

Program Structure Program: MSc (Physics) Program Code: SBR0201 Batch: 2018-2020 Department of Physics School of Basic Sciences and Research

1. Standard Structure of the Program at University Level

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship

Mission of the University

- **1.** Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- **3.** Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School

School of Basic Sciences and Research

Vision of the School

Achieving excellence in the realm of basic and applied sciences to address the global challenges of evolving society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- **3.** To establish center of excellence for ecologically and socially innovative research.
- 4. To strengthen inter institutional and industrial collaboration for skill development and global employability.

- 1.3.1 Programme Educational Objectives (PEO) for MSc (Physics) program
- **PEO1:** To prepare students to attain successful professional careers by applying critical thinking and skills based on Physics in their professions or higher education to meet the challenges in industry, academia or the pursuit of other fields.
- **PEO2:** To engage Students in lifelong learning, adapt to evolving technologies, and work in interdisciplinary research to design innovative products and solutions to become successful professionals, entrepreneurs or researchers.
- PEO3: To provide an opportunity to the students to explore research and development, in collaboration with other institutions, in the areas of Material Sciences, Nuclear Sciences and Renewable Energy.
- PEO4: To impart values in students to practice professional ethics, communicate effectively, emerge as leaders in chosen fields and be socially responsible.

1.3.2 Program Outcomes (PO's)

- PO1: Proficiency Students should demonstrate proficiency in Nuclear and Particle Physics, Advanced Quantum Mechanics, Spectroscopy, Statistical Mechanics, Electronics, Characterization & Synthesis of Materials, Solid State Physics and Renewable Energy and should be able to apply these functions, principles and concepts for solving professional or research problems.
- PO2: Skills Students should understand the need and acquire skills to design and conduct physics experiments, as well as to analyze and interpret data. He should also learned analytical skills on an advanced level, needed in industry, consultancy, education, research, or public administration.
- PO3: Communication Students should understand and capable of writing scientific publication and present their research works in conferences and seminars.
- PO4: Research Students shall have ability to Identify, formulate, research literature, and analyses substantiated conclusions to take up higher education or work on interdisciplinary research problems or take up physics as a teaching profession.
- PO5: Responsibility Students shall have a clear understanding of professional and ethical responsibility.
- PO6: Life-long learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of research and technology.
- **1.3.3** Program Specific Outcomes (PSO's)
- **PSO1:** Materials Science An idea about all types of crystal defects and dislocations, information about Phase diagrams and general diffusion theory in detail, A fair idea of plastic deformation and fracture of material from an engineering point of view, A comprehensive awareness of the most important engineering material of the century namely polymers and state of the art facts and techniques of the synthesis and characterization of materials.
- PSO2: Nano Science Studying nano science will contribute to the development of technology and devices such as single photon sources, solar cells, nano electronics and nanomaterial's. Highly relevant to the recruitment needs of industrial employers, particularly in the semiconductor, telecommunications and imaging sectors and for further research.

Program Structure Template School of Basic Sciences & Research MSc. Physics Batch: 2018-2020 TERM: I

S.	S. Subject Subjects Teaching Load			Pre-Requisite/	Type of Course:					
No.	Code		L	T	Р	Credits	Co Requisite	1. CC 2. AECC 3. SEC 4. DSE		
	THEORY SUBJECTS									
1.	MPH112	Solid state physics	4	0	0	4	Pre-Requisite	CC		
2.	MPH119	Mathematical Physics	4	0	0	4	Pre-Requisite	CC		
3.	MPH120	Quantum mechanics	4	0	0	4	Pre-Requisite	CC		
4.	MPH111	Classical mechanics	4	0	0	4	Pre-Requisite	CC		
5.	MMT129	Introduction to MATLAB and its Applications	2	0	2	3	Pre-Requisite	GE1		
	Practical									
6.	MPH155	Physics Lab-1	0	0	6	3	Pre-Requisite	CC		
7.	MPH156	Physics Lab-2	0	0	6	3	Pre-Requisite	CC		
		TOTAL CREDITS	25							

Program Structure Template School of Basic Sciences & Research MSc. (Physics) Batch: 2018-2020 TERM: II

S. No.	Course Code	Course	Tea	ching I	load		Core/Elective	Type of Course: 1. CC		
110.	Cour		L	Т	Р	Credits		2. AECC 3. SEC 4. DSE		
	THEORY SUBJECTS									
1.	MPH115	Renewable energy sources	4	0	0	4	Core	GE 2		
2.	MPH113	Electronics	4	0	0	4	Core	CC		
3.	MPH117	Statistical Mechanics	4	0	0	4	Core	CC		
4.	MPH123	Atomic, molecular physics and spectroscopic techniques	4	0	0	4	Core	CC		
5.	MPH122	Advanced quantum mechanics	4	0	0	4	Core	CC		
6.	CCU 401	Community Connect	-	-	-	2	Elective	SEEC-1		
		·		Practio	cal		·			
7.	MPH157	Physics Lab-3	0	0	6	3	Core	CC		
8.	MPH158	Physics Lab-4	0	0	6	3	Core	CC		
TOTAL CREDITS										

Program Structure Template School of Basic Sciences & Research MSc. Physics Batch: 2018-2020 TERM: III

S.	S. Course Course Teaching Load				Core/Ele	Type of Course:				
No.	Code		L	Τ	Р	Credits	ctive	5. CC 6. AECC 7. SEC 8. DSE		
	THEORY SUBJECTS									
1.	MPH204	Electromagnetics	4	0	0	4	Core	CC		
2.	MPH205	Materials Physics	4	0	0	4	Core	DSE-1		
3.	MPH208	Synthesis of Materials	4	0	0	4	Core	DSE-2		
4.	MPH217	Nuclear and particle physics	4	0	0	4	Core	CC		
5.	MPH256	Dissertation – 1	0	0	0	4	Core	DSE-3		
Practic	Practical									
6.	MPH257	Specialized Physics lab	0	0	6	3	Core	CC		
		TOTAL CREDITS	23							

Program Structure Template School of Basic Sciences & Research MSc. Physics Batch: 2018-2020 TERM: IV

S.	Course	Course	Teaching Load			Core/Elective	Type of Course:	
No.	Code		L	T	Р	Credits		9. CC 10. AECC 11. SEC 12. DSE
			THEO	RY SU	JBJE	CTS	•	
1.	OPExxx	Open Elective	2	0	0	2	Elective	SEEC 2
2.	MPH209	Characterization of Materials	4	0	0	4	Core	DSE 4
3.	MPH210	Properties of Materials	4	0	0	4	Core	DSE 5
4.	MPH258	Dissertation – 2	0	0	0	6	Core	DSE 6
	TOTAL CREDITS				•	16		

Total Credits= (25+28+23+16=92)

C. Course Templates

Sch	ool: SBSR	Batch : 2018-2020
Pro	gram: M.Sc.	Current Academic Year: 2018-2019
	nch: Physics	Semester: I
1	Course Code	MPH-112
2	Course Title	Solid State Physics
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	This course provides an opportunity to develop knowledge and understanding of the key principles and applications of physics of solids.
6	Course Outcomes	CO1: Knowledge of real space, reciprocal space (k-space), Electrons in a Periodic Potential and Free electron theory.CO2: Knowledge and understanding the theory of defects and diffusion in Solida.
		diffusion in Solids.CO3: Knowledge and understanding the theory of lattice vibrations (phonons) and use that to determine thermal properties of solids.CO4: Knowledge and understanding of dielectric and Ferro-electric Properties of Materials.
		CO5: Knowledge and understanding of magnetic and superconducting properties of solids.CO6: Apply the knowledge gained to solve problems in solid state physics using relevant mathematical calculations.
7	Course Description	This course provides students a full exposure to the basic principles and essential concepts of Solid State Physics including theoretical description of crystal structure, lattice dynamics, thermal, electrical and magnetic properties of solids.
8	Outline syllabus	who hugher properties of softast
_	Unit 1	Electronic Energy Bands
	А	Wigner Seitz cell, Brillouin Zone, Bragg planes
	В	Band structure, Bloch Theorem, Electrons in a Periodic Potential
	С	Kronig-Penney Model, Classical and quantum Free electron theory
	Unit 2	Defects and Diffusion in Solids
	Α	Point defects, line defects and dislocations
	В	Fick's law, diffusion constant
	С	self-diffusion, color centres and excitons.
	Unit 3	Lattice Vibration and Thermal Properties of Solids
	А	Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains
	В	Acoustical and Optical Phonons. Qualitative description of the Lattice heat capacity
	С	Classical theory of specific heat, Einstein's and Debye's theory of

			🧟 🎾 Beyond Boundaries			
	specific heat of	specific heat of solids.				
Unit 4	Dielectric and	Dielectric and Ferro-electric Properties of Materials				
A		tion, Orientatio	ossotti Equation, Polarization mechanism: onal Polarization, Interfacial Polarization,			
В	Piezoelectricit effect,	Piezoelectricity, Ferroelectricity, Pyroelectricity effect, Ferroelectric effect,				
С	Curie-Weiss I	Law, Ferroelect	ric domains, Structural phase transition.			
Unit 5	Unit 5 Magnetism and Superconductivity					
A	-	Ferromagnetic Domains – Anisotropy energy, origin of domains, transition region between domains, Bloch wall, Coercive force,				
	Temperature of	Temperature dependence of spontaneous magnetisation,				
В	Saturation Ma	gnetization, A	ntiferromagnetism, Ferrimagnetism,			
	Anisotropic an	nd Giant Magn	etoresistance, London equation;			
C	Elementary B flux, Josephso	•	erence Length, Quantization of magnetic			
Mode of examination	Class test (10)	,Assignments	(10) and presentation (10)			
Weightage	СА	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	1. Intro	oduction to soli	d state physics: C. Kittel			
Other References	3. Soli	3. Solid State Physics: A. J. Dekker				
	•		ls: Richar Jerome Weiss ids: L.V. Azaroff			

Scho	ol: SBSR	Batch : 2018-2020					
	gram: M.Sc.	Current Academic Year: 2018-2019					
-	nch: Physics	Semester: I					
1	Course Code	MPH 119					
2	Course Title	MATHEMATICAL PHYSICS					
3	Credits	4					
4	Contact Hours	4-0-0					
	(L-T-P)						
	Course Status	Compulsory					
5	Course Objective	 The objective of this course is to familiarize the students with various techniques of solving ordinary and partial differential equations. To understand the concepts of Laplace and Fourier transformations, 					
		basic statistical and numerical methods and their applications.					
6	Course Outcomes	CO1: Explain the methods of solving differential equations of various types.					
		CO2: Explains the methods of solving Heat, Wave and Laplace's Equations					
		CO3: Know that any periodic function can be expressed as a Fourier series and fundamental mathematical properties of the Fourier and Laplace transform.					
		CO4: Know the condition(s) for a complex variable function to be analytic and/or harmonic, able to determine the points of singularities of a function and understand the concept of sequences and series with respect to the complex numbers.					
		CO5: Describe various probability distributions and their applications.					
		CO6: Describe and use the concepts of different numerical methods.					
7	Course Description	This course is an introduction to the fundamentals of Ordinary and partial differential equations, Integral transformations, complex variables, statistics and numerical analysis. The main objective of the course is to develop the basic understanding of differential equations, Fourier and Laplace Transforms, complex variables and numerical methods.					
8	Outline syllabus	Mathematical Physics					
	Unit 1	Ordinary Differential Equations					
	А	Linear ordinary differential equations of first & second order.					
		Series solution of differential equation, Special functions (Hermite,					
	В	Bessel, Laguerre and Legendre functions). Green's function					
	С	Partial differential equations (Laplace, wave and heat equations in two and three dimensions)					
	Unit 2	Fourier series, Fourier and Laplace transforms					
	A	Fourier series, Fourier series in change of interval, Half range sine and					
		cosine series. Transform.					
	В	Fourier Transforms, Fourier Cosine and sine Transform, properties of					
		Fourier					

				indaries 🧹 🗸 Seyond Boundaries				
	С	Laplace transform of some standard functions and its properties, Inverse						
		Laplace transform and Convolution theorem						
	Unit 3	Complex Analysis						
	А	Elements of	complex analys	sis, analytic functions.				
	В	Taylor & La	urent series.					
	С	Poles, residu	es and evaluati	on of integrals.				
	Unit 4	Probability	and Statistics					
	А	Elementary	probability theo	ory, random variables.				
	В	Binomial, Po	bisson and norn	nal distributions				
	С	Central limit	theorem.					
	Unit 5	Numerical 7	Fechniques					
	А	Elements of	computational	techniques: root of functions, interpolation,				
		extrapolation	1.					
	В	Integration b	y trapezoidal a	nd Simpson's rule.				
	С	Solution of f	ïrst order differ	rential equation using Runge-Kutta method				
		and Finite di	fference metho	d				
	Mode of	Theory						
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text book/s*	1. Krey	szig, E., "Adva	anced Engineering Mathematics", John Wiley				
		& So	ons Inc.					
		2. Jain,	M.K., and	Iyengar, S.R.K., "Advanced Engineering				
		Mathematics", Narosa Publications						
	Other	1. S.L. Ross, "Differential Equations", John Willey & Sons Inc.						
	References	2. S. C.	2. S. C. Gupta and V. K. Kapoor: Fundamentals of Mathematical					
		Statis	stics: Sultan Ch	and and Sons.				

		SHARDA UNIVERSITY
Sch	ool: SBSR	Batch : 2018-2020
Pro	gram: MSc (Physic	cs) Current Academic Year: 2018-2019
Bra	nch:	Semester: I
1	Course Code	MPH 120
2	Course Title	Quantum Mechanics
3	Credits	4
4	Contact Hours (L-	T-P) 4-0-0
	Course Status	Compulsory
5	Course Objective	 pinpoint the historical aspects of development of quantum mechanics, understand the uncertainty, dirac notations relations understand and explain the differences between classical and quantum mechanics, understand the idea of wave function solve Schrodinger equation for simple potentials spot, identify and relate the eigenvalue problems for energy, momentum, angular momentum and central potentials.
6	Course Outcomes	After the completion of this course, the student will be able toCO1 understanding and relating the events which led toward thedevelopment of quantum mechanicsCO2 understanding the basic principles of wave mechanicsCO3 relating the knowledge of mathematics to the formalism ofquantum mechanicsCO4 ability to solve simple problems exactlyCO5 adapting the gained knowledge to be implement.CO6 Understanding the concept of Quantum Mechanics and itsapplication for real problems
7	Course Descriptio	
8	Outline syllabus	
-	Unit 1	
	A Introduction to the course and Prerequisite required, Linear vector sp State space, Dirac notation and Representation of State Spaces, Conc Kets, Bras and Operators	
	BI	Expectation Values, Superposition Principle, Orthogonality, Completeness, Expansion of State Vector, Non commutating Observables
	C	Commutation and Compatibility, Change of basis, Unitary operators. Generalized Uncertainty Relations, Ehrenfest theorem
	Unit 2	

	А	Postulates of Quantum me	echanics. State function	and its interpretation				
-	B			presentations, Expansion of a				
	D	State Function and Sup		presentations, Expansion of a				
-	С			operators, Continuous Basis,				
	C							
	Unit 3	Relation between a State Vector and its wave function						
-	A	Schrödinger equation and its applications- In one dimensional conside						
	A							
-	В	Schrödinger equation (tim						
	В			nal potential well (finite and				
-	С	infinite depth) and its ener		(finite and infinite width) and				
	C		e-dimensional darriers (finite and infinite width) and				
	TT *4 A	penetration problems.						
	Unit 4							
	А	Schrödinger equation and	l its applications in thre	ee dimensional consideration:				
		Free particle wave function	on					
	В	Motion of a charged partie	cle in a spherically sym	metric field				
	С	Energy states associated	wave functions of Hy	drogen atom; Expression of				
		Bohr radius	-					
	Unit 5							
	А	Schrödinger interaction P	ictures in quantum mecl	nanics				
	В	Heisenberg interaction Pie	ctures in quantum mech	anics				
	С	Linear harmonic oscillate	or: solution of the Line	ear Harmonic Oscillator with				
		Operator Method, Cohere	nt States					
	Mode of	Theory						
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text Book/s	1. Nouredine Zettili, Q	Quantum Mechanics: co	ncepts and applications, John				
		Wiley & Sons (2001)						
		2. L. Schiff, Quantum M	Iechanics, Mcgraw-Hill	(1968).				
	Other	1. B. H. Bransden	and C. J. Joachain, Q	Quantum Mechanics, Pearson				
	References	Education 2nd Ed.	. (2004)					
		2. R. L. Liboff, Intro	ductory Quantum Mech	anics, Pearson Education, 4th				
		Ed. (2003).						
		 J. J. Sakurai, Modern Quantum Mechanics, Pearson Education (2002). 						
		 J. J. Sakural, Modern Quantum Mechanics, Fearson Education (2002). K. Gottfried and T-M Yan, Quantum Mechanics: Fundamentals,2nd 						
		Ed., Springer (2003).5. D. J. Griffiths, Introduction to Quantum Mechanics, Pearson Education						
		(2005).		vicenames, i carson Education				
		```	and V V-state	A Torrthools of Orrest				
				A Textbook of Quantum				
			AcGraw Hill(1995).	(1000)				
		7. F. Schwabl, Quant	tum Mechanics, Narosa	(1998).				



Scho	ol: SBSR	Batch: 2018-2020					
Prog	ram: M.Sc.	Current Academic Year: 2018-2019					
-	ch: Physics	Semester: I					
1	Course Code	MPH111					
2	Course Title	Classical Mechanics					
3	Credits	4					
4	Contact Hours(L-T-P)	4-0-0					
	Course Status	Compulsory					
5	Course Objective	<ul> <li>To make the students familiar with the concepts Constraints and generalized coordinates, d' Alembert's principle and virtual work.</li> <li>To understand the concept of Hamilton's principle, Hamilton's canonical equations of motion, cyclic coordinates, Central Forces, Lagrangian and Hamiltonian, em forces, coupled oscillators.</li> <li>To know the concept of Canonical Transformations, Hamilton Jacobi theory, action and angle variables, Small oscillations, principal axis transformation, Degrees of freedom for a rigid body, Euler angles.</li> <li>To understand the concept of Two body central force problem, reduction to the equivalent one body problem, equation of motion and first integral, Virial theorem.</li> </ul>					
6	Course Outcomes	<ul> <li>CO1: Learn the basic concepts of Constraints and generalized coordinates, d' Alembert's principle and virtual work, Euler-Lagrange equations of motion.</li> <li>CO2: Understand the Hamilton's principle, Hamilton's canonical equations of motion, cyclic coordinates, Central Forces – Lagrangian and Hamiltonian, em forces, coupled oscillators. Canonical variables, Poisson's bracket.</li> <li>CO3: Able to explain the Canonical Transformations, Hamilton Jacobi theory, action and angle variables, centre of mass and laboratory systems.</li> <li>CO4: Figure out the Small oscillations, principal axis transformation, normal coordinates and its applications to linear molecules. Degrees of freedom for a rigid body, Foucault's pendulum.</li> <li>CO5: State the concepts of Two body central force problem, reduction to the equivalent one body problem, equation of motion and first integral, Virial theorem.</li> <li>CO6: Analyse the concepts of Lagrangian Formulation, Hamiltonian Formulations, Canonical Transformations, Thoery of Small Oscillations, Two Body Problem.</li> </ul>					
7	Course Description	This course is about describing the concepts of Lagrangian Formulation, Hamiltonian Formulations, Canonical Transformations, Thoery of Small Oscillations, Two Body Problem.					
8	Outline Syllabu						
	Unit 1	Lagrangian Formulation					
	А	Constraints and generalized coordinates					



1	l	I		💙 Beyond Boundaries				
	В	d' Alembert's principle ar	d virtual work					
	С	Euler-Lagrange equations	of motion, variational calcu	lus.				
	Unit 2	Hamiltonian Formulatio	ns					
	А	Hamilton's principle, Ha coordinates, Central Force	Hamilton's principle, Hamilton's canonical equations of motion, cyclic					
	В	Lagrangian and Hamiltoni	an, em forces, coupled oscil	llators				
-	С		on's bracket, Jacobi identity					
	Unit 3	<b>Canonical Transformati</b>						
	А	Canonical Transformati transformations, symmetry	ons, generators of inf y principles and conservation					
	В	Hamilton Jacobi theory, a						
	С	centre of mass and laborat						
	Unit 4	Thoery of Small Oscillat	<i>· ·</i>					
	A	Small oscillations, principal axis transformation, normal coordinates and its applications to linear molecules						
	В	Degrees of freedom for a rigid body, Euler angles, Rotating frame, Coriolis force, Foucault's pendulum						
	С	Eularian coordinates and equations of motion for a rigid body, motion of a symmetrical top.						
	Unit 5	Two Body Problem						
	А	Two body central force problem	problem, reduction to the	equivalent one body				
	В	equation of motion and fir	st integral, Virial theorem					
	С	differential equation of or	bit, Kepler problem, precess	ing orbits.				
	Mode of Examination	Theory						
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text Book/s	<ol> <li>Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi.</li> <li>Classical Mechanics by N.C.Rana and P.S.Joag, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.</li> </ol>						
	Other References	<ul> <li>3. Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.</li> <li>4. Classical Mechanics by J.C.Upadhyaya, Himalaya Publishing House.</li> </ul>						



Sch	ool: SBSR	Batch : 2018- 2020			
	gram: M.Sc.	Current Academic Year: 2018-2019			
	nch: Mathematics,	Semester: I			
	sics, Chemistry				
1	Course Code	MMT-129			
2	Course Title	Introduction to MATLAB and its applications			
3	Credits	3			
4	Contact Hours	2-0-2			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts for MATLAB and cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific programming problems including curve fitting, ODE solving			
6	Course Outcomes	etc. CO1: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop program scripts and functions using the MATLAB development environment. (K4, K5) CO6: Write the program for evaluates linear system of equations, ordinary differential equations in MATLAB. (K5,K6)			
7	Course Description	The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Syntax and interactive computations, programming in MATLAB using scripts and functions, rudimentary algebra and analysis. One- and two- dimensional graphical presentations. Examples on engineering applications.			
8	Outline syllabus	Introduction to MATLAB and its applications			
	Unit 1	Introduction			
	А	Vector and matrix generation, Subscripting and the colon notation.			
	В	Matrix and array operations and their manipulations,			
	С	Introduction to some inbuilt functions.			
	Unit 2	Relational and Logical Operators			
	А	Flow control using various statement and loops including If-End statement, If-Else –End statement			
	В	Nested If-Else-End Statement,			
	С	For – End and While-End loops with break commands.			
	Unit 3	m-files			



Α	Scripts a	Scripts and functions			
В	1	of local and glo	obal variable		
С			lt functions, editing, saving m-files.		
Unit 4		Two dimensional Graphics			
А	Basic Pl	ots, Change in	axes and annotation in a figure		
В	multiple	multiple plots in a figure			
С	saving a	nd printing fig	ures		
Unit 5	Applica	tions of MAT	LAB		
А	Solving	Solving a linear system of equations,			
В	Curve fi	tting with poly	nomials using inbuilt function such as polyfit,		
	solving equations in one variable,				
С	Solving ordinary differential equations using inbuilt functions				
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book	An introduction to MATLAB : Amos Gilat         1. Applied Numerical Methods with Matlab for engineering and Scientists by stevenchapra, Mcgraw Hill.         2. Getting started with Matlab: RudraPratap				
Other References					



ool: SBSR	Batch: 2018-2020				
gram: MSc ysics)	Current Academic Year: 2018-2019				
nch:	Semester: I				
Course Code	MPH 155				
Course Title	Solid state physics lab				
Credits	3				
Contact Hours (L-T-P)	0-0-6				
Course Status	Compulsory				
Course Objective	<ol> <li>To Understand the significance and value of solid state physics, both scientifically and practically.</li> <li>To understand laboratory experiments to Interpreting results, error analysis, writing reports and analyzing data.</li> </ol>				
	3. To learn the fundamental properties of semiconductors.				
	4. Apply key analysis techniques to understand the				
	5. To understand laboratory experiments to				
Course Outcomes	CO1: Student will be able to determine the Planck's constant and excitation potential of mercury.				
	CO2: Student will be able conclude the value of the ratio of charge to mass (e/m) of an electron using a cathode-ray tube.				
	CO3: Student will be able to understand the concept of and susceptibility of paramagnetic solution by Quinck's Tube Method and Energy Band Gap of Semiconductor materials.				
	CO4: Student will be able to understand the Hysteresis loss of Magnetic materials and the dielectric constant of some materials				
	CO5: Student will be able to understand the concept of Hall effect Carrier density and mobility of a semiconductor material.				
	CO6: Student will be able to know the python programming language.				
Course	This course integrates exposure of the theory of Solid State Physics with				
Description	experimental demonstrations in the Physics Lab. The course will provide a valuable overview of the fundamental applications of the physics of solids.				
Outline syllabus					
Unit 1	Practical related to				
	<ol> <li>To determine the Planck's constant by measuring radiation in a fixed spectral range.</li> <li>To measure the excitation potential of mercury using the Franck-Hertz method.</li> </ol>				
	vsics) nch: Course Code Course Title Credits Contact Hours (L-T-P) Course Status Course Objective Course Outcomes Course Description Outline syllabus				



Unit 2	Practical re	lated to	beyond boundaries			
		3. To determine the value of the ratio of charge to mass (e/m) of an electron by				
		Thomson's method using a cathode-ray tube.				
	4. Measurer	4. Measurement of susceptibility of paramagnetic solution (Quinck's Tube				
	Method).					
Unit 3	Practical re	Practical related to				
	5. Understan	ding basics of	GM Counter.			
	6. Study of t	he characteris	tics of a GM tube and determination of its operating			
	voltage, plat	eau length / sl	ope.			
Unit 4	Practical related to					
	7. To measu	re the dielectri	c constant of some materials.			
	8. To under	8. To understand Hall effect and determine Hall co-efficient, Carrier density				
	and mobility	of a semicond	ductor material.			
Unit 5	Practical re					
	9. Experime	nt related to py	thon programming language-(1).			
			by thon programming language-(2).			
Mode of	Practical and					
examination						
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text book/s*	-					
Other						
References						



Scho	ool: SBSR	Batch: 2018-2020			
Program: M.Sc.		Current Academic Year: 2018-2019			
	nch: Physics	Semester: 1 st			
1	Course Code	MPH156			
2	Course Title	Quantum physics lab using scilab software			
3	Credits	3			
4	Contact Hours	0-0-6			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	To Understand Scilab basics			
	Objective	• To learn inbuild functions of scilab and will learn to define new			
	-	function			
		• To verify various physics laws			
		• To solve quantum mechanics problems			
6	Course	CO1: Learn the Basics of Sci lab, Inbuild functions and plotting			
_	Outcomes	CO2: Learn to preserve data, Complex and Character data, string function,			
		Multidimensional arrays			
		CO3: Able to write the program for Hookes law, spring constant and			
		Classical equation of motion: harmonic oscillator (low, moderate & high			
		damping case)			
		CO4: Able to solve Schrodinger equation for the ground and excited state			
		of an atom and to find their energies and to plot corresponding			
		wavefunctions in scilab			
		CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab			
		CO6: Learn physics concepts via writing scilab programs.			
7	Course	This course is about to understand Scilab basics, to learn inbuild functions			
	Description	of scilab and will learn to define new function, to verify various physics			
		laws and to solve quantum mechanics problems.			
8		s: This course is about to understand Scilab basics, to learn inbuild functions			
		ill learn to define new function, to verify various physics laws and to solve			
	quantum mecha				
	Unit 1	Practical based on Basics of Sci lab, Inbuild functions and plotting			
		Sub unit – a: Introduction to Scilab, Command window, Figure window,			
		Edit window, Variables and arrays, Initializing variables in Scilab			
		Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying			
		output data, data file, Scalar and array operations, Hierararchy of			
		operations, Built in Scilab functions,			
		Sub Unit c: Introduction to plotting, 2D and 3D plotting, Branching			
		Statements and program design, Relational and logical operators, the while			
		loop, for loop, details of loop operations, break and continue statements,			
	<b>H H</b>	nested loops, logical arrays and vectorization. User defined functions			
	Unit 2	Practical related to lean to preserve data, Complex and Character			
		data, string function, Multidimensional arrays			
		Sub unit - a, Introduction to Scilab functions, Variable passing in Scilab,			
		optional arguements, preserving data between calls to a function,			



Mode of	Proctical			
	Practical			
	$0.755501 \text{ eV}, \alpha = 1.44, r_0 = 0.131349 \text{ Å}$			
	the corresponding wave function. Take: $m = 940 \times 106 \text{ eV/C}^2$ , $D =$			
	1 0			
Unit 5				
Unit 5				
	digits. Also, plot the corresponding wavefunction. Take $e = 3.795 (eVA)^{1/2}$			
	1 01			
	•			
	ground state energy of the hydrogen atom is $\approx$ -13.6 eV. Take e = 3.795			
	Sub unit – a Solve the s wave Schrodinger equation for the ground state			
	corresponding wavefunctions			
	excited state of an atom and to find their energies and to plot			
Unit 4	Practical related to solve Schrodinger equation for the ground and			
	solution			
	Sub Unit c: Forced Harmonic oscillator (i) Transient and (ii) Steady state			
	(i) Overdamped (ii) Critical damped (iii) Oscillatory			
	Sub Unit b: Harmonic oscillator (no friction) Damped Harmonic oscillator			
	Calculate spring constant, Classical equations of motion,			
	Sub unit - a, Sci-lab program of following physical relations: Hookes law,			
	& high damping case			
	Sub unit - a, Sci-lab program of following physical relations: Hookes law Calculate spring constant, Classical equations of motion, Sub Unit b: Harmonic oscillator (no friction) Damped Harmonic oscillator (i) Overdamped (ii) Critical damped (iii) Oscillatory Sub Unit c: Forced Harmonic oscillator (i) Transient and (ii) Steady state solution <b>Practical related to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot</b> <b>corresponding wavefunctions</b> Sub unit – a Solve the s wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that tl ground state energy of the hydrogen atom is $\approx -13.6$ eV. Take e = $3.795$ (eVÅ) ^{1/2} , hc = $1973$ (eVÅ) and m = $0.511 \times 10^6$ eV/c ² Sub Unit b & c: Solve the s-wave radial Schrodinger equation for an atom Where m is the reduced mass of the system (which can be chosen to be th mass of an electron), for the screened coulomb potential. Find the energy (in eV) of the ground state energy is expected to be above -12 eV in all thr cases <b>Practical related to solve Schrodinger equation for hydrogen atom</b> Sub unit – a: Solve the s-wave radial Schrodinger equation for a particle mass m. For the anharmonic oscillator potential for the ground state energ (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wavefunction for a particle mass m. For the anharmonic oscillator potential for the ground state energ (in MeV) of particle to an accuracy of three significant digits. Also, plot the s-wave radial Schrodinger equation for a particle mass m. For the anharmonic oscillator potential for the ground state energ (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose m = 940 MeV/c ² , k = 100 MeV fm ⁻² , b = 0, 10, 30 MeV fm ⁻³ In these units, ch = $197.3$ MeV fm. The ground state energy I expected to lie between 90 an			
Unit 3				
	Multidimongional amore an introduction to C-11-1-file and the file			



examination							
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s*	-	utational Ph ational Pvt. L	•	).Walker,	1st Ec	ln., 2015,	Scientific
Other References	2014, 1	de to MATL. 3rd Edn., Car g started with	nbridge U	University	Press		C.



Sch	ool: SBSR	Batch : 2018-2020
Pro	gram: M.Sc	Current Academic Year: 2018-2019
	nch: Physics	Semester: II
1	Course Code	MPH115
2	Course Title	Renewable Energy Sources
3	Credits	4
4	Contact	4-0-0
	Hours	
	(L-T-P)	
	Course Status	Compulsory
5	Course	1. To know the importance of Physics and Materials Science.
	Objective	2. To utilize the various synthesis procedure to develop materials.
		3. To explain the practical application of materials in various area
6	Course	CO1: Learn the basics of Materials/Technology
	Outcomes	CO2: Understand the correlation between Applied science and
		Technology
		CO3: Apply the concept of materials and technology at certain levels.
		CO4: Develop devices using materials.
		CO5: Create the path to handle materials.
		CO6: Expertise in various tools will make a bridge between industry and
		students and find out the platform for employment in high tech industries
7	Course	This course is based on renewable energy that is collected from
	Description	renewable resources, which are naturally replenished on a human
		timescale, such as sunlight, wind, rain, tides, waves,
		and geothermal heat. Renewable energy often provides energy in four
		important areas: <u>electricity</u> <u>generation</u> , <u>air</u> and <u>water</u>
		heating/cooling, transportation, and rural (off-grid) energy services
8	Outline syllabu	
	Unit 1	Natural and Renewable Energy Resources
	A	Natural resources and associated problems, Forest, Water, Mineral,
		Food, Energy and Land resources
	В	Use and over-exploitation, Concept of an ecosystem, Environmental
		Pollution, Nuclear hazards
	C	Renewable Energy sources: Definition and types of renewable sources,
		Wind, Ocean, Geothermal, Biomass, Hydro as renewable energy
	Ilmit 2	resources Solar Engrand Eurodemontal and Matarial Agnosts
	Unit 2	Solar Energy: Fundamental and Material Aspects
	A	Fundamentals of photovoltaic Energy Conversion Physics and Material Properties, Types of solar energy conversion
	В	solar thermal: basics and design of water heaters, solar ponds, Basic to
		Photovoltaic Energy Conversion: Optical properties of Solids
	С	Direct and indirect transition semiconductors, interrelationship between
		absorption coefficients and band gap recombination of carriers.
		commence and can't get recommended of canters.



				Beyond Boundarie	
	Unit 3			ypes of Solar Cells	
	А	Types of Sola	ır Cells, p-n ju	nction solar cell, Transport Equation, Current	
		Density, Oper	n circuit voltag	ge and short circuit current	
	В	Brief descript	ion of single c	rystal silicon and organic and Polymer Solar	
		Cells, Elemen	tary Ideas of A	Advanced Solar Cells e.g. Tandem Solar	
		cells, Solid Li	iquid Junction	Solar Cells	
	С	Nature of Se	emiconductor,	Principles of Photo-electrochemical Solar	
		Cells.			
	Unit 4	Hydrogen Ei	nergy: Funda	mentals, Production and Storage	
	А	Hydrogen as	a source of end	ergy, Solar Hydrogen through	
				of material characteristics for production of	
		Solar Hydrog			
	В	Brief discussi	on of various	storage processes, special features of solid	
		hydrogen stor			
	С			aracteristics of storage material, New Storage	
		Modes.			
	Unit 5	Hydrogen Ei	and Utilization		
	А	Various factors relevant to safety, use of Hydrogen as Fuel, Use in			
		Vehicular transport, Hydrogen for Electricity Generation			
	В	Fuel Cells, Various type of Fuel Cells, Applications of Fuel Cell			
	С	Elementary concepts of other Hydrogen- Based devices such as Hydride			
		Batteries			
	Mode of	Theory			
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*	1.Fundamenta	als of Solar Ce	ells Photovoltaic Solar Energy	
		:Fahrenbruch&Bube			
	Other	1.Solar Cell I	Devices-Physic	es :Fonash	
	References	2. Phoptoelec	trochemical S	olar Cells: Chandra	
		-		Carrier Technologies Systems Economy :	
		Winter & Nitc			
			· · · ·	geryCarrier : Andreas Zuttel, Andreas	
1		Borgschulte and Louis Schlapbach			
		Borgschulte and Louis Schlapbach			



School: SBSR		Batch: 2018-2020		
Program: M.Sc.		Current Academic Year: 2018-2019		
)	nch: Physics	Semester: II		
1	Course Code	MPH113		
2	Course Title	Electronics		
3	Credits	4		
	Contact Hours			
4	(L-T-P)	4-0-0		
	Course Status	Compulsory		
5	Course Objective	<ol> <li>To make students aware of Physics of semiconductors.</li> <li>To impart the in depth knowledge of electronic devices like amplifiers, op-amp, oscillators etc.</li> <li>To give the idea of digital electronics.</li> </ol>		
6	Course Outcomes	<ul> <li>After the completion of this course, the student will be able to CO1: understand the physics and underlying phenomena in semiconductors.</li> <li>CO2: know the working of transistor and use it as amplifier</li> <li>CO3: use operational amplifier as mathematical operator.</li> <li>CO4: appreciate the working of oscillators and its applications.</li> <li>CO5: understand the components of digital electronics like flipflops, counters, converters, decoders etc.</li> <li>CO6: appreciate the physics of semiconductors and will be able to apply the concept on various devices.</li> </ul>		
7	Course description	This course teaches the students about the physics of the semiconductor materials and then how to apply this knowledge in understanding the working of various devices like transistors, op-amps, oscillators and digital electronics.		
8	Outline Syllabus	S		
	Unit 1	Review of Semiconductors		
	А	Energy bands, Intrinsic and extrinsic semiconductors, direct and indirect band gap semiconductors, concept of density of states and Fermi-level		
	В	carrier concentrations at equilibrium, Temperature dependence of carrier concentrations and mobility, carrier generation and recombination		
	С	Continuity equation, p-n junction : qualitative description of current flow, Small signal of model of p-n junction		
ļ	Unit 2	Transistor as Amplifier		
	А	Transistor action, Charge transport and amplification, Minority carrier distributions and terminal currents		
	В	Base width modulation, Ebers – Moll Model, Hybrid pi model, RC coupled transistor amplifier		
	С	Multi-stage transistor amplifier, Frequency response, negative feedback		
	Unit 3	Operational Amplifier		
	А	Review of Op-amps, current mirror, input impedance of OP-AMP		
	В	OP-AMP parameters and their frequency response, Differential amplifier, transfer characteristics of a differential amplifier		



C	Comparators (Schmitt trigger) and F to V and V to F Converters					
Unit 4	Oscillators	Oscillators				
A	Positive feedback, conditions for oscillation					
В	Phase shift oscillator, Mul	tivibrators: types of multi-vi	ibrators			
С	timer 555: block diagram	and operations, applications				
Unit 5	Digital Electronics					
А	Review of Flipflops, Asy	nchronous and synchronous	Counter			
В	Mod counters, Ring count to D and D to A converter	ers, Shift Registers (SISO, S	SIPO, PISO, PIPO), A			
C	Multiplexer, Demultiplexe	er, Decoder, Encoder				
Mode of Examination	Theory					
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text Book/s	<ol> <li>Solid State Electronic Devices- Streetman and Banerjee, Pearson Education.</li> <li>Integrated Electronics- Millman - Halkias, Tata Mc Graw Hill.</li> </ol>					
Other References	<ol> <li>Electronic Devices and Circuit Theory- Robert Boylestad and Louis Nashelsky, Prentice Hall.</li> <li>Digital Electronics, Malvino and Leech Prentice Hall of INdia</li> </ol>					
	1 1	Ir Integrated Circuits by – R. its by – Coughlin and Drisco by Floyd.	•			



School: SBSR		Batch: 2018-2020			
	gram: MSc	Current Academic Year: 2018-2019			
	inch: Physics	Semester: 1			
1	Course Code	MPH 117			
2	Course Title	Statistical Mechanics			
3	Credits	4			
4	Contact Hours	4-0-0			
•	(L-T-P)				
	Course Status	Compulsory			
5	Course	This course aims:			
-	Objective	1. To establish a foundation in Statistical mechanics.			
		2. To impart the concept of phase space ensembles, the distinction between			
		distinguishable and indistinguishable particles.			
		3. To make students aware of phase equilibrium and phase transition.			
		4. To provide detailed understanding of Bose Einstein statistics and Fermi-			
		Dirac statistics.			
6	Course	Upon successful completion of this course, the student will be able to:			
0	Outcomes	<b>CO1:</b> acquire knowledge of phase space, ensembles, partition functions and			
		Liouville's theorem.			
		CO2: understand the concept of equipartition of energy and will identify			
		equilibrium properties of ideal systems.			
		equilibrium properties of fueur systems.			
		<b>CO3:</b> develop an understanding of phase equilibrium and phase transitions.			
		<b>CO4:</b> learn fundamentals of Bose-Einstein statistics and its properties apply it in solving the problems.			
		CO5: learn the concept of Fermi Dirac Statistics and its properties.			
		<b>CO6:</b> understand, analyze and apply the concept of statistical mechanics to various problems which help to explain the behavior of large system.			
7	Course	This course introduces the various concepts, methods and terminologies of			
/	Description	statistical mechanics that are further used to develop the statistics for Bose-Einstein,			
	Description	Fermi-Dirac etc. Statistical Mechanics can be used to explain the thermodynamic			
		behavior of large system.			
		behavior of farge system.			
8	Outline syllabus				
~	Unit 1	Review of Classical Statistics			
	A	Review of the ideas of phase space, phase points; Micro canonical, canonical and			
		grand canonical Ensembles.			
	В	Density of phase points, Partition function formulation (for Distinguishable and			
		Indistinguishable particles.			
	С	Liouville's equation and Liouville's theorem.			
	Unit 2	Basic Concepts of Classical Statistics			
	A A	Law of equi-partition of energy and its application to specific heat and its			
	11	limitations			
		Innations			



				💊 🥓 Beyond Boundaries	
	В	Equilibrium properties of ideal systems: ideal gas, Harmonic oscillators			
	С	Rigid rotators, Para magnetism. Chemical potential.			
	Unit 3	Phase Equilibria and Phase Transition			
	А	Equilibrium among the phases of a pure substance, Phase, Component, Degree of			
freedom, Phase rule.					
	В	One component systems, Two component systems, Three component systems,			
		Equilibrium between two phases: Liquid-vapour equilibrium, Solid-vapour			
		equilibrium, Solid-liquid equilibrium.			
	С	Equilibria between three phases, First and second order phase transitions, Landau			
		theory, 1-D Ising model.			
	Unit 4		in Statistics		
	А	B-E distribution function, properties of ideal Bose gas, Photon Gas, Bose Einstein			
		Condensatio			
	В			litative treatment), Transition in liquid He ⁴ ,	
		Superfluidit			
	С			l thermodynamic functions of photon gas, Bose	
			f Planck's Law.		
	Unit 5	Fermi Dira			
	А			roperties of ideal Fermi gas, Completely and Strongly	
	2	degenerate Fermi gas.			
	В	•	•	Equivalence of Fermi level and the electrochemical	
	0	potential, Chemical potential of the fermion.			
	С	dwarf stars.	it of metals, wh	ite dwarf stars, Chandrashekhar mass limit for white	
	Mode of				
	examination	Theory/Jury/Practical/Viva			
	Weightage	CA MTE ETE		ETE	
	Distribution	30%	20%	50%	
	Text book/s*	30%     20%     50%       1. Statistical Physics by F Reif (Tata McGraw-Hill Company Ltd, 2008)			
	ICAT DOOK/S	<ol> <li>Statistical Physics by F Reff (Tata McGraw-Hill Company Ltd, 2008)</li> <li>Statistical Mechanics, R.K. Patharia, Pergamin press, Oxford.</li> </ol>			
		<ol> <li>Statistical Mechanics, K.K. Faularia, Ferganni press, Oxford.</li> <li>Statistical Mechanics by K. Huang, Wiley and sons.</li> </ol>			
		<ol> <li>Statistical Mechanics by K. Huang, whey and sons.</li> <li>Statistical Mechanics and dynamics by Henry J. Eyring, Wiley and sons.</li> </ol>			
		5. Fundamentals of classical and statistical thermodynamics, Bimalendu N.			
		Roy, Wiley			
			,		
	Other	<ol> <li>Thermal Physics, S. C. Garg, R. M. Bansal, C. K. Ghosh, Tata McGraw- Hill</li> <li>Thermodynamics and Statistical Mechanics, Greiner, Springer</li> </ol>			
	References				
		3. Statistical and Thermal Physics: an introduction by S.Lokanathan and			
		R.S.Gambhir.			



S	chool: SBSR	Batch : 2018-20	
Program:MSc (Physics)		Current Academic Year: 2018-2019	
Branch:		Semester: II	
-	Course Code	MPH 123	
2		Atomic, molecular physics and	
_		spectroscopic techniques	
3	Credits	4	
4		3-1-0	
	(L-T-P)		
	Course Status	Compulsory	
5		1. To know concept of atomic physics of one electron atom	
	5	<ol> <li>To understand concept of atomic physics of many electron atom</li> </ol>	
		<ol> <li>To understand effect of magnetic and electric field on an atom.</li> </ol>	
		4. To understand the concept of molecular Physics.	
		5. To understand the working principle of spectroscopic	
		techniques.	
6		After the completion of this course, the student will be able to CO123.1: know about different atom model and will be able to differentiate different atomic systems, different coupling schemes, Discuss the relativistic corrections for the energy levels of the hydrogen atom and their effect on optical spectra CO123.2: Explain the observed dependence of atomic spectral lines on externally applied electric and magnetic fields CO123.3: Discuss the importance of spin orbit interactions. CO123.4: State and justify the selection rules for various optical spectroscopies in terms of the symmetries of molecular vibrations CO123.5: Identify the basic components of spectroscopic instrumentation. Demonstrate a working knowledge of IR, NMR, ESR and Mossbauer spectroscopy. CO123.6: Understanding spectroscopy the way other common tools of measurement like the watch or the ruler are understood and also understanding basic concepts of instrumentation, data acquisition and data processing.	
7	Course Description	This course addresses various aspects of spectroscopic analysis relevant to both research and industry. Students will learn the relative merits of the techniques, the operating principles, and develop problem solving skills generally useful in chemical analysis. The objectives of this subject are to provide students with an increased knowledge of advanced principles, with emphasis on: - understanding how light interacts with matter and how it can be used to quantitatively understand samples. - understanding spectroscopy the way other common tools of	

		SHARDA UNIVERSITY Beyond Boundaries		
		<ul> <li>measurement like the watch or the ruler are understood</li> <li>seeing that spectroscopy is a set of tools that can put be together in different ways to understand systems and solve problems</li> <li>understanding basic concepts of instrumentation, data acquisition and data processing.</li> </ul>		
8	Outline sylla			
	Unit 1	Fine and Hyperfine Structure		
	A	General discussion in Hydrogen spectra, Hydrogen-like systems, Spectra of monovalent atoms		
	В	Introduction to electron spin, spin-orbit interaction and fine structure, relativistic correction to spectra of hydrogen atom, Selection rules; Lamb shift.		
	С	Effect of external magnetic field - Strong, moderate and weak field. Hyperfine interaction and isotope shift; Hyperfine splitting of spectral lines; Broadening of spectral lines.		
	Unit 2	Many Electron Atom		
	A	Independent particle model; He atom as an example of central field approximation; Central field approximation for many electron atom;		
	В	Slater determinant; L-S and j-j coupling; Equivalent and nonequivalent electrons		
	С	Energy levels and spectra; Spectroscopic terms; Hunds rule; Lande interval rule; Alkali spectra.		
	Unit 3	Rotational and Vibrational Spectra		
	A	Concept of molecular potential, Born-Oppenheimer approximation and separation of electronic and nuclear motions in molecules		
	В	Band structures of molecular spectra. Molecular rotation: Energy levels of diatomic molecules under rigid rotator and non-rigid rotator models, Selection rules, Spectral structure, Structure determination		
	C	Isotope effect, Centrifugal distortion, Symmetric top molecules, Molecular vibrations: Harmonic oscillator and the anharmonic oscillator approximation, Morse potential. Vibration-rotation spectra: Pure vibrational transitions, Pure rotational transitions, Vibration-rotation transitions.		
	Unit 4	Electronic and Raman Spectra		
	A	Electronic transitions: Franck-Condon principle, Rotational structure of electronic transitions		
	В	Dissociation energy of molecules, Continuous spectra		
	C	Raman transitions and Raman spectra, Characteristics of Raman Lines,		
		Stoke's and Anti-Stoke's Lines, Complimentary Character of Raman and infrared Spectra.		
	Unit 5	Basic Aspects of Photo Physical Processes		
	A	Radiative and non-radiative transitions; fluorescence and phosphorescence		
	В	Nuclear Magnetic resonance spectroscopy. Electron spin resonance spectroscopy		
	С	Mossbauer spectroscopy.		
		Theory		



				🕓 🥟 Beyond Boundaries	
exami	nation				
Weigh	ntage	СА	MTE	ETE	
Distril	oution	30%	20%	50%	
Text E	Book/s	1. Introduction of atomic	spectroscopy: White		
		2. C. L. Banwell and E. M. McCash. 'Fundamentals of Molecular			
		Spectroscopy' Tata- McG	raw-Hill.		
Other	Other 8. G. Herzberg. 'Molecular Spectroscopy (Diatomic Molecules			Diatomic Molecules)' Van-	
Refere	ences	Nostrand. 9. G. M. Barrow. 'Molecular Spectroscopy'. McGraw-Hill.			
		10. J.Michael Hollas. ' Modern spectroscopy'. John-Wiley & sons.			
		11. G.Aruldhas 'Molecular Spectroscopy'.			
		12. Bransden and Joachin. 'Atoms and Molecules'			

*	SHARDA
<b>&gt;&gt;</b>	UNIVERSITY Beyond Boundaries

School: School of Basic		Batch:2018-2020		
Sciences and Research				
Program: M. Sc Branch: Physics		Current Academic Year: 2018-2019		
		Semester: II		
1	Course Code	MPH 122		
2	Course Title	Advance Quantum Mechanics		
3	Credits	4		
4	Contact Hours (L-T-P)	4-0-0		
	Course Status	Compulsory		
5	Course Objective	<ol> <li>The course should give the in depth knowledge about th foundations of quantum mechanics and skills in problem solvin in quantum mechanics.</li> <li>Various approximation methods for not exactly solvable systems.</li> <li>To know the concept of angular momentum and scattering.</li> <li>The course treats non-relativistic quantum mechanics, in detain and gives an introduction to relativistic quantum mechanics.</li> </ol>		
6	Course	After the completion of this course students will be able to:		
	Outcomes	<ul> <li>CO 1: Explain orbital and spin momentum operator formalism.</li> <li>CO 2: Demonstrate the time independent perturbation theory.</li> <li>CO 3: Explain the variational and WKB methods.</li> <li>CO 4: Apply the scattering theory to various problems.</li> <li>CO 5: Explain the relativistic quantum mechanics.</li> <li>CO 6: Comprehend quantum mechanical applications at the research level</li> </ul>		
7	Course description	"Advanced Quantum Mechanics" is a core continuation course in quantum mechanics including angular momentum, approximate methods, scattering theory and relativistic quantum mechanics that aim at the applications of quantum mechanics. The course should give you deeper knowledge about the foundations of quantum mechanics and skills in problem solving in quantum mechanics.		
8	Outline Syllabus			
	Unit 1	Angular Momentum		
	A	Generalized angular momentum, Infinitesimal rotation, Generator of rotation, Commutation rules, Matrix representation of angular momentum operators		
	В	Spin, Pauli spin matrices, Rotation of spin states		
	С	Coupling of two angular momentum operators, Clebsch Gordon coefficients, Applications		
Unit 2       A       B       C		Approximate methods: Time Independent Perturbation Theory		
		Approximation methods: Time-independent perturbation theory for non- degenerate states,		
		Approximation methods: Time-independent perturbation theory for degenerate states,		
		Time independent perturbation theory Applications: anharmonic		
	~	merenene personant moory rippiroutons, uniumone		



	💦 🖉 Beyond Boundaries				
	oscillator, Helium atom, Stark effect in hydrogen atom.				
Unit 3	Approximation Meth and WKB methods	Approximation Methods: Time dependent perturbation, variational and WKB methods			
А	Time-dependent pertu golden rule. Sudden ap		nic perturbation; Fermi's		
В	Variational method and	Variational method and its applications (1-D harmonic oscillator, ground state energy of Hydrogen atom),			
С	WKB approximation and application to 1-D harmonic oscillator, WKB method; Connection formula,				
Unit 4	Scattering Theory				
А	Scattering theory- Scattering of a particle by a fixed centre of force, scattering amplitude differential and total cross sections,				
B       Method of partial waves, Phase shifts, Optical theorem hard sphere and potential well         C       Integral equation for potential scattering, Green's approximation, Yukawa and Coulomb potential.					
			-		
Unit 5	Relativistic quantum mechanics				
А	Introduction to Relativistic quantum mechanics				
В	Klein-Gordon and Dirac equations,				
С	Semi-classical theory of radiation.				
Mode of Examination	Theory				
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text books	1. Quantum Mechanics by L.I. Schiff				
	2. Quantum mech	anics – concepts and app	olications by N. Zettili.		
Other	1. Modern quantum	m mechanics by J.J. Sak	urai and San Fu Tuan		
References			Liboff, Addison-Wesley.		
	3. Principles of Quantum Mechanics, R. Shankar.				



SCHOOL: SBSR		Batch :2018-2020			
Program: M. Sc		Current Academic Y	'ear: 2018-2019		
Branch: Physics		Semester: II			
1 Course Number		Course Code: CCU	401/ Course ID: 308	04	
2	<b>Course Title</b>	<b>Community Connect</b>	ţ		
3	Credits	2			
4	(L-T-P)	(0-0-2)			
5	Learning	Contac	et Hours	30	
	Hours		t/Field Work	20	
		Assess		00	
			d Study	10	
		Total I		60	
6	Course Objectives	<ul> <li>them more a communities a</li> <li>2. Provide more more effective realities beyon</li> <li>3. Provide scop research goa community -or</li> <li>4. Ensure that t to communiti better off po academic com</li> <li>5. Provide amp community to</li> </ul>	e to faculty memb ls by giving them riented projects he community com es in tangible ways st the interaction a munity ble opportunity for contribute effective	and economically es classrooms, so as rning by aligning ers to align their ample opportunity nect programs pro so that they may for and involvement of r Sharda Universe ely to society and na	disadvantaged to make them them to social <b>teaching and</b> to carry out <b>wides benefits</b> eel perceptibly of the Sharda
7	Course Outcomes	of disadvantaged of CO2: Students lea and classrooms CO3: Students lea for community be CO4: Students lea and timely deliver	learn to be sens communities. earn to appreciate so arn to apply their kno nefit arn to work on socio- y earn to engage wi	itive to the livin ocietal realities bey owledge via researc reconomic projects	ond textbooks h, and training with teamwork

	1	SHARDA UNIVERSITY Beyond Boundaries
8	Theme	<ul> <li>Major themes for research:</li> <li>Survey and self-learning: In this mode, students will make survey, analyze data and will extract results out of it to correlate with their theoretical knowledge. E.g. Crops and animals, land holding, labour problems, medical problems of animals and humans, savage and sanitation situation, waste management etc.</li> <li>Survey and solution providing: In this mode, students will identify the common problems and will provide solution/ educate rural population. E.g. air and water pollution, need of after treatment, use of renewable (mainly solar) energy, electricity saving devices, inefficiencies in cropping system, animal husbandry, poultry, pest control, irrigation, machining in agriculture etc.</li> <li>Survey and reporting: In this mode students will educate villagers and survey the ground level status of various government schemes meant for rural development. The analyzed results will be reported to concerned agencies which will help them for taking necessary/corrective measures. E.g. Pradhan Mantri Jan Dhan Yojana, Pradhan Mantri FasalBima Yojana, Swachh Bharat Abhiyan, Soil Health Card Scheme, Digital India, Skill India Program,BetiBachao, BetiPadhao Yojana, Peadhan Mantri Awas Yojana, Cramin, Pradhan Mantri Yuva Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri Suraksha Bima Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri Suraksha Bima Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri Suraksha Bima Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri KhanijKshetra Kalyan Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri Suraksha Bima Yojana, DenDayal Upadhyaya Grameen Kaushalya Yojana, Pradhan Mantri Sukanya Upadhyaya Grameen Kaushalya Yojana, Pradhan Mantri Sukanya</li> </ul>
		Samriddhi Yojana, Sansad Adarsh Gram Yojana, Pradhan Mantri SurakshitMatritva Abhiyan, Pradhan Mantri RojgarProtsahan Yojana, Midday Meal Scheme, Pradhan Mantri Vaya Vandana Yojana, Pradhan Mantri Matritva Vandana Yojana, and Ayushman Bharat Yojana.
9.1	<u>Guidelines</u> <u>for Faculty</u> <u>Members</u>	It will be a group assignment. There should be not more than 10 students in each group. The faculty guide will guide the students and approve the project title and help the student in preparing the questionnaire and final report. The questionnaire should be well design and it should carry at least 20 questions (Including demographic questions).

		SHARDA UNIVERSITY
9.2	Role of CCC-	The faculty will guide the student to prepare the PPT. The topic of the research should be related to social, economical or environmental issues concerning the common man. The report should contain 2,500 to 3,000 words and relevant charts, tables and photographs. <b>Plagiarism check of the report must</b> . ETE will conduct out of 100, divided in three parts (i) 30 Marks for report (ii) 30 Marks for presentation (iii) 40 Marks for knowledge. The student should <b>submit the report</b> to CCC-Coordinator signed by the faculty guide by The students have to send the hard copy of the <b>report and PPT</b> , and then only they will be allowed for ETE. The CCC Coordinator will supervise the whole process and assign students to faculty members.
	Coordinator	1. PG- M.ScSemester II - the students will be allocated to faculty member (mentors/faculty member) in odd term.
9.3	Layout of the Report	Abstract (250 words) a. Introduction b. Literature review(optional) c. Objective of the research d. Research Methodology e. Finding and discussion f. Conclusion and recommendation g. References Note: Research report should base on primary data.
9.4	Guideline for Report Writing	<ul> <li>Title Page: The following elements must be included:</li> <li>Title of the article;</li> <li>Name(s) and initial(s) of author(s), preferably with first names spelled out;</li> <li>Affiliation(s) of author(s);</li> <li>Name of the faculty guide and Co-guide</li> <li>Abstract: Each article is to be preceded by a succinct abstract, of up to 250 words, that highlights the objectives, methods, results, and conclusions of the paper.</li> <li>Text:Manuscripts should be submitted in Word.</li> </ul>
		<ul> <li>Use a normal, plain font (e.g., 12-point Times Roman) for text.</li> <li>Use italics for emphasis.</li> <li>Use the automatic page numbering function to number the pages.</li> <li>Save your file in docx format (Word 2007 or higher) or doc format (older Word versions)</li> <li>Reference list:</li> </ul>

		SHARDA UNIVERSITY
		The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article
		Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995)
		Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007- 4137-z Book
		Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992)
		Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document
		Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007
		Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php
		For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list.
		EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.
9.5	Format:	The report should be Spiral/ hardbound
7.0	<u>romat.</u>	The Design of the Cover page to report will be given by the Coordinator- CCC
		Cover page Acknowledgement
		Content
		Project report Appendices
9.6	Important	Students should prepare questionnaire and get it approved by concern
	Dates:	faculty member and submit the final questionnaire withinto
		CCC- Coordinator. Students will complete their survey work within and submit the same to concern faculty member. (Each group should complete 50
		questionnaires) The student should show the 1st draft of the report to concern faculty



			😵 🌽 Beyond Boundaries	
		member within .	and submit the same to concern faculty	
		member.		
		Faculty members should give required inputs, so that students can improve		
		their project wor	k and make the final report submission on	
		The students sho	ould submit the hard copy and soft copy of the report to	
		CCC-Coordinate	or signed by the faculty guide within	
		The students sh	ould submit the soft copy of the PPT to CCC-	
		Coordinator sig	gned by the faculty guide within	
		The final presentation will be organized on		
9.7	ETE	The students will be evaluated by panel of faculty members on the basis		
		of their presentation on		
10	Course Eval	uation		
10.01	Continuous Assessment 60%			
	Questionnai	re design	20 Marks	
	Report Writ	ing	40 Marks	
10.02	ETE (PPT p	resentation)	40%	



School: School of		Batch: 2018-2020			
	ic Sciences and				
Res	earch				
Program: MSc		Current Academic Year: 2018-2019			
Bra	nch: Physics	Semester: II			
1	Course Code	MPH 157			
2	Course Title	Physics Lab 3 (Electronics Lab)			
3	Credits	2			
4	Contact Hours	0-0-6			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1.To gain practical knowledge of electronics experiments			
	Objective	2.To study basic electronic components			
		3.To observe the characteristics of the OpAmp, different types of FETs and			
		Flipflops.			
6	0	4. To study amplitude modulation demodulation.			
6	Course	After successful completion of this course the students will/will be able to:			
	Outcomes	<b>CO1</b> : Acquire knowledge of Operational amplifier and will be able to			
		<b>CO1:</b> Acquire knowledge of Operational amplifier and will be able to construct various circuits using ICs and different components.			
		<b>CO2:</b> Analyze the characteristics and various operations of the OpAmp.			
		<b>CO3:</b> Determine the parameters of JFET.			
		<b>CO4:</b> Determine characteristics of MOSFET, UJT.			
		<b>CO5:</b> Build various Flip-Flops, shift registers etc.			
		<b>CO5:</b> Build various Flip-Flops, shift registers etc. <b>CO6:</b> Use equations/theoretical concept to verify the experimental results			
		with ability to conduct, analyze and interpret experiments			
7	Course	This course is designed to provide students with lab experience in designing			
	Description	various electronic circuits, study their characteristics and analyze the results.			
8	Outline syllabus	5			
	Unit 1				
	А	1. To calculate the Operational Amplifier parameter common mode			
	В	rejection ratio (CMRR)			
	С	2. To study the Operational Amplifier as a negative feedback amplifier			
	Unit 2				
	А	3. To study the Operational Amplifier as Adder and Subtractor			
	В	4. To study Amplitude Modulation and Demodulation			
	C				
	Unit 3				
	Α	5. To draw the static characteristics of a junction field effect transistor			
	В	(JFET) and hence to determine its parameters.			
	C	6. To study the characteristics of a MOSFET.			
	Unit 4				
_					



			🥆 🥓 Beyond Boundaries
А	<b>7.</b> To st	udy the charac	cteristics of a Uni-junction Transistor (UJT).
В	8. To build JK Master-slave flip-flop using Flip-Flop ICs		
С			
Unit 5			
А	9. To b	uild a 4-bit C	Counter using D-type/JK Flip-Flop ICs and study
В	timin	ig diagram.	
С	<b>10.</b> To m	nake a 4-bit Sl	hift Register (serial and parallel) using D-type/JK
		Flop ICs.	
		100 100	
Mode of	Practical/Viva		
examination			
Weightage	CA	MTE	ETE
Distribution	60%	0%	40%
Text book/s*	1. Basic	e electronics	and linear circuits – N N Bhargava, D C
	Kuls	hreshtha, S C	Gupta, Tata McGraw-Hill publishing company
	Ltd.		
	2. Linear Integrated Circuits- D Choudhary Roy		
Other	1. Practical Physics- C L Arora, S. Chand Publishing		C L Arora, S. Chand Publishing
References	2. Lab l	Manual	-



School: SBSR		Batch: 2018-2020		
	gram: MSc	Current Academic Year: 2018-2019		
	ysics)			
Bra		Semester: II		
1	Course Code	MPH 158		
2	Course Title	Physics Lab 4 (Nuclear lab)		
3	Credits	2		
4	Contact Hours	0-0-6		
	(L-T-P)			
	Course Status	Compulsory		
5	Course	• To understand laboratory experiments to Interpreting results, error		
	Objective	analysis, writing reports and analyzing data.		
		• To develop a sense of understanding of statistical mechanics		
		• To develop working knowledge of Nuclear physics		
		• To have understanding of software scilab		
6	Course	CO1: Students will be able to understand the particle nature of light.		
	Outcomes	CO2: Students will be able to use scilab for understanding the basic		
		important laws of statistical and nuclear physics		
		CO3: Students learn to plot Planck's law of Black body radiation, Rayliegh		
		Jeans law, Specific Heats of Solids etc.		
		CO4: Students will learn plotting different functions (a) Maxwell-Boltzmann		
		distribution b) Fermi-Dirac distribution c) Bose-Einstein distribution with		
		energy.		
		CO5: Students will be able to understand the statistics of the nuclear		
		counting and show that the mean, variance, and standard deviation follow		
		Poisson distribution and the mean value (N) is equal to the variance ( $\sigma^2$ )		
		CO6: Students will learn how to use GM counter and its applications in		
		determination of its operating voltage, plateau length / slope, Verification of		
		Inverse Square Law for $\gamma$ rays, estimate the efficiency of the GM counter,		
		determine the range and maximum energy of beta particle using half		
		thickness method. And backscattering of beta particles.		
7	Course	This course integrates exposure of the theory of Statistical and Nuclear		
	Description	Physics with experimental demonstrations in the Physics Lab. The course		
		will provide a valuable understanding of software scilab and its use to		
		understand the basic concepts of Statistical Mechanics.		
8	Outline syllabus	IS		
	Unit 1	Practical based on semi-conductors		
		1. Plot Planck's law for Black Body radiation and compare it with		
		Raleigh-Jeans Law at high temperature and low temperature.		
		2. Plot Specific Heat of Solids (a) Dulong-Petit law, (b) Einstein		
		distribution function, (c) Debye distribution function for high		
		temperature and low temperature and compare them for these two		
		cases.		



	Unit 2	Practical re	lated to	
		Maxwell-Bo Einstein dist 4.To study t variance, and	ltzmann distri ribution he statistics of	tions with energy at different temperatures a) bution b) Fermi-Dirac distribution c) Bose- f the nuclear counting and show that the mean, iation follow Poisson distribution and the mean triance ( $\sigma^2$ ).
	Unit 3	Practical re	lated to	
Understanding the basics of GM counter and its A 5. Study of the characteristics of a GM tube operating voltage, plateau length / slope.		istics of a GM tube and determination of its		
	Unit 4	Practical related to6. Verification of Inverse Square Law for γ rays.7. To estimate the efficiency of the GM counter.		
	Unit 5	Practical re	lated to	
		<ul> <li>8. To determine the range and maximum energy of beta particle using thickness method.</li> <li>9. To study backscattering of beta particles.</li> </ul>		
	Mode of examination	Practical/Viva		
	Weightage	СА	MTE	ETE
	Distribution	60%	0%	40%
	Text book/s*	-		

		SHARDA UNIVERSITY	
Sch	ool: SBSR	Batch : 2018-2020	
Pro	gram:MSc (Phys	cs) Current Academic Year: 2019-2020	
	inch:	Semester: III	
1	Course Code	MPH 204	
2	Course Title	Electromagnetics	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Course Objectiv	<ul> <li>e 1. To know concept of electrostatics, magnetostatics and electromagnetism.</li> <li>2. To understand the propagation of electromagnetic waves.</li> <li>3. To utilize the laws of electromagnetism on various problems.</li> <li>4. To explain the practical application of electromagnetism and electromagnetic waves.</li> </ul>	
6	Course Outcome		
7	Course Descript	<ul> <li>on The course is a one semester advanced course on Electrodynamics at the M.Sc. Level. It will start by revising the behaviour of electric and magnetic fields, in vacuum as well as matter, and casting it in the language of scalar and vector potentials. Writing Maxwell equations in the same language will lead to the analysis of electromagnetic waves, their propagation, scattering and radiation.</li> <li>Special relativity will be introduced, which will allow the covariant formulation of Maxwell's equations and the Lagrangian formulation of electrodynamics. Relativistic motion of charges in electromagnetic fields, and the motion of electromagnetic fields through matter will be covered, with plenty of examples.</li> </ul>	
8	Outline syllabus		
	Unit 1	Electrostatics and Magnetostatics	
	A	Introduction to the course and Prerequisite required, Maxwell's Equations in differential and integral form and their Physical Meaning, Displacement current, Modified Ampere's Law and explanation of Modified Ampere's Law.	
	В	Scalar and Vector Potential, Poisson and Laplace Equation, Laplace equation in Cartesian, Cylindrical and Spherical co-ordinate system. Brief introduction to all the three Co-ordinate system (Cartesian, Cylindrical and Spherical) and how to relate with each other. Boundary conditions and Boundary Val Problems, Methods of Images	

			SHARDA UNIVERSITY			
С		carrying loop, Boundar	Aagnetic flux and Magnetic y Value problems, Magnetic			
Unit 2	<b>Electromagnetic waves</b>					
А	Derive electromagnetic w conducting medium.	ave equation in free spa	ace, dielectric medium and in			
В	-	Solution of electromagnetic wave equation in free space, dielectric medium and conducting medium, skin depth.				
С		cidence, Total internal	different medium for normal reflection, Brewster's Law,			
Unit 3	Wave Guides					
А	Electromagnetic waves be	tween parallel conduct	ors			
В	TE and TM waves					
С	Rectangular and Cylindric	cal wave Guide, Resona	ant Cavities			
Unit 4	<b>Potentials and Fields</b>					
Α	Gauge Transformation, Co	Gauge Transformation, Coulomb and Lorentz Gauges				
В	Retarded Potential, L W Potential					
C	Field of an accelerating point charge and localized oscillating source, Electric and Magnetic dipole fields and radiation					
Unit 5	Relativistic Electrodynamics					
А	Covariant formalism of M	Covariant formalism of Maxwell's equations				
В	Transformation Laws and	its applications				
С	Relativistic Generation or radiation by single moving		, Relativistic formulation of			
Mode of examination	Theory					
Weightage	СА	MTE	ETE			
Distribution	30%	20%	50%			
Text Book/s	1. D. J Griffths, "Introduc 2. W. H Hayt & J. A. Buc	ction to Electrodynamic	cs",			
Other References	Electromagnetic T		. Chirsty, "Foundations of s", Wiley.			



Sch	ool: SBSR	Batch: 2018-2020			
Program: M.Sc.		Current Academic Year: 2019-2020			
	nch: Physics	Semester: III			
1	Course Code	MPH205			
2	Course Title	MATERIALS PHYSICS			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To know the importance of Physics and Materials Science.			
	Objective	2. To utilize the various synthesis procedure to develop materials.			
		3. To explain the practical application of materials in various area.			
6	Course	CO1: Learn the basics of Materials.			
	Outcomes	CO2: Understand the correlation between Materials & Physics behind			
		CO3: Apply the concept of materials and technology at certain levels.			
		CO4: Develop devices using materials and understand science.			
		CO5: Create the path to handle materials.			
		CO6: Expertise in various tools will make a bridge between industry and			
		students. Find out the platform for employment in high tech industries			
7	Course	Material physics is the use of <u>physics</u> to describe the physical properties of			
	Description	materials. It is a synthesis of <u>physical sciences</u> such as <u>chemistry</u> , <u>solid</u>			
		mechanics, solid state physics, and materials science.			
0					
8	Outline syllabu				
	Unit 1	Materials: Basic Concepts			
	A	Concept of amorphous			
	B	single and polycrystalline structures and their effect on properties of materials			
	C	Crystal growth			
	Unit 2	Imperfections in Solids			
	A	Defects, Point Defects: vacancy, substitutional, interstitial, Frenkel and			
	D	Schottky defects, equilibrium concentration of Frenkel and Schottky defects			
	В	Line Defects: slip planes and slip directions, edge and screw dislocations,			
		Burger's vector, cross-slip, glide and climb, jogs, dislocation energy, super &			
	C	partial dislocations, dislocation multiplication, Frank-Read sources			
	C	Planar Defects: grain boundaries and twin interfaces; Dislocation Theory –			
		experimental observation of dislocation, dislocations in FCC, HCP and BCC lattice.			
	Unit 3	Semiconductors			
	A	Metals and Semiconductors: Conduction in metals, Mobility, Semiconductors:			
	² <b>x</b>	Intrinsic, Extrinsic			
	В	Band structures of semiconductors, Quantum well structures, Intrinsic carrier			
		concentration, Defect levels in semiconductors			
	С	Type – III- V and II-VI group semiconductors, PN junctions, Hall Effect			
	Unit 4	Ceramics and Glass			
L					



			💊 🥕 Beyond Boundaries	
А			oplications of traditional and advanced ceramics,	
	-	Silica, glass transition temperature, commercial ceramics, mechanical		
	properties			
В	high temperat			
С		0	ers, Random network model, heat flow and	
	precipitation f	rom glasses, pl	notosensitive and photochromic glasses	
Unit 5	Polymers and	l Composites		
А			ation, Insulating, conducting and ion conducting	
	polymers, resi			
В	-		Matrix Interface, Metal matrix composite,	
	Ceramics mat	rix composite,	Carbon fiber composite	
С	Properties and	applications o	f various composites	
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	William F Sm	ith, "Foundatic	ons of Materials Science and Engineering",	
	McGraw Hill	Book Co., 200	0.	
	Michel W Bar	soum, "Funda	mentals of Ceramics", McGraw Hill Book Co.,	
	1997			
Other			"Composite Materials Science and Engineering",	
References	Spring	er, 2001.		
		,	ction to Composite Materials", Cambridge	
	Univer	sity Press, 198	8.	
	•		iples of Polymerization", John Wiley and sons,	
	Inc, 20	02.		



Sch	ool: SBSR	Batch :2018-2020		
Program: M.Sc.		Current Academic Year: 2019-2020		
	nch: Physics	Semester: III		
1	Course Code	MPH 208		
2	Course Title	Synthesis of Materials		
3	Credits	4		
4	Contact	4-0-0		
	Hours			
	(L-T-P)			
	Course Status	Compulsory		
5	Course	1. To know the importance of Physics and Materials Science.		
	Objective	2. To utilize the various synthesis procedure to develop materials.		
		3. To explain the practical application of materials in various area.		
6	Course	CO1: Learn the basics of Materials/Technology		
	Outcomes	CO2: Understand the correlation between Applied science and Technology		
		CO3: Apply the concept of materials and technology at certain levels.		
		CO4: Develop devices using materials.		
		CO5: Create the path to handle materials.		
		CO6: Expertise in various tools will make a bridge between industry and		
		students. Find out the platform for employment in high tech industries		
_				
7	Course	Chemistry has many aspects; but there are three general regions: the study of		
	Description	structures of materials, the study of reactions of materials, and the synthesis		
		of materials. Previously, it was generally thought that synthesis, compared with structure and reactions, was more empirical and devoid of rigid theory.		
		As our understanding of structures and reactions has advanced, however,		
		synthesis has also gradually become theoretically grounded and		
		systematized.		
8	Outline syllabu			
0	Unit 1	Chemical Techniques		
	A	Chemical precipitation and co-precipitation, Wet chemical methods, Metal		
		crystals by reduction, Sol-gel synthesis.		
	В	Microemulsions or reverse micelles, Hydrothermal & Solvothermal		
		synthesis, Thermolysis routes		
	С	Microwave heating synthesis, Electrochemical synthesis.		
	Unit 2	Synthesis of Nano Particles		
	А	Preparation of materials by Ball milling, Attrition and Vibration milling		
	В	Cluster compounds, Preparation of nano particles		
	С	Preparation of nanostructured polymers/Conducting polymers, composites.		
	Unit 3	Vacuum Systems		
	А	Characteristics of vacuum: Mean free path		
	В	Measurement of Vacuum: Pressure gauges – Pirani and Penning Gauge;		
		Mechanical pumps		
	С	Rotary Vane Pumps, Diffusion & Molecular pump, pumping speed, Liquid		
		Nitrogen trap		



				😽 🌽 Beyond Boundaries	
<b>I</b>	Unit 4 Physical Vapour Deposition			n	
I	A	Physical Vapo	or Deposition -	Hertz Knudsen equation; mass evaporation rate;	
		evaporators, e			
I	В	pulsed laser an	nd ion beam ev	vaporation, Hybrid and Modified PVD- Ion	
		plating, reactive	ve evaporation	1	
(	С	ion beam assis	sted depositior	n, Sputtering techniques	
I	Unit 5	Chemical Vapour Deposition			
I	A	Chemical Vap CVD	or Deposition	- reaction chemistry and thermodynamics of	
I	В	Thermal CVD	)		
	С	laser & plasm	a enhanced CV	/D, Pyrolytic synthesis	
Ν	Mode of	Theory			
e	examination	-			
V	Weightage	СА	MTE	ETE	
I	Distribution	30%	20%	50%	
]	Text book/s*	Carbon Nanotubes: Synthesis, Characterization and Applications by Kamal K Kar, Research Publishing, Singapore, 2011 Principles of Nanoscience and Nanotechnology – M. A. Shah, Tokeer Ahmad (Narosa Publishing House, New Delhi, 2011)			
	Other       4. Pradeep T., "NANO The Essential, understanding Nanosci Nanotechnology". Tata McGraw-Hill Publishing Company 2007.         5.       5.         6. Charles P.Poole Jr. "Introduction to Nanotechnology", Joh & Sons, 2003.         7.       8. Masuo Hosokawa, Kiyoshi Nogi, Makio Naito, Toyokazu Nanoparticle Technology Handbook, Elsevier Publishers (19).         9.       10. Synthesis, properties and applications by CNR Rao et.al.20         11. Nanochemistry: A Chemical Approach to Nanomaterials – Society of Chemistry, Cambridge, UK, 2005		ata McGraw-Hill Publishing Company Limited,		



Scl	hool: SBSR	Batch: 2018-2020
Pro	ogram: MSc	Current Academic Year: 2019-2020
Branch:		Semester: III
	vsics	
1	Course	MPH 217
1	Code	
2	Course	Nuclear and Particle Physics
2	Title	
3	Credits	4
3 4	Contact	4-0-0
4	Hours	4-0-0
	(L-T-P)	
	Course	Compulsory
	Status	Compulsory
5	Course	This course aims:
3	Objective	1.To introduce students to the fundamental principles and concepts of nuclear and
	Objective	
		<ul><li>particle physics</li><li>2. To make students acquire profound working knowledge of advanced topics in</li></ul>
		nuclear and particle physics and their applications to real life problems.
6	Course	Upon successful completion of this course, the student would be able to:
0	Outcomes	Opon succession completion of this course, the student would be able to.
	Outcomes	<b>CO1</b> : Understand and differentiate the types of nuclear forces, their properties:
		<b>CO1:</b> Understand and differentiate the types of nuclear forces, their properties;
		and explain the nuclear forces using Meson theory and Yukawa potential.
		<b>CO2:</b> Remember the conservation laws and analyze different types of nuclear
		reactions and their energetics.
		<b>CO3:</b> Compare different types of nuclear models to obtain the angular momenta of nuclear states.
		<b>CO4:</b> Recognize and discriminate types of nuclear decays and the governing theories.
		<b>CO5:</b> Classify the elementary particles and understand their standard model.
		<b>CO6:</b> Acquire relevant knowledge about the nuclear and particle physics to apply it to the real life problems
7	Course	it to the real-life problems. This course illustrates in depth various nuclear interactions, nuclear forces,
/	Description	different models depicting the nucleus, nuclear decay, types of nuclear reactions
	Description	and introduces particle physics while classifying the elementary particles.
8	Outline syllab	
0	Unit 1	Nuclear Interaction and Nuclear Forces
	A	Nuclear forces: Nuclear forces - properties of nuclear forces, exchange forces,
	11	nuclear forces has tensor component, charge independence, spin dependence of
		nuclear forces
	В	<b>Two body problem:</b> Two body problem- ground state of deutron, magnetic
	Ч	moment, quadrupole moment, nucleon nucleon interaction
	С	
	C	Meson Theory of Nuclear Forces: Meson theory-Yukawa potential, nucleon
	Unit 2	nucleon scattering, charge symmetry, isospin.
	Unit 2	Nuclear Reactions
	A	Nuclear Reactions: Types of reactions and conservation laws, Energetics of



				reactions, Q value equations.	
	В	Scattering and Reaction Cross sections: Scattering cross section, reaction cross			
			section, compound nucleus reactions and direct reactions.		
	С	<b>Resonance Scattering:</b> Breit-Wigner one level formula (Qualitative analysis)			
Unit 3 Nuclear Models					
	А	Liquid drop mode	el: Liquid drop model	, Bohr Wheeler theory of fission.	
	В	Shell Model: Expe	erimental evidence for	shell effects, shell model, spin orbit	
		coupling, magic nu	imbers, angular mome	enta and parities of nuclear ground state.	
	С	Schimdt lines: Est	timate of transition rat	es, Magnetic moments and Schmidt lines.	
	Unit 4	Nuclear Decay			
	А	Beta Decay: Ferm	i theory of beta decay.	, shape of the beta spectrum, Mass of the	
		neutrino, angular n	nomenta and parity se	lection rule, allowed and forbidden decays	
	В	Comparative half	-lives, neutrino physic	es, non-conservation of parity.	
	С	Gamma decay Mu	ultipole transition in n	uclei, angular momenta and parity	
		selection rules, Inte	ernal conversion, nucl	ear isomerism	
	Unit 5	<b>Particle Physics</b>			
	А	Classification of I	<b>Elementary Particles</b>	Basic forces, classification of elementary	
		particles, spin and	parity, determination	of isospin, strangeness, lepton and baryon	
		no., conservation l	aws		
	В	Gellmann-Nishiji	ma Scheme Meson ar	nd baryon octet, elementary ideas of SU	
		(3), symmetry quar	rk model		
	С	<u> </u>	• 1	ion, typical strength and time scale,	
			parity and time revers	sal, CPT theorem	
	Mode of	Theory/Jury/Practi	cal/Viva		
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text			uclear Physics" Mc Graw Hill.	
	book/s*		al, "Nuclear Physics"		
		-	•	ucture" East West Press Pvt Ltd, Delhi.	
			_	Physics" New Central Book Agency Ltd	
				l Particle Physics" Viva Books	
	Other		a and R P S Yadav, "I	Elements of Nuclear Physics" Kedar Nath	
	References	Ram Nath			
				ar Physics" New Age International Ltd	
		-	-	malaya Publication Home	
				nentary Particle Physics" Harper and Row	
			e	echnology Enhanced Learning)	
		_		t?list=PLbMVogVj5nJRvq-	
		<u>w3zway7k.</u>	<u>3GzmUDte3a</u>		



Cab	Schools SDSD Detab 2018 2020				
School: SBSR		Batch :2018-2020			
	gram: M.Sc	Current Academic Year: 2019-2020			
	nch: Physics	Semester: III			
1	Course Code	MPH 256			
2	Course Title	Dissertation 1			
3	Credits	4			
4	Contact Hours	0-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective	• To synthesize carbon nano materials			
		• To develop solvent free polymer electrolyte			
		• To study the electrical, optical and thermal studies of a systems			
6	Course Outcomes	CO1: In depth knowledge of carbon nano materials and their			
-		functionalization.			
		CO2: In depth knowledge of different types of electrolytes.			
		CO3: Familiar with the basic principle and working in systems like CH-			
		Impedance, Kethley-24, POM and many more in laboratory.			
		CO4: Fabrication of Third generation solar cells.			
		CO5: Fabrication of Super capacitors.			
		CO6: Seminars/workshops are in regular intervals and students present			
		their own work.			
7	Course	Synthesis of carbon nano materials and their application in energy			
	Description	storage devices like DSSC, Super capacitors etc.			
	Description	Additionally, synthesis of solvent free polymer electrolyte, application of			
		ionic liquids in energy devices.			
		Tome inquitas in energy actives.			
8	Outline syllabus				
0	Unit 1	Introduction			
		Sub unit - a, b and c detailed in Instructional Plan			
	Unit 2	Case study			
	Unit 2	Sub unit - a, b and c detailed in Instructional Plan			
	Unit 3	Conceptual			
		Sub unit - a, b and c detailed in Instructional Plan			
	Unit 4	Development			
	TT •/ =	Sub unit - a, b and c detailed in Instructional Plan			
Unit 5 Finalisation					
		Sub unit - a, b and c detailed in Instructional Plan			
	Mode of	Jury/Practical/Viva			
	examination				
	Weightage	CA MTE ETE			
	Distribution	60% 0% 40%			
	Text book/s*	Handbook of Photovoltaic Science and Engineering			
		Antonio Luque, Steven Hegedus; Copyright © 2003 John Wiley & Sons,			



	Ltd; DOI:10.1002/0470014008
Other References	1. Zakaria NA, Isa MIN, Mohamed NS, et al. Characterization of polyvinyl chloride/polyethyl methacrylate polymer blend for use as polymer host in polymer electrolytes. J Appl Polym Sci 2012; 126: E419–
	<ul> <li>E424.</li> <li>2. Khatijah S, Subban RHY and Mohamed NS. Ionic conductivity of PVC- NH4I-EC proton conducting polymer electrolytes. Adv Mater Res 2012; 545: 312–316.</li> </ul>
	3. Chaurasia SK, Saroj AL, Shalu, et al. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 2015; 5: 077178.



Sch	ool: SBSR	Batch: 2019-2020			
Prog	gram: MSc	Current Academic Year: 2019-2020			
(Physics)					
Bra	nch:	Semester: III			
1	Course Code	MPH 257			
2	Course Title	Specialized Physics lab			
3	Credits	2			
4	Contact Hours	0-0-6			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To gain knowledge on the synthesis procedures of various			
	Objective	nanomaterials.			
		2. To understand laboratory experiments to investigate the properties			
		of materials.			
		3. To learn the operation of the advanced characterization instruments.			
		4. To understand the structural, electrical, mechanical and optic			
		properties of materials			
6	Course	CO1: Student will be able to use UTM machine and calculate stress, strain			
U	Outcomes	(mechanical properties) of materials			
		CO2: Student will be able to know about young modulus and how to find out			
		the value of young modules of a wire.			
		CO3: Student will be able to synthesis nano materials by different methods			
		CO4: Student will be able to operate different characterization tools.			
		CO5: Student will be able to analysis the output of different characterization			
		techniques			
		CO6: Student will be able to find out the structural, electrical, optical and			
		mechanical properties of nano materials and how to tune them by chemical			
_	<u> </u>	substitution method.			
7	Course	In this course of MSc (Physics), students will synthesis nano materials and			
	Description	nano composite by different chemical methods. How to use different			
		characterization tools to understand the structural, electrical, optical and			
		mechanical properties of nano materials.			
8	Outline syllabus	<u> </u>			
0	Unit 1	Practical based on mechanical properties			
		1. To determine tensile strength by Universal Testing Machine.			
		2. To determine Young's Modulus of Steal wire by applying Load.			
	Unit 2	Practical related to			
		3. To synthesis Zinc Oxide nanoparticle by chemical method.			
		4. To synthesis Titanium Oxide nanoparticle by chemical method.			
	Unit 3	Practical related to			
		5. To synthesis Composite by chemical method.			
	Unit 4	Practical related to			
		6. Growth of nanoparticles by solid state method.			
	Unit 5	Practical related to			



				🥆 🥓 Beyond Boundaries	
		7. To analyze XRD data for the determination crystallite size and			
		structure of the sample.			
		8. To d	8. To determine dielectric properties of Zinc Oxide/TiO2 nano particles.		
		9. Anal			
Mode of Jury/Practical/Viva					
e	xamination	-			
V	Veightage	CA	MTE	ETE	
D	Distribution	60%	0%	40%	
Г	Text book/s*	-			
Other					
R	References				

		SHARDA UNIVERSITY
	ol: School of Basic	Batch: 2018-2020
Sciences and Research		
	am: M. Sc	Current Academic Year: 2019-2020
	ch: Physics	Semester: IV
1	Course Code	MPH 209
2	Course Title	CHARACTERIZATION OF MATERIALS
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	<ol> <li>The course will focus on the structure-property correlations and how these could be unraveled by the use of simple characterization methods such as optical and scanning electron microscopy, x-ray diffraction and Raman spectroscopy.</li> <li>To understand the characterization methods used for state-of-the-</li> </ol>
		<ul> <li>art materials.</li> <li>3. To appreciate the results from characterization methods and their reliability.</li> <li>4. To appreciate the multiscale and multidisciplinary nature of materials</li> </ul>
6	Course Outcomes	<ul> <li>After the completion of this course students will be able to:</li> <li>CO 1: Explain know the basics of optical and Atomic Force Microscope.</li> <li>CO 2: Explain the properties of electrons and the effect of accelerating potential and basic operational modes of a SPM, SEM and TEM.</li> <li>CO 3: Understand the Electronic, Vibrational, Structural, Compositional properties of materials via different spectroscopy and diffraction techniques.</li> <li>CO 4: Demonstrate dc conductivity and ac impedance spectroscopy.</li> <li>CO 5: Explain the phase transitions in materials by thermal characterization.</li> <li>CO 6: Apply materials characterization methods based on microscopy, chemical, physical and structure analysis, and thermal analysis techniques to various research problems.</li> </ul>
	Course	Determination of the structural character and chemical composition of a

 7
 Determination of the structural character and chemical composition of a material is an essential activity of material science. After completion of the course the student should have obtained knowledge of characterization of materials by introducing the basic principles and performing experiences of a large range of techniques used to characterize different types of materials.

 8
 Outline Syllabus

 Unit 1
 Microscopic Techniques



			Neyond Boundaries			
А	Basics of Microscope a	nd its resolving power; C				
В	working principle and a	applications of optical pol	larizing microscope,			
С	Magnetic force micros		roscope (AFM); Electron			
Unit 2	Tomography.					
	SPM Techniques	$(\mathbf{CDM})$ T = 1 = 1	Constructions to a line			
А	microscopy (STM),	oscopic (SPM) Techniqi	ues: Scanning tunneling			
В	Scanning Electron Micro	roscopy (SEM)				
С	Transmission Electron	Microscopy (TEM), and	EDX (energy dispersion			
	X-ray analysis)					
Unit 3	Spectroscopic Technic	ques				
А	UV-visible, FT-IR, Rar	nan and Atomic absorption	on spectroscopy			
В			e angle, Debye-Scherer			
	formula, Dislocation de					
С		and X-ray photoelectron	spectroscopy (XPS)			
Unit 4	Solid state Techniques					
А		nent: Four probe techniqu	es			
В	Dielectric and Impedan					
С	Dielectric measurement of materials: Frequency dependence					
	measurement and temperature dependent measurements.					
Unit 5	Thermal techniques					
А	<b>.</b>	ferential Thromogravime	etry,			
В	Differential Scanning C		•			
С	Differential Thermal A					
Mode of	Theory	2				
Examination	5					
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text books	1. Characterization of materials (Vol. 1 and 2) by E.N. Kaufmann,					
	John Wiley and Sons.					
	2. Introduction to Nanotechnology - Charles P. Poole Jr. and Franks.					
	J. Qwens (Wiley Interscience, 2003)					
Other References	1. Processing & p	roperties of structural na	1. Processing & properties of structural nano materials by Leon L. Shaw (Warrendale, 2003)			
Other References			no materials by Leon L.			
Other References		ale, 2003)	hesis, properties and			
Other References	Shaw (Warrenda	ale, 2003)				



## MPH210 Properties of Materials

School: SBSR		Batch: 2018-20
Prog	gram: M.Sc.	Current Academic Year: 2019-2020
Brai	nch: Physics	Semester: IV
1	Course Code	MPH210
2	Course Title	Properties of Materials
3	Credits	4
4	Contact Hours (L- T-P) Course	4-0-0 Compulsory
	Status	Computiony
5	Course Objective	<ul> <li>To make the students familiar with the Stress Strain diagram for different engineering materials, Engineering and true stress strain diagram, Ductile and brittle material, Fatigue, Creep.</li> <li>To understand the concept of Classification of magnetic materials, Diamagnetism, Paramagnetism, Langevin theory of dia and paramagnetism, Weiss theory, Structure of Ferrite.</li> <li>To know the concept of Dielectric Materials: Basic concepts: complex permittivity, dielectric loss factor, polarization, mechanism of polarization, Optical Properties: Refractive index and dispersion, Transmission.</li> </ul>
		• To understand the concept of The Gibbs Phase Rule and Phase Diagrams, Phase diagram of one component system, Methods for the Study of Phase Diagrams of Condensed (solid – liquid) Systems, Binary phase diagrams, Lever rule intermediate phases.
6	Course Outcomes	<ul> <li>CO1: Learn the basic concepts of Engineering and true stress strain diagram, Ductile and brittle material, Tensile strength, Hardness, Impact strength, Fracture (Types and Ductile to brittle transition), Fatigue, Creep.</li> <li>CO2: Understand the Diamagnetism, Paramagnetism, Langevin theory of dia and paramagnetism, Weiss theory, Susceptibility measurement, Ferromagnetism, Curie-Weiss law.</li> <li>CO3: Able to explain the Dielectric Materials: Basic concepts : complex permittivity, dielectric loss factor, polarization, mechanism of polarization, Clausius-Mossotti Relation, Ferroelectricity.</li> <li>CO4: Figure out the Optical Properties: Refractive index and dispersion, Transmission, Reflection and absorption of light, Optical material for UV and IR, Optical anisotropic, Non-linear optical crystals, Photoluminescene.</li> <li>CO5: State the concepts of The Gibbs Phase Rule and Phase Diagrams, Phase diagram of one component system, Methods for the Study of Phase Diagrams of Condensed (solid – liquid) Systems, Binary phase diagrams, Lever rule intermediate phases, Eutectics, peritectic and eutectoids iron-iron carbide phase diagram, Microstructure, Nucleation and Growth</li> </ul>

		SHARDA UNIVERSITY Beyond Boundaries			
		CO6: Analyse the concepts of Mechanical Properties, Magnetic properties of materials, Dielectric properties, Optical properties of solids, Phase Diagrams.			
7	Course Description	This course is about describing the concepts of Mechanical Properties, Magnetic properties of materials, Dielectric properties, Optical properties of solids, Phase Diagrams.			
8	Outline Syllab				
	Unit 1 Mechanical Properties				
	А	Stress Strain diagram for different engineering materials, Engineering and true stress strain diagram, Ductile and brittle material, Tensile strength, Hardness			
	В	Impact strength, Fracture (Types and Ductile to brittle transition), Fatigue, Creep			
	С	Factors affecting mechanical properties.			
	Unit 2	Magnetic properties of materials			
	A	Classification of magnetic materials, Diamagnetism, Paramagnetism, Langevin theory of dia and paramagnetism, Weiss theory			
	В	Susceptibility measurement, Ferromagnetism, Curie-Weiss law, Antiferromagnetism			
	C	Ferrimagnetism, Structure of Ferrite.			
	Unit 3	Dielectric properties			
	А	Dielectric Materials: Basic concepts : complex permittivity, dielectric loss factor, polarization, mechanism of polarization, classification of dielectrics-frequency dependence of dielectric constant; Langevin's Theory of Polarization			
	В	Clausius-Mossotti Relation, Ferroelectricity, Piezoelectricity, pyro-electric states, transition temperature			
	C	polarization catastrophe, Landau theory of first and second-order phase transitions, antiferroelectricity, ferro electric domains.			
	Unit 4	Optical properties of solids			
	A	Optical Properties: Refractive index and dispersion, Transmission, Reflection and absorption of light			
	В	Optical material for UV and IR			
	С	Optical anisotropic, Non-linear optical crystals, Photoluminescene.			
	Unit 5	Phase Diagrams			
	А	The Gibbs Phase Rule and Phase Diagrams, Phase diagram of one component system, Methods for the Study of Phase Diagrams of Condensed (solid – liquid) Systems			
	В	Binary phase diagrams, Lever rule intermediate phases			
	С	Eutectics, peritectic and eutectoids iron-iron carbide phase diagram, Microstructure, Nucleation and Growth			
	Mode of Examination	Theory			



					Beyond Boundaries		
	Weightage		CA	MTE	ETE		
	Distribution		30%	20%	50%		
	Text Book/s		1. Mechanical Metallurgy', 3rd Edition, McGraw Hill,by G. E. D 1988				
		2. Testing of Metallic Materials', Prentice Hall India, by 9 1979.					
3. Structure and Properties of Materials', Ve Shepard L. A., Wulff J.,4th Edition, John W					•		
Other 4. Introduction to Ma				agnetic Materials, Addison-	-Wesley Publications,		
	References California, London, by B. D. Cullity, 1972						
			Magnetism and Ma by J. P. Jakubovics	agnetic Materials, Institute 1994	of Materials, London,		
		6.	Introduction to M Hall,by D. Jiles 199	agnetism and Magnetic M 91	aterials, Chapman &		



Sch	ool: SBSR	Batch :20	018-2020	Beyond Boundaries		
Program: M.Sc		Current Academic Year: 2019-2020				
Branch:Physics		Semester: IV				
1	Course Code	MPH 258				
2	Course Title		Dissertation 2			
3	Credits	6				
4	Contact Hours	0-0-0				
4	(L-T-P)	0-0-0				
	Course Status	Compulsory				
5	Course Objective	• To	o synthesize carl	oon nano materials		
		• To develop solvent free polymer electrolyte				
		• To study the electrical, optical and thermal studies of a systems				
6	Course Outcomes			of carbon nano materials and their		
		functionalization.				
		CO2: In d	lepth knowledge	of different types of electrolytes.		
			1 0	asic principle and working in systems like CH-		
		Impedance, Kethley-24, POM and many more in laboratory.				
				d generation solar cells.		
		CO5: Fab	CO5: Fabrication of Super capacitors.			
		CO6: Sen	ninars/workshop	s are in regular intervals and students present		
		their own	work.			
7	Course	Synthesis	of carbon nano	materials and their application in energy		
	Description	storage de	devices like DSSC, Super capacitors etc.			
		Additiona	Solvent free polymer electrolyte, application of			
		ionic liquids in energy devices.				
8	Outline syllabus					
	Unit 1	Introduction				
		Sub unit - a, b and c detailed in Instructional Plan		d in Instructional Plan		
	Unit 2	Case study				
		Sub unit - a, b and c detailed in Instructional Plan				
	Unit 3	Conceptua	Conceptual			
		Sub unit - a	a, b and c detaile	d in Instructional Plan		
	Unit 4	Development				
	Sub unit - a, b and c detailed in Instructional Plan           Unit 5         Finalisation			d in Instructional Plan		
	Sub unit - a, b and c detailed in Instructional Plan					
	Mode of	Jury/Practical/Viva				
	examination	-				
	Weightage	CA	MTE	ETE		
	Distribution	60%	0%	40%		
	Text book/s*	Handbook of Photovoltaic Science and Engineering				
		Antonio Luque, Steven Hegedus; Copyright © 2003 John Wiley & Sons, Ltd; DOI:10.1002/0470014008				
	Other References	1. Zakaria NA, Isa MIN, Mohamed NS, et al. Characterization of				
		polyvinyl chloride/polyethyl methacrylate polymer blend for use as				



 🥆 🥓 Beyond Boundaries
polymer host in polymer electrolytes. J Appl Polym Sci 2012; 126: E419-
E424.
2. Khatijah S, Subban RHY and Mohamed NS. Ionic conductivity of
PVC-NH4I-EC proton conducting polymer electrolytes. Adv Mater Res
2012; 545: 312–316.
3. Chaurasia SK, Saroj AL, Shalu, et al. Studies on structural, thermal and
AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added
ionic liquid [BMIMPF6]. AIP Adv 2015; 5: 077178.