Program and Course Structure School of Engineering Technology Department of Electrical, Electronics and Communication Engineering

M.Tech in Electronics and Communication Engineering with Specialization in Digital Communication/VLSI Technology/Electronic System Designing and Management/Embedded Systems Programme Code: SET0502 Batch -2020-22

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School of Engineering and Technology

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship to provide sustainable solution to the needs of the society

Mission of the School

- To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conducive and enriching learning environment.
- 2. To produce technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities.
- **3.** To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- 4. To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

1.2.1 Vision and Mission of the Department of Electrical, Electronics and Communication Engineering

Vision of the Department

To become an internationally acclaimed destination of academic excellence in the discipline of Electrical Electronics and Communication Engineering by promoting research, innovation and entrepreneurship to serve society.

Mission of the Department

M1-To provide comprehensive technical knowledge in Electrical, Electronics and Communication Engineering.

M2- To facilitate and foster the industry-academia collaboration to enhance technical skills and employability.

M3-To promote interdisciplinary and multi-disciplinary research, innovations and entrepreneurship to serve society.

M4- To develop core values, professional ethics and lifelong learning skills through interactive support systems.

1.3 Program Educational Objectives (PEO)

1.3.1 Writing Program Educational Objectives (PEO)

PEO1:To produce engineering post graduates who have the ability to demonstrate technical competence for helping develop solutions to the real world problems.

PEO2:To foster students to take individual responsibility and to work as a part of/lead a team towards the fulfillment of both individual and organizational goals

PEO3:To meet educational and industrial needs through effective communication of knowledge and ethics.

PEO4: To equip students to upskill through self-learning while pursuing their professional career and higher education

PEO5:To strengthen research activities.

1.3.2 Map PEOs with School Mission Statements:

PEO Statements	School	School	School	School
	Mission 1	Mission 2	Mission 3	Mission 4
PEO1	3	3	2	2
PEO2	1	1	2	3
РЕОЗ	3	3	2	2
PEO4	1	2	3	2
PEO5	2	2	3	1

1. Slight (Low) 2. Moderate (Medium)

3. Substantial (High)

PEO	Department	Department	Department	Department
Statements	Mission 1	Mission 2	Mission 3	Mission 4
PEO1	3	3	3	3
PEO2	3	2	2	2
PEO3	2	1	3	2
PEO4	1	1	2	1
PEO5	2	2	1	1

1.3.2.1 Map PEOs with Department Mission Statements:

1. Slight (Low) 2. Moderate (Medium)

3. Substantial (High)

1.3.3 Program Outcomes (PO's)

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO8:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO9: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO10:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs for M.Tech in ECE with specialization in Digital Communication

PSO1: knowing about recent trends in Advanced Communication security and able to solve real world problem using concepts of digital communication.

PSOs for M.Tech in ECE with specialization in VLSI Technology

PSO2: Ability to adapt to emerging multidisciplinary needs in area of design, prototyping etc. to add further value to the technological world of IC technologies.

PSOs for M.Tech in ECE with specialization in Embedded System

PSO3: knowledge and application of recent trends in embedded system.

Mapping	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	3	2	1	-
PO2	3	3	2	-	2
PO3	3	3	3	-	3
PO4	3	3	2	-	2
PO5	2	3	2	-	2
PO6	1	2	3	3	2
PO7	1	1	1	2	1
PO8	-	-	2	2	1
PO9	2	1	3	-	3
PO10	-	-	2	2	2
PSO1	2	2	2	1	3
PSO2	2	1	3	2	3
PSO3	2	1	3	2	3

1.3.4 Mapping of Program Outcome Vs Program Educational Objectives

- 1. Slight (Low)
- 2. Moderate (Medium)
- 3. Substantial (High)

1.3.5 The components of the curriculum

Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core	18.1	17	13
Department Electives	40.2	29	29
Community Connect	2.8	2	2
Dissertation	36.1	52	26
Seminar	2.8	4	2

1.3.6.1 COURSE ATRICULATION MATRIX:

COs	PO	PO	PO3	PO	PO	PO	PO7	PO	PO9	PO1	PSO	PSO	PSO
	1	2		4	5	6		8		0	1	2	3
ECE 687	3	2	2	2	2	2					3	1	1
ECE 684	3	2	1	2	2	2					3	2	2
ECE61 4	3	2	1	2	2	2					1	3	1
ECE61 2	3	2	2	2	2	2					1	3	1
ECE61 1	3	3	2	2	2	2					2	2	3
ECE81 4	3	3	2	2	2	2					2	2	3
ECP 684	3	3	2	2	2	2					3	2	2
ECE 619	3	3	2	2	2	2					3	3	3
ECE81 1	3	3	2	2	2	2					3	1	2
ECE82 0	3	3	2	2	2	2					3	2	2
ECE82 4	3	3	2	2	2	2					2	1	3
ECE82 5	3	3	2	3	2	2					1	2	3
ECP82 5	3	2	2	3	2	1					1	2	3
ECE82 6	3	3	2	2	2	2					1	3	2
ECE82 7	3	3	2	3	2	2					1	3	2
ECP82 7	3	3	2	3	3	2					1	3	2
CCU10 1	1	2	2	1	1	2	3	3	3	3	1	1	1
MRM0 01	1	2	2	2	1	2	2	3	3	3	1	1	1
ECE69 6	3	3	2	3	3	2	2	2	3	3	3	3	3
ECE69 8	3	3	2	3	3	2	2	2	3	3	3	3	3

ECE69 9 3 3 2	3 3 2 2	2 3 3	3 3 3
------------------	---------	-------	-------

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

School of Engineering and Technology M.Tech in ECE Batch: 2020-22 TERM: I

		Teach Loa		achi Loac	0		Pre- Requisite/Co	Type of Course ¹ :
S. No.	Subject Code	Subjects	L	Т	Р	Credits	Requisite	1. CC 2. AECC 3. SEC
	EORY SUI							4. DSE

1.	ECE 687	Mobile and Wireless Communication	3	0	0	3	AECC
	ECE 684	Discrete Time Signal	3	0	0	3	
2.	ECE 004	Discrete Time Signal Processing	5	0	0	5	AECC
3.		Department Elective -I	3	0	0	3	DSE
4.		Department Elective -2	3	1	0	4	DSE
5.		Department Elective -3	3	0	0	3	DSE
6.		Department Elective -4	3	0	0	3	DSE
Pra	ctical/Viva-V	/oce/Jury	ł	•			
7.	ECP 684	Discrete Time Signal Processing Lab	0	0	4	2	AECC
		TOTAL CREDITS		21			

¹ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

School of Engineering and Technology M.Tech in ECE Batch: 2020-22 TERM: II

S. No.	Course Code	Course		achi Loa	-		Pre- Requisite/Co	Type of Course ² :	
110.	Cout		L	T	P	Credits	Requisite	1.CC 2. AECC 3. SEC 4. DSE	
THF	EORY SUB.	JECTS	ľ			1			
1.	ECE 615	Internet of Things and Applications	3	0	0	3		AECC	
2.		Department Elective-5	3	0	0	3		DSE	
3.		Department Elective-6	3	1	0	4		DSE	
4		Department Elective-7	3	1	0	4		DSE	
5		Department Elective-8	3	0	4	5		DSE	
Prac	tical/Viva-V	Voce/Jury			1	1			
6.		Community Connect	0	0	4	2		SEC	
7.		Research Methodology	0	0	4	2		AECC	
	TOTAL CREDITS 23								

¹ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

S. No.	No. Code Load Requisite/Co 1. CC								
			L	T	P	Credits	Requisite	2. AECC 3. SEC 4. DSE	
	tical/Viva	-Voce/Jury Seminar	0	0	4	2		SEC	
1.			0	0	4	2		SEC	
		Dissertation-1	0	0	20	10		SEC	

³ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

School of Engineering and Technology M.Tech in ECE Batch: 2020-22

TERM: IV

S. No.	Course Code	Course	T	Teaching Load			Pre- Requisite/Co	Type of Course ⁴ :
			L	Τ	Р	Credits		1. CC 2. AECC 3. SEC 4. DSE
Prac	ctical/Viva-Vo	oce/Jury						
1.		Dissertation- II	0	0	32	16		SEC
		TOTAL CREDITS				72		

⁴ CC: Core Course, AECC: Ability Enhancement Compulsory Courses, SEC: Skill Enhancement Courses, DSE: Discipline Specific Courses

2.1 Syllabus for Theory Subjects

School:	SET	Batch : 2020-22						
Prograi	m: M.Tech	Current Academic Year: 2020-21						
Branch		Semester: I						
1	Course Code	ECE687						
2	Course Title	Computational Methods for Communication						
3	Credits	4						
4	Contact Hours (L-T-P)	3-1-0						
	Course Status	Compulsory						
5	Course Objective	1.To extend and formalise knowledge of the theory of prob random variables	ability and					
		2. To introduce new techniques for carrying out probability and identifying probability distributions	calculations					
		3.To motivate the use of statistical inference in practical data analysis4.To study elementary concepts and techniques in statistical methodolog						
6	Course Outcomes	 CO1: Familiarization of basic probability axioms and rules moments of discrete and continuous random variables as w familiar with common named discrete and continuous rand CO2: Calculate probabilities, and derive the marginal and c distributions of bivariate random variables. CO3: Derive the probability density function of transforma random variables and use these techniques to generate data distributions. CO4: Translate real-world problems into probability model CO5: Know discrete time Markov chains and methods of f equilibrium probability distributions. 	 O1: Familiarization of basic probability axioms and rules and the coments of discrete and continuous random variables as well as be amiliar with common named discrete and continuous random variables. O2: Calculate probabilities, and derive the marginal and conditional istributions of bivariate random variables. O3: Derive the probability density function of transformations of andom variables and use these techniques to generate data from various istributions. O4: Translate real-world problems into probability models. O5: Know discrete time Markov chains and methods of finding the 					
7	Course Description	The main objective of this course is to provide stu foundations of probabilistic and statistical analysis mostly applications in engineering and science like modeling, computer networks etc.	y used in varied					
8	Outline syllabus	·	CO Mapping					
	Unit 1	Introduction to probability theory	CO1					
	А	Experiments, Sample space, Events, Axioms	CO1					
	В	Assigning probabilities, Joint and conditional, Baye's theorem	CO1					
}	С	Discrete random variables, Engineering example	CO1,C02					
	Unit 2	Random variables, Distributions, Density functions	CO1,CO2					
	A A	CDF, PDF, Uniform Distribution, Gaussian Distribution	CO2					
	B		CO2 CO2					
	D	Rayleigh, Rician types of random variables	002					

С	Expected value values	e, Central 1	noments, Conditional ex	pected CO2					
Unit 3	Characteristic	cs Functio	ns						
A	Probability ger			CO3					
В	Moment gener	<u> </u>		CO3					
С	Engineering ap			CO3					
Unit 4	Random proc								
Α	Definition and	characteri	sation	CO4					
В	Mathematical	tools for st	udying random processes	s CO4					
С	Stationery and ACF	Stationery and Ergodic random processes, Properties of ACF Types of Random Process Binomial Process, Poisson Process							
Unit 5	Types of Ran								
А									
В	Gaussian Proc	ess		CO4					
С	Markov Proces	Markov Process							
Mode of examination	Theory								
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s	1. S.L.Miller	and D.C.C	Childers, "Probability an	ıd					
	random p	rocesses: a	pplication to signal pro	ocessing					
	-		", Academic press/Elsev						
	-	variables and stochastic processes", McGraw Hill							
Other References	•		robability, Random var ciples'', TMH, 4th editic						
	2. H Stark and and application		Probability, random pr 2001.	ocesses					

COs	PO	PO1	PSO	PSO	PS								
	1	2	3	4	5	6	7	8	9	0	1	2	03
ECE687.	2	1	1	2	2	2	2	2	1	1	1		
1													
ECE687.	3	3	3	2	3	2	2	3	1	2	2		
2													
ECE687.	3	2	1	2	2	2	2	3	1	2	1		
3													
ECE687.	3	2	3	2	1	2	2	3	1	1	1		
4													
ECE687.	3	2	3	2	3	2	2	3	1	1	2		
5													
ECE687	3	2	2	2	2	2	2	3	1	1	2		

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

		Batch : 2020-22	
Program	m: M.Tech	Current Academic Year: 2020-21	
Branch	: DC	Semester: I	
1	Course Code	ECE684	
2	Course Title	Discrete Time Signal Processing	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course	Compulsory	
	Status		
5	Course	• The objective of DSP is usually to measure, filter a	nd/or
	Objective	compress continuous real-world analog signals.	
		• This course is the mathematical manipulation of an	information
		signal to modify or improve it in some way.	
		• This is characterized by the representation of discre	te time.
		discrete frequency, or other discrete domain signals	
		sequence of numbers or symbols.	5
6	Course	After completing this course students will be able to	
	Outcomes	1. Apply real time processing of audio and speech sign	nal.
		2. Do the sonar and radar signal processing, sensor arr	
		processing, spectral estimation, statistical signal pro	
		3. To develop the understanding about the mathematic	
		signal processing, for communications, control of sy	
		biomedical signal processing, seismic data processi	
		image processing etc.	0 0
		4. Use computing software package like MATLAB, ar	nd acquainted
		with digital processing tools available in MATLAB	
		5. Develop a signal processing system to analyze, pred	lict and
		manipulate real data.	
7	Course	Digital Signal Processing (DSP) is concerned with the repr	esentation.
	Description	transformation and manipulation of signals on a computer.	
		century advances, DSP has become an important field, and	
		penetrated a wide range of application systems, such as cor	
		electronics, digital communications, medical imaging and s	
		the dramatic increase of the processing capability of signal	
		microprocessors, it is the expectation that the importance a	
		DSP is to accelerate and expand. Discrete-Time Signal Pro	
		general term including DSP as a special case. This course v	
		the basic concepts and techniques for processing discrete-ti	
		a computer. By the end of this course, the students should be	-
		understand the most important principles in DSP	
8	Outline syllab	us	CO
			Mapping

Unit 1	Realisation of FIR Filters & IIR Filters	
Α	Implementation of Discrete-Time Systems Digital Filter	CO1, CO2
	Structure: Block Diagram representation.	
В	Signal Flow Graph Representation, FIR Digital Filter	CO1.CO3
	Structure.	
C	Direct-Form Structure, Cascade Form Structures.	CO2
Unit 2	Fundamentals of Multirate Digital Signal Procesing	
А	Basic Multirate operations- Decimation and Interpolation	CO2
	,Sampling, Sampling Rate Conversion Digital Filter	
	Banks,	
В	Two channel Quadrature Mirror Filter bank,	CO1, CO3
С	Multilevel Filter Banks	CO1.CO4
Unit 3	Design of Digital Filters	
А	Design of Digital Filters Design of FIR Filters: Symmetric	CO1,CO3
	and Antisymmetric FIR Filters, Design of Linear phase	,
	FIR Filter using Windows and Frequency sampling	
	method	
В	Introduction to Chebyshev and Butterworth Filter, Gibbs	CO4
	phenomenon, Design of Optimum Equiripple Linear-	
	phase FIR Filters	
С	Design of IIR Filters: Design by Approximation of	CO5
	Derivatives	_
Unit 4	The Discrete Fourier Transform & Efficient	
	Computation of the DFT: FFT Algorithm	
А	Basic elements of Digital Signal Processing, Ideal	CO3,CO4
	Sampling reconstruction and concept of aliasing,	
	Introduction to CTFT and DTFT, Discrete Fourier	
	Transform.	
В	Properties of DFT: Periodicity, Linearity, Symmetry,	CO4
	Multiplication of two DFT, Circular Convolution, circular	
	correlation, multiplication of two sequences, Parseval's	
	theorem.	
С	Decimation-in-Time FFT algorithms & Decimation-in-	CO1, CO4
	frequency FFT algorithms	,
Unit 5	Adaptive Signal Processing and Applications.	
А	Adaptive systems - definitions and characteristics,	CO4
В	Minimum Mean Square Error Critirean, The Window	CO41,
	LMS Algorithm	CO4
С	Introduction to filtering smoothing and prediction, Wiener	CO5
	- Hopf equation, Voice Processing, Application to	
	Radar,DFT use in Spectral Estimation.	
	, <u>1</u>	
Mode of	Theory	
examination		
Weightage	CA MTE ETE	
		1

Text book/s*	References-
	1. A. Y. Oppenhein and R. W. Schater, "Digital Signal
	Processing", PHI 1975
	2. A. Y. Oppenhein, R. W. Schater and J. R. Buck,
	"Discrete Time Signal Processing", PHI 1999.
Other	I.G. Proakis and D.G. Manolakis, "Digital Signal
References	Processing, Principals, Algorithms, and Applications",
	Pearson Education, 4th ed., 2007.
	2.S.Salivahanan, <u>A. Vallavaraj</u> "Digital Signal
	Processing"Tata McGraw-Hill Education ,2007

Cos	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE684	2	1	1	2	2	2	1	3	1	1	2		
.1													
ECE684	3	2	1	2	2	2	1	3	1	1	3		
.2													
ECE684	3	2	1	2	2	2	1	3	1	1	3		
.3													
ECE684	3	2	1	2	2	2	1	3	1	1	3		
.4													
ECE684	3	2	2	2	2	2	2	3	2	3	3		
.5													
ECE684	3	2	1	2	2	2	1	3	1	1	3		

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

Advanced Digital Communication

Scho	ol: SET	Batch : 2020-22								
Prog	ram: M.Tech	Current Academic Year: 2020-21								
Bran	ch: DC	Semester: I								
1	Course Code	ECE 685								
2	Course Title	Advanced Digital Communication								
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course Status	Compulsory								
5	Course	Fundamentals of digital communication								
	Objective	Multiple access techniques-system								
6	Course	After completing this course, students will be able to:								
	Outcomes	CO1: Analyse Equivalent signal-optimum detection of rando	m signal							
		CO2: Analyse multiple access techniques for LAN								
		CO3: Analyse commercial applications								
		CO4: Analyse Fading-signal time spreading-time								
		CO5: Analyse the Equalisers								
7	Course									
	Description	Analyze various modulation, equalization, diversity and codi								
		techniques for communication systems. Compare performance								
		different types of modulation on different wireless application								
		channels. Design and demonstrate various modulation/coding	5							
0		equalization techniques and measure their performance.	СО							
8	Outline syllabi	Outline syllabus								
			Mapping							
	Unit 1	Detection and Estimation								
	A	Fundamentals of digital Communication-Model-response of	CO1							
		bank of correlators								
	В	Poe correlation receiver-matched Filter-Estimation-	CO1							
		maximum likelihood	0.01							
	C	Weiner-linear prediction-optimum detection of Equivalent	CO1							
		signal-optimum detection of random signal								
	Unit 2	Multiplexing and multiple access								
	A	Multiple access techniques-system and architecture	CO2							
	В	Access algorithms-multiple access techniques for INTELSAT	CO2							
	С	Multiple access techniques for LAN	CO2							
	Unit 3	Spread spectrum Techniques								
	A	Spread spectrum overview-PN sequences	CO3							
	В	DS spread Spectrum-Frequency hopping synchronization	CO3							
	С	Jamming considerations- commercial applications-cellular	CO3							
		systems	1 -							

Unit 4	Digital Com	munications th	rough Fading Channels						
А	Path loss mo	del, Shadow Fad	ling	CO4					
В	Fading-signa	l time spreading		CO4					
С	Time variance	e caused by mot	ion	CO4					
Unit 5	Equaliser								
А	mitigating th	e degradation ef	fects of Fading.	CO5					
В	-Rake Receiv	ver		CO5					
С	Viterbi equal	terbi equaliser.							
Mode of examination	Theory/Jury/	neory/Jury/Practical/Viva							
Weightage Distribution	CA 30%	MTE 20%	ETE 50%						
Text book/s*	Communicat		mar Ray "Digital als and Applications", on,2001						
Other References	Wiley 2. 1. J. 1	and sons, 1998	al Communications", John l Communications", McGraw						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE685.1	2	2	1	2	1	1	1	2	2	2	2		
ECE685.2	3	3	3	2	2	2	2	3	2	2	2		
ECE685.3	3	2	1	2	2	1	1	2	2	3	3		
ECE685.4	3	2	3	2	2	1	1	2	2	2	3		
ECE685.5	3	2	3	2	2	1	1	2	2	3	2		
ECE685	3	2	1	2	2	2	1	3	1	1	3		

<u>Neural Network</u>

Sch	ool: SET	Batch: 2020-22										
	gram: M. Tech	Current Academic Year: 2020-21										
	nch: DC	Semester: I										
1	Course Code	ECE 688										
2	Course Title	Neural Network										
3	Credits	3										
4	Contact Hours (L-T-P)	3-0-0										
	Course Status	Departmental Elective										
5	Course Objective	Fundamental techniques and principles of neural computat Investigation of some common models and their applicatio										
6	Course Outcomes	 CO1: Analyse Organization of the Brain. CO2: Analyse Biological and Artificial Neuron Models. CO3: Single layer perceptron and designing of algorithms of curve rate CO4: Multilayer perceptron and Back-propagation algorithm improvisation algorithm CO5: Radial-basis function networks and strategies CO6: Designing of Kohonen Self-Organising Maps. 	-									
7	Course Description	Neural networks provide a model of computation drastically different from traditional computers. This course will provide learning and understanding of neural network architectures and algorithms, for applications in pattern recognition, image processing, and computer vision.										
8	Outline syllabus		CO Mapping									
	Unit 1	Neurons and Neural Networks										
	А	Artificial and biological neural networks, Artificial intelligence and neural networks	CO1									
	В	Biological neurons, Models of single neurons	CO2									
	С	Different neural network models	CO2									
	Unit 2	Single Layer Perceptrons										
	А	Least mean square algorithm	CO3									
	В	Learning curve	CO3									
	С	Learning rates, Perceptron	CO3									
	Unit 3	Multilayer Perceptrons	CO4									
	А	The XOR problem	CO4									
	В	Back-propagation algorithm	CO4									
	С	Heuristic for improving the back-propagation algorithm	CO4									
			~~~									
	Unit 4	Radial-Basis Function Networks	CO5									

В	Regula	risation			CO5				
С	-	ng strate	gies		CO5				
Unit 5		0	Organising N	laps	CO6				
А		ganising	0 0	•	CO6				
В	The SC	DM algo		CO6					
С	Learnii	Learning vector quantisation							
Mode of examination	Theory								
Weightage	CA		MTE	ETE					
Distribution	30%		20%	50%					
Text book/s*		Founda K. Meh Ranka, MIT Pr	ntion 2nd edition <b>notra, C. Mo</b> <i>Elements of A</i> ess, 1997.	rtificial Neural Networks,					
Other	1.			l Networks, R. Callan,					
References			e Hall Europe,						
	2.		ction to Neura n, IOP Press, 1	l Networks, R. Beale and T. 990					
	3.		roduction to N ress, London, 1	eural Network, K Gurney, 1997					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE688.1	2	2	1	2	2	2	2	2	2	1	2		
ECE688.2	3	3	3	2	2	2	2	2	2	2	2		
ECE688.3	3	2	1	2	2	2	2	2	2	2	2		
ECE688.4	3	2	3	2	2	2	2	2	2	2	2		
ECE688.5	3	2	3	2	2	2	2	2	2	2	2		
ECE688	3	2	2	2	2	2	2	2	2	2	2		

Normalized CO Average: (Level 1: 0 - 0.33; Level 2: 0.34 - 0.66; Level 3: 0.67 - 1)

1-Slight (Low)

2-Moderate (Medium)

**3-Substantial (High)** 

School: SET		Batch : 2020-22									
Prog	ram: M.Tech	Current Academic Year: 2020-21									
	ch: D.C	Semester:I									
1	Course	ECE686									
	Code	ECE000									
2	Course Title	Microwave Communication									
3	Credits										
4	Contact	3-0-0									
	Hours										
	(L-T-P)										
	Course	Department Elective									
	Status										
5	Course	1. To understand microwave and millimetre wave vacuum tub	e and solid								
	Objective	state devices									
		2. To understand various type of antennas and their application	ıs								
		3. To understand the designing of radio link									
6	Course	After completing this course, students will be able to:									
	Outcomes	CO1: The concept of microwave generation									
		CO2: Analyse impedance matching									
		CO3: Design and use of various antennas									
		CO4:Apply concepts microwave propagation									
		CO5: Analyze the Effect of atmosphere on radio wave propagation									
7	Course	This course is intended to introduce to students: (i) various types									
	Description	for generation of microwaves (ii) concepts of impedance matching networks									
		(iii) Scattering parameters (iv) Development of the free space com	nunicatior								
		link equations (iv) Microwave propagation losses.									
8	Outline sylla	bus	СО								
	5		Mapping								
	Unit 1	Microwave and millimetre wave devices									
	A	Overview of microwave and millimetre wave vacuum tube	CO1								
		devices, limitations of microwave vacuum tubes									
	В	Microwave and millimetre wave solid state devices, Gunn	CO1								
		devices,									
	С	IMPATT devices, and microwave and mm wave performance of	CO1								
		IMPATT.									
	Unit 2	Microwave and mm wave circuits									
	А	Review of scattering matrix concept in the light of vector network	CO2								
		analyser.									
	В		CO2								
		Impedance matching network, couplers, power dividers, resonators and filters	CO2								
		Impedance matching network, couplers, power dividers, resonators and filters	CO2 CO2								
	В	Impedance matching network, couplers, power dividers,									
	В	Impedance matching network, couplers, power dividers, resonators and filters Detectors, mixers, attenuators, phase shifters, amplifier and									

	independent	antenna: lo	g spiral and log periodic dipole antenna					
	array.							
В	-		guide slot antenna, micro-strip antenna,	CO3				
	horn antenna, parabolic antenna.							
C	Antenna arrays and phased array antenna.							
Unit 4	Microwave and mm wave propagation							
A	Basic radio wave propagation mechanisms, Friis transmission							
	formula.							
В	Plane earth propagation model, Tropo-scatter systems, ionosphere							
	propagation.							
С	Duct propag	Duct propagation, microwave radio link and calculation of link						
	budget.							
Unit 5	Effect of at	mosphere o	n radio wave propagation	CO5				
Α	Effect on radio wave propagation due to rain, fog.							
В	Effect on radio wave propagation due to snow, ice.							
С	Effect on rac	dio wave pro	opagation due to atmospheric gases,	CO5				
	Earth's mag	netic field.						
Mode of	Theory/Jury	/Viva						
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text	P Bhartia &	I J Bahl, M	illimeter wave engineering and					
book/s*	Applications		5 S					
Other References	David M Po	zar, Microw	rave Engineering, John Wiley & Sons					
	R E Collin, A							

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE686.1	3	3	2	1	2	2	2	2	2	2	2		
ECE686.2	3	3	2	2	2	2	2	2	2	2	2		
ECE686.3	3	3	3	2	2	2	2	2	2	2	2		
ECE686.4	3	2	1	2	2	2	2	2	2	2	3		
ECE686.5	3	2	3	2	2	2	2	2	2	2	3		
ECE686	3	3	3	2	2	2	2	2	2	2	2		

School	: SET	Batch : 2020-22							
	am: M. Tech	Current Academic Year: 2020-21							
Branc		Semester:II							
1	Course Code	ECE 687							
2	Course Title	Design of Communication Networks							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Department Elective							
5	Course	1. The objective of the course is to develop mathe							
	Objective	that allow the study of admission control, conge							
		pricing mechanisms used in emerging high-spe	ed and wireless						
		network							
		2. primary focus of the course would be the Intern							
		3. models developed in this course will be motivated by a series of the laternate such as P							
		protocols and services in the Internet such as R Diff Serv	ED, ECN and						
6	Course	CO1: Demonstrate the understanding of Communication Networks							
0	Outcomes	CO2: Configure Elements of Queueing Theory							
		CO3: Demonstrate the understanding of Internet Conge	estion Control						
		CO4: Configure Traffic modelling							
		CO5: Programming for communication networks							
7	Course	An introduction to networking, which is a technology used to extend							
	Description	telecommunications connectivity for information distri							
		geographic regions. Topics include architecture, desigr	n, and						
		implementation, as well as the influence of the state an	d federal						
		regulatory environments.							
8	Outline syllabu		CO Mapping						
	Unit 1	Overview and Taxonomy of Communication	CO1						
		Networks	<u> </u>						
	A	circuit switched networks	COl						
	B	virtual-circuit switched networks	COl						
	C	Internet congestion control	CO1						
	Unit 2	Elements of Queueing Theory	CO2						
ļ	A	Markov Chains, Poisson process	CO2						
l	B C	M/M/1 queue, M/G/1 queue, multi-server queues	CO2 CO2						
	Unit 3	Erlang-B formula, Little's law, P-K formula	CO2 CO3						
	A Onit 5	Internet Congestion Control optimization based framework, relation to TCP	CO3						
	B	linearized stability with round-trip delay	CO3						
	B C	Active Queue Management (AQM): Tail drop, RED	CO3						
	Unit 4	Stochastic and Deterministic Traffic Modeling	CO4						
	A A	leaky bucket regulator and worst-case provisioning	CO4						
	B	network calculus, Chern off bound and zero-buffer	CO4						
		multiplexing							
	1	manipioning							

 C	large buffe	r behavior ar	nd effective bandwidth	CO4				
Unit 5	Stochastic	dynamic pr	ogramming	CO5				
А	Markov d	ecision proce	sses	CO5				
В	application networks	is to optimal	control of communication	CO5				
С		Loss Networks: resource allocation for circuit						
		switching (trunk reservation), reduced load						
Mode of examination	Theory/Jun	y/Practical/V	Viva					
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*		Kumar, D. M	1					
	Ap	proach," Moi	n Networking : An Analytica gan Kaufmann Series in					
		tworking Edi						
			Stochastic Modeling and the					
			es," Prentice Hall, 1989					
Other			astic Processes," Wiley, 1995					
References			P. Varaiya, "High					
	Per	formance Co	mmunication Networks,"					
	Mc	organ Kaufma	an 1996.					
	3. J.	Bucklew, "La	arge Deviation Techniques In					
	De	cision, Simul	ation And Estimation," Wiley					
	Ne	w York, NY,	1990					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE687.1	3	3	2	1	2	2	2	2	2	2	2		
ECE687.2	3	3	2	1	2	2	2	2	2	2	2		
ECE687.3	3	3	3	1	2	2	2	2	2	2	2		
ECE687.4	3	2	1	1	2	2	2	2	2	2	3		
ECE687.5	3	2	3	1	2	2	2	2	2	2	3		
ECE 687	3	3	2	2	2	2	2	2	2	2	2		

School	: SET	Batch : 2020-22						
	m: M.TECH	Current Academic Year: 2020-21						
Branch		Semester II						
1	Course	ECE 690						
	Code							
2	Course	Image Processing						
	Title							
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course	Department Elective						
	Status							
5	Course	This course will introduce the fundamentals of stat	1					
	Objective	recognition. focus on generative methods such as t						
		decision theory and related techniques of paramete						
		density estimation. Methods of pattern recognition						
		applications such as information retrieval, data mir analysis and recognition, computational linguistics						
		and bioinformatics.	, iorensies, bioineures					
6	Course	CO1: understanding of fundamental concepts in pattern recognition						
0	Outcomes	CO2: maximum likelihood estimation &Bayesian						
	outcomes	CO3: ability to apply mathematical and algorithmic						
		designing	e principies in					
		pattern recognition systems while understand	ling the tradeoffs					
		involved	8					
		in design choice						
		CO4: familiar with current techniques and skills fo	r practical pattern					
		recognition applications.						
		CO5: design and develop a pattern recognition syst	tem for the					
		specific application.						
7	Course	Pattern recognition is the scientific discipline whose						
	Description	classification of objects into several categories or c	5					
		can be images (2D signals) or signal waveforms (1						
		of measurements that need to be classified. The objusting the generic term patterns. Pattern recognition						
		machine intelligence systems.	i is all littegraf part of					
8	Outline sylla		CO Mapping					
	Unit 1	Pattern recognition fundamentals						
	A	Basic concepts of pattern recognition,	CO1,CO2					
		fundamental problems in pattern recognition	,					
		system						
	В	design concepts and methodologies, example of	CO1.CO3					
		automatic pattern recognition systems						
	С	A simple automatic pattern recognition model.	CO2					

Unit 2	Bayesian d	lecision theo	ory				
А			assification, Classifiers,	CO2			
	Discrimina	nt functions					
В	Decision su	CO1, CO3					
	discriminar						
С	Discrete fea	atures, Missi	ng and noisy features,	CO1.CO4			
	Bayesian n						
	inferencing	- •					
Unit 3	Maximum	-likelihood a	and Bayesian parameter				
	estimation						
A	Maximum-	CO2,CO3					
	Maximum	a Posteriori e	estimation				
В	Bayesian e	stimation: Ga	aussian case, Problems of	CO4			
	dimensiona						
C	Dimension	ality reduction	on: Fisher discriminant	CO5			
	-	-	ion Maximization method:				
	Missing fea						
Unit 4	Sequential						
A	State Space	CO3,CO4					
	Bayesian						
В	Non-param	CO4					
	Parzen-win						
	method						
C	Linear disc	Linear discriminant functions: Gradient descent					
	procedures						
	Minimum-s	Minimum-squared-error procedures.					
Unit 5			g and clustering				
A	Unsupervis	ed maximun	n-likelihood estimates,	CO4			
		ed Bayesian					
В	Criterion fu	unctions for c	clustering, Algorithms for	CO4,CO5			
		Kmeans, Hie	erarchical and other				
	methods						
C			-dimensional	CO5			
	1 1	ion and mult	idimensional scaling				
	(MDS)						
Mode of	Theory						
examination		1	I				
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text		U	principles: Julus T. Tou				
book/s*			lez, Addision – Wesley.				
			and machine learning,				
		_	op, Springer 2006.				
Other	-		heory of pattern				
References	reco	ognition, Luc	: Devroye, László Györfi,				
	Gáb						

2.	Pattern classification, Richard O. Duda,	
	Peter E. Hart and David G. Stork, Wiley,	
	2001.	
3.	Pattern Classification, R.O.Duda,	
	P.E.Hart and D.G.Stork, John Wiley.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE690.1	3	3	2	2	2	2	2	2	2	2	2		
ECE690.2	3	3	2	2	2	2	2	2	2	2	2		
ECE690.3	3	3	3	2	2	2	2	2	2	2	2		
ECE690.4	3	2	1	2	2	2	2	2	2	2	3		
ECE90.5	3	2	3	2	2	2	2	2	2	2	3		
ECE690	3	3	2	2	2	2	2	2	2	2	2		

School:	SET	Batch: 2020-22								
	m: M. TECH	Current Academic Year: 2020-21								
Branch		Semester: I								
1	Course	ECE 667								
	Code									
2	Course	Data Communication								
	Title									
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course	Departmental Elective								
5	Status		1fD:.:4.1							
5	Course	This course will introduce knowledge of Fundamenta								
	Objective	Communication, Baseband pulse shaping, error detect correction codes, Synchronous and Asynchronous tra								
6	Course	CO1: Knowledge of Digital Communication								
0	Outcomes	CO2: Knowledge of Baseband Transmission								
	Outcomes	CO3: Knowledge of Bandpass data transmission								
		CO4: Elaboration of Detection Codes								
		CO5: Knowledge of Asynchronous and synchronous data transmissio								
7	Course	Students are expected to have a strong mathematical background and								
	Description	an understanding of probability theory, understanding the procedure of								
	1	transmitting data over the network and how to resolve the conflicting								
		issues arising in the course of transmission.	0							
8	Outline sylla		CO Mapping							
	Unit 1	Introduction								
	Α	Fundamentals of Digital Communication,	CO1							
		Communication channel, Measurement of								
		information								
	B	Encoding of source output, Shannon fano Encoding	CO1							
	~	Algorithm								
	C	Discrete and continues-channel,Entropy, Variable	CO1							
		length codes, Data compression. Shannon-Hartley								
	U:4 2	Theorem								
1	Unit 2	Baseband Data Transmission Reschand Data Transmission Reschand pulse	CO2							
	A	Baseband Data Transmission, Baseband pulse shaping								
	В	Dubinary Baseband PAM, System many signaling	CO2							
		schemes								
1	С	Equalization Synchronisation Scrambler	CO2							
		.Unscrambler								
	Unit 3	Band Pass Data Transmission System								
	A	Band Pass Data Transmission System ASK,PSK,	CO3							
		FSK								
	В	DPSK &PSK,MSK, Modulation schemes	CO3							

С			ent detector Probability of	CO3					
 TT •4 4			Analysis and comparison						
Unit 4			orrection codes	<b>GO 1</b>					
A		tion and cori	rection codes Linear block	CO4					
	Encoding	6							
В		Algebraic Codes Cyclic codes							
С	Convolution	CO4							
Unit 5	Synchrono	Synchronous and Asynchronous transmission							
Α	Synchronou	is and Async	hronous transmission.	CO5					
	-	Modem, Serial interface Circuit Switching, Packet Switching, Hybrid							
В									
	switching								
С	Architecture	CO5							
		tion protocol							
Mode of	Theory	1							
examination									
 Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text	Behrouz.	a.Forouzan.'	'Data Communication and						
book/s*			cGraw Hill, New						
	Delhi,20	0							
	-		1						
Other			al Communications", Wiley						
References	India Edi	ition							
	2. B.P.Lath	i,"Modern D	igital and Analog						
			ems" Third edition,Oxford						
	Universit	•							
		1 1035							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE667.1	3	3	2	2	2	2	2	2	2	3	2		
ECE667.2	3	3	2	2	2	2	2	2	2	3	3		
ECE667.3	3	3	3	2	2	2	2	2	2	3	3		
ECE667.4	3	2	1	2	2	2	2	2	2	3	3		
ECE667.5	3	2	3	2	2	2	2	2	2	3	3		
ECE667	3	3	2	2	2	2	2	2	2	3	3		

School: S	ЕТ	Batch : 2020-22							
Program	: M. Tech	Current Academic Year: 2020-21							
Branch:D		Semester: II							
1	Course Code	ECE 690							
2	Course Title	Cryptography							
3	Credits								
4	Contact	3-0-0							
•	Hours								
	(L-T-P)								
	Course Status	Departmental Elective							
5	Course	1. To understand the various key distribution and management							
5	Objective	schemes.							
		2. To understand how to deploy encryption techniques to secure							
		data in transit across data networks							
		3. To design security applications in the field of Information							
		technology							
6	Course	CO1: classify the symmetric encryption techniques							
	Outcomes	CO2: Discuss authentication applications							
		CO3: Illustrate various Public key cryptographic techniques							
		CO4: Summarize the intrusion detection and its solutions to							
		overcome the attacks							
		CO5: Basic concepts of system level security							
7	CO3: Basic concepts of system level security           Course         Understanding the fundamentals of Cryptography.								
,	Description Cryptography is a tremendous tool which provides basis for many								
	Description	security mechanisms							
8	Outline syllabu		CO Mapping						
0	Unit 1	Basic symmetric-key encryption							
	A	Overview of cryptography, One time pad and	CO2						
		stream ciphers	002						
	В	Block ciphers, Block cipher abstractions: PRPs and	CO2						
		PRFs	002						
	С	Attacks on block ciphers	CO1						
	Unit 2	Message integrity							
	A A	Message integrity: definition and applications	CO2						
		CBC-MAC and PMAC	002						
	В	Collision resistant hashing (Merkle-Damgard and	CO2						
		Davies-Meyer. MACs from collision resistance)							
	С	Authenticated encryption: security against active	CO2						
		attacks							
		& intro to session setup using a key distribution							
		center (KDC).							
	Unit 3	Public key cryptography							
	A	Arithmetic modulo primes	CO3						
	B	Cryptography using arithmetic modulo primes	CO3						
		(vanilla key exchange (Diffie-Hellman); the CDH							
		and discrete-log assumptions)							
	1								

C	Public key encryption (semantically secure	CO3
	ElGamal encryption; CCA security)	
Unit 4	Digital signatures	
А	Digital signatures: definitions and applications	CO4
	How to sign using RSA.	
В	More signature schemes and applications	CO4
	(Hash based signatures)	
С	certificates, certificate transparency, certificate	CO4
	revocation	
Unit 5	Challenge response authentication	
A	Identification protocols: Password protocols, salts;	CO5
	one time passwords (S/Key and Secur	
	ID); challenge response authentication.	
В	Authenticated key exchange and SSL/TLS session	CO5
	setup	
С	Zero knowledge protocols	CO5
Mode of	Theory/Jury/Practical/Viva	
examination		
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	Introduction to Modern Cryptography (2nd edition)	
	by J. Katz and Y. Lindell.	
Other	Boneh-Shoup : <u>A Graduate Course in Applied</u>	
References	<u><i>Cryptography</i></u> $(V 0.4)$ by D. Boneh and V. Shoup	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10	PSO1	PSO2	PSO3
ECE690.1	2	1	2	2	2	2	1	2	2	2	2		
ECE690.2	3	2	2	1	2	2	1	2	2	2	3		
ECE690.3	3	2	2	2	2	2	1	2	2	2	3		
ECE690.4	3	2	2	2	2	2	1	2	2	2	3		
ECE690.5	3	2	2	2	2	2	2	3	2	3	3		
ECE690	3	3	2	2	2	2	2	2	2	3	3		

School:	SET	Batch : 2020-22	
	n: M.Tech	Current Academic Year: 2020-21	
Branch:		Semester: II	
1	Course Code	ECE 669	
2	Course Title	Secured Communication	
3	Credits		
4	Contact Hours	3-0-0	
•	(L-T-P)		
	Course Status	Department Elective	
5	Course	1. To introduce the basic concept encryption technique	es
	Objective	2. To familiarise with the concept of private key and p	ublic key
		cryptosystems.	
		3. To introduce the concept of Elliptic curves	
6	Course	After completing this course, students will be able to:	
	Outcomes	1. To Understand Cryptography attacks, Integer arithmetic	, linear
		congruence	,
		2. To Understand encryption techniques	
		3. To Understand Private key and public cryptosystem	
		4. To Understand Elliptica curves	
		5. Discrete logarithm problem on EC	
7	Course	The principles are tempered with their practical significance	to cone un
/	Description	with the interest to both researchers and system designers.	
	Description	facilitated by streamlined derivations and assignments.	Leanning 15
8	Outline syllabus		СО
0		,	Mapping
	Unit 1	Introduction	
	A	Security Goals, Cryptographic Attacks	CO1
	В	Services and Mechanisms, Integer Arithmetic	C01
	C	Modular Arithmetic, Linear Congruence	C01
	Unit 2	Basic encryption techniques	
	A A	Concept of cryptanalysis ,Symmetric key ,Block ciphers	CO2
	B	Cryptographic algorithms, Features of DES, Stream ciphers,	CO2
		Pseudo random sequence generators, linear complexity	002
	С	Non-linear combination of LFSRs ,	CO2
		Boolean functions	002
	Unit 3	Private key and Public key cryptosystems	
		Asymmetic Key, One way functions, Primality Testing,	CO3
	A		005
		Factorization problem, Chinese Remainder Theorem, RSA	
	В	encryption	CO3
	D	Diffie Hellmann key exchange, Message authentication and hash functions	005
	С		CO3
		Digital signatures, Secret sharing, features of visual	005
		cryptography , other applications of cryptography	
	Unit 4	Elliptic curves	
	AB	Basic theory, Weirstrass equation	CO4
		Group law, Point at Infinity	CO4

С	Elliptic cu	urves over f	inite fields		CO4			
Unit 5	Discrete	logarithm <b>j</b>	oroblem on E	С	CO5			
А	Elliptic cu	arve cryptog	graphy		CO5			
В	Diffie He	Diffie Hellmann key exchange over EC						
С	Elgamal e	Elgamal encryption over EC, ECDSA						
Mode of examination	Theory/Ju	ıry/Viva	· · · · · · · · · · · · · · · · · · ·					
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*		4. Stinson, on, Chapma		y, Theory and Practice", Press Company,				
Other	Lawrence	C. Washin	gton, " Elliptic	c Curves", Chapman &				
References	eferences Hall, CRC Press Company, Washington							
	David S. Dummit, Richard M. Foote, "Abstract Algebra",							
	John Wile	ey & Sons		5				

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE669.1	3	3	2	3	2	2	2	3	2	2	3		
ECE669.2	3	3	2	3	2	2	2	3	2	2	3		
ECE669.3	3	3	3	3	2	2	2	3	3	2	3		
ECE669.4	3	2	1	3	2	2	2	3	3	2	3		
ECE669.5	3	2	3	3	2	2	2	3	3	2	3		
ECE669	3	3	2	3	2	2	2	3	3	2	3		

SET	Г	Batch : 2020-22	
	Tech	Current Academic Year: 2020-21	
	P 684	Semester: I	
1	Course Code	ECP 684	
2	Course Title	Digital Signal Processing Lab	
3	Credits	2	
4	Contact Hours	0-0-4	
	(L-T-P)		
	Course Status	Compulsory	
5	Course	• To understand the concept of sampling and rec	construction of
	Objective	signals.	
		• To implement various transforms (DFT, FFT and Z	/
		MATLAB and understand the concepts of these tran	
		• To design and implement the various structures of	of FIR and IIR
		systems.	
		• To design and implement FIR and IIR filters.	
6	Course	CO1: To implement the concept of sampling and reconstruct	ction.
	Outcomes	CO2: To implement DFT and FFT.	
		CO3: To implement and understand the difference between	linear and
		circular convolution.	
		CO4: To implement the system function of a system using	MATLAB.
		CO5: To implement IIR and FIR systems.	
		CO6: To implement various types of structures for IIR syst	
7	Course	This course includes the implementation of sampling and r	
	Description	of signals, DFT and FFT. It also focuses on implementation	
		functions and the concepts of linear convolution. Implement	
		various structures and design of IIR and FIR filters are also this course.	covered in
8	Outline syllabus		CO Mapping
0	Unit 1	a-b) To understand the sampling theorem through the	C01,CO2
		sampling and reconstruction of signals.	01,002
		c) To obtain DFT and IDFT of a sequence	
	Unit 2	a) To implement the FFT algorithm.	CO2
		b) To obtain the FFT of given 1-D signal and plot.	
	Unit 3	a) To verify linear and circular convolution.	CO3,C04
		b) To implement a system function and to plot the	
		pole zero plot for same.	
	Unit 4	a-c) To obtain direct realization of FIR and IIR filters.	CO5
	Unit 5	a) To build a Filtering System Using Filter	C06
		Coefficients	
		b) To design FIR filters using windowing technique.	
		c) To design IIR filters.	

Mode of examination	Jury/Practica	Jury/Practical/Viva						
Weightage	CA	MTE	ETE					
Distribution	60%	0%	40%					
Text book/s*	1.G. Proakis	1 .G. Proakis and D.G. Manolakis, "Digital Signal						
	Processing, P	rincipals, Algo	orithms, and Applications",					
	Pearson Educ	cation.						
Other	1. A.Y.	Oppenhein and	d R. W. Schater, "Digital					
References	Signa	Signal Processing", PHI						
	2. 2.A. Y	2. 2.A. Y. Oppenhein, R. W. Schater and J. R. Buck,						
	"Disc	rete Time Sign	al Processing", PHI					

CO	PO	<b>PO1</b>	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
<b>ECE684</b>	3	2	2	2	2	1	1	1	2	-	2		
.1													
<b>ECE684</b>	3	1	2	2	2	1	1	1	2	-	2		
.2													
<b>ECE684</b>	3	3	2	3	2	1	1	1	2	2	2		
.3													
<b>ECE684</b>	3	3	2	3	2	1	1	1	2	-	2		
.4													
<b>ECE684</b>	3	3	3	3	2	1	1	1	2	2	2		
.5													
ECE	3	2	2	3	2	1	1	1	1	1	2		
684													

Sc	hool: SET	Batch : 2020-22
	ogram:	Current Academic Year: 2020-21
	.ТЕСН	
Bı	anch:D.C	Semester: II
1	Course Code	ECE771
2	Course Title	Information Theory and Coding
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Elective
5	Course Objective	1. The main aim of this course is to make aware students with basics of probability theory.
		<ol> <li>Will have knowledge of information theory which includes Entropy, Channel Capacity &amp; S/N Ratio.</li> </ol>
		3. Knowledge of various types of data compression techniques.
		<ol> <li>Learn about various coding techniques like Hamming Codes, Cyclic &amp; Convolution Codes.</li> </ol>
6	Course Outcomes	CO1: Understand Probability theory, Bayes Theorem, Poisson Distribution Functions.
		CO2: Comprehend to measure information & its rate, about Gaussian Channel & B/W-SNR Tradeoffs and various types of channels.
		CO3: Apply the use of various coding & decoding techniques.
		CO4:Design of various communication channel with various coding techniques
7	Course Description	CO5: Apply different information coding Offers an introduction to the quantitative theory of information and its applications to reliable, efficient communication systems. Topics include mathematical definition and properties of information, source coding theorem, lossless compression of data, optimal lossless coding, noisy communication channels, channel coding theorem, the source channel separation theorem, multiple access channels, broadcast channels, Gaussian noise, and time-varying channels.

Outline s	syllabus				CO Mapp		
Unit 1	Probability t	heory					
A	Definition and	d properties of proba	bility, conditional	probability,	CO1, CO2		
	Bayes theorem			1 .			
В	Random Vari	able Types and Cha	racteristics of Rand	dom Variable.	CO1, CO2		
С		tion, Binomial, Pois			CO2		
Unit 2	Information	Theory			CO2		
A	Uncertainty, 1	Measure of informat	ion, Entropy and i	ts properties,	CO1		
	Rate of inform	nation.					
В	Joint Entropy and Conditional Entropy.						
С	Mutual Inform	nation, Channel Cap	acity.		CO3		
Unit 3	Channel Cap	acity					
A	Channel Capa	acity for Gaussian C	hannel, B/W-SNR	trade off.	CO1,CO3		
В	study of Char	mels BSC			CO3		
С	BEC, Cascad	ed Channel etc.			CO2		
Unit 4	Data Compr	ession					
A	Introduction,	Variable Length Co	ding, Prefix Codin	g and	CO2		
	Properties.						
В	Shannon Fano	o Coding.			CO1		
С	Huffman Cod	ling (Binary, Ternary	y Coding).		CO3		
Unit 5	Introduction	to Coding					
A	Linear Block	Codes Hamming Co	ode, Single Parity	Check bit Code	CO5		
В	Cvclic Code:	basic Definitions an	d Properties, Gene	ration and	CO5		
	decoding.		1 ,		_		
С		l Code: basic Defini	tions and Propertie	es, Generation	CO5		
	and decoding		1	,	_		
Mode	Theory						
of							
examin							
ation							
Weight	CA	MTE	ETE				
age	30%	20%	50%				
Distrib							
ution							
Text	Haykin, Sin	non, "Digital Comm	unication", Wiley	Publishers, 3 rd E	Edition		
book/s*				,			
Other		" Information Theor					
Referen	2. Richard, W	Vesley Hamming, "C	oding and Inform	ation Theory".			

Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE771.1	2	1	2	2	2	2	2	2	2	3	2		
ECE771.2	3	2	2	1	2	2	2	2	2	3	3		
ECE771.3	3	2	2	2	2	2	2	2	2	3	3		
ECE771.4	3	2	2	2	2	2	2	2	2	2	3		
ECE771.5	3	2	2	2	2	2	2	3	2	3	3		
ECE771	3	3	2	2	2	2	2	2	2	3	3		

Scho	ool: SET	Batch : 2020-22	
Prog	gram: M. Tech	Current Academic Year: 2020-21	
	nch: D.C	Semester: II	
1	Course	ECE 687	
	Code		
2	Course	Broad band Transmission Network	
	Title		
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course	Elective	
	Status		
5	Course	1. To provide an overview of Wireless Communicat	
	Objective	area and its applications in communication engine	
		2. To appreciate the contribution of Wireless Comm	unication
		networks to overall technological growth.	
		3. Analysing the various terminology, principles, de	
		concepts, algorithms and different methodologies Communication Networks.	used in wireless
6	Course	Communication Networks. CO1: Learning the main optical technologies such as SO	NFT
0	Outcomes	CO2: Learning the Network design SDH frame structure	
	Outcomes	overhead.	5 & 5D11
		CO3: Learning WDM optical transmission technologies.	
		CO4: Learning WDM optical transmission Networks.	
		<b>CO5:</b> Learning DWDM transmission Technologies.	
7	Course	The continuous advance of current Information Society v	vould not be
	Description	possible without the adequate deployment of infrastructu	
	1	broadband networks. This subject is aimed at analysing b	
		communication technologies, networks and protocols em	
		information transport and access.	
8	Outline sylla	bus	CO Mapping
	Unit 1	SONET	CO1
	А	Introduction, Synchronous and asynchronous SONET	CO1
	В	Frame structure	CO1
	C	SONET network configuration	CO1
	Unit 2	SDH TECHNOLOGY	
	Α	Introduction, standards, features & management.	CO2
	В	Network design SDH frame structures	CO2
	C	Supporting different rates, SDH overhead	CO2
	Unit 3	Wavelength Division Multiplexing	
	A	WDM optical Transmission technologies, WDM	CO3
		conceptions	
	B	Unidirectional, Bi-directional WDM	CO3
	C	WDM system composition, Advantages of WDM	CO3

Unit 4	WDM tra	nsmission N	Network							
А	Fiber dispe	ersion chron	natic dispersion	CO4						
В		n mode disp		CO4						
С	Non-linear	ity effect of	SMF, 4-wave mixing	CO4						
Unit 5	DWDM k	ey Technolo	ogies							
А	Optical am	plifier		CO5						
В	Optical Mu	Optical Multiplexer & Demultiplexer								
С	Optical su	Optical supervisory channel, FEC technologies								
Mode of	Theory	Theory								
examination										
Weightage	CA	MTE	ETE							
Distribution	30%	20%	50%							
Text	• Lo	utfi Nuyami	, "WiMAX - Technology for							
book/s*	bro	adband acce	ess", John Wiley, 2007							
Other References		<ul> <li>broadband access", John Wiley, 2007</li> <li>1. B. Gi Lee and W. Kim. "Integrated Broadband Networks - TCP/IP, SDH/SONET and WDM/optics". Artech House.</li> <li>2. H. Wang. "Packet Broadband Network Handbook". McGraw-Hill Professional.</li> <li>3. H.G. Perros. "Connection-Oriented Networks: SONET/SDH, ATM, MPLS and Optical Networks". Wiley.</li> </ul>								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE687.1	2	1	2	3	2	2	2	2	3	3	2		
ECE687.2	3	2	2	3	2	2	2	2	3	3	3		
ECE687.3	3	2	2	3	2	2	2	2	3	3	3		
ECE687.4	3	2	2	3	2	2	2	2	3	2	3		
ECE687.5	3	2	2	3	2	2	2	3	3	3	3		
ECE687	3	3	2	3	2	2	2	2	3	3	3		

Scho	ool: SET	Batch: 2020-22							
Prog	gram: M. Tech	Current Academic Year: 2020-21							
	nch: D.C	Semester: II							
1	Course Code	ECE 773							
2	Course Title	MODERN TELECOM SWITCHING S	YSTEMS						
3	Credits	3							
4	Contact Hours (L-T-P)	3-0-0 Elective							
	Course Status	Elective							
5	Course Objective	<ol> <li>Analysis of different basic compone exchanges</li> <li>Recognize and analyze single stage</li> <li>Design of multistage network to red</li> <li>Demonstration of different types sw used in exchanges such as time divis division space switching and combin switching.</li> </ol>	and a multistage network. uce blocking of calls itching techniques that are sion time switching, time						
6	Course Outcomes	On completion of this course, it is expected CO1: Understand the main concepts of teled design. CO2: Analyze and evaluate fundamental te models. CO3: Analyse the basic modern signalling s CO4: Analyse traffic engineering CO5: Solve traditional interconnection swit CO6: To compare telephone network, data digital network	communication network elecommunication traffic system. ching system design problems.						
7	Course Description	INDIA'S telecommunication industry is the Telecommunication networks carry informat which are geographically far apart. The enti- process of information transfer, which may conversation (telephony) or a file transfer b message transfer between two terminals. In modern circuit switches this is done elect If no circuit is available when a call is made When a call is finished a connection teardow circuit available for another user.	ation signals among entities, ities are involved in the be in the form of a telephone etween two computers or tronically in digital switches. e, it will be blocked (rejected).						
8	Outline syllab	DUS	CO Mapping						
	Unit 1	Electronic space Division switching							
	A	Stored program control (SPC)	CO1, CO2						
	В	switching matrices, multistage switching	CO1, CO2						
	С	enhance services photonic switching	CO2						

Unit 2	Time Division switching	
A	Time division space, and time switching, multiplexed switching, combination switching	CO1, CO3
В	T -S, T -S- T, switching n-stage combination switching, PBX switching	CO3
С	PBX networking, digital PBX	CO3
Unit 3	Traffic Engineering	
А	Traffic load, Grade of service	CO4
В	Er. Jang's formulas	CO4
С	blocking modelling switching systems, Blocking model	CO4
Unit 4	Subscriber Loop, Dialling Systems	
А	Switching hierarchy & routing, Transmission plan	CO5
В	numbering plan, charging plan	CO5
С	Signalling technique	CO5
Unit 5	Local Access Techniques	
Α	Digital subscriber lines	CO6
В	DSL, ADSL etc ." wireless for local telephone services.	CO6
С	WLL, FIL." wireless for local telephone services.	CO6
Mode of examination	Theory/Viva	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	Telecomm. Switching systems & networks- Thaigrajan PHI	
Other References	<ol> <li>Comm, System - Taub &amp; Schilling, Mc Graw Hill</li> <li>Telecomm. &amp; the Computers -</li> </ol>	
	James Martin - PHI 3. The Issential Guide to Telecomm - Pearson Educah - Annabelz Dodd.	

Cos	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE	2	3	2	3	3	2	2	2	3	3	2		
773.													
1													
ECE	3	3	2	3	3	2	2	2	3	3	3		
773.													
2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
773.													
3													
ECE	3	3	2	3	3	2	2	2	3	2	3		
773.													
4													
ECE	3	3	2	3	3	2	2	3	3	3	3		
773.													
5													
ECE	3	3	2	3	3	2	2	2	3	3	3		
773													

Schoo	l: SET	Batch : 2020-22	
	am: M.Tech	Current Academic Year: 2020-21	
Branc		Semester: II	
1	Course Code	ECE820	
2	Course Title	Computational Agents for Artificial Intelligence	
3	Credits	4	
4	Contact Hours (L-T-P)	3-1-0	
	Course Status	Department Elective	
5	Course	The objectives of this course are to:	
	Objective	<ol> <li>Provide fundamental knowledge about computational a for artificial intelligence.</li> <li>Develop understanding of building blocks and logic systems based on artificial intelligence</li> <li>Create system modelling and design skills for intelligence</li> </ol>	cs used for
6	Course Outcomes	<ul> <li>Upon successful completion of this subject, students show to:</li> <li>1. Demonstrate fundamental understanding of computation of artificial intelligence.</li> <li>2. Apply problem solving agents as a tool to design intelligence based systems.</li> <li>3. Analyse algorithms of knowledge representation and for artificial intelligence.</li> <li>4. Perform the design of knowledge based systems.</li> <li>5. Comprehend the design of multiagent artificial intelligence as a systems.</li> </ul>	onal agents m artificial d reasoning
7	Course Description	As with any science being developed, Artificial Intelligence coherent, formal theory and a rambunctious experimental win study of the design of intelligent computational agents. Th course, the students will gain valuable skills at several lev from expertise in the specification and design of intelligen skills for implementing, testing, and improving real software several challenging application domains	g. AI is the hrough this els ranging it agents to
8	Outline syllabus		CO Mapping
	Unit 1	Introduction to AI and its Agents	CO1
	А	History of Artificial Intelligence, Applications of AI, Introduction to Intelligent Agents	
	В	Structure of Agents: Agent Program, Simple reflex, Model based, Goal based, Utility based, Learning agents	

С	Designing Agents and Agent Design Space, Agent Systems,Agent Function, Hierarchical Control PrototypicalApplications of AI									
Unit 2	Problem Solving Agents	CO2								
A	Problem Solving Agents: Search Problems and Solutions, Formulating Problems, Examples of Standardized and Real World Problems									
В	Problem Solving as Search, State Spaces, Graph Searching, Generic Search Algorithm									
С	Uninformed Search Strategies: Breadth-First, Depth-First, Iterative Deepening, Lowest-Cost-First, Informed (Heuristic) Search Strategies: Greedy Best-First, A* Search, Pruning the Search Space									
Unit 3	Knowledge and Reasoning	CO3								
Α	Logical Agents – Knowledge-based Agents, The Wumpus World									
В	Logic, Propositional Logic, Effective Propositional Model Checking									
С	Agents based on Propositional Logic – complete backtracking algorithm, local search algorithm									
Unit 4	Ontologies and Knowledge-Based Systems	<b>CO4</b>								
A	Knowledge sharing, Flexible Representations - Choosing Individuals and Relations, Graphical Representations									
В	Classes, Ontologies and Knowledge Sharing - Uniform Resource Identifiers, Description Logic, Top-Level Ontologies									
С	Implementing Knowledge-Based Systems - Base Languages and Metalanguages, A Vanilla Meta-Interpreter, Expanding the Base Language									
Unit 5	Multiagent Systems	CO5								
A	Multiagent Framework, Representation of Games – Normal form, Extensive form									
В	Multiagent Decision Network, Computing Strategies with Perfect Information									
C	Reasoning with Imperfect Information, Computing Nash Equilibria, Group Decision Making, Mechanism Design									
Mode of examination	Theory									
Weightage Distribution	CA         MTE         ETE           30%         20%         50%									
Text book/s*	1.Artificial IntelligenceFoundationsofComputational Agentsby DavidL.PooleandAlanK.Mackworth, Cambridge University Press2.Artificial Intelligence: A Modern Approach, 3rd Edition, byby Stuart Russell and Peter Norvig, Prentice Hall Series									
Other	1. Artificial Intelligence By Example by Denis Rothman,									

Reference	<ul> <li>Ingram short title</li> <li>A First Course in Artificial Intelligence by Deepak</li> <li>Khemani, McGraw Hill Education</li> </ul>	
-----------	---------------------------------------------------------------------------------------------------------------------------------------------	--

# **COURSE ARTICULATION MATRIX**

Cos	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE820. 1	2	1	1	2	2	2	1	3	1	1	2		2
ECE820. 2	3	2	1	2	2	2	1	3	1	1	3		2
ECE820. 3	3	2	1	2	2	2	1	3	1	1	3		2
ECE820. 4	3	2	1	2	2	2	1	3	1	1	3		2
ECE820. 5	3	2	2	2	2	2	2	3	2	3	3		3

Scho	ol: SET	Batch : 2020-22
Prog	ram: M. Tech	Current Academic Year: 2020-21
<u> </u>	ch:All	Semester:I
1	Course Code	ECE 618
2	Course Title	Mobile and Wireless Communication
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Compulsory
5	Course Objective	<ol> <li>Introduce students about the aspects related to evolution of mobile radio communication and its fundamental.</li> <li>Explain interfernce and sysyem capacity and the techniques used for improving capacity in cellular systems.</li> <li>Familiarize students about GSM and CDMA system, their architecture, services and features.</li> <li>Explain the speech coding, mobile data networks, 4G and OFDM.</li> </ol>
6	Course Outcomes	After completing this course students will be able to CO1: Develop deep understanding of various propagation models. CO2: Describe cellular concepts and its design, types of handoffs, and the relation between interference and system capacity and analyze the speech coding. CO3: Describe the speech coding CO4: Analyze GSM and CDMA system, their architecture, frame structure and forward and reverse CDMA channel and their specifications. CO5: Comprehend the mobile ad-hoc networks, new generation networks and the use of OFDM in 4G technique.
7	Course Description	This course has been designed to provide a comprehensive approach towards the designing of cellular mobile communication systems. It begins with the basic cellular system modeling and then proceeds towards characterization and modeling of radio fading channels and other design aspects of a complete cellular system. Introduction to Wireless and Cellular Communications systems and services. The course will also cover Frequency Reuse, channel Assignment, Handoff Strategies, System Capacity, Turnking, Mobile Radio Wave propagation: large scale path loss and propagation mechanisms and model, Small-Scale fading and multipath, Rayleigh and Ricean Distributions, Multiple Access Techniques for wireless communications.
8	Outline syllabus	CO Mapping
	Unit 1	Mobile Radio Propagation

A	Propagati		Wave Propagation, Free Space hree Basic Propagation Mechanisms- n, Scattering	CO						
В	Reflection	n- Reflection iffraction- Fi	from Dielectrics, Ground Reflection resnel Zone Geometry, Knife edge	CO						
С	Scattering	g- Radar Cro	oss Section Model, Log distance Path nal Shadowing	CO						
Unit 2		Cellular concepts								
A		oncepts, Fre	quency reuse, channel assignment	CO						
В	Handoff s	trategies, int	erference and system capacity.	CO						
С		_	nd capacity in cellular systems.	CO						
Unit 3	Speech C		* * *							
Α		U	ech signals, Quantization Techniques	CO						
В	Frequency Domain Coding of speech- Sub band Coding, Adaptive transform coding									
С			dictive Coders, GSM Codec	CO						
Unit 4	GSM system for mobile									
A	GSM system for mobileServices and features, System Architecture, Radio Sub system Channel types.									
В	Frame Structure.CDMA Digital Cellular Standard (IS 95): Frequency and Channel specifications.									
С			nel and reverse CDMA channel.	CO						
Unit 5		Adhoc Netwo		CO						
A	Mobile da	ata networks.	wireless standards IMT2000.	CO						
В	4G, OFDI			CO						
С	Concept o			CO						
Mode of examination	Theory/Ju									
Weightage	CA	MTE	ETE							
Distribution	30	20	50							
Text book/s*	T.S. Rapp practice",		reless Communication-Principles and econd Edition (2009).							
Other References	1. Andrea Goldsmith, "Wireless Communications", Cambridge University press.									
	2. T L Singal , "Wireless Communications ", McGraw Hill Publications									

Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE 618.1	2	3	2	3	3	2	2	2	3	3	2		
ECE 618.2	3	3	2	3	3	2	2	2	3	3	3		
ECE 618.3	3	3	2	3	3	2	2	2	3	3	3		
ECE 618.4	3	3	2	3	3	2	3	2	3	2	3		
ECE 618.5	3	3	2	3	3	2	3	3	3	3	3		
ECE 618	3	3	2	3	3	2	2	2	3	3	3		

School	: SET	Batch : 2020-22	
Progra	m: M.Tech	Current Academic Year: 2020-21	
Branch		Semester:I/II	
1	Course Code	ECE 612	
2	Course Title	Nano Technology	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P) Course Status	Open-Elective	
5	Course Objective	Paraphrase the importance of nanoelectronics, technological nanoelectronics and limitations of existing CMOS to design of electronic circuits. The course tabulates stand analytical understanding of nano electronic of applications in design of electronic circuits.	technologies for rong theoretical
6	Course Outcomes	At the end of the course, students will demonstrate the CO1: Understand various aspects of nano-technology processes involved in making nano components and mater CO2: Leverage advantages of the nano-materials and in solving practical problems. CO3: Understand various aspects of nano-technology a processes involved in making nano components and mater CO4: Leverage advantages of the nano-materials and in solving practical problems.	and the rial appropriate use and the ial appropriate use
7	Course Description	Understand and appreciate the importance of nanoele impact in next generation electronics and elect Differentiate between MOS and emerging nanodevi understand the advantages and limitations of MOS bas	ronic products. ces technology,
8	Outline sylla	bus	CO Mapping
	Unit 1	Basics of Quantum Mechanics	
	А	Introduction to nanotechnology, meso structures	CO1
	В	Schrodinger equation, Density of States.	CO1
	С	Particle in a box Concepts, Degeneracy	CO1
	Unit 2	Nanoscale MOSFETs	
	A	Shrink-down approaches, Introduction, CMOS Scaling	CO2
	В	The nanoscale MOSFET, Finfets	CO4
	С	Vertical MOSFETs	CO4

Unit 3	CLASSICA	L PARTICL	ES	
А	limits to scal (interconnec		ntegration limits	CO2
В		nneling Diod	9	CO3
С	Coulomb do	ts, Quantum b	lockade	CO2
Unit 4	SINGLE-E	LECTRON E	Devices	
А	Single electr	on transistors		CO3
В	Carbon nanc	tube electroni	ics	CO3
С	Band-structu	CO1		
Unit 5	FREE AND			
А	Transport de	vices, applica	tions	CO4
В	2D semicono	CO3		
С	Graphene, at	CO4		
Mode of examination	Theory/Jury			
Weightage	СА			
Distribution	30	20	50	
Text book/s*	Nanc 2. W. I Tech	Hanson, Fun belectronics, P Ranier, Nanoe nology (Adva Novel Devices		
Other References	1. K.E. 2. J.H. Dime Univ 3. C.P. Nanc			

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PSO1	PSO2	PSO3
ECE 619.1	2	3	2	3	3	2	2	2	3	3	3		
ECE 619.2	3	3	3	3	3	2	2	2	3	3	3		
ECE 619.3	3	3	3	3	3	3	2	2	3	3	3		
ECE 619.4	3	3	2	3	3	3	2	2	3	2	3		
ECE 619.5	3	3	2	3	3	3	2	3	3	3	3		
CO2619	3	3	2	3	3	3	2	2	3	3	3		

Scho	ol: SET	Batch : 2020-22	
	ram: M. Tech	Current Academic Year: 2020-21	
	ch: D.C	Semester: II	
1	Course	ECE 670	
	Code		
2	Course	RF and Micro-MEMS	
	Title		
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course	Open Elective	
	Status		
5	Course	1. Emphasizes on developing components and	
	Objective	significantly improve the performance of e	
		microwave and millimetre wave componen	
		2. Fabrication of new components by a set of	
		micromachining, primarily developed for c electromechanical systems (MEMS).	conventional micro
		3. Categorize Micro-switches, Planar, on-chip	components
		Transmission lines and other components,	o components,
		4. Classify Micromachined antennas, Microm	nachined phase
		shifters.	ine internet in the second
6	Course	CO1: Introduction to MEMS, concepts on miniatur	rization and
	Outcomes	fabrication	
		CO2: Objectives of RF MEMS Switches: Intro, fab	prication & basic
		design guidelines	
		CO3: Identify Micromachined passive components	, theory, features,
		tunable capacitors, inductors.	
		CO4: Analysing RF filters & phase shifters.	
		CO5: Analysis of Reliability & packaging, RF ME	MS Packaging
7	Course		
/	Description	The objective of this course is t to gain knowledge	on avantion of
	Description	MEMS (Micro electro Mechanical System) and var	
		techniques. This enables them to design, analysis, f	
		the MEMS based components.	aoneanon and testing
8	Outline sylla		CO Mapping
	Unit 1	Introduction	CO1
	А	RF MEMS for microwave applications, MEMS	CO1
		technology and fabrication	
[	В	Mechanical modeling of MEMS devices	CO1
	С	MEMS materials and fabrication techniques.	CO2
	Unit 2	MEMS switches	
	А	Introduction to MEMS switches	CO2
	В	Capacitive shunt and series switches: Physical	CO2

	description, circuit model and electromagnetic	
	modelling	
C	Techniques of MEMS switch fabrication and	CO2
TT '4 2	packaging; Design of MEMS switches.	
Unit 3	Inductors and Capacitors	
A	Micromachined passive elements	CO3
В	Micromachined inductors: Effect of inductor	CO3
	layout, reduction of stray capacitance of planar	
	inductors, folded inductors, variable inductors and	
	polymer-based inductors	001
C	MEMS Capacitors: Gap-tuning and area-tuning	CO3
<b>X</b> X <b>1</b> ( 4	capacitors, dielectric tunable capacitors	
Unit 4	<b>RF Filters and Phase Shifters &amp; Integration and</b>	
	Packaging	004
A	Modeling of mechanical filters, micromachined	CO4
	filters, surface acoustic wave filters,	
	micromachined filters for millimeter wave	
D	frequencies.	004
В	Various types of MEMS phase shifters;	CO4
	Ferroelectric phase shifters	005
C	Role of MEMS packages, types of MEMS	CO5
	packages, module packaging, packaging materials	
TT:4 5	and reliability issues	
Unit 5	Transmission Lines and Antennas	CO5
A	Micromachined transmission lines, losses in	005
	transmission lines,	
D		COF
В	coplanar transmission lines, micromachined	CO5
	coplanar transmission lines, micromachined waveguide components	
B C	coplanar transmission lines, micromachined waveguide components Micromachined antennas: Micromachining	CO5 CO5
	coplanar transmission lines, micromachined waveguide components Micromachined antennas: Micromachining techniques to improve antenna performance,	
С	coplanar transmission lines, micromachined waveguide components Micromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.	
C Mode of	coplanar transmission lines, micromachined waveguide components Micromachined antennas: Micromachining techniques to improve antenna performance,	
C Mode of examination	coplanar transmission lines, micromachined waveguide components Micromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas. Theory	
C Mode of examination Weightage	coplanar transmission lines, micromachinedwaveguide componentsMicromachined antennas: Micromachiningtechniques to improve antenna performance,reconfigurable antennas.TheoryCAMTEETE	
C Mode of examination Weightage Distribution	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTES0%20%50%	
C Mode of examination Weightage Distribution Text	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTES0%20%S0%50%Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF	
C Mode of examination Weightage Distribution	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTE30%20%50%Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their Applications", John Wiley &	
C Mode of examination Weightage Distribution Text book/s*	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTE30%20%50%Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their Applications", John Wiley & Sons.	
C Mode of examination Weightage Distribution Text book/s* Other	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTEBETE30%20%50%Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their Applications", John Wiley & Sons.1. Rebeiz, G.M., "MEMS: Theory Design and	
C Mode of examination Weightage Distribution Text book/s*	coplanar transmission lines, micromachined waveguide components         Micromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.         Theory         CA       MTE         30%       20%         50%         Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF         MEMS and their Applications", John Wiley & Sons.         1.       Rebeiz, G.M., "MEMS: Theory Design and Technology", John Wiley & Sons.	
C Mode of examination Weightage Distribution Text book/s* Other	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTEBETE30%20%50%Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their Applications", John Wiley & Sons.1.Rebeiz, G.M., "MEMS: Theory Design and Technology", John Wiley & Sons.2.De Los Santos, H.J, "RF MEMS Circuit	
C Mode of examination Weightage Distribution Text book/s* Other	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTEBereiETE30%20%50%Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their Applications", John Wiley & Sons.1.Rebeiz, G.M., "MEMS: Theory Design and Technology", John Wiley & Sons.2.De Los Santos, H.J, "RF MEMS Circuit Design for Wireless Communications", Artech	
C Mode of examination Weightage Distribution Text book/s* Other	coplanar transmission lines, micromachined waveguide components         Micromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.         Theory         CA       MTE         30%       20%         50%         Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF         MEMS and their Applications", John Wiley & Sons.         1.       Rebeiz, G.M., "MEMS: Theory Design and Technology", John Wiley & Sons.         2.       De Los Santos, H.J, "RF MEMS Circuit Design for Wireless Communications", Artech House.	
C Mode of examination Weightage Distribution Text book/s* Other	coplanar transmission lines, micromachined waveguide componentsMicromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.TheoryCAMTEBarbon SolutionETE30%20%50%Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their Applications", John Wiley & Sons.1.Rebeiz, G.M., "MEMS: Theory Design and Technology", John Wiley & Sons.2.De Los Santos, H.J, "RF MEMS Circuit Design for Wireless Communications", Artech House.3.Trimmer, W., "Micromechanics & MEMS",	
C Mode of examination Weightage Distribution Text book/s* Other	coplanar transmission lines, micromachined waveguide components         Micromachined antennas: Micromachining techniques to improve antenna performance, reconfigurable antennas.         Theory         CA       MTE         30%       20%         50%         Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF         MEMS and their Applications", John Wiley & Sons.         1.       Rebeiz, G.M., "MEMS: Theory Design and Technology", John Wiley & Sons.         2.       De Los Santos, H.J, "RF MEMS Circuit Design for Wireless Communications", Artech House.	

	Microfabrication", CRC Press. 5. Sze, S.M., "Semiconductor Sensors", John Wiley & Sons.	
--	-----------------------------------------------------------------------------------------------	--

Cos	P01	PO2	P03	P04	PO5	P06	PO7	P08	P09	P010	PS01	PSO2	PSO3
ECE 670.1	2	3	2	3	3	2	2	2	3	3	2		
ECE 670.2	3	3	2	3	3	2	2	2	3	3	3		
ECE 670.3	3	3	2	3	3	2	2	2	3	3	3		
ECE 670.4	3	3	2	3	3	2	2	2	3	2	3		
ECE 6705	3	3	2	3	3	2	2	3	3	3	3		
ECE 670	3	3	2	3	3	2	2	2	3	3	3		

Scho	ol: SET	Batch : 2020-22							
Prog	gram: M.Tech	Current Academic Year: 2020-21							
	ich: All	Semester: II							
1	Course	ECE619							
	Code								
2	Course	Internet of Things and Applications							
	Title								
3	Credits	3							
4	Contact	3-0-0							
	Hours (L-T-P)								
	Course	Compulsory							
	Status								
5	Course	1. Emphasize the application areas of IOT							
	Objective	2. Emphasize the blocks of Internet of Things							
		3. Able to realize the revolution of Internet in Mo	obile Devices,						
		Cloud & Sensor Networks							
		4. Introduction to core technologies-RFID, Sensor	r &						
		Communication Networks							
6	Course	CO1: Able to understand the vision of IoT from a global context							
	Outcomes	CO2: Able to Determine the Market perspective of	IoT						
		CO3: Able to know Key application areas							
		CO4: Able to analyze various IoT Layers and their rela	tive importance						
		CO5: Able to understand basic IoT application solut	ions						
7	Course	IoT has become a game changer in the new economy w	where the						
	Description	customers are looking for integrated value & the IoT pe							
		thinking and building solutions	-						
8	Outline sylla		CO Mapping						
	Unit 1	Basics Internet of things							
	A	Overview with application examples	CO1						
	B	Design Principles for connected devices	CO1						
	C	Physical &logical Design, M2M Communication	CO1						
	Unit 2	Basic Topologies & Network Toplogies	004						
	A	LAN topologies; Role of data communication and network in industrial automation, ISO's seven-layer	CO4						
	В	OSI model: significance, scope, functions of all	CO4						
		layers; IEC's four layers EPA model: significance,							
		functions of all layers.							
	С	MAC techniques; Network protocol, special	CO4						
		requirements of industrial network protocols.							

Unit 3	Ethownsta	nd Ethornot	+ /ID	
		nd Ethernet		
A			gh-speed LANs, governing	CO3
	standard IE			
В	-	yer, data li	nk layer (Frame Format and	CO3
	MAC)			
C			/IP: Adaption of Common	CO3
	Industrial P			
	comparison	between st	andard Ethernet and Ethernet	
	/IP.			
Unit 4	Industrial	Wireless Ne	twork Protocols	
А	Zigbee: Spe	ecial features	s, data rates, full-function and	CO5
	reduced fun	ction device	S	
В	PAN coord	linator, MA	C protocol and data transfer	CO5
	types, Zigb	ee network t	opologies	
С	Comparison	n of Zigbee v	with Wi-Fi and Bluetooth.	CO5
Unit 5	Illustrative			
А	Smart Wast	e manageme	ent, Smart energy conservation	CO2
В	Smart Urba	n planning, l	Sustainable urban	CO2
	Environme	nt, Smart Me	edication & emergency	
	handling			
С	-	uct managen	nent, Home automation	CO2
Mode of			· · · · ·	
examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text	1 5 1	alt Designi	na of Internet of things have	
book/s*			ng of Internet of things by-	
			Hakim Cassimally, Wiley	
			gs by-A Bahga &Vijay	
	Мас	lisetti,Unive	rsity Press	

COs	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE	2	3	2	3	3	2	2	2	3	3	2		
619.													
1													
ECE	3	3	2	3	3	2	2	2	3	3	3		
619.													
2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
619.													
3													
ECE	3	3	2	3	3	2	2	2	3	2	3		
619.													

4												
ECE 619. 5	3	3	2	3	3	2	2	3	3	3	3	
ECE 619	3	3	2	3	3	2	2	2	3	3	3	

Sch	ool: SET	Batch: 2020-22	
Pro	gram: M.Tech	Current Academic Year: 2020-21	
Bra	unch: DC	Semester: II	
1	Course Code	ECP 685	
2	Course Title	Communication Lab	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-4	
	Course Status	Compulsory	
5	Course Objective	lab course is associated with the theory course, on Principles of Optical Fiber Communication Systems This laboratory course will enable students to rela learnt in classroom to practical, handson experin performed in a fiber optic communication laboratory Take away the "fear factor" by providing exper- various equipment.	ate what they have nents that will be 7.
6	Course Outcomes	CO1: Analyzing the concept of analog communicati CO2: Measure loss and dispersion in optical fibers CO3: Measure the performance of analog fiber link CO4: Analogies between electrical and optical comm CO5: Analyzing the concept of microwave bench.	s
7	Course Description	This lab provides students with hands on practical ex fibers and show the practically the transfer of signal another and type of losses associate with it.	
8	Outline syllabus		CO Mapping
0	Unit 1	Analog Communication	
		Amplitude shift keying Frequency Shift Keying Phase Shift Keying	CO1
	Unit 2	Signal distortion in optical fibers	
		Study of Bending Loss. Study of Propagation loss in optical fiber	CO2
	Unit 3	Optical Detectors/Link Design	
		Setting up Fiber optics voice link.	CO3
	Unit 4	Optical Networks	
		Setting up of Fiber Optic Voice Link using PWM.	CO4
		Construction of MUX and DEMUX for WDM	
		systems	
	Unit 5	Microwave test bench	
		Measurement of frequency and power in a microwave test bench using Klystrone	CO5

	Determin character						
Mode of examination	Jury/Prac						
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s*							
Other	John M.	John M. Senior, "Optical Fiber Communications",					
References	PEARSC	N, 3rd Ed	ition, 2010				

COs	P	PO	PO1	PSO	PSO	PSO							
	0	2	3	4	5	6	7	8	9	0	1	2	3
	1												
ECE685.1	2	3	2	3	3	2	2	2	3	3	2		
ECE	3	3	2	3	3	2	2	2	3	3	3		
685.2													
ECE	3	3	2	3	3	2	2	2	3	3	3		
685.3													
ECE	3	3	2	3	3	2	2	2	3	2	3		
685.4													
ECE	3	3	2	3	3	2	2	3	3	3	3		
685.5													
ECE 685	3	3	2	3	3	2	2	2	3	3	3		

School:	SET	Batch :2020-22							
	n: M.Tech	Current Academic Year: 2020-21							
Branch		Semester: I							
1	Course Code	ECE684							
2	Course Title	Discrete Time Signal Processing							
3	Credits	5							
4	Contact	3-0-4							
	Hours								
	(L-T-P)								
	Course	Compulsory							
	Status								
5	Course Objective	<ul> <li>The objective of DSP is usually to measure, filter and/or compress continuous real-world analog signals.</li> <li>This course is the mathematical manipulation of an information signal to modify or improve it in some way.</li> <li>This is characterized by the representation of discrete time, discrete frequency, or other discrete domain signals by a sequence of numbers or symbols.</li> </ul>							
6	Course Outcomes	<ul> <li>After completing this course students will be able to</li> <li>6. Apply real time processing of audio and speech signal.</li> <li>7. Do the sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing.</li> <li>8. To develop the understanding about the mathematics behind signal processing, for communications, control of systems, biomedical signal processing, seismic data processing, digital image processing etc.</li> <li>9. Use computing software package like MATLAB, and acquainted with digital processing tools available in MATLAB.</li> <li>10. Develop a signal processing system to analyze, predict and manipulate real data.</li> </ul>							
7	Course Description	Digital Signal Processing (DSP) is concerned with the representation, transformation and manipulation of signals on a computer. After half a century advances, DSP has become an important field, and has penetrated a wide range of application systems, such as consumer electronics, digital communications, medical imaging and so on. With the dramatic increase of the processing capability of signal processing microprocessors, it is the expectation that the importance and role of DSP is to accelerate and expand. Discrete-Time Signal Processing is a general term including DSP as a special case. This course will introduce the basic concepts and techniques for processing discrete-time signal on a computer. By the end of this course, the students should be able to understand the most important principles in DSP							
8	Outline syllab	us CO							
5	Saunie Syndo								

	1	Mapping					
Unit 1	Realisation of FIR Filters & IIR Filters						
А	Implementation of Discrete-Time Systems Digital Filter	CO1, CO2					
	Structure: Block Diagram representation.						
В	Signal Flow Graph Representation, FIR Digital Filter	CO1.CO3					
	Structure.						
С	Direct-Form Structure, Cascade Form Structures.	CO2					
Unit 2	Fundamentals of Multirate Digital Signal Procesing						
А	Basic Multirate operations- Decimation and Interpolation	CO2					
	,Sampling, Sampling Rate Conversion Digital Filter						
	Banks,						
В	Two channel Quadrature Mirror Filter bank,	CO1, CO3					
С	Multilevel Filter Banks	CO1.CO4					
Unit 3	Design of Digital Filters						
A	Design of Digital Filters Design of FIR Filters:	CO1,CO3					
1	Symmetric and Antisymmetric FIR Filters, Design of	001,005					
	Linear phase FIR Filter using Windows and Frequency						
	sampling method						
В	Introduction to Chebyshev and Butterworth Filter, Gibbs	CO4					
D	phenomenon, Design of Optimum Equiripple Linear-	004					
	phase FIR Filters						
С		CO5					
C	Design of IIR Filters: Design by Approximation of Derivatives						
TI *4 4							
Unit 4	The Discrete Fourier Transform & Efficient						
	Computation of the DFT: FFT Algorithm	<u> </u>					
А	Basic elements of Digital Signal Processing, Ideal	CO3,CO4					
	Sampling reconstruction and concept of aliasing,						
	Introduction to CTFT and DTFT, Discrete Fourier						
<u> </u>	Transform.						
В	Properties of DFT: Periodicity, Linearity, Symmetry,	CO4					
	Multiplication of two DFT, Circular Convolution, circular						
	correlation, multiplication of two sequences, Parseval's						
	theorem.						
С	Decimation-in-Time FFT algorithms & Decimation-in-	CO1,CO4					
	frequency FFT algorithms						
Unit 5	Adaptive Signal Processing and Applications.						
А	Adaptive systems - definitions and characteristics,	CO4					
В	Minimum Mean Square Error Critirean, The Window	CO41,CO4					
	LMS Algortithm						
С	Introduction to filtering smoothing and prediction, Wiener	CO5					
	– Hopf equation, Voice Processing, Application to						
	Radar, DFT use in Spectral Estimation.						
Mode of	Theory						
Mode of examination	Theory						

Distribution	30%	20%	50%							
Text book/s*	References-	References-								
	1. A. Y. Oppen	hein and R. W.	Schater, "Digital Signal							
	1	Processing", PH	HI 1975							
	2. A. Y. Oppend	hein, R. W. Scho	ater and J. R. Buck,							
	"Discrete Time	e Signal Process	sing", PHI 1999.							
Other	1.G. Proakis and	d D.G. Manolak	kis, "Digital Signal							
References	Processing, Prir	cipals, Algorith	hms, and Applications",							
	Pearson Educat	ion, 4th ed., 200	07.							
2.S.Salivahanan, <u>A. Vallavaraj</u> "Digital Signal										
	Processing"Tata	McGraw-Hill	Education ,2007							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PS	PS
												02	03
ECE	2	2	1	2	1	1	1	2	2	2	2		
685.													
1													
ECE	3	3	3	2	2	2	2	3	2	2	2		
685.													
2													
ECE	3	2	1	2	2	1	1	2	2	3	3		
685.													
3													
ECE	3	2	3	2	2	1	1	2	2	2	3		
685.													
4													
ECE	3	2	3	2	2	1	1	2	2	3	2		
685.													
5													
ECE	2.8	1.8	1.2	2	2	2	1.2	3	1.2	1.4	2.4		
685													

Sch	ool: SET	Batch : 2020-22								
	gram: M.Tech	Current Academic Year: 2020-21								
	nch: VLSI	Semester : I								
1	Course Code	ECE 611								
2	Course Title	Advanced Computer Architecture								
3	Credits	3								
4	Contact	3-0-0	<u>-</u> 3-0-0							
•	Hours									
	(L-T-P)									
	Course Status	Department Elective								
5	Course	The aim of this course is to allow the students to develop an	understanding							
	Objective	of the design methods, implementation techniques, modeling	•							
	5	and performance analysis of computer architectures.								
6	Course	After completing this course students should be able to								
	Outcomes	CO1: Classify parallel computer architecture schemes								
		CO2: Use instruction level parallelism to build components	of a simple							
		computer	-							
		CO3: Explain how the various parts of a modern computer for	unction							
		CO4: Exploit the advantages of an advanced computer mem-	ory having							
		virtual memory and cache								
		CO5: Evaluate the performance of pipelined computers								
		CO6: Describe the RISC characteristics of CPU								
7	Course	An overview of computer architecture, which stresses								
	Description	design principles and the impact of thes	1 1							
		oncomputer performance. General topics include design								
		processor design, control design, memory organiza	ation, system							
		organization, and parallel processing								
8	Outline syllabu		CO Mapping							
	Unit 1	Introductionto Computer architecture								
	A	Parallel Computing, Parallel Computer Model, Program	CO1,CO2							
		and Network Properties, Parallel Architectural								
		Classification Schemes, Flynn's & Feng's Classification								
	D	Performance Metrics and Measures,	<u></u>							
	B	IEEE POSIX Threads, Thread Synchronization	CO1,CO2							
	C	Pipelining and Memory Hierarchy, Basic and Intermediate	CO1,CO2							
		Concepts, Instruction Set Principle; ILP: Basics, Exploiting								
	Unit 2	ILP, Limits on ILP Cashe memory and Virtual memory								
	Unit 2 A	Cache memory and Virtual memory Basic cache structure, Set associative caches, Evaluating	CO4							
		Cache performances Determining Cache parameters,	004							
	В	Replacement Policies, Implementing LRU, Replacement	CO4							
	ם	policies.	004							
	С	Basic virtual memory structure, Translation look aside	CO4							
		buffer, Segment tables, Replacement algorithms, Detail	004							
		ourier, segment tables, replacement algorithms, Detall								

	example of a	virtual momo	nru system					
Unit 3	Pipeline tech		ny system.					
A	Principles of	CO5						
B			f pipelined, Computers,	C05				
			lision vectors,	005				
С	Maximizing	Maximizing pipeline, Performance, Conditional branches in pipelined computers, Internal forwarding and deferred						
Unit 4	Multiprocess	ors						
А	Flynn's classi	fication of m	ultiprocessors,	CO3,CO4				
В	1	elining in ve	ical algorithms on a vector ctor computers, Examples of y	CO3,CO4				
С	Multiprocesso	or interconne	ctions: General purpose , HEP, Data flow computers	CO3,CO4				
Unit 5		RISC computers						
Α	Pipelined stru		CPU,	CO6				
В	RISC charact	eristics.		CO6				
С	Case study of	MIPS-64 pr	ocessor	CO6				
Mode of examination	Theory							
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*		<ul> <li>Stallings, William, "Computer organization and architecture, designing for performance", Prentice Hall of India.</li> <li>1. M. R. Bhujade, "Parallel Computing", Newage International Pvt. Ltd.</li> <li>2. J. L. Hennessy and D. A. Patterson, "Computer</li> </ul>						
Other References	International 2. J. L. Henne							
	architecture: Singapore. 3. Kain, "Adv Design appro							

COs	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS
	01	O2	03	O4	05	06	07	8	9	10	01	02	03
ECE6	3		2										
11.1													
ECE6	1	3										3	
11.2													
ECE6	3	1	1										
11.3													
ECE6		2	2									3	
11.4													
ECE6	2	1											
11.5													
ECE6		3	1									2	
11.6													
ECE6	2	2	1									2	
11													

1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Sch	ool: SET	Batch : 2020-22	]						
Pro	gram: M.Tech	Current Academic Year: 2020-21							
	nch:VLSI	Semester:I							
1	Course Code	ECE 612							
2	Course Title	Advanced Digital design using HDL							
3	Credits	4							
4	Contact	3-1-0							
•	Hours								
	(L-T-P)								
	Course Status	Compulsory							
5	Course	The aim of this course are to develop advanced digital design	n skills						
0	Objective	introduce a design approach based on programmable logic, a							
	objective	to gain experience in tackling both control and data oriented							
		to show the power of VHDL as a tool for advanced digital de							
		will also learn synthesis tools for direct digital implementation	-						
6	Course	After completing this course students should be able to							
U	Outcomes	CO1: Explain the VHDL design flow and design entities							
		CO2: Analyze signal assignments with delay component							
		CO3: Describe the objects in VHDL and VHDL types							
		CO4: Use effectively a modern hardware description lang	puage						
		(VHDL) and computer aided design tools to implement of							
		programmable chips.	0						
		CO5: Use the Mentor Graphics Modelsim or Aldec for V	HDL						
		simulation also Explain Xilinx ISE for synthesis & imple							
		Simulate for all the basic gate, multiplexor, encoder, decoder							
		adder, subtractor.	,						
7	Course	Advanced Digital Design : Advanced techniques in	the <b>design</b> of						
	Description	digital systems. Hardware description languages, comb							
	1	sequential logic synthesis and optimization methods, partitic							
		to regular structures. Emphasis on reconfigurable							
		implementation medium.	C						
8	Outline syllabu	IS	CO Mapping						
	Unit 1	Introduction and Hierarchy							
	А	Origin of VHDL, VHDL basics, VHDL levels of	CO1,CO2						
		abstraction, VHDL design flow, modeling hardware in							
		VHDL, VHDL design entities, Entity declaration,							
		Architecture, Using libraries and packages							
	В	Concurrent signal assignments, signal assignments with	CO2						
		delay Component declaration, component instantiation,							
		named port mapping, positional port mapping,							
	С	Direct instantiation, Configuration specifications, entity	CO2						
		binding, port modes, VHDL process, processes sensitivity							
		lists, test benches.							

Unit 2	Data types and	l statements					
А	Objects in VHI	DL, Constants	s, variable & signals, VHDL	CO3			
	types, scalar ty	pes, Arrays, F	Records, Custom types				
	subtypes, Trista	ate and resolv	ed types				
В	std_ulogic and	std_logic, un	signed and signed ,attributes.	CO3			
	Concurrent stat	ements, Sequ	ential statements, Conditional				
	& selective sign						
С			and variable assignments,	CO3			
		-	n inference, for loop.				
Unit 3	Simulation and						
А			ks, Event driven simulation,	CO5			
			inertial delay, reject,				
	Combinational						
	process.						
В	1	e and, nor, xor	r etc multiplexor, encoder,	CO4,CO5			
2	-		half and full subtractor.				
С		us and asynchronous Flip	CO4,CO5				
	Flop, Synchron						
	and down coun						
Unit 4	Finite State M						
A	Review of Moore and Melay state machine, Finite state						
11	machines repre	CO4					
В	use of enums to represent state like binary ,gray, one hot						
	assignment.FSM VHDL code structure,						
С	<u> </u>		ector for different sequence	<b>CO4</b>			
	like 1101,1001	04					
	VHDL coding,						
Unit 5	Subprograms	-					
A			cedures, Differences between	C05			
1		-	bprogram declarations,	0.03			
			on, package body				
В		-	mapping, Configuration	<b>CO3</b>			
	declarations, de	-					
С		•	hics Modelsim or Aldec for	CO5			
C		1	ion to Xilinx ISE for synthesis				
	& implementat	,	ion to Annix 13E for synthesis				
Mode of	Theory	1011,					
examination	Theory						
	CA	MTE	ETE				
Weightage Distribution		20%	50%				
Text book/s*			er" Prentice Hall				
Other		ners guide to VHDL",					
References	Morgan Kaufm						
	2-Charles H Ro						
	VHDL", Thom	son Learning,	2002				

COs	Р	Р	Р	Р	Р	Р	Р	РО	PO	РО	PS	PS	PS
	01	O2	03	04	05	06	O7	8	9	10	01	O2	03
ECE	1	2	2										
612.													
1													
.EC		3	2										
E61													
2.2													
ECE	2	1										2	
612.													
3													
.EC		2	1									2	
E61													
2.4													
ECE		3	3										
612.													
5													
.EC	2	3	2									1	
E61													
2													

1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

School:	SET	Batch : 2020-22
Program	n: M. Tech.	Current Academic Year: 2020-21
Branch:	VLSI	Semester: II
1	Course Code	ECE826
2	Course Title	Low Power VLSI Design
3	Credits	4
4	Contact Hours	3-1-0
	(L-T-P)	
	Course Status	Departmental Elective
5	Course	To expose the students to the low voltage device modeling, low
	Objective	voltage, low power VLSI CMOS circuit and system design.

6	Course	<b>CO1:</b> Explain the sources of power dissipation in CMOS	noumetion							
	Outcomes	<b>CO2:</b> Classify the special techniques to mitigate the power con in VLSI circuits	nsumption							
		<b>CO3:</b> Summarize the power optimization and trade-off tech	nniques in							
		digital circuits.								
		<b>CO4:</b> Illustrate the power estimation at logic and circuit level								
		CO5: Summarize the power optimization and trade-off tech	nniques in							
		semiconductor memories.								
		<b>CO6:</b> Explain the software design for low power in various leve								
7	Course	This is a course on the design and applications of low power integrated								
	Description	circuits. This course introduces various strategies and methodo	•							
		designing low power circuit and systems. It describes the ma								
		facing designers at architectural, logic, circuit and device l presents some of the techniques that have been proposed to								
		these difficulties.	overcome							
8	Outline of the		СО							
			Mapping							
	Unit 1		11 0							
	А	Fundamentals, Need for Low Power Circuit Design	CO1,							
			CO6							
	В	Sources of Power Dissipation-Switching Power Dissipation,	CO1,							
		Short Circuit Power Dissipation, Leakage Power Dissipation,	CO6							
		Glitching Power Dissipation								
	C	Short Channel Effects–Drain Induced Barrier Lowering and	CO1,							
		Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot Electron Effect.	CO6							
	Unit 2									
	A	Low-Power Design Approaches, Low-Power Design through	CO2,							
		Voltage Scaling: VTCMOS circuits, MTCMOS circuits	CO6							
	В	Architectural Level Approach–Pipelining and Parallel	CO2,							
		Processing Approaches.	<b>CO6</b>							
	С	Switched Capacitance Minimization Approaches: System	CO2,							
		Level Measures, Circuit Level Measures, Mask level Measures	CO6							
	Unit 3									
	A	Low-Voltage Low-Power Adders, Introduction, Standard	CO3,							
	D	Adder Cells, CMOS Adder's Architectures	CO6							
	В	Ripple Carry Adders, Carry Look-Ahead Adders, Carry Select	CO3,							
	С	Adders, Carry Save AddersLow Voltage Low-Power Design Techniques-Trends of	CO6							
		Technology and Power Supply Voltage, Low Voltage Low-	C <b>U</b> 3,							
		Power Logic Styles	CO6							
	Unit 4									
	A	Introduction to Low-Voltage Low-Power Multipliers,	CO4,							
		Overview of Multiplication	CO6							
	В	Types of Multiplier Architectures: Braun Multiplier, Baugh-	CO4,							
		Wooley Multiplier	CO6							

С	Types of Multiplier Architectures: Booth Multiplier, Introduction to Wallace Tree Multiplier	CO4, CO6
Unit 5		
A	Low-Voltage Low-Power Memories: Basics of ROM, Low- Power ROM Technology, Future Trend and Development of ROMs	CO5, CO6
В	Basics of SRAM, Memory Cell, Pre-charge and Equalization Circuit, Low Power SRAM Technologies	CO5, CO6
С	Basics of DRAM, Self-Refresh Circuit, Future Trend and Development of DRAM.	CO5, CO6
Mode of examination	Theory/Jury/Viva	
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s	<ul> <li>Circuits and Systems)", Springer, 2009. Print ISBN 978-0- 387-71712-8, Online ISBN 978-0-387-71713-5.</li> <li>2. J. B. Kuo &amp; J. H. Lou, "Low-voltage CMOS VLSI Circuits", Wiley, 1999.</li> <li>3. Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits – Analysis and Design", TMH, 2011. ISBN 978-0-070-53077-5.</li> <li>4. Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", TMH Professional Engineering. ISBN 978-0-07-143786-8.</li> </ul>	
Other References	<ol> <li>Michael Keating et al. "Low Power Methodology Manual For System-on-Chip Design" Springer, 2008. E-Book ISBN 978-0-387-71819-4, Hardcover ISBN 978-0-387-71818-7.</li> <li>A. Bellaouar &amp; M. A. Elmasry," Low power Digital VLSI Design, Circuits and Systems", Kluwer, 1996. E-Book ISBN 978-1-4615-2355-0 Hardcover ISBN 978-0-7923-9587-4</li> <li>Anantha Chandrakasan, "Low Power CMOS Design", IEEE Press/Wiley International, 1998. ISBN: 978-0-780- 33429-8.</li> <li>Kaushik Roy, Sharat C. Prasad, "Low Power CMOS VLSI Circuit Design", John Wiley, &amp; Sons, 2000. ISBN: 978-0- 471-11488-8.</li> <li>Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002. E-book ISBN 978-1- 4615-6065-4, Hardcover ISBN 978-0-7923-8009-2.</li> </ol>	

COs	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ECE826.	3	3	2	1	3	3	3	2	-	-	-	-	2	3	3
ECE826. 2	3	3	3	3	3	-	3	3	1	-	2	3	3	2	3
ECE826.	3	3	3	3	-	2	3	2	3	-	3	3	3	2	3
ECE826.	3	3	3	3	3	2		3	2	-	3	3	2	3	2
ECE826. 5	3	3	3	3	-	3		2	2	-	3	3	3	2	3
ECE826. 6	-	_	_	_	3	3	2	3	3	-	3	3	2	3	2
ECE826	2.5	2.5	2.3	2.2	2.0	2.2	2.5	2.5	2.0	-	2.3	2.5	2.5	2.5	2.7

Scho	ool: SET	Batch : 2020-22
Prog	gram: M.Tech	Current Academic Year: 2020-21
Bra	nch: VLSI	Semester:II
1	Course Code	ECE 613
2	Course Title	Analog IC Design
3	Credits	3
4	Contact Hours	3-1-0
	(L-T-P) Course Status	Elective
5	Course Objective	To learn fundamentals of CMOS and bipolar analog IC design and applications of analog integrated circuits. Design examples cover various common building blocks as well as complete power management applications including linear voltage regulators and PWM controllers for switched-mode power converters.
6	Course Outcomes	After completing this course students will be able to CO1: Analyze bias circuit using CMOS current mirror. CO2: Design feedback and differential operational amplifier. CO3: Analyze stability of operational amplifier and Apply frequency compensation techniques for Amplifiers CO4: Analyze basic operation of PLL CO5: Use the concepts of Switched-Capacitor Circuits for analog IC design
7	Course Description	This course will introduce advanced concepts in analog circuit design specifically relevant to CMOS IC design. It will cover circuit noise and

	mismatch, their analysis, and their impact on CMOS op-an prerequisites, the student is expected to have undergone a	
	basic circuit theory and analysis (b) signals and systems	
	analog circuits. At the end of this course, the student sho	• •
	design and analyze several types of CMOS op-amps at the tr	
Outline syll		CO Mappi
Unit 1	MOS Device Physics	
A	Basic MOS Device Physics: MOS IV Characteristics,	CO1
	Second order effects, Short-Channel Effects, MOS Device	
	Models, Review of Small Signal MOS Transistor Models,	
	MOSFET Noise.	
В	Analog MOS Process: Analog CMOS Process (Double	CO1
	Poly Process), Digital CMOS Process tailored to Analog IC	
	fabrication, Fabrication of active devices, passive devices	
	and interconnects, Analog Layout Techniques, Symmetry,	
	Multi-finger Transistors,	
С	Passive Devices: Capacitors and Resistors, Substrate	CO1
	Coupling, Ground Bounce.	
Unit 2	Amplifiers and their frequency response	
А	Single Stage Amplifiers: Common Source Stage, Source	CO2
	Follower, Common Gate Stage, Cascode, Folded Cascode.	
В	Differential Amplifier: Single ended and Differential	CO2,CO3
	Operation, Qualitative and Quantitative Analysis of	
	Differential pair, Common Mode response, Gilbert Cell.	
С	Frequency Response of Amplifiers: Miller Effect,	CO2
	Association of Poles with nodes, Frequency Response of	
	all single stage amplifiers.	
Unit 3	Current sources and voltage references	
А	Current Sources and Mirrors: Current Sources, Basic	CO3
	Current Mirrors, Cascode Current Mirrors, Wilson Current	
	Mirror, Large Signal and Small-Signal analysis.	
В	Voltage References: Different Configurations of Voltage	CO3
	References, Major Issues,	
С	Supply Independent Biasing, Temperature-Independent	CO3
	References.	
Unit 4	Compensation in Operational amplifier	
A	Operational Amplifier: General Considerations, Theory	CO3
	and Design, Performance Parameters,	
В	Single-Stage Op Amps, Two-Stage Op Amps, Design of 2-	CO4
	stage MOS Operational Amplifier, Gain Boosting,	
	Comparison of various topologies, slew rate, Offset effects,	
	PSRR.	
С	Stability and Frequency Compensation: General	CO3,C04
	Considerations, Multi-pole systems, Phase Margin,	
	Frequency Compensation, Compensation Techniques.	
Unit 5	Introduction to switched-capacitor	

A	1		: Sampling Switches, Speed onsiderations, Charge Injection	CO4, CO5				
В	Switched-Cap Integrator,	acitor Amplifi	ers, Switched- Capacitor	CO5				
С	<b>U</b>	n-Mode Feedback.	CO5					
Mode of examination	Theory							
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	Tata McGraw2. 2.Allen P.E.	Hill, 2008. and Holberg	CMOS Integrated Circuits", D.R., "CMOS Analog Circuit Press, 2nd ed., 2002.					
Other	Johns D.A. and	Martin K., "A	Inalog Integrated Circuit					
References	<ul> <li>Design", John Wiley, 2008.</li> <li>2.Gray P.R., Hurst P.J., Lewis S.H. and Meyer R.G.,</li> <li>"Analysis and Design of Analog Integrated Circuits", John Wiley, 5th ed., 2001.</li> <li>3. 3.Hastings A., The Art of Analog Layout, Prentice Hall, 2005.</li> </ul>							

COs	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS
	01	02	03	O4	05	06	O7	8	9	10	01	02
ECE	1	3										
613.												
1												
.EC		3	2	2								2
E61												
3.2												
ECE	1		2									
613.												
3												
ECE	2		1									3
613.												
4												
ECE	2	3	1	2								3
613.												
5												
ECE	1	2	1	1								2
613												
ool· SE	т		Ratch	. 201	<u>, , , , , , , , , , , , , , , , , , , </u>							

Sch	ool: SET	Batch : 2020-22
Prog	gram: M.Tech	Current Academic Year: 2020-21
Bra	nch: VLSI	Semester:I
1	Course Code	ECE 614
2	Course Title	Device Modeling and Circuit Simulation
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course Status	Elective
5	Course	To expose students to the IC fabrication complexities and design
	Objective	methodologies of current and advanced IC design technologies using

		SPICE modelling	
6	Course Outcomes	After completing this course students should be able to CO1: Explain the IC fabrication steps for IC design, concer for silicon dioxide growth for thick and thin films and Dev using various deposition techniques like CVD, PVD, MBE CO2: Use the Photolithography for IC design transfer on th Explain the of need for planarization and chemical mechanic CO3: Outline the NMOS, CMOS and Bipolar fabrication pr models of moderately sized BJT circuits that realize specific functions using SPICE CO4: Apply CMOS technology-specific layout rules in the routing of transistors and interconnect, and CO5: Apply the principles of HBT and HEMT for design ru timing verification, worst case delay simulation, setup and I clocked devices	elop the wafer and their types e wafer and cal polishing, cocess. create ed digital placement and ile checks,
7	Course Description	This is a course on modelling of electronic devices wir applications in circuit simulation. The main topics are: Phy of semiconductor devices; charge control; threshold voltag phenomena; mobility; velocity saturation; short-channel eff physically based modelling of common devices such a (CMOS), GaAs MESFET, HEMT, and bipolar transiston weaknesses of the models; parameter extraction; applicatio in SPICE-type circuit simulators.	sical foundation e; sub-threshold fects; parasitics; s Si MOSFET rs; strength and
8	Outline syllab		CO Mapping
0	Unit 1	Introduction to IC technology	
	A	IC fabrication steps, Wafer preparation,	CO1
	В	Crystal growth techniques, wafer cleaning,	CO1
	С	Clean room and safety requirements.	CO1
	Unit 2	IC Fabrication processes	
	A	Oxidation: Kinetics of Silicon dioxide growth both for thick, thin and ultra thin films, Deal-Grove model. Diffusion and Ion Implantation: Diffusion process, Ion implantation, modeling of Ion implantation and its types.	CO2
	В	Deposition & Growth: Various deposition techniques CVD, PVD, MBE and their types. Etch and Cleaning: materials used in cleaning, various cleaning methods, Wet etch, Dry etch.	CO2
	С	Photolithography: Positive photo resist, negative photo resist, comparison of photo resists, need for masks and its types. Planarization Techniques: Need for planarization, Chemical Mechanical Polishing, NMOS, CMOS and Bipolar fabrication process.	CO2

А			C, DC, Transient, noise,	CO3					
		re extra analysis		CO3					
В	Junction Diodes: DC, small signal, large signal, high frequency and noise models of diodes. Measurement of								
		lel-parameters.	is of diodes. Weasurement of						
С			h frequency and noise models	of CO3					
C			5. Extraction of BJT model						
	parameters		S. Extraction of BJT model						
Unit 4	MOS Mo								
A A			hal, high frequency and noise	CO4					
A		MOSFETs. MC		04					
В			nd narrow channel MOSFETs	5. CO4					
	MOSFET	channel mobilit	y model, DIBL, charge sharin	g					
		non-linear effect							
С	MOS Mod	lels: Level-1 and	l level-2 large signal MOSFE	Г СО4					
			SIM models. Extraction of						
		MOSFET model parameters.							
Unit 5	HBTs								
А	Introductio	on: Principles of	hetro junction devices, HBT	s, CO5					
	HEMT								
В	Componer	nt model for ICs	: Design rule checks, timing	CO5					
			lay simulation, setup and hold						
		clocked devices,							
С			ural modeling, simulation with	n CO5					
	the physic	al model.							
Mode of	Theory								
examination									
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	S.M. Kang	S.M. Kang & Y. Leblibici, "CMOS Digital Integrated Circuits-Analysis & Design", TMH, Ed. 2003							
	Circuits-A								
Other	<i>S.M. Sze, "Physics of semiconductor devices", Wiley Pub.</i> <i>S.M. Sze (Ed), "VLSI Technology", 2nd Edition, McGraw</i>								
References									
	Hill, 1988								

COs	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS
	01	02	03	04	05	06	07	8	9	10	01	02
ECE	2	3	1									
614.												
1												
ECE	2	3										3
614.												
2												
ECE	2											3
614.												
3												
ECE		3	1		3							
614.												
4												
ECE	2		2									
614.												
5												
ECE	2	2	1		1							1
614												

Sch	nool: SET	Batch: 2020-22
Pro	ogram:	Current Academic Year: 2020-21
<b>M</b> .'	Tech	
Bra	anch:All	Semester: I
1	Course Code	ECP 651
2	Course Title	Digital System Design Lab
3	Credits	2
4	Contact	0-0-4
	Hours	
	(L-T-P)	

	Course	Compulsory							
	Status								
5	Course	Explain the elements of digital system	abstractions						
	Objective	such as digital representations of information,							
		digital logic, Boolean algebra, state e	elements and						
		finite state machine (FSMs). Design st	imple digita						
		systems based on these digital abstract	ctions, using						
		the "digital paradigm" including discr	rete sampled						
		information. Use the "tools of the t	rade": basic						
		instruments, devices and design tools.							
6	Course	CO1:Design, simulate and logic gates of	on Xilinx						
	Outcomes	CO2:Design, simulate & analyze modu							
		combinational circuits with MUX/DEM							
		Decoder, Encoder, implement on FPGA							
		CO3:Design, simulate & analyze synch							
		sequential logic circuits.							
		CO4:Design, simulate & analyze finite	state						
		machines							
7	Course	Digital system modelling for simulatio	on, synthesis						
7		Digital system modelling for simulation and rapid system prototyping. Str	-						
7	Course Description	and rapid system prototyping. Str	uctural and						
7		and rapid system prototyping. Str behavioral models, concurrent and	uctural and l sequentia						
7		and rapid system prototyping. Str	uctural and l sequentia s, generics						
7		and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal	uctural and l sequentia s, generics						
7		and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies	uctural and l sequentia s, generics						
-	Description Outline syllab	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies	uctural and l sequentia s, generics es and case						
-	Description Outline syllab Unit 1	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies us Practical based on basic gates	uctural and sequentia s, generics es and case CO Mapping						
-	Description Outline syllab	and rapid system prototyping. Str         behavioral models, concurrent and         language elements, resolved signal         configuration, test benches, processe         studies         us         Practical based on basic gates         Design, Simulate and analyze CMOS	uctural and sequentia s, generics es and case						
-	Description Outline syllab Unit 1	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies	uctural and sequentia s, generics es and case CO Mapping CO1						
-	Description Outline syllab Unit 1	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies	uctural and sequentia s, generics es and case CO Mapping						
-	Description          Description         Outline syllab         Unit 1         A         B	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies	uctural and sequentia s, generics es and case CO Mapping CO1 CO1						
-	Description Outline syllab Unit 1 A	and rapid system prototyping. Str         behavioral models, concurrent and         language elements, resolved signal         configuration, test benches, processe         studies         us         Practical based on basic gates         Design, Simulate and analyze CMOS         Inverter         Design, Simulate and analyze NAND         and EX-OR gate         Design, Simulate and analyze NOR	uctural and sequentia s, generics es and case CO Mapping CO1						
-	Description Outline syllab Unit 1 A B C	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies us Practical based on basic gates Design, Simulate and analyze CMOS Inverter Design, Simulate and analyze NAND and EX-OR gate Design, Simulate and analyze NOR and Ex-NOR gate	uctural and sequentia s, generics es and case CO Mapping CO1 CO1						
-	Description          Description         Outline syllab         Unit 1         A         B	and rapid system prototyping. Str         behavioral models, concurrent and         language elements, resolved signal         configuration, test benches, processe         studies         us         Practical based on basic gates         Design, Simulate and analyze CMOS         Inverter         Design, Simulate and analyze NAND         and EX-OR gate         Design, Simulate and analyze NOR         and EX-NOR gate         Practical related to Combinational	uctural and sequentia s, generics es and case CO Mapping CO1 CO1						
-	Description Outline syllab Unit 1 A B C	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studiesusPractical based on basic gatesDesign, Simulate and analyze CMOS InverterDesign, Simulate and analyze NAND and EX-OR gateDesign, Simulate and analyze NOR and EX-NOR gatePractical related to Combinational Logic Design	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1						
-	Description Outline syllab Unit 1 A B C	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studiesPractical based on basic gatesusPractical based on basic gatesDesign, Simulate and analyze CMOS InverterDesign, Simulate and analyze NAND and EX-OR gateDesign, Simulate and analyze NOR and EX-NOR gatePractical related to Combinational Logic Design, Simulate and analyze half	uctural and sequentia s, generics es and case CO Mapping CO1 CO1						
-	Description Description Outline syllab Unit 1 A B C Unit 2 A	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studiesusPractical based on basic gatesDesign, Simulate and analyze CMOS InverterDesign, Simulate and analyze NAND and EX-OR gateDesign, Simulate and analyze NOR and EX-NOR gatePractical related to Combinational Logic DesignDesign, Simulate and analyze half Adder and Implement on FPGA	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1 CO1						
-	Description Outline syllab Unit 1 A B C Unit 2	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studiesPractical based on basic gatesusPractical based on basic gatesDesign, Simulate and analyze CMOS InverterDesign, Simulate and analyze NAND and EX-OR gateDesign, Simulate and analyze NOR and Ex-NOR gatePractical related to Combinational Logic DesignDesign, Simulate and analyze half Adder and Implement on FPGADesign, Simulate and analyze 3X8	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1						
-	Description Description Outline syllab Unit 1 A B C Unit 2 A	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studiesusPractical based on basic gatesDesign, Simulate and analyze CMOS InverterDesign, Simulate and analyze NAND and EX-OR gateDesign, Simulate and analyze NOR and EX-NOR gatePractical related to Combinational Logic DesignDesign, Simulate and analyze half Adder and Implement on FPGA	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1 CO1 CO1 CO1 CO1, CO2						
-	Description Description Outline syllab Unit 1 A B C Unit 2 A	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studiesPractical based on basic gatesusPractical based on basic gatesDesign, Simulate and analyze CMOS InverterDesign, Simulate and analyze NAND and EX-OR gateDesign, Simulate and analyze NOR and Ex-NOR gatePractical related to Combinational Logic DesignDesign, Simulate and analyze half Adder and Implement on FPGADesign, Simulate and analyze 3X8	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1 CO1						
-	Description Description Outline syllab Unit 1 A B C Unit 2 A B	<ul> <li>and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies</li> <li><b>Practical based on basic gates</b></li> <li>Design, Simulate and analyze CMOS Inverter</li> <li>Design, Simulate and analyze NAND and EX-OR gate</li> <li>Design, Simulate and analyze NOR and Ex-NOR gate</li> <li><b>Practical related to Combinational</b> Logic Design</li> <li>Design, Simulate and analyze half Adder and Implement on FPGA</li> <li>Design, Simulate and analyze 3X8</li> <li>Decoder and Implement on FPGA</li> </ul>	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1 CO1 CO1 CO1 CO1, CO2						
-	Description Description Outline syllab Unit 1 A B C Unit 2 A B	and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studiesPractical based on basic gatesusPractical based on basic gatesDesign, Simulate and analyze CMOS InverterDesign, Simulate and analyze NAND and EX-OR gateDesign, Simulate and analyze NOR and Ex-NOR gatePractical related to Combinational Logic DesignLogic DesignDesign, Simulate and analyze NOR and Ex-NOR gatePractical related to Combinational Logic DesignLogic DesignDesign, Simulate and analyze half Adder and Implement on FPGADesign, Simulate and analyze 3X8 Decoder and Implement on FPGADesign, Simulate and analyze 4-BIT	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1 CO1 CO1 CO1 CO1, CO2						
-	Description Description Outline syllab Unit 1 A B C Unit 2 A B	<ul> <li>and rapid system prototyping. Str behavioral models, concurrent and language elements, resolved signal configuration, test benches, processe studies</li> <li>Practical based on basic gates</li> <li>Design, Simulate and analyze CMOS Inverter</li> <li>Design, Simulate and analyze NAND and EX-OR gate</li> <li>Design, Simulate and analyze NOR and Ex-NOR gate</li> <li>Practical related to Combinational Logic Design</li> <li>Design, Simulate and analyze half Adder and Implement on FPGA</li> <li>Design, Simulate and analyze 3X8</li> <li>Decoder and Implement on FPGA</li> <li>Design, Simulate and analyze 4-BIT Magnitude Comparator and</li> </ul>	uctural and sequentia s, generics es and case CO Mapping CO1 CO1 CO1 CO1 CO1 CO1 CO1, CO2						

В	Design a	nd simulate	SR Flip Flop	CO3				
С	Ŭ		JK Flip Flop	CO3				
Unit 4	-		Sequential					
	Logic							
A	Design an	nd simulate	ALU.	CO2				
В	Design ar	nd simulate	synchronous	CO2				
	Decade C	Counter.						
C			asynchronous	CO2				
	Decade C							
Unit 5			Finite State					
	Machine	-						
A	-		asynchronous	CO4				
		UP/DOWN Counter.						
B	Design an	CO4						
	Modellin	CO4						
C	U U	Design and simulate Moore's						
Mode of		Modelling.						
examination	Jury/Prac	tical/Viva						
Weightage	CA	MTE	ETE					
Distribution	60%	0%	40%					
Text book/s*		n, "Modern						
		· ·	cGraw Hill, 4th					
	edition, 2							
Other			HDL", Tata					
References			ition, 2002.					
		Gothmann, '						
		Electronics- An introduction to theory						
		and practice", PHI, 2 nd edition, 2006.						
		3. D.V. Hall, "Digital Circuits and						
	•	Systems", Tata McGraw Hill, 1989						
			"Digital System					
	U U	•	L", Tata McGraw					
	Hill 2nd e	edition 2012	2.					

COs	Р	Р	Р	Р	Р	Р	P	PO	PO	PO	PS	PS
	Ο	0	O3	O4	05	06	07	8	9	10	O1	O2
	1	2										
ECP651.		3										2
1												
ECP651.	2	3										2
2												
ECP651.	2	1										2
3												
ECP651.		3	2									3
4												
ECP651	2	3	2									2

Sch	ool: SET	Batch : 2020-22						
Pro	gram: M.Tech	Current Academic Year: 2020-21						
Bra	nch: VLSI	Semester: II						
1	Course Code	ECE 616						
2	Course Title	Advanced VLSI Design						
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course Status	Compulsory						
5	Course	To provide students a clear understanding of the fundamenta	al concepts of					
	Objective	modern CMOS VLSI design. Students will learn the design	of complex					
		and high performance CMOS systems from system level to	circuit level.					
6	Course	After completing this course students should be able to						
	Outcomes	CO1: Explain the fundamental concepts of modern CMOS V	/LSI design					
		And the complex and high performance CMOS systems						
		CO2: Demonstrate a clear understanding of important cond						
		technology and fabrication that affect design and Design	0					
		given arbitrary logic function at the transistor-level. layout a	gate in CMOS					
		VLSI technology.						
		CO3: Size the gates of the given VLSI layout to minimize						
		Design a network of complex gates with the ideal number of	of stages which					
		computes the function with minimum delay.						
		CO4: Apply technology mapping algorithms to transform						
		network into an interconnection of components from a give						
		Apply finite state machine minimization algorithms to	minimize the					
		number of states in a sequential circuit.						
7	Course	This course will cover historical Perspective of VLSI, CMO	S VLSI					
	Description	Design for Power and Speed consideration, Logical Efforts:						
	1	CMOS Circuits; Data path Design, Interconnect aware desig						
		Hardware Description Languages for VLSI Design, FSM Co						
		path and Processor <b>Design</b> , <b>VLSI Design</b> Automation.						
8	Outline syllabu	IS	CO Mapping					
	Unit 1	Introduction to automation						
	А	VLSI Physical Design Automation: VLSI design cycle,	CO1					
		physical design cycle, design styles and system packaging						
		styles ,design rules, layout of basic devices, CMOS layout.						
		Cell generation and Programmable structures, Transistor						
	В	Partitioning: Problem formulation, classification of	CO1					
		partitioning algorithms and performance driven						
		partitioning.						
	С	Placement, floor planning and pin assignment: Placement,	CO1					

Unit 2			nent, integrated approach.							
	Global Routi	0		CO2,CO2						
A	Problem formulation classification of global routing algorithms,									
D										
В	Maze routing algorithms, line - probe algorithms, Shortest path based algorithms									
С		/	ms, and integer programming	CO2,CO						
C	based approad	-	ins, and integer programming	02,00						
Unit 3	Scaling in M									
A			proaches:, unit level voltage	CO3						
11			e scaling, level converters,	005						
			block, level shifters							
В			g, choosing the high $V_{TH}$ value	e, CO3						
D			111							
			leep transistors . supply voltage	ge						
			bly voltage, multiple device							
			el – feature size scaling,							
0	threshold volt		· · · ,· 1 ·	1 002						
С			y minimization, dynamic sup							
	voltage scaling, dynamic threshold voltage scaling . Energy									
	recovery, design with reversible logic, adiabatic logic,									
			nic voltage and frequency scal	ing.						
Unit 4	Low power V			~~~~~~						
A	Introduction t MTCMOS	o pipelining	and parallelism, VTCMOS,	CO3,CO4						
В	Reducing glitching through path balancing, clock gating,									
	Power gating,									
С	Signal isolation, state retention and restoration,									
			wer gating, gate reorganization	1 CO3,CO4						
Unit 5	Estimation a	· ·		-						
A			ion in static and dynamic logi	c, CO4						
			al correlations, Reducing	,						
				d						
	switching capacitance through transistor sizing, logic and architecture optimization,									
В	lavout technic	ues. logic re	estructuring, input ordering, da	ta CO4						
~	representation	resource a	location Behavioral level							
	representation, resource allocation, Behavioral level transforms, algorithm level transforms, architectural									
	transformations									
С			ubstitution logic level	CO4						
$\sim$	Operation reduction and substitution, logic level optimization and technology mapping									
Mode of	Theory		<u> </u>							
examination										
Weightage	CA	MTE	ETE							
Distribution	30%	20%	50%							
Text book/s*			CMOS VLSI Design: A Circu	ite						
T CAT DOOK/S'			6							
	unu systems F	erspective	, Third edition Addison Wesle	у,						

Other	Anantha Chandrakasan, Robert Brodersen, "Low-
References	power CMOS design", IEEE press, 1998.
	• Kaushik Roy, Sharat C. Prasad, "Low-power
	CMOS VLSI Circuit Design", John Wiley & Sons, 2000.
	• A.Bellamour, M.I.Elmasri, "Low power VLSI
	CMOS Circuit Design", Kluwer Academic Press, 1995.
	<ul> <li>Naveed Sherwani, "Algorithms for VLSI physical design automation", Kluwer academic publisher – 1993.</li> </ul>
	Douglas A. Pucknell & Kamran Eshraghian, "Basic VLSI
	Design", Prentice-Hall of India.

COs	PO	PO9	PO	PSO	PS							
	1	2	3	4	5	6	7	8		10	1	02
C.EC E616 .1	2	3									1	3
C.EC E616 .2	2	3	2									
C.EC E616 .3	2	1										3
	2	3	2								3	2
ECE 616. 5												3
	2	3	2								2	3

Sch	ool: SET	Batch : 2020-22							
Pro	gram: M.Tech	Current Academic Year: 2020-21							
Bra	nch: VLSI	Semester:II							
1	Course Code	ECE 615							
2	Course Title	CMOS Digital VLSI Design, Testing and Verification							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Compulsory							
5	Course Objective	To introduce students to CMOS Digital VLSI design method emphasis on full-custom chip design. Students will learn IC simulation, and layout verification. Specific techniques for d speed, low-power, and easily-testable circuits will also be co	design, layout lesigning high-						
6	Course Outcomes	After completing this course students will be able to CO1: Explain the concepts of the MOS transistor and inverte CO2: Apply CMOS technology-specific layout rules in the p routing of transistors and interconnect, and to verify the func- timing, power, and parasitic effects CO3: Create models of moderately sized CMOS circuits tha specified digital functions CO4: Design static CMOS combinational and sequential log transistor level, including mask layout CO5: Estimate and optimize combinational circuit delay usin models and logical effort CO6: Understand the concepts of testing and verifying a VI	olacement and etionality, t realize ic at the ng RC delay LSI chips.						
	Description	VLSI circuits for complex digital systems. The focus technology. Issues to be covered include deep submicron de power dissipation, CAD tools and algorithms, simulation testing, and design methodology. The course includes a component in which you will design and lay out microprocessor	is on CMOS esign, clocking, n, verification, computer lab a small 4-bit						
8	Outline syllabu		CO Mapping						
	Unit 1	Introduction to MOSFET							
	A	MOS Transistor: I-V Characteristics, MOSFET Scaling	CO1						
	В	and Small-Geometry Effects.	COL						
	D	The MOS Inverter: Inverter principle, Depletion and CO1							
	С	enhancement load inverters,The MOS Inverter: the basic CMOS inverter, transferCO1,CO2							
		characteristics, logic threshold, Noise margins, and							
SU/S	SET/M.Tech-ECE	Dynamic behavior, Propagation Delay, Power Consumption.	Page 90						
	Unit 2	MOS Layout and Simulation							
	А	MOS SPICE model, device characterization, Circuit	CO2,CO3						

	Characterization	n interconnect	ts simulation					
В			or layout, Inverter layout	CO2,CO3				
C	CMOS digital c			CO2,CO3				
Unit 3	Combinational							
A			esign: Complementary MOS,	CO4,CO5				
	Ratioed logic, F							
В	complex logic		8	CO4,CO5				
С			mic logic families and	CO4,CO5				
	performances.	6 ,	C					
Unit 4	Sequential Log	gic design						
А			gn: Static latches; Flip flops &	CO4,CO5				
	Registers,							
В	Dynamic Latch	es & Register	s, CMOS Schmitt trigger,	CO4,CO5				
С	Monostable see	quential Circu	its, Astable Circuits. Memory	CO4,CO5				
	Design: ROM &	& RAM cells	design					
Unit 5	Testing and ve							
Α			tion in VLSI design process,	CO6				
	Issues in test an							
	cores and SOCs							
В	Testing: Funda	CO6						
	Automatic test							
	Scan design, Test interface and boundary scan. System							
			lay fault testing.					
C			memories, Test automation, fication, Timing verification,	CO6				
	Formal verifica model checking							
Mode of	Theory	<u>.</u>						
examination	Theory							
Weightage	CA	MTE	ETE					
Distribution		20%	50%					
Text book/s*			val, "Essentials of Electronic					
I CAU OCOA D			and Mixed-Signal VLSI					
	Circuits", Kluw							
Other			and A. D. Friedman, "					
References			Testable Design", IEEE Press,					
	1990.	0						
		duction to Fo	rmal Hardware Verification",					
	Springer Verlag		<i>.</i>					
		,	oles of CMOS VLSI design",					
	2 nd Edition Add							
			naran Eshragian, "Basic VLSI					
	design ", 3 rd ed	ition, PHI, 19	94.					

COs	Р	Р	Р	P	Р	Р	Р	PO	PO	PO	PS	PS	PS
	01	02	03	O4	05	06	O7	8	9	10	01	O2	O3
.EC	3	1	2								1	3	
E61													
5.1													
ECE	1	2										3	
615.													
2													
ECE	3	1	1										
615.													
3													
ECE	2	2	3									3	
615.													
4													
ECE	2	1									1	2	
615.													
5													
ECE		3	1									2	
615.													
6													
ECE	2	3	2								2	3	
615													

School: SET	Batch : 2020-22
Program: M.Tech	Current Academic Year: 2020-21

Page 92

	nch: VLSI	Semester:II	
	hnology		
1	Course Code	ECE 617	
2	Course Title	Mixed Signal CMOS VLSI Design	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Compulsory	
5	Course	The aim of this course is to provide an understanding of, and	
	Objective	with, the basic design concepts for mixed signal VLSI circuit	ts in CMOS
		technology.	
6	Course	After completing this course students should be able to	
	Outcomes	CO1: Design logic circuit layouts for both static CMOS and	
		clocked CMOS circuits and Extract the analog parasitic elen	
		layout and analyze the circuit timing using a logic simulator	and an analog
		simulator.	
		CO2: Build a cell library to be used by other chip designers	and Analyze
		VLSI circuit timing using Logical Effort analysis.	
		CO 3: Design elementary data paths for microprocessors, inc	
		moderate-speed adders, subtracters, and multipliers and Esti	
		compute the power consumption of a VLSI chip and Assemb	ole an entire
		chip and add the appropriate pads to a layout	
		CO4 Explain the chip technology scaling process and Explain	
		design concepts for low power mixed signal VLSI circuits in	n CMOS
		technology.	
_	-	CO5: To understand the concept of Data converters.	
7	Course	This course builds the advanced CMOS analog IC design.	
	Description	intended to teach undergraduate and graduate students. This	
		on the concepts of mixed signal VLSI design. The cour	
		practical aspect of mixed signal VLSI block	
		comparators, data converters, oscillators and phase locked l	
		of this course, the students will use industry standard soft	
		such as Cadence's Virtuoso schematic, Spectre simulate	
		Graphics' Eldo and Calibre for post layout simulations a	
		parasitic extractions. The design problems given in	
		assignments will be designed and simulated in a sta	
		technology by students. The study will cover design issue	
		variations and statistical mismatches in temperature and p Carlo).	brocess (Monte
8	Outline syllabu		CO Mapping
	Unit 1	Current mirrors	
	А	simple cmos current mirror, common source	CO1
ľ	В	common gate amplifier with current mirror active load	CO1
	С	source follower with current mirror to supply bias current	CO1
	Unit 2	Single stage and Muti-stage amplifiers	

A	Two stage CMOS operational amplifier, feedback and operational amplifier compensation	CO3
D		<u> </u>
В	advanced current mirrors, folded-cascade operational	CO2,CO3
	amplifier, current mirror operational amplifier	
C	fully differential operational amplifier, common mode	CO3
	feedback circuits, current feedback operational amplifier.	
	Comparator, charge injection error, latched comparators	
Unit 3	S/H and switched capacitor circuits	
А	MOS, CMOS and BIMOS	CO2
В	sample and hold circuits ,switched capacitor circuits, basic	CO2,CO4
	operation and analysis first order, charge injection	
С	Switched capacitor gain circuit, correlated double	CO2
	sampling techniques, other switched capacitor circuits.	
Unit 4	PLL	
A	Basic PLL topology, dynamics of simple PLL, Multiplier,	CO3
B	EXOR and JK –flipflop phase detectors, lock acquisition	CO3
C	Phase frequency detector, Loop filters, Charge Pump PLLs,	CO3
C	non ideal effects in PLLs.	003
Unit 5		
	Data converters	<u> </u>
A	DC and dynamic specifications, quantization noise,	CO4
	Nyquist rate D/A converters, decoder based converters –	
	binary scaled converters thermometer code converters,	
	hybrid converters	
В	Nyquist rate A/D converters-Successive approximation,	CO5
	Flash, interpolating, Folding, Pipelined, Time-interleaved	
	converters, Oversampling converters,	
C	Noise shaping modulators, Decimating filters and	C04,CO5
	interpolating filters, Higher order modulators, Delta Sigma	
	modulators with multibit quantizes- Delta Sigma D/A	
Mode of	Theory	
examination		
Weightage	CA MTE ETE	
Distribution	30% 20% 50%	
Text book/s*	1. Behzad Razavi, "Design of Analog CMOS Integrated	
	Circuit", Tata-Mc GrawHill, 2002.	
	2. Rudy van de Plassche, "CMOS Integrated Analog to	
	Digital and Digital to Analog Converters", Kluwer	
	academic publishers, 2003	
Other	1.David Johns, Ken Martin, "Analog Integrated Circuit	
References	0 0	
References	Design", John Wiley and Sons, 2001.	
	2. D.A. John and Ken Martin, "Analog Integrated Circuit	
	Design", John Wiley, 1 st Edition, 1996.	
	3. Mohamed Ismail, "Analog VLSI", Mc Graw Hill, 1st	
	Edition, 1994	

COs	Р	Р	Р	P	Р	Р	Р	PO	PO	PO	PS	PS	PS
	01	O2	O3	O4	05	06	O7	8	9	10	O1	02	O3
ECE	2	3	2									2	
617.													
1													
ECE	2	3	2									2	
617.													
2													
ECE	2	1										2	
617.													
3													
ECE	2	3	2									3	
617.													
4													
ECE	2	3	2									3	
617.													
5													
ECE	2	3	2									3	
617													

School: SET	Batch : 2020	0-22						
Program: B.Tech.								
Branch: ECE	Semester:2							
1	Course Code	ECE827						
2	Course Title	Advanced VLSI Using Verilog						
3	Credits	3						
4	Contact Hours (L-T-P)	3-0-0						
	Course Status	Compulsory						
5	Course Objective	<ul> <li>The objectives of this subject are</li> <li>1. To make the student understand advanced digital system design.</li> <li>2. To understand HDL based IC design.</li> </ul>						

		2 To understand Varil	
		3. To understand Verilog programming.	
		4. To understand high level synthesis.	
		5. To understand verification using Verilog HDL.	
6	Course Outcomes	Upon successful completion of this subject, students sho to:	uld be able
		CO1: Write efficient Verilog programme	
		CO2: Design advanced digital system using Verilog HDL	
		CO3: Design FSM based system.	
		CO4: Understand STA and high-level synthesis.	
		CO5: Understand static timing analysis	
		CO6: VLSI project using EDA software.	
7	Course	This course covers the systematic design of advanced digit	tal systems
	Description	using field-programmable gate arrays (FPGAs). The emp	
		top-down design starting with a software application, and	
		it to high-level models using a hardware description lang	
		as VHDL or Verilog). The course will focus on design	0
0	Oratline a	performance computing applications using streaming arch	
8	Outline		CO
	syllabus Unit 1		Mapping
	A	VLSI Design	CO1
	A	VLSI Design flow: Full Custom, ASIC and FPGA,	001
		VLSI CAD Tools: Applications of	
		Simulation, Synthesis Tools. Introduction to Hardware	
		description languages (HDL)	
	В	Verilog HDL:Abstraction levels, basic concepts,	CO1
		Verilog primitives, keywords, data types, nets and	
		registers, Verilog MODULEs and ports;	
	C	Lab Practice: Xilinx tool flow: simulation and synthesis	CO1
	C	Verilog Operators :Logical operators, Bitwise and reduction operators Concentenation and conditional	CO1
		reduction operators, Concatenation and conditional operators, Relational and arithmetic, Shift and equality	
		operators, Operator execution order, Lab practice	
	Unit 2		
	A	Assignments: Types of assignments, Continuous	CO2
		assignment,Proceduralassignments, Blocking and non-	002
		blocking assignments, Tasks and functions, Lab Practice	
	В	Verilog modeling: gate type, design hierarchy, gate	CO2
		delay, propagation delay, logic simulation Dataflow-	
		level modeling: assignments, Behavioralmodeling:	
		Always block, FlowControl, If-else, case, case, while	
		loop, for loop, repeat	

C	Verilog for verification:Design verification and testing,Testbenchwriting,Initialstatement, Verilog system tasks: \$finish, \$stop, \$display, \$monitor, \$time, \$realtime, \$random, \$save, \$readmemh/\$writememh, \$fopen, \$fclose, Compiler directives,ifdef, Array, multi- dimensional array. Memory modelling Lab practice	CO2
Unit 3		
A	<b>Combinational Logic Circuit Design:</b> Logic synthesis, RTL synthesis, high-level synthesis, synthesis design flow, Design and analysis of combinational circuits, Synthesis of combinational circuits, Arithmetic circuits, Initial design and optimization.	CO3
В	Encoder, decoder, de-multiplexer circuits, multiplexer circuits and their implementation using Verilog, Design of a 4-bit comparator, Design of a 32-bit ALU and a simple processor using Verilog. Lab Practice	CO3
С	<b>Sequential Logic Circuit Design:</b> Synthesis of sequential circuits, Study of synchronous and asynchronous sequential circuits, Flip flops, ShiftRegisters,Counters and their design using Verilog. Lab practice	CO3
Unit 4		
A	<b>State Machine:</b> Basic Finite state machines (FSM) structures, Mealy and Moore type FSM, Mealy vs.Moore,Common FSM coding style,Serial adder design using FSM,	CO4
В	FSM as an Arbiter circuit, FIFO, bus interfaces, Lab practice	CO4
С	<b>High-level synthesis:</b> Basic concepts of high-level synthesis, Partitioning, scheduling, Allocation and binding, Technology mapping,	CO4
Unit 5		
A	<b>Static Timing Analysis:</b> Introduction to Static Timing Analysis, Timing path and constraints, Types of clock, Clock domain and variation, Clock distribution networks, How to fix timing failure?	CO5
В	<b>Synthesis Coding Styles:</b> Registers in Verilog, Unwanted latches, RTL coding styles, Lab practice	CO5
С	<b>Verilog Mini Projects:</b> Project specification analysis, Understanding the architecture, MODULE level implementation and verification, Building the top level MODULE,FPGA implementation of the design.	CO5,CO6
Mode of examination	Theory	

Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	Sy Ec 2. V 2r 3. A V	onthesis; Sam ducation, 2011 erilog Digital nd edition, TM dvanced Chi erilog, Kisho	System Design; ZainalabedinNavabi;
Other References	2.	Bhasker, BS FPGA-Base edition, Pear Advanced D	DL Synthesis: A Practical Primer; J. SP Publishers, 2008. d System Design, Wayne Wolf, 1st rson. Digital Design with the Verilog HDL; Ciletti; 2009,1st edition, PHI,2010

## **Course Articulation Matrix**

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
CO827.1	3	3	2	3	1	-	-	-	-	-	2	2
CO827. 2	3	3	3	1	3	-	-	-	-	-	3	3
CO827.3	3	3	3	2	3	-	-	-	-	-	3	3
CO827.4	3	3	3	2	3	-	-	-	-	-	3	3
CO827.5	3	2	3	2	3	-	-	-		-	2	2
CO827.6	3	2	3	2	3	-	-	-		-	2	2
CO827	3	3	3	2	3	-	-	-	-	-	3	3

School: SET	Batch : 2020-22
Program: B.Tech.	Current Academic Year: 2020-21

Branch: ECE	Semester:02									
1	Course Code	ECP827								
2	Course Title	Advanced VLSI using VERILOG Lab								
3	Credits	2								
4	Contact Hours (L-T-P)	0-0-4								
	Course Status	Compulsory								
5	Course Objective	<ol> <li>The objectives of this subject are</li> <li>To make the student understand advanced digital s design.</li> <li>To understand HDL based IC design.</li> <li>To understand Verilog programming.</li> <li>To understand high level synthesis.</li> <li>To understand verification using Verilog HDL.</li> </ol>	system							
6	Course Outcomes	Upon successful completion of this subject, students sho to: CO1: Write efficient Verilog programme CO2: Design advanced digital system using Verilog HDL CO3: Design FSM based system. CO4: Understand STA and high-level synthesis. CO5: Understand static timing analysis CO6: VLSI project using EDA software.								
7	Course Description	This course covers the systematic design of advanced digi using field-programmable gate arrays (FPGAs). The empl top-down design starting with a software application, and it to high-level models using a hardware description langu as VHDL or Verilog). The course will focus on design for performance computing applications using streaming arch	hasis is on translating lage (such high-							
8	Outline syllabus	performance comparing approactions abing bu canning area	CO Mapping							
	Unit 1									
	A	FPGA based design flow using EDA software: simulation and synthesis	CO1							
	В	Realization of Verilog operators and assignments.	CO1							
	С	Implementation of different Verilog tasks and functions.	CO1							

Unit 2		
А	Writing test bench for digital circuits and simulation	CO2
В	Design and implementation of combinational circuits (adder, decoder) in gate level	CO2
С	Design and implementation of multiplexer and comparator circuits in data-flow level	CO2
Unit 3	_	
A	Implementation of multiplexer, decoder in Behavioural level	CO3
В	Design and implementation of ALU	CO3
С	Implementation of D-FF and JK FF in behavioral level	CO3
Unit 4		
А	Design and implementation of shift register.	CO4
В	Design and implementation asynchronous counter.	CO4
С	Design and implementation of synchronous counter.	CO4
Unit 5		
A	Design and implementation of sequence detector in FSM	CO5
В	Design and implementation of traffic light signal system in FSM	CO5
С	Minor Project	CO5,CO6
Mode of examination	Practical	
Weightage Distribution	CA         ETE           60%         40%	
Text book/s*	<ol> <li>Verilog HDL: A Guide to Digital Design and Synthesis; Samir Palnitkar; 2nd edition, Pearson Education, 2011.</li> <li>Verilog Digital System Design; ZainalabedinNavabi; 2nd edition, TMH,2012.</li> <li>Advanced Chip Design: Practical Examples in Verilog, Kishore Kumar Mishra, CreateSpace Independent Publishing Platform</li> </ol>	
Other References	4. Verilog HDL Synthesis: A Practical Primer; J. Bhasker, BSP Publishers, 2008.	

6. Advanced Digital Design with the Verilog HDL; Michael D. Ciletti; 2009,1st edition, PHI,2010
----------------------------------------------------------------------------------------------------

#### **Course Articulation Matrix**

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
CO827.1	3	3	2	3	1	-	-	-	-	-	2	1
CO827. 2	3	3	3	1	3	-	-	-	-	-	3	3
CO827.3	3	3	3	2	3	-	-	-	-	-	3	3
CO827.4	3	3	3	2	3	-	-	-	-	-	3	3
CO827.5	3	2	3	2	3	-	-	-		-	2	3
CO827.6	3	2	3	2	3	-	-	-		-	2	3
CO827	3	3	3	2	3	-	-	-	-	-	3	3

Scl	hool: SET	Batch: 2020-22							
Pre	ogram:	Current Academic Year: 2020-21							
M.	tech								
Bra	anch: ECE	Semester: II							
1	Course Code								
2	Course Title	Electronics CAD Lab							
3	Credits	2							
4	Contact	0-0-4							
	Hours								
	(L-T-P)								
	Course	Compulsory							
	Status								
5	Course	Objective is to make students promin	ent with the						
	Objective	CAD tools and analysis practices.							
6	Course	After the completion of lab students wi							
	Outcomes	CO1:Design and analyze combinationa	l logic						
		circuits in ORCAD SPICE.	<b>OT</b>						
		CO2:Design & analyze various types of							
		CO3:To use various conditional statements of							
		VHDL.							
7	Course	CO4:To design and analyze layout of b This course will cover transistor and							
/		aspects of digital integrated circuit de							
	Description	topics will include: (a) logic gate d							
		transistor level, (b) design and opti							
		sequential systems and (c) physical							
		integrated circuits, i.e. how to tra							
		transistorlevel designs into "blueprints"	•						
		used by fabrication engineers to build							
		The laboratory component of the cours							
		industrial-grade CAD tool (Cadence) f							
		entry and simulation of your circuits, and for							
		physical design, and will culminate							
		design project.							
8	Outline syllabu	15	CO						
		1	Mapping						
	Unit 1	Practical based on SPICE							
		simulation							
	A	Transient analysis and simulation of	CO1						
	<b>D</b>	CMOS inverter							
	В	Transient and simulation analysis of	CO1						
		NAND gate.							

С	5	CO1
	neither CMOS nor gate.	
Unit 2	Practical related to Various	
	inverter Design	
A	5	CO1, CO
	resistive load inverter.	
В	5	CO1, CO
	NMOS inverter.	
С	Transient analysis and simulation of	CO1, C0
	BJT inverter.	
Unit 3	Practical related to various VHDL	
	statements	
A	Design of 4:1 multiplexer using	CO3
	"with" statement	
В	Design of 4:1 multiplexer using	CO3
	"when" statement.	-
С		CO3
-	"case" statement.	200
Unit 4	Practical related to Combinational	
	logic design	
A		CO3
2 <b>x</b>	VHDL".	005
В		CO3
D	structural modelling.	COJ
C	8	CO3
C		COS
	using full adder as a component for	
TT:4 <i>E</i>	structural modelling.	
Unit 5	Practical related to Layout design	004
A	5 8	CO4
	Inverter using Layout Generator.	
D	Layout Design of Two Input NAND	CO4
В		004
	Gate using Layout Generator.	
С	Cascade of two enhancement load	CO4
-	NMOS inverter circuits using SPICE.	
Mode of	Jury/Practical/Viva	
examination		
Weightage	CA MTE ETE	
Distribution	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	SPICE for Circuits and Electronics	
Text book/s*		
	Textbook by Muhammad H. Rashid	
041		
Other	1. Douglas Perry, "VHDL", Tata	

References	McGraw Hill, 4th edition, 2002. 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw	
	Hill 2nd edition 2012.	

Sc	hool: SET					
	atch : 2020-22					
Pr	ogram: M.Te	ch				
Сι	irrent Acade	nic Year: 2020-21				
Br	anch: ECE					
Se	mester: II					
1	Course	ECE811				
	Code					
2	Course	<b>Communication Technology and System</b>				
	Title					
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course	Compulsory				
	Status					
5	Course	• To provide students an understanding of ana	log and digital			
	Objective	communication.	iog und digital			
		<ul> <li>To understand multiplexing and multiple acc</li> </ul>	ess techniques			
			ess teeninques.			
6	Course	To implement the block of OFDM     CO1: Enhancement of knowledge foranalog and digital				
0	Outcomes	communication	g allu ulgital			
	Outcomes	CO2: understand multiplexing and multiple a	access techniques			
		CO3: understand the basic concepts of OFDM	access acciniques			
		CO4: implement OFDM system				
		CO5:understand Long Term Evolution				
7	Course					
'	Description	In this course, The fundamentals of communication	system like analog and			
	Description	digital modulation are explored. The various multipl				
		which are used in telephony and other communication	-			
		Some new technology like OFDM and LTE advance				
		technology for now a days 3G and 4G telephony are				
		with their architecture and area of application. The c				
		the Case study on OFDM, in which student can imp				
		practically and can use it for real time applications.				
8	Outline sylla	bus	CO Mapping			
-	Unit A	Basics of Communication System	110			
	Unit A	Review of Analog Modulation Techniques	CO1			
	Topic 1					
	<b>1</b>	Pulse Code Modulation, Differential Code	CO1			
	Unit A	Modulation, Delta Modulation, Adaptive Delta				
	Topic 2	Modulation, Dena Modulation, Adaptive Dena Modulation				
			1			

	<b></b> • •		~~~ 1
	Unit A	Digital Modulation Techniques: ASK, FSK, PSK,	CO1
	Topic 3	QPSK, DPSK	
1 H	Unit B	Multiplexing and Multiple Access Techniques	
	Unit B	Time Division Multiplexing(TDM),Frequency	CO2
	Topic 1	Division Multiplexing(FDM)	
	Unit B	Multiple Access Techniques, TDMA, FDMA,	CO2
	Topic 2	SDMA, PDMA	~~~
	Unit B	Spread Spectrum Technique, Use in CDMA	CO2
	Topic 3		
	Unit C	<b>Orthogonal Frequency Division Multiplexing</b>	
1 1	Unit C Topic 1	Concept of MIMO, Importance of orthogonality, Comparision of FDM and OFDM,OFDM Transmitter, Orthogonality of Sub Carriers, Multipath Effect, Frequency Selective Fading, ISI, Cyclic Prefix	CO3
	Unit C Topic 2	Packet detection, Synchronization, Carrier Frequency Offset(CFO), Sampling Frequency Offset(SFO),Data Aided Phase Track	CO3
	Unit C Topic 3	Complete diagram of OFDM Transmitter and Receiver,	CO3
	Unit D	Case Study on OFDM	
	Unit D	Analog OFDM System Implementation	
		Analog OFDM System Implementation	CO4
	Topic 1 Unit D	Simple OFDM implementation using FFT	CO4 CO4
	Topic 1 Unit D Topic 2	Simple OFDM implementation using FFT transforms	CO4
	Topic 1 Unit D Topic 2 Unit D	Simple OFDM implementation using FFT	
	Topic 1 Unit D Topic 2	Simple OFDM implementation using FFT transforms	CO4
	Topic 1 Unit D Topic 2 Unit D Topic 3	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation	CO4 CO4
	Topic 1 Unit D Topic 2 Unit D Topic 3 Unit E	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation Long Term Evolution	CO4 CO4
	Topic 1 Unit D Topic 2 Unit D Topic 3 Unit E Unit E	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation Long Term Evolution Overview, Basic Parameters, Network	CO4 CO4
	Topic 1 Unit D Topic 2 Unit D Topic 3 <b>Unit E</b> Topic 1	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation Long Term Evolution Overview, Basic Parameters, Network Architecture, Roaming Architecture Numbering and Addressing, Radio Protocol	CO4 CO4 CO5
	Topic 1 Unit D Topic 2 Unit D Topic 3 Unit E Unit E Topic 1 Unit E	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation Long Term Evolution Overview, Basic Parameters, Network Architecture, Roaming Architecture Numbering and Addressing, Radio Protocol Architecture, Protocol Stack Layers	CO4 CO4 CO5 CO5
	Topic 1 Unit D Topic 2 Unit D Topic 3 Unit E Unit E Topic 1 Unit E Topic 2 Unit E	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation Long Term Evolution Overview, Basic Parameters, Network Architecture, Roaming Architecture Numbering and Addressing, Radio Protocol Architecture, Protocol Stack Layers Layer Data Flow ,Communication channels,	CO4 CO4 CO5 CO5
	Topic 1 Unit D Topic 2 Unit D Topic 3 Unit E Unit E Topic 1 Unit E Topic 2	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation Long Term Evolution Overview, Basic Parameters, Network Architecture, Roaming Architecture Numbering and Addressing, Radio Protocol Architecture, Protocol Stack Layers	CO4 CO4 CO5 CO5
	Topic 1 Unit D Topic 2 Unit D Topic 3 Unit E Unit E Topic 1 Unit E Topic 2 Unit E Topic 3 Mode of	Simple OFDM implementation using FFT transforms 802.11a OFDM Signal implementation <b>Long Term Evolution</b> Overview, Basic Parameters, Network Architecture, Roaming Architecture Numbering and Addressing, Radio Protocol Architecture, Protocol Stack Layers Layer Data Flow ,Communication channels, OFDM Technology	CO4 CO4 CO5 CO5

Text book	<ol> <li>Simon Haykin, "Digital Communication", Wiley Publication, 2nd Edition</li> <li>Yong Su Chu, "OFDM Wireless Communication using MATLAB", Wiley Publication, 20101.</li> <li>StefaniaSesia, "LTE-The UMTS Long Term Evolution: From Theory to Practice", Wiley Pub.,2nd Ed.</li> </ol>	
References	B.P.Lathi, Zhi Ding, Hari M. Gupta, Modern Digital and Analog Communication Systems, oxford publication, 1 st Edition.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE811.1	2	1	1	2	2	2	2	2	1	1			2
ECE811.2	2	1	3	2	3	2	2	2	1	2			2
ECE811.3	2	2	1	2	2	2	1	2	1	2			1
ECE811.4	3	2	1	2	1	2	2	1	1	1			3
ECE811.5	3	2	3	2	2	2	2	3	1	1			2
ECE811	3	2	2	2	2	2	2	2	1	2			3

School: SET Batch : 2020-22 Program: MTECH Current Academic Year: 2020-21 Branch:All Semester:I							
1	Course Code	ECE814					
2	Course Title	Emerging Electronics Technologies					
3	Credits						
4	Contact Hours (L-T-P) Course Status	3-0-0 Compulsory					
5	Course Objective	<ul> <li>To make students familiar with different solid state light emitters and detectors.</li> <li>To define different Acoustic transduction and different acoustic transducers.</li> <li>To explain Eye anatomy and eye optics, Color vision basics .</li> <li>To illustrate concepts of LED, LCD, OLED.</li> </ul>					
		<ul> <li>To illustrate various MAC protocols like GSM, Spread spectrum, CDMA, TDMA &amp; Basic electronics components. Handset Specific operating systems</li> <li>To explain Working principle of mobile handset &amp; Components used in mobile handsets .</li> <li>To illustrate Comparison of the essential characteristics of Android and iOS.</li> </ul>					
6	Course Outcomes	<ul> <li>CO1: able to understand functioning of various optoelectronic devices and underlying principles.</li> <li>CO2: able to understand and differentiate among various acoustic systems.</li> <li>CO3: able to understand working principles of various display devices.</li> <li>CO4: able to understand Generations of mobile phones,</li> <li>CO5:able to handle hardware components of mobile handset and OS used in mobiles.</li> </ul>					
7	Course Description	In this course, the fundamentals of Optoelectronics like region of optical radiation, visible light and basic devices like LASER and LED etc. are described in detail. Basics of Acoustic engineering like vibration, acoustic, transmission and absorption are also explored .After that various display systems like LED, LCD and OLED are also described with their area of application. In subsequent chapter basic of generation of telephony like GSM, CDMA are discussed followed by the description of technology behind the Smart phone. At last the various operating systems used in smartphone's like Android and iOS are discussed in details. Comparative analysis of two OS is also done.					

		embedded system		mented with periodic gues s from industry.										
8	Outline syllabu	S			CO									
	<b>T</b> T • A				Mapping									
	Unit A	Optoelectronics												
	Unit A Topic 1			on and its properties, visible mitting diodes, semiconductor	CO1									
	Unit A Topic 2	Laser diodes, photo detection, photomultiplier, semiconductor photodiode.												
	Unit A Topic	Schottky photodiode, CD records reader, laser printer, data transmission.												
	Unit B	Acoustics Engineering												
	Unit B Topic	Acoustics Engineering           Fundamentals of vibration and acoustic wave equation.												
	Unit B Topic 2	Transmission, ab and architectural	CO2											
	Unit B Topic 3	Acoustic transdu	CO2											
	Unit C	<b>Display Techno</b>												
	Unit C Topic 1	How application Evolution of disp	? CO3											
	Unit C Topic 2			, Color vision basics.	CO3									
	Unit C Topic 3	Display system fundamentals and performance parameters- LED, LCD, OLED.												
	Unit D	Smartphone handset												
	Unit D Topic 1	Introduction to mobile phones, Generations of mobile phones, FHSS networks.												
	Unit D Topic 2	GSM, Spread spectrum, CDMA, TDMA & Basic electronics components. Handset Specific operating systems, Handset features & applications												
	Unit D Topic 3		le of mobi	le handset & Components use	ed CO4									
	Unit E	Smartphone OS												
	Unit E Topic 1	_	Systems) ba	alities of the Android and iOS used on the Programming	CO5									
	Unit E Topic 2	Internet Browsin Store, and Mobil	-	ommands, Video Chat, App 5.	CO5									
	Unit E Topic 3			characteristics of Android and	1 CO5									
	Mode of examination	Theory												
	Weightage	CA N	ITE	ETE										
	Distribution	30% 2	0%	50%										

Text book	<ul> <li>1.S.C.Gupta, Optoelectronics Devices and Systems, 3rd Edition, Prentice Hall India.</li> <li>2. S.W. Rienstra&amp; A. Hirschberg, "An Introduction to Acoustics".</li> <li>3. Vinod Kumar Khanna,"Fundamentals of Solid-State Lighting", CRC Press.</li> </ul>	
References	Joseph Annuzzi, Jr. Lauren Darcey Shane Conder, Introduction to Android Application Development, Fourth Edition, Addision Wesley.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
ECE814.1	2	1	1	2	2	2	2	2	1	1			2
ECE814.2	2	1	3	2	3	2	2	2	1	2			2
ECE814.3	2	2	1	2	2	2	1	2	1	2			1
ECE814.4	3	2	1	2	1	2	2	1	1	1			3
ECE814.5	3	2	3	2	2	2	2	3	1	1			2
ECE814	3	2	2	2	2	2	2	2	1	2			3

Bat Pro Cur Bra	ool: SET ch : 2020-22 gram: M.TECH rent Academic nch: Embedded nester:I	Year: 2020-21								
1	Course Code	ECE815								
2	Course Title	Method for Product Development for Electronics Subsys	stems							
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course Status	Compulsory /Elective/Open Elective								
5	Course	To understand the various processes and systems to add								
	Objective	needs by creating tangible Electronic Products. To pursue l								
		emphasis on learning-by-doing and following a comprehen	sive process							
		of design, engineering and producing products and systems								
6	Course	On a successful completion of this course students will be	able to							
0	Outcomes	C0 1. Design electronic products using user centered design								
		CO2. Develop sketches, virtual and physical appearance mo								
		communicate proposed designs								
		CO3. Refine product design considering engineering design &								
		manufacturing requirements and constraints.								
		CO4. Make mock-up model and working prototype along with design								
		documentation								
		CO5. Understand Manufacturing Setup including Test Setup								
7	Course									
	Description	Product development and design processes and methods, inc								
		product specifications, concept development, engineering dra	awings,							
		design for prototyping, and manufacturing								
8	Outline syllabu	IS	СО							
			Mapping							
	Unit 1	Concept: Product Development from Concept								
		through Manufacturing								
	A	The stage of idea for a new product, a variation on an	CO1, CO2							
		existing product,								
	В	The identification of a need for an undefined product	CO1, CO2							
		causes								
	C	Research to define a product, a market, and an approach for	CO1, CO2							
		manufacturing this product.								
	Unit 2	Research & Circuit Design: Gated Product								

	-		& Requirements and	
	Conceptua			
А			, identifying the technology,	CO1, CO3
			olved in producing the product	t
В			ign specification: used to cost	
			ated manufactured cost of the	,
	product.	,		
С	1	chematic dia	gram (usually via computer	CO1, CO3
-	drafting soft			
		ing the produ		
Unit 3	Packaging a	nd Printed	Circuit Design	
A	0 0		enclosure designed or selected.	CO4
			ntrols, and displays printed circ	
	layout comm			
			inted circuits, the mechanical	
	-		oard assembly itself.	
В	-		,drawing supplied by the	CO4
D		Ŭ	ure and graphics of designed,	
			ens, or a combination.	
C			circuit artwork, used by a	CO4
C	manufacture			
	assembler.			
Unit 4		or Trial Pr	oduction & Design Review	
A			cal stimulation.	CO3.CO1
1		•	and BOM check.	005.001
В			evelopment, Mechanical design	n. CO3.CO1
D	Industrial de		evelopment, weenamear design	
С			otype, Design	CO3.CO1
C	verification/		sotype ,Design	005.001
Unit 5			luding Test Satur &	
Unit J			luding Test Setup & acturing and Supply Chain	
	Manageme		acturing and Suppry Chall	
A	0		. Quick Turn Prototyping	CO5
A	1			
			ility (DFMA).Design for	
			latory Compliance Testing,	
D		d Certificatio		
В		iosure Develo	opment Quality and Reliability	CO3.CO5
	Assurance	Cont Einterne D	equirements and Design	
C		0.05		
С	Documentat	ion, Agency	Compliance Follow-up.	CO5
Mode of	Theory			
	Theory			
examination Weightage		MTE	ETE	
weigniage	CA	MTE	ETE	
Distribution	30%	20%	50%	

	41 1/4	
	ext book/s*	Cross N. "Engineering Design Methods: Strategies for
		Product Design", Willey.(2000)
		Otto K. and Wood K., "Product design: Techniques in
		Reverse Engineering and New Product development ",
		Prentice Hall. (2001)
		Chakrabarty D., "Indian Anthropometric Dimensions for
		Ergonomic Design Practice", NID, Ahmedabad(1999).
		. Norman D. A., "The design of everyday things, Basic
		Books."(2002
L	INKS	https://www.industrologic.com/gtepdad.htm
		http://www.stilwellbaker.com/capabilities/electronic-
		product-development
		1 1

COs	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE815.	2	1	1	-	2	-	1	1	1	1	2		1
ECE815. 2	2	2	1	-	2	-	1	2	1	1	3		2
ECE815. 3	3	1	1	-	2	-	1	2	1	1	2		2
ECE815. 4	2	2	1	-	2	-	1	3	1	1	1		2
ECE815. 5	2	2	1	-	2	-	1	3	1	1	1		2
ECE815	3	2	1		2		1	3	1	1	2		2

Sch	1001: SET	Batch : 2020-22						
	ogram:	Current Academic Year: 2020-21						
	Tech							
Bra	anch: ECE	Semester: II						
1	Course Code	ECE824						
2	Course Title	Sensors and Network						
3	Credits	4						
4	Contact	3-1-0						
	Hours							
	(L-T-P)							
	Course	Department Elective						
	Status							
5	Course	1. Knowledge of mobile ad hoc networks, design and implem	entation issues,					
	Objective	and available solutions.						
		2. Knowledge of routing mechanisms and the three classes of	approaches:					
		proactive, on-demand, and hybrid.						
		3. Knowledge of clustering mechanisms and the different sch	emes that have					
		been employed, e.g., hierarchical, flat, and leaderless.						
		4. Knowledge of the 802.11 Wireless LAN (WiFi) and Bluet						
6	0	This includes their designs, operations, plus approaches to int	eroperability.					
6	Course	After completion of this course student will able to:	- <b>4</b>					
	Outcomes	CO1: Identify emerging research areas in the field of sensor n	etworks					
		CO2: Identify the issues and challenges in WSN	N					
		CO3: make use of MAC protocols for communication in WS CO4: Explore various dissemination protocols for WSN	1N					
		CO5: analyse the design principles of wireless sensor network	rs for a given					
		application	ior a given					
		CO6: Design wireless sensor networks for a various application	on					
		COO. Design whereas senser networks for a various appread	on					
7	Course	A wireless sensor network (WSN) generally consists of com-	pact low power					
	Description	sensors, which collect information and pass the informatio						
	1	networks to achieve a high level of desired monitoring	and control in					
		coordinated manners. WSN applications can be found in						
		environmental monitoring, smart energy systems, battle fie						
		home automation, medical monitoring, mobile computing,	etc. WSN has					
		integrated network engineering, embedded system engineer	ing and sensor					
		technology.						
8	8 Outline syllabus							
	Ma							
	Unit 1 Introduction to Sensor Networks							
	A	Introduction to Sensor Networks, unique constraints and	CO1, CO2					
		challenges						
	В	Advantage of Sensor Networks, Applications of Sensor	CO1					
		Networks						
	С	Types of wireless sensor networks	CO1					
011	Unit 2 SET/M.Tech-ECE	Issues and challenges in wireless sensor networks	Page 114					

Α	Mobile Ad-hoc Networks (MANETs) and Wireless Sensor	CO1, CO3
	Networks	,
В	Enabling technologies for Wireless Sensor Networks	CO1, CO3
С	Issues and challenges in wireless sensor networks	CO1
Unit 3	Routing protocols	
А	Routing protocols, MAC protocols: Classification of MAC	CO2
	Protocols,	
В	S-MAC Protocol, B-MAC protocol,	CO2
С	IEEE 802.15.4 standard and Zig Bee	CO2
Unit 4	Dissemination protocol for large sensor network	
А	Dissemination protocol for large sensor network.	CO3
	Quality of a sensor network	
В	Data dissemination, data gathering, and data	CO3
	Fusion	
С	Real-time traffic support and security protocols.	CO3
Unit 5	Design Principles for WSNs	
Α	Design Principles for WSNs, Gateway Concepts Need for	CO4
	gateway, WSN to Internet Communication, and Internet to	
	WSN Communication	
В	Single-node architecture, Hardware components & design	CO4
	constraints	
C	Operating systems and execution environments, introduction	CO4
	to TinyOS and nesC.	
Mode of	Theory	
examination		
Weightage	CA         MTE         ETE           30%         20%         50%	
Distribution Text book/s*		
Text book/s*	Waltenegus Dargie, Christian Poellabauer, "Fundamentals	
	Of Wireless Sensor Networks Theory And Practice", By John Wiley & Sons Publications ,2011	
Other	1. Sabrie Soloman, "Sensors Handbook" by McGraw Hill	
References	publication. 2009	
References	2. Feng Zhao, Leonidas Guibas, "Wireless Sensor	
	Networks", Elsevier Publications, 2004	
	3. Kazem Sohrby, Daniel Minoli, "Wireless Sensor	
	Networks": Technology, Protocols and	
	Applications, Wiley-Inter science	
	4. Philip Levis, And David Gay "TinyOS Programming" by	
	Cambridge University Press 2009	

COs	PO	<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PS	PS	PS								
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03

ECE82	1		-	1	-	1	-	-	-	-	1	-	-	1	-
4.1		-													
ECE82	1	-	-	1	-	1	-	-	-	-	1	-	-	2	-
4.2															
ECE82	2	-	-	2	1	2	1	-	-	-	1	-	2	2	-
4.3															
ECE82	2	-	1	3	1	1	3	-	-	-	2	-	2	2	2
4.4															
ECE82	1	1	3	3	2	1	3	-	-	-	3	1	3	3	3
4.5															
ECE82	3	1	3	3	2	1	3	-	-	-	3	1	3	3	3
4.6															
ECE82															
4															

Bate	ool: SET ch : 2020-22 gram: MTECH	
	rent Academic	
Bra	nch:ECE	
Sem	ester:I/II	
1	Course Code	ECE825
2	Course Title	Embedded Architecture and Programming
3	Credits	5
4	Contact	3-0-4
	Hours	
	(L-T-P)	
	Course Status	Compulsory
5	Course	Embedded Systems and design issues
	Objective	Advanced Computer Architecture
		Embedded System Installation/ Configuration using AVR
		microcontroller
		Development of Embedded Firmware using AVR microcontroller

6		Troubleshooting and Maintenance of embedded system	em									
6	Course Outcomes	CO1:Explain Embedded Systems and design issues										
		CO2: Apply and illustrate advanced Computer arch	nitecture									
		CO3:Embedded System Installation/ Configuration u										
		microcontroller										
		CO4:Development of Embedded Firmware using A										
		microcontroller										
_		CO5: Apply Embedded tools in Real Time Applications										
7	Course	In this course, the fundamentals of embedded system bandwa	ana and									
	Description	In this course, the fundamentals of embedded system hardware and firmware design will be explored. Issues such as embedded processor										
		selection, hardware/firmware partitioning, glue logic, circuit										
		circuit layout, circuit debugging, development tools, firmwar										
		architecture, firmware design, and firmware debugging will										
		The Intel 8051, a very popular microcontroller family, will b										
		The architecture and instruction set of the microcontroller w	ill be									
		discussed, and a wire wrapped microcontroller board will be	built and									
		debugged by each student. The course will culminate with a	-									
		final project which will extend the concepts covered earlier i										
		by embedded										
		avatoma on ain o and thoma in ductions										
		systems engineers from industry	00									
8	Outline syllab		CO									
8		us	CO Mapping									
8	Unit –A	Embedded Systems	Mapping									
8		Embedded Systems Introduction of Embedded Systems, Embedded Design										
8	Unit –A Unit A Topic 1	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle	Mapping CO1, CO2									
8	Unit –A	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to	Mapping									
8	Unit –A Unit A Topic 1 Unit A Topic 2	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools	Mapping CO1, CO2									
8	Unit –A Unit A Topic 1	Embedded Systems Introduction of Embedded Systems, Embedded Design development life cycle Embedded Systems Design Issues, Introduction to	Mapping CO1, CO2 CO1									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,	Mapping CO1, CO2 CO1									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG	Mapping CO1, CO2 CO1 CO1									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture	Mapping CO1, CO2 CO1 CO1									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit A Topic 3 Unit B Topic 1 Unit B Topic	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's	Mapping CO1, CO2 CO1 CO1 CO1 CO1, CO3									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's         & Feng's Classification Performance Metrics and Measures	Mapping           CO1, CO2           CO1           CO1           CO1           CO1           CO1           CO1, CO3           CO1, CO3									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1 Unit B Topic 2	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's         &Feng's Classification Performance Metrics and Measures         Basic cache structure, Set associative caches, Evaluating	Mapping CO1, CO2 CO1 CO1 CO1 CO1, CO3									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit A Topic 3 Unit B Topic 1 Unit B Topic	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's         &Feng's Classification Performance Metrics and Measures         Basic cache structure, Set associative caches, Evaluating         Cache performances Determining Cache parameters,	Mapping           CO1, CO2           CO1           CO1           CO1           CO1           CO1           CO1, CO3           CO1, CO3									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's         &Feng's Classification Performance Metrics and Measures         Basic cache structure, Set associative caches, Evaluating         Cache performances Determining Cache parameters,         Replacement Policies, Implementing LRU	Mapping CO1, CO2 CO1 CO1 CO1 CO1, CO3 CO1, CO3									
8	Unit -AUnit A Topic1Unit A Topic2Unit A Topic3Unit -BUnit B Topic1Unit B Topic2Unit B Topic3Unit B Topic3	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's         &Feng's Classification Performance Metrics and Measures         Basic cache structure, Set associative caches, Evaluating         Cache performances Determining Cache parameters,	Mapping CO1, CO2 CO1 CO1 CO1, CO3 CO1, CO3 CO1									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit A Topic 3 Unit B Topic 1 Unit B Topic 2 Unit B Topic 3 Unit B Topic 3 Unit C Topic 1	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's         &Feng's Classification Performance Metrics and Measures         Basic cache structure, Set associative caches, Evaluating         Cache performances Determining Cache parameters,         Replacement Policies, Implementing LRU	Mapping CO1, CO2 CO1 CO1 CO1, CO3 CO1, CO3 CO1 CO1 CO1									
8	Unit –A Unit A Topic 1 Unit A Topic 2 Unit A Topic 3 Unit –B Unit B Topic 1 Unit B Topic 2 Unit B Topic 3 Unit B Topic 3 Unit C Topic	Embedded Systems         Introduction of Embedded Systems, Embedded Design         development life cycle         Embedded Systems Design Issues, Introduction to         Embedded Development tools         Assemblers, Compilers, Linkers, Loaders, Debuggers,         Embedded In-Circuit Emulators and JTAG         Advanced Computer Architecture         RISC architecture, Pipelining, Principles of Pipelined         computers         Parallel Computing, Parallel Computer Model, Flynn's         &Feng's Classification Performance Metrics and Measures         Basic cache structure, Set associative caches, Evaluating         Cache performances Determining Cache parameters,         Replacement Policies, Implementing LRU         AVR Microcontoller	Mapping CO1, CO2 CO1 CO1 CO1, CO3 CO1, CO3 CO1									

3										
Unit –D	Programming	g of AVR								
Unit DTopic		CO3								
1	The AVR In									
Unit D Topic	Literal and co	ntrol Operation	ns, Watchdog timer,	CO3						
2	Interrupts, Tin	ners/ counter								
Unit D Topic 5	Memory Pagin	ng, Addressing	modes	CO3						
Unit –E	CASE STUD	CASE STUDY								
Unit E Topic 1	1 0	ning tools Auro for HW-SW co	lino IDE, Integrated design	CO4, CO5						
Unit E Topic 2		Code firmware for Aurdinoboardes								
Mode of	Theory	Theory								
examination										
Weightage	CA	MTE	ETE							
Distribution	30%	20%	50%							
Text book	<i>architecture, a</i> <i>India.</i> 2. Gadre, Dh Customizing	architecture, designing for performance", Prentice Hall of								
References	Edition, Else (ISBN-13: 97 2. Barnett, R Programming	ISBN: 0-07-134666-X 1.Morton, John, 2002, AVR: An Introductory Course, 1st Edition, Elsevier ISBN-10: 0-7506-5635-2 (ISBN-13: 978-0-7506-5635-2) 2. Barnett, R., O'Cull, L., Cox, S., 2007, Embedded C Programming for the Atmel AVR, Thompson-Delmar Learning, ISBN: 1-4180-3959-4								

Cos	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE825.	2	1	1		2		1	1	1	1	2		1
1													
ECE825.	2	2	1		2		1	2	1	1	3		2
2													
ECE825.	3	1	1		2		1	2	1	1	2		2
3													
ECE825.	2	2	1		2		1	3	1	1	1		2
4													
ECE825.	2	2	1		2		1	3	1	1	1		2
5													

ECE825	2	2	1	2	1	2	1	1	2	2

Bat Pro Cui Bra	ool: SET ch :2020-22 gram: M.TECH rrent Academic nch:ES nester:II										
1	Course Code	ECE 812									
2	Course Title	Quality Management of Electronic Systems									
3	Credits										
4	Contact	3-0-0									
	Hours										
	(L-T-P)										
	Course Status	Compulsory /Elective/Open Elective									
5	Course	1. This course aims to introduce the need for Quality Manag	gement of								
	Objective	Electronics Systems									
		2.explain the need to higher quality the system and compo	nents								
		3.Elaborates system reliability and reliability techniques									
		4.Challenges of Quality Management									
6	Course	After completing this course students should be able to									
0	Outcomes	After completing this course students should be able to									
	Outcomes	CO1: Explain the mechanism of quality control and its proto									
		type.									
		CO2: Estimate the quality management organiza	tion structure								
		and design									
		CO3: Use k-out of n system for analysis of comp	lex reliability								
		structures									
		CO4: Apply the Markovian Techniques for reliable	oility								
		prediction	-								
		CO5: Application of Quality Management in Rea	al Time								
		Project									
7	Course										
	Description	This course aims to introduce the need for Quality Manage									
		Electronics Systemsand explain the need to higher qualityt									
		components because of the increasing complexities of elec	tronic								
		products.									
2											
8	Outline syllabu	IS	CO								
	TT •/ 4		Mapping								
	Unit 1	Quality Concepts									
	A	Evolution of Quality Control, concept change, TQM	CO1,								
		Modern concept, Quality concept in design, Review of									
		design, Evolution of proto type.									

В	Control on Pi	urchased Pro	oduct Procurement of various	CO1				
	products, eval	uation of su	pplies, capacity verification,					
			procurement procedure.					
С	Manufacturin	g Quality M	ethods and techniques for	CO1				
			nd control of product, quality in					
	sales and serv	sales and services, guarantee, analysis of claims.						
Unit 2	Quality Man							
А	Quality Mana	gement Orga	anization structure and design,	CO2				
	-		lization, designing and fitting,					
	organization f	or different	type products and company.					
В			e and contribution, quality cost,	CO2				
			eduction program.					
С			Attitude of top management,	CO2				
			erators attitude, responsibility,					
	causes of apparatus error and corrective methods.							
Unit 3	System Reliability							
А	System reliability modeling,							
В	k-out of n system, analysis of complex reliability structures							
С	System reliability estimation.							
Unit 4								
А	Reliability prediction, cut set, tie set, FME set, PTA,							
В	Markovian Te	chniques	· · · · · · · · · · · · · · · · · · ·	CO4				
С	Monte Carlo S	Simulation, a	application to electronic systems.	CO4				
Unit 5	<b>Challenges of Quality Management:</b> A Case Study at							
	Electronics Manufacturing Services Company							
А	High employee turnover rate due to job dissatisfaction							
В	Unreliable, slow and inaccurate quality information system							
С			uality management	CO5				
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1. Lt. Gen. H.	Lal, "Total	Quality Management", Eastern					
	Limited, 1990							
	2. Lewis, "Introduction to reliability engineering", Wiley international, $2^{nd}$ edition.							
Other			Total Quality Management",					
References	McGraw Hill, 1994.							
	· · · · · · · · · · · · · · · · · · ·		New Product manufacturing",					
	McGraw Hill	· •	5,					
			ctical reliability engineering",					
	Hayden Book	-						

Cos	PO	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	3
ECE812.	2	1	1	-	2	-	1	1	1	1	2		1
ECE812. 2	2	2	1	-	2	-	1	2	1	1	3		2
ECE812. 3	3	1	1	-	2	-	1	2	1	1	2		2
ECE812. 4	2	2	1	-	2	-	1	3	1	1	1		2
ECE812. 5	2	2	1	-	2	-	1	3	1	1	1		2
ECE812	2	2	2		2		1	3	1	1	2		2