	t	IC	
	1	techn	
	A	ology IC	C
	A	fabric	0
		ation	1
		steps,	•
		Wafe	
		r	
		prepa	
		ration	
	Б	,	
	В	Cryst al	C
		growt	0 1
		h	1
		techn	
		iques,	
		wafer	
		cleani	
		ng,	
	С	Clean	C
		room	o
		and	1
		safety	
		requir	
		emen	
	T T	ts.	
	U	IC Fabri	
	n i		
Ш	ı	catio	

	t	n	
	2	proce	
		sses	
	A	Oxid	C
		ation:	О
		Kinet	2
		ics of	
		Silico	
		n	
		dioxi	
		de	
		growt	
		h	
		both	
		for	
		thick,	
		thin	
		and	
		ultra	
		thin	
		films,	
		Deal-	
		Grov	
		e	
		mode	
		1.	
		Diffu	
		sion	
		and Ion	
		Impla	
		ntatio	
		n: Diffu	
		sion	
		proce	
		ss,	
		Ion	
		impla	
		ntatio	
		n,	
		mode	
		ling	
		of	
		Ion	
		impla	
		ntatio	
<u> </u>		muno	<u> </u>

	n and its	
	types.	
В		\mathbf{C}
D	Depo	C
	sition	O
	&	2
	Grow	
	th:	
	Vario	
	us	
	depos	
	ition	
	techn	
	iques	
	CVD,	
	PVD,	
	-	
	MBE	
	and	
	their	
	types.	
	Etch	
	and	
	Clean	
	ing:	
	mater	
	ials	
	used	
	in	
	cleani	
	ng,	
	vario	
	us	
	cleani	
	ng	
	meth	
	ods,	
	Wet	
	etch,	
	Dry	
	etch.	
С	Photo	С
	lithog	О
	raphy	2
	:	
	Positi	
	ve	
	photo	
	photo	

_		
		resist,
		negat
		ive
		photo
		resist,
		comp
		ariso
		n of
		photo
		resist
		s,
		need
		for
		mask
		s and
		its
		types.
		Plana
		rizati
		on
		Tech
		nique
		s:
		Need
		for
		plana
		rizati
		on,
		Chem
		ical
		Mech
		anical
		Polis
		hing,
		NMO
		S,
		CMO
		S and
		Bipol
		ar
		fabric
		ation
		proce
		SS.
	U	SPIC
	n	E
	i	mode

t 3	ling	
A	Intro ducti on to SPIC E: AC, DC, Trans ient, noise, temp eratur e extra analy	C O 3
B	Juncti on Diod es: DC, small signal , large signal , high frequ ency and noise mode ls of diode s. Meas urem ent of diode mode l- para meter s.	C O 3
C	BJT:	C

	U n i t 4	DC, small signal, high frequency and noise mode Is of bipol ar juncti on transi stors. Extraction of BJT mode I parameter s. MOS	3
	A	MOS FETs: DC, small signal, high frequency and noise mode ls of MOS FETs	C O 4

	MOS Capa citors	
В	Devic e SCA LING : short and narro w chann el MOS FETs . MOS FET chann el mobil ity mode l, DIBL , charg e shari ng and other non- linear effect s.	C O 4
С	Mode ls: Level -1 and level-	C O 4
	С	B Devic e SCA LING: short and narro w chann el MOS FETs. MOS FET chann el mobil ity mode l, DIBL, charg e shari ng and other non-linear effect s. C MOS Mode ls: Level -1 and

	Unit	large signal MOS FET mode ls. Intro ducti on to BSI M mode ls. Extra ction of MOS FET mode l para meter s.	
	5 A	Intro ducti on: Princi ples of hetro juncti on devic es, HBTs , HEM T	C O 5
	В	Com pone nt mode	C O 5

C	l for ICs: Desig n rule check s, timin g verifi catio n, worst case delay simul ation, setup and hold times for clock ed devic es, Beha vior	C
C	ation, setup and hold times for clock ed devic es, Beha	_
	mode ling, struct ural mode ling, simul ation with the physi cal mode l.	5
M o d e o f	Theor y	

COs	P	P	P	P	P	P	P	PO	PO	PO	PS	PS
	O1	O2	O3	O4	O5	O6	Ο7	8	9	10	O1	O2
ECE 614. 1	2	3	1									
ECE	2	3										3

	Desig n", TMH, Ed. 2003	
Ο	S.M.	
t	Sze,	
h	"Phy	
e	sics	
r	of	
R	semic	
e	ondu	
f	ctor	
e	devic	
r	es",	
e	Wiley	
n	Pub.	
c	S.M.	
e	Sze	
S	(Ed),	
	"VĹS	
	I	
	Tech	
	nolog	
	y",	
	2nd	
	Editi	
	on,	
	McGr	
	aw	
	Hill,	
	1988	

614. 2								
ECE 614.	2							3
ECE 614. 4		3	1	3				
ECE 614.	2		2					
ECE 614	2	2	1	1				1

Sch	nool: SET	Batch: 2021-23					
Pro	gram:	Current Academic Year: 2021-22					
M .	Tech						
Bra	anch:All	Semester: I					
1	Course Code	ECP 651					
2	Course Title	Digital System Design Lab					
3	Credits	2					
4	Contact	0-0-4					
	Hours						
	(L-T-P)						

	Course Status	Compulsory								
5	Course Objective	Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs). Design simple digital systems based on these digital abstractions, using the "digital paradigm" including discrete sampled information. Use the "tools of the trade": basic instruments, devices and design tools.								
6	Course Outcomes CO1:Design, simulate and logic gates on Xilinx CO2:Design, simulate & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder, implement on FPGA. CO3:Design, simulate & analyze synchronous sequential logic circuits. CO4:Design, simulate & analyze finite state machines									
7	Course Description	Digital system modelling for simulation, synthesis, and rapid system prototyping. Structural and behavioral models, concurrent and sequential language elements, resolved signals, generics, configuration, test benches, processes and case studies								
8	Outline syllabi	ıs	CO Mapping							
	Unit 1	Practical based on basic gates	Mapping							
,	A	Design, Simulate and analyze CMOS Inverter	CO1							
	В	Design, Simulate and analyze NAND and EX-OR gate	CO1							
	С	Design, Simulate and analyze NOR and Ex-NOR gate	CO1							
	Unit 2	Practical related to Combinational Logic Design								
	A	Design, Simulate and analyze half Adder and Implement on FPGA	CO1, CO2							
	В	Design, Simulate and analyze 3X8 Decoder and Implement on FPGA	CO1, CO2							
	С	Design, Simulate and analyze 4-BIT Magnitude Comparator and Implement	CO1, CO2							
	Unit 3	Practical related toFlip Flops								
	A	Design and simulate D & T Flip Flop	CO3							

В	Design a	nd simulate	SR Flip Flop	CO3				
С	Design a	nd simulate	JK Flip Flop	CO3				
Unit 4	Practical	related to	Sequential					
	Logic		_					
A	Design ar	nd simulate	ALU.	CO2				
В	Design ar	nd simulate	synchronous	CO2				
	Decade C							
С	Design ar	nd simulate	asynchronous	CO2				
	Decade C							
Unit 5	Practical	related to	Finite State					
		Machines						
A			asynchronous	CO4				
		N Counter.						
В	Design ar	CO4						
	Modellin							
C	Design ar	CO4						
	Machine							
Mode of	Jury/Prac	tical/Viva						
examination								
Weightage	CA	MTE	ETE					
Distribution	60%	0%	40%					
Text book/s*		n, "Modern						
			cGraw Hill, 4th					
	edition, 2							
Other			HDL", Tata					
References			ition, 2002.					
		Gothmann, '	•					
			duction to theory					
			nd edition, 2006.					
			l Circuits and					
		•	raw Hill, 1989					
			"Digital System					
			L", Tata McGraw					
	\mid H ₁ II 2nd ϵ	edition 2012	2.					

COs	P	P	P	P	P	P	P	PO	PO	РО	PS	PS
	О	О	O3	O4	O5	O6	Ο7	8	9	10	O1	O2
	1	2										
ECP651.		3										2
1												
ECP651.	2	3										2
2												
ECP651.	2	1										2
3												
ECP651.		3	2									3
4												
ECP651	2	3	2									2

Program: M.TechCurrent Academic Year: 2021-22Branch: VLSISemester: II1Course CodeECE 6162Course TitleAdvanced VLSI Design3Credits34Contact Hours3-0-0	
1Course CodeECE 6162Course TitleAdvanced VLSI Design3Credits34Contact3-0-0	
2 Course Title Advanced VLSI Design 3 Credits 3 4 Contact 3-0-0	
3 Credits 3 4 Contact 3-0-0	
4 Contact 3-0-0	
Hours	
(L-T-P)	
Course Status Compulsory	
5 Course To provide students a clear understanding of the fundamental of	concepts of
Objective modern CMOS VLSI design. Students will learn the design of	*
and high performance CMOS systems from system level to cir	rcuit level.
6 Course After completing this course students should be able to	
Outcomes CO1: Explain the fundamental concepts of modern CMOS VL	LSI design
And the complex and high performance CMOS systems	
CO2: Demonstrate a clear understanding of important concept	
technology and fabrication that affect design and Design a	
given arbitrary logic function at the transistor-level. layout a ga	gate in CMOS
VLSI technology.	
CO3: Size the gates of the given VLSI layout to minimize the	
Design a network of complex gates with the ideal number of	stages which
computes the function with minimum delay.	
CO4: Apply technology mapping algorithms to transform the	
network into an interconnection of components from a giver	
Apply finite state machine minimization algorithms to n	minimize the
number of states in a sequential circuit.	
7 Course This course will cover historical Perspective of <i>VLSI</i> , CMOS	I/I CI
Description Design for Power and Speed consideration, Logical Efforts: Design, Interconnect aware design,	
Hardware Description Languages for VLSI Design , FSM Cont	
path and Processor Design , VLSI Design , 15W Continuous Processor Design , VLSI Design Automation.	tioner/Data
	CO Mapping
Unit 1 Introduction to automation	ee mapping
	CO1
physical design cycle, design styles and system packaging	
styles ,design rules, layout of basic devices, CMOS layout.	
Cell generation and Programmable structures, Transistor	
chaining.	
	CO1
partitioning algorithms and performance driven	
partitioning.	
	CO1

	Cl 1				
IIn:4 2			nt, integrated approach	•	
Unit 2	Global Routin				CO2 CO2
A	algorithms,	ulation classifi	cation of global routing	3	CO2,CO3
В	Maze routing a path based alg	CO2,CO3			
С	Steiner tree ba	CO2,CO3			
	based approac				
Unit 3	Scaling in MO				
A	Supply voltage selection, clust multiple suppl		CO3		
В	timing and pov	wer planning, o	choosing the high V _{TH}	value,	CO3
	MTCMOS circlimitations, Op threshold, Tec threshold volta				
С	Transistor sizi voltage scaling recovery, designeripheral circ	CO3			
Unit 4	Low power V				
A	Introduction to MTCMOS	CO3,CO4			
В	Reducing glito Power gating,	CO3,CO4			
С	Signal isolatio	CO3,CO4			
	architectural is	ssues for power	r gating, gate reorganiz	zation	
Unit 5	Estimation ar	ıd optimizatio	n		
A	Signal statistic switching capa architecture or	es, intersignal cacitance througotimization,	in static and dynamic correlations, Reducing th transistor sizing, log	ic and	CO4
В	representation	, resource alloc gorithm level to	ucturing, input orderin eation, Behavioral lever ansforms, architectura	el	CO4
С	Operation redu optimization a		stitution, logic level mapping		CO4
Mode of examination	Theory				
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	N. Weste and I and Systems P 2005				

Other	Anantha Chandrakasan, Robert Brodersen, "Low-	
References	power CMOS design", IEEE press, 1998.	
	• Kaushik Roy, Sharat C. Prasad, "Low-power	
	CMOS VLSI Circuit Design", John Wiley & Sons,	
	2000.	
	• A.Bellamour, M.I.Elmasri, "Low power VLSI	
	CMOS Circuit Design", Kluwer Academic Press,	
	1995.	
	 Naveed Sherwani, "Algorithms for VLSI physical 	
	design automation", Kluwer academic publisher –	
	1993.	
	Douglas A. Pucknell & Kamran Eshraghian, "Basic VLSI	
	Design", Prentice-Hall of India.	

ī				ı		1							
	COs	PO	PO9	PO	PSO	PS							
		1	2	3	4	5	6	7	8		10	1	O2
	C.EC	2	3									1	3
	E616												
	.1												
Ī	C.EC	2	3	2									
	E616												
	.2												
	C.EC	2	1										3
	E616												
	.3												
	C.EC	2	3	2								3	2
	E616												
	.4												
	ECE												3
	616.												
	5												
	ECE	2	3	2								2	3
SU/SET/M	7616 EC	E											

Page 105

	ram: M.Tech	Comment Academic Verm 2021 22								
		Current Academic Year: 2021-22								
Branch: VLSI		Semester:II								
1	Course Code	ECE 615								
2	Course Title	CMOS Digital VLSI Design, Testing and Verification								
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course Status	Compulsory								
	Course	To introduce students to CMOS Digital VLSI design method	_							
	Objective	emphasis on full-custom chip design. Students will learn IC of	O							
simulation, and layout verification. Specific techniques for designi										
		speed, low-power, and easily-testable circuits will also be co	vered.							
	Course	After completing this course students will be able to								
	Outcomes	CO1: Explain the concepts of the MOS transistor and inverter								
		CO2: Apply CMOS technology-specific layout rules in the p								
		routing of transistors and interconnect, and to verify the func timing, power, and parasitic effects	tionality,							
		CO3: Create models of moderately sized CMOS circuits that	realize							
		specified digital functions	Teanze							
		CO4: Design static CMOS combinational and sequential logic	ic at the							
		transistor level, including mask layout								
		CO5: Estimate and optimize combinational circuit delay using RC delay								
		models and logical effort								
	CO6: Understand the concepts of testing and verifying a VLSI chips									
			_							
7	Course	This course provides an introduction to the design and imp	lementation of							
	Description	VLSI circuits for complex digital systems. The focus								
		technology. Issues to be covered include deep submicron design, clocking,								
		power dissipation, CAD tools and algorithms, simulation, verification,								
		testing, and design methodology. The course includes a computer lab								
		component in which you will design and lay out a	a small 4-bit							
8	Outline syllabu	microprocessor	CO Monning							
0	Unit 1	Introduction to MOSFET	CO Mapping							
-	A	MOS Transistor: I-V Characteristics, MOSFET Scaling	CO1							
В		and Small-Geometry Effects.								
		The MOS Inverter: Inverter principle, Depletion and	CO1							
		enhancement load inverters,								
С		The MOS Inverter: the basic CMOS inverter, transfer	CO1,CO2							
		characteristics, logic threshold, Noise margins, and	,							
SU/SE	T/M.Tech-ECE	Dynamic behavior, Propagation Delay, Power	Page 106							
	-	Consumption.								
	Unit 2	MOS Layout and Simulation								
	A	MOS SPICE model, device characterization, Circuit	CO2,CO3							

	Characterizati							
В	MOS device l	ayout: Transis	tor layout, Inverter layout	CO2,CO3				
C	CMOS digital	CO2,CO3						
Unit 3	Combination							
A	Combinationa	al MOS logic d	esign: Complementary MOS,	CO4,CO5				
	Ratioed logic,	, Pass Transisto	or logic					
В	complex logi			CO4,CO5				
С	Dynamic MO	CO4,CO5						
Unit 4	Sequential L							
A	Sequential Mo	CO4,CO5						
	Registers,							
В		thes & Registe	rs, CMOS Schmitt trigger,	CO4,CO5				
С			uits, Astable Circuits. Memory	CO4,CO5				
		& RAM cells		,				
Unit 5	Testing and		<i>S</i>					
A			ation in VLSI design process,	CO6				
		Issues in test and verification of complex chips, embedded cores and SOCs Testing: Fundamentals of VLSI testing Fault models. Automatic test pattern generation, Design for testability, Scan design, Test interface and boundary scan. System						
В								
	_							
	testing and tes							
С	BIST for testi	CO6						
	Verification:							
	Formal verific							
	model checking							
Mode of								
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	M. Bushnell a							
	Testing for Di							
		•	Publishers, 2000.					
Other	M. Abramovio							
References	Digital System							
	1990.							
	T.Kropf, "Inti							
	Springer Verl							
	Weste, Eshrag							
	ard ard	edition, PHI, 1	maran Eshragian, "Basic VLSI					

COs	P	P	P	P	P	P	P	РО	РО	РО	PS	PS	PS
	01	O2	O3	O4	O5	O6	O7	8	9	10	O1	O2	O3
.EC	3	1	2								1	3	
E61													
5.1													
ECE	1	2										3	
615.													
2													
ECE	3	1	1										
615.													
3													
ECE	2	2	3									3	
615.													
4													
ECE	2	1									1	2	
615.													
5													
ECE		3	1									2	
615.													
6													
ECE	2	3	2	_				_	_		2	3	
615													

School: SET	Batch: 2021-23
Program: M.Tech	Current Academic Year: 2021-22

Brai	nch: VLSI	Semester:II				
	nology					
1	Course Code	ECE 617				
2	Course Title	Mixed Signal CMOS VLSI Design				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course Status	Compulsory				
5	Course Objective	The aim of this course is to provide an understanding of, and with, the basic design concepts for mixed signal VLSI circuit technology.				
6	Course	After completing this course students should be able to				
	Outcomes	CO1: Design logic circuit layouts for both static CMOS and				
		clocked CMOS circuits and Extract the analog parasitic elem				
		layout and analyze the circuit timing using a logic simulator simulator.	and an analog			
		CO2: Build a cell library to be used by other chip designers a	and Analyze			
		VLSI circuit timing using Logical Effort analysis.				
		CO 3: Design elementary data paths for microprocessors, inc	_			
		moderate-speed adders, subtracters, and multipliers and Esti				
		compute the power consumption of a VLSI chip and Assemb	le an entire			
		chip and add the appropriate pads to a layout				
		CO4 Explain the chip technology scaling process and Explain				
		design concepts for low power mixed signal VLSI circuits in	CMOS			
		technology.				
7		CO5: To understand the concept of Data converters.	TT1 :			
7	Course	This course builds the advanced CMOS analog IC design.				
	Description	intended to teach undergraduate and graduate students. This on the concepts of mixed signal VLSI design. The cour				
		practical aspect of mixed signal VLSI block				
		comparators, data converters, oscillators and phase locked le				
		of this course, the students will use industry standard softy				
		such as Cadence's Virtuoso schematic, Spectre simulato				
		Graphics' Eldo and Calibre for post layout simulations a				
		parasitic extractions. The design problems given in				
		assignments will be designed and simulated in a sta				
		technology by students. The study will cover design issue				
	variations and statistical mismatches in temperature and process					
	Carlo).					
8	Outline syllabus CO Map					
	Unit 1	Current mirrors				
	A	simple cmos current mirror, common source	CO1			
	В	common gate amplifier with current mirror active load	CO1			
	С	source follower with current mirror to supply bias current	CO1			
	Unit 2	Single stage and Muti-stage amplifiers				

	A			l amplifier, feedback and	CO3				
			nplifier comper		~~~				
	В			ded-cascade operational rational amplifier	CO2,CO3				
	С			amplifier, common mode	CO3				
	C		feedback circuits, current feedback operational amplifier.						
				error, latched comparators					
	Unit 3	_	ched capacitor						
	A	MOS, CMOS		circuits	CO2				
	B			tched capacitor circuits, basic	CO2,CO4				
	В	_		rder, charge injection	02,004				
İ	С			uit, correlated double	CO2				
				witched capacitor circuits.					
	Unit 4	PLL	<u> </u>	•					
	A	Basic PLL top	ology, dynami	cs of simple PLL, Multiplier,	CO3				
İ	В			e detectors, lock acquisition	CO3				
	С			op filters, Charge Pump PLLs,	CO3				
		non ideal effec							
	Unit 5	Data converte	ers						
	A			ns, quantization noise,	CO4				
			-	decoder based converters –					
				rmometer code converters,					
		hybrid convert		·					
	В	Nyquist rate A	/D converters-	Successive approximation,	CO5				
				Pipelined, Time-interleaved					
			ersampling con						
İ	С			ecimating filters and	C04,CO5				
				order modulators, Delta Sigma					
		modulators wi	th multibit qua	ntizes- Delta Sigma D/A					
	Mode of	Theory	•	•					
	examination	-							
	Weightage	CA	MTE	ETE					
	Distribution	30%	20%	50%					
	Text book/s*	1. Behzad Raz	avi, "Design o	f Analog CMOS Integrated					
			-Mc GrawHill,						
		2. Rudy van d	de Plassche, "C	CMOS Integrated Analog to					
		· ·		g Converters", Kluwer					
		academic pubi							
	Other	1.David Johns	, Ken Martin,	"Analog Integrated Circuit					
	References	Design", John	Wiley and Sor	ıs, 2001.					
		2. D.A. John a	nd Ken Martin	, "Analog Integrated Circuit					
		Design", John	Wiley, 1 st Edit	tion, 1996.					
			smail, "Analog	VLSI", Mc Graw Hill, 1st					
		Edition, 1994							

COs	P	P	P	P	P	P	P	РО	PO	РО	PS	PS	PS
	01	O2	O3	O4	O5	06	O7	8	9	10	01	O2	O3
ECE	2	3	2									2	
617.													
1													
ECE	2	3	2									2	
617.													
2													
ECE	2	1										2	
617.													
3													
ECE	2	3	2									3	
617.													
4													
ECE	2	3	2									3	
617.													
5													
ECE	2	3	2									3	
617													

School:	Batch: 20	21-23								
SET		74tch • 2021 20								
Program:	Current A	Current Academic Year: 2021-22								
B.Tech.										
Branch:	Semester:2	2.								
ECE										
1	Course Code									
2	Course Title	8 8								
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course	Compulsory								
	Status									
5	Course	The objectives of this subject are								
	Objective	1. To make the student understand advanced digital system								
		design.								
		2. To understand HDL based IC design.								
		3. To understand Verilog programming.								
		4. To understand high level synthesis.								

		5. To understand verification using Verilog HDL.				
6	Course Outcomes Upon successful completion of this subject, students should to: CO1: Write efficient Verilog programme CO2: Design advanced digital system using Verilog HDL. CO3: Design FSM based system.					
		CO4: Understand STA and high-level synthesis.				
		CO5: Understand static timing analysis				
		CO6: VLSI project using EDA software.				
7	Course Description	This course covers the systematic design of advanced digit using field-programmable gate arrays (FPGAs). The emptop-down design starting with a software application, and it to high-level models using a hardware description lang as VHDL or Verilog). The course will focus on design performance computing applications using streaming arch	chasis is on translating guage (such a for high-			
8	Outline		CO			
	syllabus Unit 1		Mapping			
	A	VLSI Design VLSI Design flow: Full Custom, ASIC and FPGA, VLSI CAD Tools: Applications of Simulation,SynthesisTools. Introduction to Hardware description languages (HDL)	CO1			
	В	Verilog HDL: Abstraction levels, basic concepts, Verilog primitives, keywords, data types, nets and registers, Verilog MODULEs and ports; Lab Practice: Xilinx tool flow: simulation and synthesis	CO1			
	С	Verilog Operators: Logical operators, Bitwise and reduction operators, Concatenation and conditional operators, Relational and arithmetic, Shift and equality operators, Operator execution order, Lab practice	CO1			
	Unit 2					
	A	Assignments: Types of assignments, Continuous assignment, Procedural assignments, Blocking and non-blocking assignments, Tasks and functions, Lab Practice	CO2			
	В	Verilog modeling: gate type, design hierarchy, gate delay, propagation delay, logic simulation Dataflow-level modeling: assignments, Behavioralmodeling: Always block, FlowControl, If-else, case, case, while loop, for loop, repeat	CO2			
	С	Verilog for verification: Design verification and testing, Testbenchwriting, Initial statement, Verilog	CO2			

	system tasks: \$finish, \$stop, \$display, \$monitor, \$time	<u>, </u>
	\$realtime, \$random, \$save, \$readmemh/\$writememh	
	\$fopen, \$fclose, Compiler directives, ifdef, Array, multi-	
	dimensional array. Memory modelling	
	Lab practice	
Unit 3		
<u> </u>	Combinational Logic Circuit Designs Logic synthesis	. CO2
A	Combinational Logic Circuit Design: Logic synthesis RTL synthesis, high-level synthesis, synthesis desig	*
	flow, Design and analysis of combinational circuits	
	Synthesis of combinational circuits, Arithmetic circuits	
	Initial design and optimization.	·,
В	Encoder, decoder, de-multiplexer circuits, multiplexer	r CO3
	circuits and their implementation using Verilog, Desig	
	of a 4-bit comparator, Design of a 32-bit ALU and	
	simple processor using Verilog. Lab Practice	a
С	Sequential Logic Circuit Design: Synthesis of	of CO3
	sequential circuits, Study of synchronous an	_
	asynchronous sequential circuits, Flip flops	
	ShiftRegisters, Counters and their design using Verilog.	7
	Lab practice	
Unit 4	1	
A	State Machine: Basic Finite state machines (FSM	() CO4
	structures, Mealy and Moore type FSM, Meal	′
	vs.Moore,Common FSM coding style,Serial adde	
	design using FSM,	
В	FSM as an Arbiter circuit, FIFO, bus interfaces, La	b CO4
	practice	
С	High-level synthesis: Basic concepts of high-level	el CO4
	synthesis, Partitioning, scheduling, Allocation an	
	binding, Technology mapping,	
Unit 5		
A	Static Timing Analysis: Introduction to Static Timin	C
	Analysis, Timing path and constraints, Types of clock	
	Clock domain and variation, Clock distribution	n
	networks, How to fix timing failure?	
В	Synthesis Coding Styles: Registers in Verilog	g, CO5
	Unwanted latches,RTL coding styles,Lab practice	
C	Verilog Mini Projects: Project specification analysis	
	Understanding the architecture, MODULE level	
	implementation and verification, Building the top level	
M 1 C	MODULE,FPGA implementation of the design.	
Mode of	Theory	
examination	CA MTE ETE	
Weightage Distribution	CA MTE ETE	
Distribution	30% 20% 50%	

Text book/s*	 Verilog HDL: A Guide to Digital Design and Synthesis; Samir Palnitkar; 2nd edition, Pearson Education, 2011. Verilog Digital System Design; ZainalabedinNavabi; 2nd edition, TMH,2012. Advanced Chip Design: Practical Examples in Verilog, Kishore Kumar Mishra, CreateSpace Independent Publishing Platform
Other References	 Verilog HDL Synthesis: A Practical Primer; J. Bhasker, BSP Publishers, 2008. FPGA-Based System Design, Wayne Wolf, 1st edition, Pearson. Advanced Digital Design with the Verilog HDL; Michael D. Ciletti; 2009,1st edition, PHI,2010

Course Articulation Matrix

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
CO827.1	3	3	2	3	1	-	-	-	-	-	2	2
CO827.	3	3	3	1	3	-	-	-	-	-	3	3
CO827.3	3	3	3	2	3	-	-	-	-	-	3	3
CO827.4	3	3	3	2	3	-	-	-	-	-	3	3
CO827.5	3	2	3	2	3	-	-	-		-	2	2
CO827.6	3	2	3	2	3	-	-	-		-	2	2
CO827	3	3	3	2	3	-	-	-	-	-	3	3

School:	Batch: 2021-23
SET	
Program:	Current Academic Year: 2021-22
B.Tech.	
Branch:	Semester:02
ECE	

1	Course Code	ECP827	
2	Course Title	Advanced VLSI using VERILOG Lab	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-4	
	Course Status	Compulsory	
5	Course Objective	 The objectives of this subject are To make the student understand advanced digital states design. To understand HDL based IC design. To understand Verilog programming. To understand high level synthesis. To understand verification using Verilog HDL. 	ystem
6	Course Outcomes	Upon successful completion of this subject, students sho to: CO1: Write efficient Verilog programme CO2: Design advanced digital system using Verilog HDL CO3: Design FSM based system. CO4: Understand STA and high-level synthesis. CO5: Understand static timing analysis CO6: VLSI project using EDA software.	
7	Course Description	This course covers the systematic design of advanced digit using field-programmable gate arrays (FPGAs). The emph top-down design starting with a software application, and it to high-level models using a hardware description langual as VHDL or Verilog). The course will focus on design for performance computing applications using streaming arch	nasis is on translating age (such high-
8	Outline syllabus		CO Mapping
	Unit 1		
	A	FPGA based design flow using EDA software: simulation and synthesis	CO1
	В	Realization of Verilog operators and assignments.	CO1
	С	Implementation of different Verilog tasks and functions.	CO1
	Unit 2		

A	Writin	g test bench for digital circuits and simulation	CO2				
В		n and implementation of combinational circuits , decoder) in gate level	CO2				
С		Design and implementation of multiplexer and comparator circuits in data-flow level					
Unit 3							
A	Imple:	mentation of multiplexer, decoder in Behavioural	CO3				
В	Design	n and implementation of AL <u>U</u>	CO3				
С	Imple	mentation of D-FF and JK FF in behavioral level	CO3				
Unit 4							
A	Design	n and implementation of shift register.	CO4				
В	Design	n and implementation asynchronous counter.	CO4				
С	Design	n and implementation of synchronous counter.	CO4				
Unit 5							
A	Desi FSM	gn and implementation of sequence detector in	CO5				
В	_	Design and implementation of traffic light signal system in FSM					
С		· Project	CO5,CO6				
Mode of examination	Practio	cal					
Weightage	CA	ETE					
Distribution	60%	40%					
Text book/s*	2.	Verilog HDL: A Guide to Digital Design and Synthesis; Samir Palnitkar; 2nd edition, Pearson Education, 2011. Verilog Digital System Design; ZainalabedinNavabi; 2nd edition, TMH,2012. Advanced Chip Design: Practical Examples in Verilog, Kishore Kumar Mishra, CreateSpace Independent Publishing Platform					
Other References	5.	Verilog HDL Synthesis: A Practical Primer; J. Bhasker, BSP Publishers, 2008. FPGA-Based System Design, Wayne Wolf, 1st edition, Pearson. Advanced Digital Design with the Verilog HDL;					

Michael D. Ciletti; 2009,1st edition, PHI,2010	

Course Articulation Matrix

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
CO827.1	3	3	2	3	1	-	-	-	-	-	2	1
CO827.	3	3	3	1	3	-	-	-	-	-	3	3
CO827.3	3	3	3	2	3	-	-	-	-	-	3	3
CO827.4	3	3	3	2	3	-	-	-	-	-	3	3
CO827.5	3	2	3	2	3	-	-	-		-	2	3
CO827.6	3	2	3	2	3	-	-	-		-	2	3
CO827	3	3	3	2	3	-	-	-	1	-	3	3

Sch	nool: SET	Batch: 2021-23					
Pro	gram:	Current Academic Year: 2021-22					
	tech						
Bra	anch: ECE	Semester: II					
1	Course Code						
2	Course Title	Electronics CAD Lab					
3	Credits	2					
4	Contact	0-0-4					
	Hours						
	(L-T-P)						
	Course	Compulsory					
	Status						
5	Course	Objective is to make students promin	ent with the				
	Objective	CAD tools and analysis practices.					
6	Course	After the completion of lab students wi					
	Outcomes	CO1:Design and analyze combinational	l logic				
		circuits in ORCAD SPICE.					
		CO2:Design & analyze various types of					
		CO3:To use various conditional stateme	ents of				
		VHDL.					
7	C	CO4:To design and analyze layout of bath This course will cover transistor and					
/	Course Description	aspects of digital integrated circuit de					
	Description	topics will include: (a) logic gate de					
		transistor level, (b) design and opti					
		sequential systems and (c) physical					
		integrated circuits, i.e. how to tra					
		transistorlevel designs into "blueprints"					
		used by fabrication engineers to build					
		The laboratory component of the course					
		industrial-grade CAD tool (Cadence) for					
		entry and simulation of your circuit					
		physical design, and will culminate	in a group				
		design project.					
8	Outline syllabi	ıs	CO				
			Mapping				
	Unit 1	Practical based on SPICE					
		simulation					
	A	Transient analysis and simulation of	CO1				
	_	CMOS inverter					
	В	Transient and simulation analysis of	CO1				
		NAND gate.					
		m	G01				
	С	Transient and simulation analysis of	CO1				

	neither CM	IOS nor ga	te	
Unit 2	Practical r			
Unit 2	inverter D		v ai ious	
A		nd simulation of	CO1 CO2	
A	resistive lo			CO1, CO2
D				GO1 GO2
B			nd simulation of	CO1, CO2
	NMOS inv	~~4 ~~4		
C			nd simulation of	CO1, CO2
	BJT inverte			
Unit 3			various VHDL	
	statements			
A	Design of 4	4:1 multipl	exer using	CO3
	"with" state			
В	Design of 4	4:1 multipl	exer using	CO3
	"when" sta	tement.		
С	Design of 4	4:1 multipl	exer using	CO3
	"case" state			
Unit 4	Practical r	elated to	Combinational	
	logic desig	n		
A			th "reset using	CO3
	VHDL".			
В	Design full	CO3		
	structural n			
С	Design of 4	CO3		
			component for	
	structural n		omponent for	
Unit 5			Layout design	
A			IOS and CMOS	CO4
	•	_	Generator.	CO4
	inverter usi	ing Layoui	Generator.	
B	•	-	o Input NAND	CO4
	Gate using	Layout Ge	enerator.	
C	Cascade of	two enhar	ncement load	CO4
	NMOS inv	erter circu	its using SPICE.	
Mode of	Jury/Praction	cal/Viva		
examination				
Weightage	CA 1	MTE	ETE	
Distribution	60%	0%	40%	
Text book/s*		Circuits ar	d Electronics	
			nad H. Rashid	
	1 1.1100 OOK (. j	11. 1001110	
Other	1 Donalas	Perry "V	HDL", Tata	
References	McGraw H	•		
References		-	'Digital System	
	2. Charles	o Kull,	Digital Systelli	

Design using VHDL", Tata McGraw	
Hill 2nd edition 2012.	

Ba Pr Cu Br	anch:ECE	ch nic Year: 2021-22	
	mester:II	EGEO14	
1	Course	ECE811	
	Code		
2	Course	Communication Technology and System	
	Title	2	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course	Compulsory	
_	Status		
5	Course	 To provide students an understanding of ana 	log and digital
	Objective	communication.	
		 To understand multiplexing and multiple acc 	ess techniques.
		To implement the block of OFDM	•
6	Course	CO1: Enhancement of knowledge foranalog	g and digital
	Outcomes	communication	
		CO2: understand multiplexing and multiple	access techniques
		CO3: understand the basic concepts of OFDM	
		CO4: implement OFDM system	
		CO5:understand Long Term Evolution	
7	Course		
	Description	In this course, The fundamentals of communication	
		digital modulation are explored. The various multiple	
		which are used in telephony and other communication	
		Some new technology like OFDM and LTE advance	
		technology for now a days 3G and 4G telephony are	
		with their architecture and area of application. The c	
		the Case study on OFDM, in which student can imp	olement the OFDM
		practically and can use it for real time applications.	
8	Outline syllal	DUS	CO Mapping
	Unit A	Basics of Communication System	_
	Unit A	Review of Analog Modulation Techniques	CO1
	Topic 1	-	
	Unit A	Pulse Code Modulation, Differential Code	CO1

Topic 2	Modulation, De Modulation	lta Modulation, A	Adaptive Delta	
Unit A Topic 3	Digital Modulati QPSK, DPSK	SK, FSK,PSK,	CO1	
Unit B	Multiplexing an			
Unit B Topic 1	Time Division Division Multipl	Multiplexing(TI exing(FDM)	OM),Frequency	CO2
Unit B Topic 2		s Techniques, TI	DMA, FDMA,	CO2
Unit B Topic 3	,	Technique, Use in	CDMA	CO2
Unit C	Orthogonal Fra	quency Division M	Jultinleving	
Unit C Topic 1	Concept of MIN Comparision of Transmitter, On	IO, Importance of	Orthogonality, OFDM,OFDM Sub Carriers,	CO3
Unit C Topic 2	Packet detecti Frequency Offs Offset(SFO),Dat	CO3		
Unit C Topic 3	Receiver,	am of OFDM T	ransmitter and	CO3
Unit D	Case Study on C			
Unit D Topic 1	Analog OFDM S	CO4		
Unit D Topic 2	Simple OFDM transforms	CO4		
Unit D Topic 3	802.11a OFDM S	Signal implementat	ion	CO4
Unit E	Long Term Evo	lution		
Unit E Topic 1		asic Parameter aming Architecture		
Unit E Topic 2	_	l Addressing, Rotocol Stack Layers		CO5
Unit E Topic 3		low ,Communica		CO5
Mode of examination	Theory	<i>G</i> J		
Weightage Distribution	CA	MTE	ETE	
Distribution	30%	20%	50%	

Text book	 Simon Haykin, "Digital Communication", Wiley Publication, 2nd Edition Yong Su Chu, "OFDM Wireless Communication using MATLAB", Wiley Publication, 20101. StefaniaSesia, "LTE-The UMTS Long Term Evolution: From Theory to Practice", Wiley Pub.,2nd Ed. 	
References	B.P.Lathi, Zhi Ding, Hari M. Gupta, Modern Digital and Analog Communication Systems, oxford publication, 1 st Edition.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE811.1	2	1	1	2	2	2	2	2	1	1			2
ECE811.2	2	1	3	2	3	2	2	2	1	2			2
ECE811.3	2	2	1	2	2	2	1	2	1	2			1
ECE811.4	3	2	1	2	1	2	2	1	1	1			3
ECE811.5	3	2	3	2	2	2	2	3	1	1			2
ECE811	3	2	2	2	2	2	2	2	1	2			3

School: SET Batch: 2021-23 Program: MTECH

Current Academic Year: 2021-22

Branch:All Semester:I

Sem	ester:I	
1	Course Code	ECE814
2	Course Title	Emerging Electronics Technologies
3	Credits	
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	To make students familiar with different solid state light emitters and detectors. To different A constitution and different solid state light emitters.
		 To define different Acoustic transduction and different acoustic transducers.
		 To explain Eye anatomy and eye optics, Color vision basics . To illustrate concepts of LED, LCD, OLED.
		 To illustrate various MAC protocols like GSM, Spread spectrum, CDMA, TDMA & Basic electronics components. Handset
		Specific operating systems
		• To explain Working principle of mobile handset & Components used in mobile handsets.
		 To illustrate Comparison of the essential characteristics of Android and iOS.
6	Course	CO1: able to understand functioning of various optoelectronic devices
	Outcomes	and underlying principles.
		CO2: able to understand and differentiate among various acoustic
		systems.
		CO3: able to understand working principles of various display devices. CO4: able to understand Generations of mobile phones,
		CO5: able to handle hardware components of mobile handset and OS
		used in mobiles.
7	Course Description	In this course, the fundamentals of Optoelectronics like region of optical radiation, visible light and basic devices like LASER and LED etc. are
	1	described in detail. Basics of Acoustic engineering like vibration, acoustic, transmission and absorption are also explored .After that
		various display systems like LED, LCD and OLED are also described
		with their area of application. In subsequent chapter basic of generation
		of telephony like GSM, CDMA are discussed followed by the
		description of technology behind the Smart phone. At last the various
		operating systems used in smartphone's like Android and iOS are
		discussed in details. Comparative analysis of two OS is also done.
	1	in the second control of the second control

		Learning may be supplemented with periodic guest embedded systems engineers from industry.									
8	Outline syllabu	bus									
	Unit A	Optoelectron	ics								
	Unit A Topic	The region of light emitting diodes.									
	Unit A Topic 2	Laser diodes, semiconductor	CO1								
	Unit A Topic 3	Schottky phot transmission.	Schottky photodiode, CD records reader, laser printer, data								
	Unit B	Acoustics En	gineering								
	Unit B Topic 1	Fundamentals	of vibration ar	nd acoustic wave equation.	CO2						
	Unit B Topic 2	Transmission, and architectu	-	d attenuation of sound. Room	m CO2						
	Unit B Topic 3	Acoustic trans	Acoustic transduction and different acoustic transducers.								
	Unit C	Display Tech									
	Unit C Topic 1										
	Unit C Topic 2 Eye anatomy and eye optics, Color vision basics.										
	Unit C Topic 3	Display system LED, LCD, O		s and performance paramet	ers- CO3						
	Unit D	Smartphone handset									
	Unit D Topic		Introduction to mobile phones, Generations of mobile phones, FHSS networks.								
	Unit D Topic 2	GSM, Spread electronics con systems, Hand	CO4								
	Unit D Topic 3		ciple of mobile	e handset & Components u	ised CO4						
	Unit E	Smartphone	OS								
	Unit E Topic	Major features OSs (Operatin Language, Sou	OS CO5								
	Unit E Topic 2	Internet Brown Store, and Mo	CO5								
	Unit E Topic 3	Comparison o iOS.	f the essential of	characteristics of Android a	nd CO5						
	Mode of examination	Theory									
	Weightage	CA	MTE	ETE							
	Distribution	30%	20%	50%							

Text book	 S.C.Gupta, Optoelectronics Devices and Systems, 3rd Edition, Prentice Hall India. S.W. Rienstra& A. Hirschberg, "An Introduction to Acoustics". Vinod Kumar Khanna, "Fundamentals of Solid-State Lighting", CRC Press. 	
References	Joseph Annuzzi, Jr. Lauren Darcey Shane Conder, Introduction to Android Application Development, Fourth Edition, Addision Wesley.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE814.1	2	1	1	2	2	2	2	2	1	1			2
ECE814.2	2	1	3	2	3	2	2	2	1	2			2
ECE814.3	2	2	1	2	2	2	1	2	1	2			1
ECE814.4	3	2	1	2	1	2	2	1	1	1			3
ECE814.5	3	2	3	2	2	2	2	3	1	1			2
ECE814	3	2	2	2	2	2	2	2	1	2			3

School: SET Batch : 2021-23 Program: M.TECH

Current Academic Year: 2021-22 Branch: Embedded System

Semester:I

Sem	ester:I		
1	Course Code	ECE815	
2	Course Title	Method for Product Development for Electronics Subsys	tems
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Compulsory /Elective/Open Elective	
5	Course	To understand the various processes and systems to add	
	Objective	needs by creating tangible Electronic Products. To pursue 1	
		emphasis on learning-by-doing and following a comprehen	sive process
		of design, engineering and producing products and systems	
6	Course	On a successful completion of this course students will be	able to
	Outcomes	C0 1. Design electronic products using user centered design	
		CO2. Develop sketches, virtual and physical appearance mo	dels to
		communicate proposed designs	
		CO3. Refine product design considering engineering design of	&
		manufacturing requirements and constraints.	
		CO4. Make mock-up model and working prototype along wi	th design
		documentation	
7	Course	CO5. Understand Manufacturing Setup including Test Setup	
'	Description	Product development and design processes and methods, incl	luding
	Description	product specifications, concept development, engineering dra	•
		design for prototyping, and manufacturing	iwings,
		design for prototyping, and manufacturing	
8	Outline syllabu	dS .	CO
			Mapping
	Unit 1	Concept: Product Development from Concept	
		through Manufacturing	
	A	The stage of idea for a new product, a variation on an	CO1, CO2
	D.	existing product,	GO1 GO2
	В	The identification of a need for an undefined product	CO1, CO2
	С	Causes Descerch to define a product, a market, and an approach for	CO1, CO2
		Research to define a product, a market, and an approach for manufacturing this product.	$\begin{bmatrix} co_1, co_2 \end{bmatrix}$
	Unit 2	Research & Circuit Design: Gated Product	
<u></u>	UIIIL Z	Research & Circuit Design. Gateu Product	

	-		Requirements and						
	Conceptual Desi								
A			entifying the technology,	CO1, CO3					
			ed in producing the product						
В			specification: used to cost the	CO1, CO3					
		estimated	manufactured cost of the						
	product.								
C	_	_	n (usually via computer	CO1, CO3					
	drafting software) a	nd a preli	minary parts list for costing						
	and prototyping the								
Unit 3	Packaging and Pri	nted Circ	euit Design						
A			osure designed or selected.	CO4					
			ls, and displays printed circuit						
	layout commences.	,	, 1 , 1						
	1 5	ing printe	d circuits, the mechanical						
	pattern or outline of								
В			wing supplied by the	CO4					
			and graphics of designed,						
	labels, overlays, sill								
С	-		uit artwork, used by a	CO4					
			circuit boards for the board						
	assembler.	1							
Unit 4	Prototyping or Tri	al Produ	ction & Design Review						
A	Schematic design. E			CO3.CO1					
	PCB placement, rou								
В			opment, Mechanical design.	CO3.CO1					
	Industrial design.								
С	Testing and analysis	s, Prototy	pe ,Design	CO3.CO1					
	verification/validati	on	- -						
Unit 5	Manufacturing Sett								
	Documentation &M	Ianufacti	iring and Supply Chain						
	Management:								
A	Component Procur	ement. Qı	nick Turn Prototyping	CO5					
	Design for Manufac	turability	(DFMA).Design for						
	Testability (DFTA)	Regulato	ry Compliance Testing,						
	Analysis, and Certif	fication							
В	Custom Enclosure I	Developm	ent Quality and Reliability	CO3.CO5					
	Assurance								
	Functional Test Fix								
C	Documentation, Ag	CO5							
Mode of	Theory								
examination									
Weightage	ge CA MTE ETE								
Distribution	30% 20%								
			50%						

Text book/s*	Cross N. "Engineering Design Methods: Strategies for	
	Product Design", Willey.(2000)	
	Otto K. and Wood K., "Product design: Techniques in	
	Reverse Engineering and New Product development ",	
	Prentice Hall. (2001)	
	Chakrabarty D., "Indian Anthropometric Dimensions for	
	Ergonomic Design Practice", NID, Ahmedabad(1999).	
	. Norman D. A., "The design of everyday things, Basic	
	Books."(2002	
LINKS	https://www.industrologic.com/gtepdad.htm	
	http://www.stilwellbaker.com/capabilities/electronic-	
	product-development	

COs	РО	PO	PO	PO	PO	PO	PO	PO	РО	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE815.	2	1	1	-	2	-	1	1	1	1	2		1
ECE815.	2	2	1	-	2	-	1	2	1	1	3		2
ECE815.	3	1	1	-	2	-	1	2	1	1	2		2
ECE815.	2	2	1	-	2	-	1	3	1	1	1		2
ECE815. 5	2	2	1	-	2		1	3	1	1	1		2
ECE815	3	2	1		2		1	3	1	1	2		2

Sch	nool: SET	Batch: 2021-23							
Pro	gram:	Current Academic Year: 2021-22							
M.	Гесһ								
Bra	nch: ECE	Semester: II							
1	Course Code	ECE824							
2	Course Title	Sensors and Network							
3	Credits	4							
4	Contact	3-1-0							
	Hours								
	(L-T-P)								
	Course	Department Elective							
	Status	1 V							
5	Course	1. Knowledge of mobile ad hoc networks, design and impleme and available solutions.	ntation issues,						
	Objective	2. Knowledge of routing mechanisms and the three classes of a	unnraaah aa						
		proactive, on-demand, and hybrid.	ipproaches:						
		3. Knowledge of clustering mechanisms and the different scheme	mes that have						
		been employed, e.g., hierarchical, flat, and leaderless.	mes that have						
		4. Knowledge of the 802.11 Wireless LAN (WiFi) and Blueto	oth standards.						
		This includes their designs, operations, plus approaches to inte							
6	Course	After completion of this course student will able to:	1 ,						
	Outcomes	CO1: Identify emerging research areas in the field of sensor ne	tworks						
		CO2: Identify the issues and challenges in WSN							
		CO3: make use of MAC protocols for communication in WSN	1						
		CO4: Explore various dissemination protocols for WSN							
		CO5: analyse the design principles of wireless sensor networks	s for a given						
		application							
		CO6: Design wireless sensor networks for a various application	on						
7	Course	A wireless sensor network (WSN) generally consists of comp							
	Description	sensors, which collect information and pass the information							
		networks to achieve a high level of desired monitoring a							
		coordinated manners. WSN applications can be found in							
		environmental monitoring, smart energy systems, battle field							
		home automation, medical monitoring, mobile computing,							
		integrated network engineering, embedded system engineering	ng and sensor						
8	Outline syllab	technology.	СО						
O	Outilité syllab	us	Mapping						
	Unit 1	Introduction to Sensor Networks	тирріпд						
	A Introduction to Sensor Networks, unique constraints and								
		challenges	CO1, CO2						
	В	CO1							
	B Advantage of Sensor Networks, Applications of Sensor Networks								
	С	Types of wireless sensor networks	CO1						
C1- :	Unit 2	Issues and challenges in wireless sensor networks							
<i>SU/</i> .	SET/M.Tech-ECE		Page 130						

A	Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks	CO1, CO3
В	Enabling technologies for Wireless Sensor Networks	CO1, CO3
С	Issues and challenges in wireless sensor networks	CO1
Unit 3	Routing protocols	
A	Routing protocols, MAC protocols: Classification of MAC Protocols,	CO2
В	S-MAC Protocol, B-MAC protocol,	CO2
С	IEEE 802.15.4 standard and Zig Bee	CO2
Unit 4	Dissemination protocol for large sensor network	
A	Dissemination protocol for large sensor network. Quality of a sensor network	CO3
В	Data dissemination, data gathering, and data Fusion	CO3
С	Real-time traffic support and security protocols.	CO3
Unit 5	Design Principles for WSNs	
A	Design Principles for WSNs, Gateway Concepts Need for gateway, WSN to Internet Communication, and Internet to	CO4
В	WSN Communication Single-node architecture, Hardware components & design constraints	CO4
С	Operating systems and execution environments, introduction to TinyOS and nesC.	CO4
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	Waltenegus Dargie, Christian Poellabauer, "Fundamentals Of Wireless Sensor Networks Theory And Practice", By John Wiley & Sons Publications, 2011	
Other References	1. Sabrie Soloman, "Sensors Handbook" by McGraw Hill publication. 2009 2. Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks", Elsevier Publications, 2004 3. Kazem Sohrby, Daniel Minoli, "Wireless Sensor Networks": Technology, Protocols and Applications, Wiley-Inter science 4. Philip Levis, And David Gay "TinyOS Programming" by Cambridge University Press 2009	

COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PS
	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	O3

ECE82	1		-	1	-	1	1	-	-	-	1	-	-	1	
4.1		•													
ECE82	1		-	1	-	1		-	-	-	1	-	-	2	-
4.2															
ECE82	2		-	2	1	2	1	-	-	-	1	-	2	2	
4.3															
ECE82	2		1	3	1	1	3	-	-	-	2	-	2	2	2
4.4															
ECE82	1	1	3	3	2	1	3	-	-	-	3	1	3	3	3
4.5															
ECE82	3	1	3	3	2	1	3	-	-	-	3	1	3	3	3
4.6															
ECE82															
4															

School: SET Batch : 2021-23 Program: MTECH

Current Academic Year: 2021-22

Branch:ECE Semester:I/II

	C5tC1 .1/11	
1	Course Code	ECE825
2	Course Title	Embedded Architecture and Programming
3	Credits	5
4	Contact	3-0-4
	Hours	
	(L-T-P)	
	Course Status	Compulsory
5	Course	Embedded Systems and design issues
	Objective	Advanced Computer Architecture
		Embedded System Installation/ Configuration using AVR
		microcontroller
		Development of Embedded Firmware using AVR microcontroller

1		T11111	
6	Course	Troubleshooting and Maintenance of embedded system	5111
	Outcomes	CO1:Explain Embedded Systems and design issues	
		CO2:Apply and illustrate advanced Computer arch CO3:Embedded System Installation/ Configuration u microcontroller CO4:Development of Embedded Firmware using AV microcontroller	sing AVR
		CO5: Apply Embedded tools in Real Time Applications	
7	Course	The state of the s	
	Description	In this course, the fundamentals of embedded system hardward firmware design will be explored. Issues such as embedded preselection, hardware/firmware partitioning, glue logic, circuit circuit layout, circuit debugging, development tools, firmware architecture, firmware design, and firmware debugging will be The Intel 8051, a very popular microcontroller family, will be The architecture and instruction set of the microcontroller will discussed, and a wire wrapped microcontroller board will be debugged by each student. The course will culminate with a final project which will extend the concepts covered earlier in Learning may be supplemented with periodic guest lectures by systems engineers from industry	brocessor design, re be discussed. e studied. ill be built and significant n the course.
8	Outline syllabu		СО
	Summe symmet	45	
			Mapping
	Unit –A Unit A Topic 1	Embedded Systems Introduction of Embedded Systems, Embedded Design	
	Unit –A	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to	Mapping
	Unit –A Unit A Topic 1 Unit A Topic	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle	Mapping CO1, CO2
	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to Embedded Development tools Assemblers, Compilers, Linkers, Loaders, Debuggers,	Mapping CO1, CO2 CO1
	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to Embedded Development tools Assemblers, Compilers, Linkers, Loaders, Debuggers, Embedded In-Circuit Emulators and JTAG	Mapping CO1, CO2 CO1
	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to Embedded Development tools Assemblers, Compilers, Linkers, Loaders, Debuggers, Embedded In-Circuit Emulators and JTAG Advanced Computer Architecture RISC architecture, Pipelining, Principles of Pipelined	Mapping CO1, CO2 CO1 CO1
	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1 Unit B Topic	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to Embedded Development tools Assemblers, Compilers, Linkers, Loaders, Debuggers, Embedded In-Circuit Emulators and JTAG Advanced Computer Architecture RISC architecture, Pipelining, Principles of Pipelined computers Parallel Computing, Parallel Computer Model, Flynn's	Mapping CO1, CO2 CO1 CO1 CO1
	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1 Unit B Topic 2 Unit B Topic	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to Embedded Development tools Assemblers, Compilers, Linkers, Loaders, Debuggers, Embedded In-Circuit Emulators and JTAG Advanced Computer Architecture RISC architecture, Pipelining, Principles of Pipelined computers Parallel Computing, Parallel Computer Model, Flynn's &Feng's Classification Performance Metrics and Measures Basic cache structure, Set associative caches, Evaluating Cache performances Determining Cache parameters,	CO1, CO2 CO1 CO1 CO1, CO3 CO1, CO3
	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to Embedded Development tools Assemblers, Compilers, Linkers, Loaders, Debuggers, Embedded In-Circuit Emulators and JTAG Advanced Computer Architecture RISC architecture, Pipelining, Principles of Pipelined computers Parallel Computing, Parallel Computer Model, Flynn's &Feng's Classification Performance Metrics and Measures Basic cache structure, Set associative caches, Evaluating Cache performances Determining Cache parameters, Replacement Policies, Implementing LRU	CO1, CO2 CO1 CO1 CO1, CO3 CO1, CO3
	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1 Unit B Topic 2 Unit B Topic 2 Unit C Topic	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to Embedded Development tools Assemblers, Compilers, Linkers, Loaders, Debuggers, Embedded In-Circuit Emulators and JTAG Advanced Computer Architecture RISC architecture, Pipelining, Principles of Pipelined computers Parallel Computing, Parallel Computer Model, Flynn's &Feng's Classification Performance Metrics and Measures Basic cache structure, Set associative caches, Evaluating Cache performances Determining Cache parameters, Replacement Policies, Implementing LRU AVR Microcontoller	Mapping CO1, CO2 CO1 CO1 CO1, CO3 CO1, CO3 CO1, CO3

	3										
	Unit –D	Programming	g of AVR								
	Unit DTopic				CO3						
	1	The AVR In	struction Set								
	Unit D Topic	Literal and co	ntrol Operation	ns, Watchdog timer,	CO3						
	2	Interrupts, Tin									
	Unit D Topic	Memory Pagir	CO3								
	5										
,											
	Unit –E	CASE STUD	CO4 CO4, CO5								
	Unit E Topic		Use programming tools Aurdino IDE, Integrated design								
	1	environments	for HW-SW co	o-design							
	Unit E Topic	Code firmware	e for Aurdinob	oardes	CO4, CO5						
	2										
	Mode of	Theory									
	examination										
	Weightage	CA	MTE	ETE							
	Distribution	30%	20%	50%							
	Text book	architecture, a India. 2. Gadre, Dha	designing for pananjay V., 200 the AVR Micr	Computer organization and verformance", Prentice Hall of 01, Programming and ocontroller, McGraw-Hill,							
	References	Edition, Else (ISBN-13: 97 2. Barnett, R. Programming	vier ISBN-10: 78-0-7506-563; , O'Cull, L., C	ox, S., 2007, Embedded C AVR, Thompson-Delmar							

Cos	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE825.	2	1	1		2		1	1	1	1	2		1
ECE825.	2	2	1		2		1	2	1	1	3		2
ECE825.	3	1	1		2		1	2	1	1	2		2
ECE825.	2	2	1		2		1	3	1	1	1		2
ECE825.	2	2	1		2		1	3	1	1	1		2

ECE825	2	2	1	2	1	2	1	1	2	2

School: SET Batch :2021-23 Program: M.TECH
Current Academic Year: 2021-22

Branch:ES

Sem	ester:II						
1	Course Code	ECE 812					
2	Course Title	Quality Management of Electronic Systems					
3	Credits						
4	Contact	3-0-0					
	Hours						
	(L-T-P)						
	Course Status	Compulsory /Elective/Open Elective					
5	Course	1. This course aims to introduce the need for Quality Manage	ment of				
	Objective	Electronics Systems					
		2.explain the need to higher quality the system and compone	nts				
		3. Elaborates system reliability and reliability techniques					
		4.Challenges of Quality Management					
6	Course	After completing this course students should be able to					
	Outcomes	CO1: Explain the mechanism of quality control and	d its proto				
		type.					
		CO2: Estimate the quality management organization	on structure				
		and design					
			v voliobility				
		CO3: Use k-out of n system for analysis of comple	x remadility				
		structures					
		CO4: Apply the Markovian Techniques for reliabil	ity				
		prediction					
		CO5: Application of Quality Management in Real	Time				
		Project					
7	Course						
	Description	tion This course aims to introduce the need for Quality Management of					
		Electronics Systems and explain the need to higher quality the					
		components because of the increasing complexities of electron	onic				
		products.					
	0 41: 11.1		CO				
8	Outline syllabu	IS .	CO				
	TT *4 4		Mapping				
	Unit 1	Quality Concepts	CO1				
	A	Evolution of Quality Control, concept change, TQM	CO1,				
		Modern concept, Quality concept in design, Review of					
		design, Evolution of proto type.					

В				CO1
			-	
C		CO1		
	sales and servi	ices, guarantee	, analysis of claims.	
Unit 2				
A		CO2		
В			CO2	
C		1 0	· ·	CO2
			corrective methods.	
Unit 3				
A				CO3
				CO3
C	System reliabi	lity estimation	•	CO3
Unit 4				
A			t, tie set, FME set, PTA,	CO4
		CO4		
		CO4		
Unit 5				
A		CO5		
В	Unreliable, slo	CO3		
	Wrong percep	tion about qual	lity management	CO5
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution		20%	50%	
Text book/s*			ality Management", Eastern	
	· ·			
			liability engineering", Wiley	
Other			otal Quality Management",	
References				
, ,				
	Hayden Book	Company.		
	C Unit 2 A B C Unit 3 A B C Unit 4 A B C Unit 5 A B C Unit 5 A B C T Examination Weightage Distribution Text book/s*	Development of Manufacturing manufacture, is sales and service and service organization for the service of the	Development of sources, pro C	products, evaluation of supplies, capacity verification, Development of sources, procurement procedure. C

Cos	PO	PO	РО	PO	РО	РО	РО	PO	РО	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE812.	2	1	1		2	-	1	1	1	1	2		1
ECE812.	2	2	1	-	2	-	1	2	1	1	3		2
ECE812.	3	1	1	-	2	-	1	2	1	1	2		2
ECE812.	2	2	1	-	2	-	1	3	1	1	1		2
ECE812. 5	2	2	1	-	2	-	1	3	1	1	1		2
ECE812	2	2	2		2		1	3	1	1	2		2

SU/SET/M.Tech-ECE	Page 139

SU/SET/M.Tech-ECE	Page 140

SU/SET/M.Tech-ECE		Page 141