

Sharda School of Engineering & Science

Department of Chemistry & Biochemistry

Programme Structure Batch : 2025-27 AY: 2025-26

MSc. in Chemistry (Specialization : Inorganic/Organic/Physical)

Programme Code: SBR0101

Department of Chemistry & Biochemistry/SSBSR/SU

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

Department of Chemistry & Biochemistry/SSBSR/SU

Vision of the School

Achieving academic excellence in the realm of basic and engineering sciences to address the global challenges and to become global leaders.

Mission of the School

- To impart basic, advanced and transformative knowledge and skills in science and technology.
- To strengthen capacity and capabilities in cutting-edge technology and research.
- To nurture multidisciplinary research and entrepreneurship temperament for developing innovative solutions to global, societal and environmental challenges.
- To foster multi-dimensional partnerships and collaborations for skill development and global employability.

1.3 Vision and Mission of Department of Chemistry & Biochemistry

Vision of Chemistry & Biochemistry

Strive to achieve excellence in teaching and research in the field of Chemistry and Biochemistry and to build human resource for solving contemporary problems.

Mission of Chemistry & Biochemistry

- Providing distinctive and relevant education in Chemistry and Biochemistry to students.
- Motivating young minds through innovative teaching methods, to acquire theoretical knowledge and practical skills in different disciplines of chemistry and empowering them with problem solving skills.
- Nurturing innovation by carrying out world class research and scholarly work
- Promoting interdisciplinary research in collaboration with national/international laboratories/Institutions.

1.3 Programme Educational Objectives (PEO)

PEO 1: To deliver advanced concepts in Chemistry covering topics in Analytical, Inorganic, Organic and Physical Chemistry, while also reinforcing the fundamental concepts.

PEO2: To make students proficient in advanced laboratory techniques, enabling them to independently plan and conduct experiments as well as to work as a team.

PEO 3: To expose the students to a range of analytical methods using modern instrumentation, enabling them to analyse results at a higher level.

PEO 4: To provide significant opportunities to make their future career in research and to get employment in academia and industries by advancing their theoretical and practical knowledge.

PEO5:To develop critical thinking and skills like effective scientific communication, time management, and multi-tasking aptitude.

PEO Statements	School Mission 1	School Mission 2	School Mission 3	School Mission 4
PEO1:	3	2	2	2
PEO2:	2	2	2	1
PEO3:	2	3	2	3
PEO4:	2	2	3	3
PEO5:	2	3	3	2

1.3.2 Map PEOs with Mission Statements:

Correlation levels 1, 2, or 3 as defined below:

1. Slight (Low) 2. Moderate (Medium) 3. S

3. Substantial (High)

Department of Chemistry & Biochemistry/SSBSR/SU

1.3.3 Programme Outcomes (PO's)

PO1: Attain sound knowledge about the fundamentals and applications of chemical and scientific theories

PO2: Gain knowledge and understanding of reaction mechanisms, complex chemical structures, instrumental method of chemical analysis, molecular rearrangements and separation techniques.

PO3: Acquire general, technical, and professional skills to accomplish tasks in research, industry or academia.

PO4: Apply of knowledge and skills in addressing social economic and environmental problems.

PO5: Execute constitutional, humanistic, ethical, and moral values in scientific practice.

PO6: Imbibe employability, job-readiness and entrepreneurship skills in the interdisciplinary and multidisciplinary areas of chemical sciences.

PSO1 : Apply modern research techniques to investigate complex chemical phenomena and solve practical problems.

PSO2 : Acquire skills to prepare for doctoral studies, competitive exams and

demonstrate competence in quality assurance and quality control practices essential for industry.

1.3.4 Mapping of Programme Outcome Vs Programme Educational Objectives

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	3	2	2	2
PO2	1	3	3	1	1
PO3	2	3	2	3	3
PO4	3	3	3	2	2
PO5	2	2	2	3	3
PO6	3	3	2	2	2
PSO1	3	3	3	2	2
PSO2	3	2	2	2	2

1. Slight (Low)

2. Moderate (Medium)

3. Substantial (High)

Department of Chemistry & Biochemistry/SSBSR/SU

1.3.5 Programme Outcome Vs Courses Mapping Table:

1.3.5.1 COURSE ARTICULATION MATRIX

COs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT4101	2	1	1	1	3	2	2	3
CHT4102	2	1	1	1	2	3	2	2
CHT4103	2	1	1	1	3	2	3	2
CHT4104	2	1	1	1	2	2	2	2
CHT4105	2	3	1	3	2	3	2	3
CHT4106	2	3	1	3	2	3	1	3
CHT4107	2	3	1	3	2	2	3	3
CHT4108	3	1	1	1	3	2	2	2
OPEXXX	2	2	1	1	2	2	3	2
CHT5101	2	1	1	1	2	2	3	3
CHT5102	2	1	1	1	2	3	2	2
CHT5103	2	3	1	3	2	3	2	3
CHT5104	2	3	1	3	2	3	2	3
CHT5105	2	3	1	3	2	3	3	3
CHT5106	3	2	2	3	3	2	2	3
CHT5107	3	1	1	2	3	2	2	2
CHT5108	3	1	1	2	3	2	2	2
CHT5109	3	2	1	1	3	2	3	2
CHT5110	3	1	1	1	3	2	2	3
CHT5111	3	1	1	1	3	2	3	2
CHT5112	3	2	1	1	3	2	2	2
CHT5113	3	3	1	3	3	3	2	3
CHT5114	3	3	1	3	3	3	3	3
CHT5115	3	3	1	3	3	3	2	3
CHT5116	3	2	2	2	3	2	2	2

SHARDA UNIVERSITY Beyond Boundaries

CHT5117	3	1	1	1	3	3	2	2
CHP4101	3	1	1	1	3	3	2	2
CHP4102	3	1	1	1	3	2	1	2
CHP4103	3	2	1	2	3	2	2	2
CHP4104	3	1	1	1	3	2	3	2
CC	3	1	1	1	3	2	3	3
PHT1151	3	2	1	3	3	2	2	3
PHP1153	2	3	1	3	2	3	2	3
CHP4105	2	3	1	3	2	3	2	3
CHP4106	2	3	1	3	2	3	3	3
CHP4107	3	2	2	3	3	2	2	3
CHR4101	3	1	1	2	3	2	2	2
CHP5101	2	3	1	3	2	3	2	3
CHP5102	2	3	1	3	2	3	2	3
CHP5103	2	3	1	3	2	3	3	3
CHP5104	3	2	2	3	3	2	2	3
CHP5105	3	1	1	2	3	2	2	2
CHP5106	3	1	1	2	3	2	2	2
CHP5107	3	2	1	1	3	2	3	2
CHP5108	3	1	1	1	3	2	2	3
CHP5109	3	1	1	1	3	2	3	2
CHR5101	3	2	1	1	3	2	2	2
CHR5102	3	3	1	3	3	3	2	3
CHR5103	3	3	1	3	3	3	3	3
CHR5104	3	3	1	3	3	3	2	3
CHR5105	3	2	2	2	3	2	2	2
CHR5106	2	3	1	3	2	3	2	3

1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

TERM: I - PG Diploma after exit from 1st Year (Entry & Exit Option) TYPE I(Course Level = 400)

S.	Subject Code	Subjects	Te	eaching	Load		Pre-Requisite/Co
No.			L	Т	Р	Credits	Requisite
THEORY	SUBJECTS						
1.	CHT4101	Advanced Inorganic Chemistry I	4	-	-	4	Core
2.	CHT4102	Advanced Organic Chemistry I	4	-	-	4	Core
3.	CHT4103	Advanced Physical Chemistry I	4	-	-	4	Core
4.	CHT4104	Advanced Analytical Chemistry I	3	1	-	4	Core
PRACTICA	AL SUBJECTS						
5.	CHP4101	Advanced Inorganic Chemistry Lab I	-	-	2	1	Core
6.	CHP4102	Advanced Organic Chemistry Lab I	-	-	2	1	Core
7.	CHP4103	Advanced Physical Chemistry Lab I	-	-	2	1	Core
8.	CHP4104	Basic Chemistry Softwares	-	-	2	1	Core
9.	CCP4001	Community Connect	-	-	2	0	SEC
		TOTAL CREDITS				20	

TERM: I - PG Diploma after exit from 1st Year (Entry & Exit Option) TYPE II(Course Level = 400)

S.	Subject Code	Subjects	T	eaching	Load		Pre-Requisite/Co
No.			L	Т	Р	Credits	Requisite
THE	DRY SUBJECTS						
1.	CHT4101	Advanced Inorganic Chemistry I	4	-	-	4	Core
2.	CHT4102	Advanced Organic Chemistry I	4	-	-	4	Core
3.	CHT4103	Advanced Physical Chemistry I	4	-	-	4	Core
4.	CHT4104	Advanced Analytical Chemistry I	3	1	-	4	Core
5.	PHT1151	Artificial Intelligence and Machine Learning	2	-	-	2	SEC
PRAC	CTICAL SUBJECTS						
6.	CHP4101	Advanced Inorganic Chemistry Lab I	-	-	2	1	Core
7.	CHP4102	Advanced Inorganic Chemistry Lab I	-	-	2	1	Core
8.	CHP4103	Advanced Physical Chemistry Lab I	-	-	2	1	Core
9.	CHP4104	Basic Chemistry Softwares	-	-	2	1	Core
10.	PHP1153	Data Analysis Using Python	-	-	4	2	SEC
11.	CCP4001	Community Connect	-	-	2	0	SEC
		TOTAL CREDITS				24	

TERM: II PG Diploma after exit from 1st Year (Entry & Exit Option) TYPE I(Course Level = 400)

S.	Course Code	Course	Te	eaching	Load	Credita	Core/Elective
No.			L	Т	Р	Credits	
THEORY	SUBJECTS						
1.	CHT4105	Advanced Inorganic Chemistry II	3	-	-	3	Core
2.	CHT4106	Advanced Organic Chemistry II	3	-	-	3	Core
3.	CHT4107	Advanced Physical Chemistry II	3	-	-	3	Core
4.	CHT4108	Basic Principles of Computational Chemistry/MOOC	2	-	-	2	DSE
5.	OPEXXX	Open Elective	2	-	-	2	DSE
PRACTIC	AL SUBJECTS						
6.	CHP4105	Advanced Inorganic Chemistry Lab II	-	-	2	1	Core
7.	CHP4106	Advanced Organic Chemistry Lab II	-	-	2	1	Core
8.	CHP4107	Advanced Physical Chemistry Lab II	-	-	2	1	Core
9.	CHR4101	Project*	-	-	8	4	Dissertation
10.	NVXXXX	Value added Course I	-	-	2	0	Qualifying
		TOTAL CREDITS				20	

Programme Structure Sharda School of Engineering & Sciences M. Sc. Chemistry Batch: 2025-27 TERM: II PG Diploma after exit from 1st Year (Entry & Exit Option) TYPE II(Course Level = 500)

S.	Course Code	Course	Te	eaching	Load	Credita	Core/Elective
No.			L	Т	Р	Creatis	
THEORY	SUBJECTS				-		
1.	CHT4105	Advanced Inorganic Chemistry II	3	-	-	3	Core
2.	CHT4106	Advanced Organic Chemistry II	3	-	-	3	Core
3.	CHT4107	Advanced Physical Chemistry II	3	-	-	3	Core
4.	CHT4108	Basic Principles of Computational Chemistry	2	-	-	2	SEC
5.	OPEXXX	Open Elective	2	-	-	2	SEC**
	PRACTICAL SUBJECTS						
6.	CHP4105	Advanced Inorganic Chemistry Lab II	-	-	2	1	Core
7.	CHP4106	Advanced Organic Chemistry Lab II	-	-	2	1	Core
8.	CHP4107	Advanced Physical Chemistry Lab II	-	-	2	1	Core
9.	NVXXXX	Value added Course I	-	-	2	0	Qualifying
		16					

Programme Structure Sharda School of Engineering & Sciences M. Sc. Chemistry Batch: 2025-27 TERM: III - 1 Year PG degree by CW+RW Type I(Course Level = 500)

S.	Course Code	Course	Те	eaching	Load	Credita	Core/Elective
No.			L	Т	Р	Creatis	
THEORY	SUBJECTS						
1.	CHT5101	Advanced Molecular Spectroscopy*	3	-	-	3	DSE
2.	CHT5102/CHT5103/ CHT5104	Advanced Inorganic Chemistry III/ Advanced Physical Chemistry III/ Advanced Organic Chemistry III	4	-	-	4	Core
3.	CHT5105/CHT5106/ CHT5107	Advanced Inorganic Chemistry IV/ Advanced Physical Chemistry IV/ Advanced Organic Chemistry IV	4	-	-	4	Core
4.	CHT5108	Research methodology & Intellectual Property Rights	2	-	-	1	SEC
Practical							
5.	CHP5101/ CHP5102/CHP5103	Advanced Organic Chemistry Lab III/ Advanced Physical Chemistry Lab III/ Advanced Inorganic Chemistry Lab III	_	-	4	2	Core
6.	CHR5101	Dissertation I(RBL-1)*	-	-	12	6	Dissertation
7.	NVXXXX	Value added Course II	-	-	2	0	Qualifying
	•	TOTAL CREDITS				20	

TERM: III - 1 Year PG degree by CW Type II(Course Level = 500)

S.	Course Code	Course		Te	eaching	Load	Credite	Core/Elective
No.			L	,	Т	Р	Creuits	
THEORY S	UBJECTS							
1.	CHT5101	Advanced Molecular Spectroscopy	3		-	-	3	DSE
2.	CHT5102/CHT5103/C HT5104	Advanced Inorganic Chemistry III/ Advanced Physical Chemistry III/ Advanced Organic Chemistry III	4		-	-	4	Core
3.	CHT5105/CHT5106/C HT5107	Advanced Inorganic Chemistry IV/ Advanced Physical Chemistry IV/ Advanced Organic Chemistry-IV	4		-	-	4	Core
4.	CHT5108	Research methodology & Intellectual Property Rights	2		-	-	1	SEC
Practical								
5.	CHP5101/ CHP5102/CHP5103	Advanced Organic Chemistry Lab III/ Advanced Physical Chemistry Lab III/ Advanced Inorganic Chemistry Lab III	-		-	4	2	Core
6.	CHP5104	Instrumental Methods of Analysis Lab	-		-	4	2	DSE
7.	CHP5105	Computations Based on Density Functional Theory*/MOOC*	-		-	4	2	SEC
8.	CHR5102	Dissertation I(RBL-1)*	-		-	4	2	Dissertation
9.	NVXXXX	Value added Course II	-		-	2	0	Qualifying
		TOTAL CREDITS					20	

Programme Structure Sharda School of Engineering & Sciences M. Sc. Chemistry Batch: 2025-27 TERM: III - 1 Year PG degree by RW(*Research Based Applied Courses) Type III

S.	Course Code	Course	r.	Feaching	Load	Credita	Core/Elective
No.			L	Т	Р	Creans	
THEORY	SUBJECTS						
1.	CHT5101	Advanced Molecular Spectroscopy	3	-	-	3	DSE
2.	CHT5108	Research methodology & Intellectual Property Rights	2	-	-	1	SEC
Practical							
3.	CHR5103	Dissertation I(RBL-1)*	-	-	32	16	Dissertation
4.	NVXXXX	Value added Course II	-	-	2	0	Qualifying
		TOTAL CREDITS				20	

Programme Structure Sharda School of Engineering & Sciences M. Sc. Chemistry Batch: 2025-27 TERM: IV - 1 Year PG degree by CW+RW Type I(Course Level = 500)

S.	Course Code	Course	Τ	eaching	Load	Credita	Core/Elective
No.			L	Т	P	Creatis	
THEORY S	SUBJECTS						
1.	CHT5109/ CHT5110/ CHT5111	Advanced Inorganic Chemistry V/ Advanced Physical Chemistry V/ Advanced Organic Chemistry V	3	-	-	3	Core
2.	CHT5112/ CHT5113/ CHT5114	Advanced Inorganic Chemistry VI/ Advanced Physical Chemistry VI/ Advanced Organic Chemistry VI	3	-	-	3	Core
Practical							
3.	CHR5104	Dissertation II(RBL-2)*	-	-	28	14	Dissertation
		TOTAL CREDITS				20	

Programme Structure Sharda School of Engineering & Sciences M. Sc. Chemistry Batch: 2025-27 TERM: IV 1 Year PG degree by CW Type II(Course Level = 500)

S.	Course Code	Course]	Teaching LoadLTP		Credita	Core/Elective
No.			L			Creans	
THEORY	SUBJECTS						
	CHT5100/ CHT5110/	Advanced Inorganic Chemistry V/					Core
1.	СНТ5111	Advanced Physical Chemistry	3	-	-	3	
	CIIIJIII	V/Advanced Organic Chemistry-V					
	CUT5112/CUT5112/	Advanced Inorganic Chemistry VI/	3	_	_	3	Core
2.	CUT5112/CIT15115/	Advanced Physical Chemistry VI/					
	CIIIJI14	Advanced Organic Chemistry VI					
3.	CHT5115	Fundamentals of Medicinal Chemistry	3	-	-	3	Core
		Advanced Analytical Chemistry	3	1	-	4	DSE
4.	CHT5116/CHT5117	II/Introduction to Environmental					
		Chemistry					
Practical							
	CUD5106/ CUD5107/	Advanced Organic Chemistry Lab IV/	-	-	4	2	Core
5.		Advanced Inorganic Chemistry Lab IV/					
	CHESTUS	Advanced Physical Chemistry Lab IV					
6.	CHP5109	Environmental Chemistry Lab	-	-	4	2	Core
7.	CHR5105	Minor project/Term paper(Dissertation II	-	-	6	3	Dissertation
		or KBL-2)*					
		TOTAL CREDITS				20	

Programme Structure Sharda School of Engineering & Sciences M. Sc. Chemistry Batch: 2025-27 TERM: IV 1 Year PG degree by RW* Research Based Applied Courses Type III

S.	Course Code	Course	Т	Teaching Load		Credita	Core/Elective			
No.			L	Т	Р	Creatis				
THE	THEORY SUBJECTS									
1.	CHT5116	Advanced Analytical Chemistry II*	3	1	-	4	DSE			
Practi	ical									
2.	CHR5106	Dissertation II(RBL-2)*	-	-	32	16	Dissertation			
		20								

Course modules

CHT4101 Advanced Inorganic Chemistry I

Scho	ool: SSES	Batch 2025-27					
Prog	gramme: M.Sc.	Current Academic Year : 2025-26					
Brai	nch: Chemistry	Semester I					
1	Course Code	CHT4101					
2	Course Title	Advanced Inorganic Chemistry I					
3	Credits	4					
4	Contact hours	4-0-0					
	Course Status	Core					
5	Course	1.To provide an insight into bonding and structure of coord	ination				
	Objectives	compounds.					
		2.To explain the spectral and magnetic behaviour of coordin	nation				
		compounds.					
		3.To provide a thorough knowledge about the chemistry and	d application				
		of inner transition metals.					
		4.To discuss about various spectroscopic methods for struct	ture				
		elucidation of inorganic compounds.					
		5.To explain the basics of radioactivity as well as various radio analytical					
		techniques.					
		6.To impart knowledge about structure, bonding and applic	ation of				
	~	inorganic compounds and radio chemistry.					
36	Course	CO1 : Explain the various theories of metal –ligand bondir	ng				
	Outcome	CO2 : Explain the electronic spectra and magnetic propertie	es of transition				
		metal complexes.					
		CO3 : Interpret the EPR and Mossbauer spectra	. 1				
		CO4: Illustrate the chemistry and uses of inner transition r	netals				
		COS: Know about various radio-analytical techniques					
		CO6 : Gain knowledge about of various aspects of modern	inorganic				
7	Carrier	This second include herein second of metal lines d heredin					
/	Course	I his course include basic concepts of metal –ligand bondin	g, magnetic				
	Description	and electronic properties of coordination compounds and the	leir				
		nuclear chemistry are also discussed in this course	ietais and				
0	Outline Cullabus	nuclear chemistry are also discussed in this course.					
0	Unit 1	Motal ligand Danding	CO mapping				
		Overview of ervetal field and ligand field theories of 4	CO1 CO6				
	A	5 and 6 coordinated complexes d orbitals splitting in					
		linear trigonal actabadral square planar tetrahadral					
		square pyramidal, trigonal bipyramidal and cubic					
		square pyrannual, ingonal-orpyrannual and cubic					
	D	maggurament of CESE (d1 to d10) in weak and strong	CO1 CO6				
	D	licend fields, John Tellen distortion, non-heleventic series	01,000				
		ligand fields, Jann Leller distortion, nephelauxetic series					

	www.sharda.ac.	in .
С	Molecular orbital theory (MOT) of coordination	CO1,CO6
	compounds: Composition of ligand group orbitals,	
	molecular orbital energy diagrams of octahedral,	
	tetrahedral, square planar complexes including both s and	
	p bonding, angular overlap model	
Unit 2	Electronic Spectra and Magnetic Properties of Transition	
	Metal Complexes	
А	Interpretation of electronic spectra, Orgel diagrams,	CO2, CO6
	Tanabe-Sugano diagrams for transition metal complexes	
	$(d^1 - d^9 \text{ states})$, calculations of Dq, B and β parameters	
В	charge transfer spectra, spectroscopic method of	CO2, CO6
	assignment of absolute configuration in optically active	
	metal chelates and their stereochemical information	
С	anomalous magnetic moments, magnetic exchange	CO2, CO6
	coupling, temperature independent paramagnetism (TIP)	
	of complexes, spin cross over phenomenon. Effect of	
	temperature on their magnetic properties	
Unit 3	Chemistry of Inner Transition Elements	
А	General discussion on the properties of the f-block	CO3, CO6
	elements.	
В	Redox, Spectral and Magnetic properties.	CO3,CO6
С	Use of Lanthanide compounds as shift reagents.	CO3,CO6
	Photophysical properties of Lanthanide complexes.	
Unit 4	Characterization Techniques	
А	EPR spectroscopy-basic principle, hyperfine and	CO4,CO6
	superhyperfine lines, anisotropy, g values, application in	
	selected inorganic compounds.	
В	Mossbauer Spectroscopy-Gamma ray emission and	CO4,CO6
	absorption by nuclei, Mossbauer effect — conditions,	
	Doppler effect, instrumentation, chemical shift examples,	
	quadrupole effect,	
С	Use of Mössbauer spectra in chemical analysis, typical	CO4,CO6
	spectra of iron and tin compounds.Optical rotatory	
	dispersion (ORD) and circular dichroism (CD).	
Unit 5	Nuclear Chemistry	
А	Nuclear structures and nuclear stability. Nuclear models;	CO5,CO6
	radioactivity and nuclear reactions. Detection and	
	measurement of radiation. Tracer techniques.	
В	Study of chemical reactions, isotope exchange reactions,	CO5,CO6
	kinetic isotope effect, nuclear activation analyses,	
	Principle of nuclear detection, gas detector, ionization	
	chamber, proportional and G. M. detector.	
С	Radioactive Techniques: Detection and measurement of	CO5,CO6
	radiation- GM ionization and proportional counters.	

	Radiometric	Radiometric analysis: Isotope dilution analysis, age					
	determinatio	n, neutron activ	vation analysis (NAA) and				
	their applica	tions. Radiation	n hazards and safety measures.				
Mode of	Theory						
examination							
Weightage	CA	MSE	ESE				
Distribution	25%	25%	50%				
Text book/s*	1.Inorganic	Chemistry, J.E.	Huhey, Harper & Row.				
Other	1.Concise In	organic Chemi	stry, J. D. Lee, Elbs with Chapm	nan and Hall,			
References	London.						
	2. The Chemical bond, J.N.Murre I, SFA Kettle and JM. Tedder, Wiley,						
	New York.			-			
	Advanced In	organic Chemi	stry, F.A. Cotton and Wilkinson	n, John Wiley.			

Mapping of CO vs. PO

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT4101.1	3	1	1	1	1	2	3	3
CHT4101.2	3	1	2	2	2	1	3	3
CHT4101.3	3	2	2	2	2	1	3	3
CHT4101.4	3	2	1	2	1	2	3	3
CHT4101.5	3	1	1	1	1	2	3	3
CHT4101.6	3	1	2	1	2	2	3	3

CHT4102 Advanced Organic Chemistry I

Scho	ool: SSES	Batch 2025-27				
Prog	gramme: M.Sc.	Current Academic Year: 2025-26				
Brai	nch: Chemistry	Semester I				
1	Course No.	CHT4102				
2	Course Title	Advanced Organic Chemistry 1				
3	Credits	4				
4	Contact	4-0-0				
	Hours (L-T-P)					
	Course status	Core				
5	Course	This course aims to				
	Objective	1. Analyze delocalized chemical bonding mechanisms, including				
		resonance, hyperconjugation, aromaticity, and tautomerism.				
		2. Examine thermodynamic and kinetic requirements influencing reaction				
		mechanisms and apply key concepts such as the Hammond postulate,				
		Curtin-Hammett principle, and catalytic processes in organic reactions.				
		3. Differentiate between classical and non-classical carbocations and their				
		rearrangements and explain the reactivity of carbanions, free radicals,				
		carbenes, nitrenes, and benzynes.				
		4. Identify elements of symmetry and chirality in organic molecules and				
		understand stereochemical concepts such as stereospecificity,				
		stereoselectivity, and asymmetric synthesis.				
		5. Perform conformational analysis of cyclic systems and dESErmine their				
		effects on chemical reactivity. Also, evaluate stereochemical factors				
6	Cauraa	Influencing nucleophilic additions, substitutions, and elimination reactions				
0.	Course	CO1. Explain and apply delegalized handing appearts (resonance)				
	Outcomes	by person in and apply delocalized boliding concepts (resonance,				
		aromaticity in organic compounds using Huckel's rule and modern				
		aromaticity morganic compounds using mucker's rule and modern				
		CO2. Predict the reaction mechanism of organic transformations based on				
		kinetic and thermodynamic considerations				
		CO3. Identify and analyze key reaction intermediates (carbocations				
		carbanions, free radicals, carbanes, and benzynes) and their reactivity.				
		CO4: Apply stereochemical principles to understand molecular chirality.				
		stereoselectivity, and asymmetric synthesis strategies.				
		CO5: Perform conformational analysis of cyclic systems and predict their				
		impact on reaction outcomes, and evaluate the role of neighboring group				
		participation in substitution and elimination reactions.				
		CO6: Gaining expertise in bonding, reaction mechanisms, intermediates,				
		and stereochemistry, enabling them to analyze structures, predict				
		reactivity, and apply concepts in research and industry				

Description chemistry, focusing on bonding, reaction mechanisms, intermediates, and stereochemistry. It covers delocalized chemical bonding, aromaticity, and reaction pathways, emphasizing kinetic and thermodynamic principles. The study of key reaction intermediates such as carbocations, carbanions, and free radicals enhances the understanding of organic transformations. Stereochemical concepts, including chirality, conformational analysis, and asymmetric synthesis, are explored to predict molecular behavior in various reactions. Through theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Unit 1 Nature of Bonding in Organic Molecules CO Mapping A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity. Anti-aromatic, non-annulenes, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of products, isotopic labelling and cross-over experiments. CO2, CO6	7	Course	This course provides an in-depth exploration of adva	anced organic
stereochemistry. It covers delocalized chemical bonding, aromaticity, and reaction pathways, emphasizing kinetic and thermodynamic principles. The study of key reaction intermediates such as carbocations, carbanions, and free radicals enhances the understanding of organic transformations. Stereochemical concepts, including chirality, conformational analysis, and asymmetric synthesis, are explored to predict molecular behavior in various reactions. Through theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping 4 Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 6 Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and interreduites, catalysis: electrophilic catalysis, acid and base catalysis: clectrophilic catalysis, acid and base catalysis: acid and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement, Demjonove rearrangement, Marton fraction rearrangement, Demjonove rearrangement, B CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, Stereochemical and chemical e		Description	chemistry, focusing on bonding, reaction mechanisms, inte	rmediates, and
reaction pathways, emphasizing kinetic and thermodynamic principles. The study of key reaction intermediates such as carbocations, carbanions, and free radicals enhances the understanding of organic transformations. Stereochemical concepts, including chirality, conformational analysis, and asymmetric synthesis, are explored to predict molecular behavior in various reactions. Through theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Init 1 Nature of Bonding in Organic Molecules CO1, CO6 A Delocalized chemical bonding: conjugation, cross Conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErcoyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO2, CO6 A Types of reaction mechanism: substitutions, climinations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments. CO2, CO6 Methods of dESErction of intermediates, Stereochemical			stereochemistry. It covers delocalized chemical bonding, ar	omaticity, and
The study of key reaction intermediates such as carboations, carbanions, and free radicals enhances the understanding of organic transformations. Stereochemical concepts, including chirality, conformational analysis, and asymmetric synthesis, are explored to predict molecular behavior in various reactions. Through theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Init 1 Nature of Bonding in Organic Molecules CO1, CO6 A Delocalized chemical bonding: conjugation, cross CO1, CO6 conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, nanulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. A Types of reaction mechanisms: substitutions, CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis C Methods of dESErmination of reaction mechanism of products, isotopic labelling and cross-over experiments. B Hammond postulate, Curtin-Hammett principle, transition of nearmagement; Wagner Meerwein rearrangement, Demjonove			reaction pathways, emphasizing kinetic and thermodynar	nic principles.
and free radicals enhances the understanding of organic transformations. Stereochemical concepts, including chirality, conformational analysis, and asymmetric synthesis, are explored to predict molecular behavior in various reactions. Through theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Init 1 Nature of Bonding in Organic Molecules Mathematical conjugation, cross A Delocalized chemical bonding: conjugation, cross CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for conjugation in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. C C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO2, CO6 Mattic requirements B Hammond postulate, Curtin-Hammett principle, transition, states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis: CO2, CO6 C Methods of dESErmination of reaction mechanism CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition, states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism CO2, CO6 B Hammond postulate, Cu			The study of key reaction intermediates such as carbocation	ns, carbanions,
Stereochemical concepts, including chirality, conformational analysis, and asymmetric synthesis, are explored to predict molecular behavior in various reactions. Through theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Imit 1 Nature of Bonding in Organic Molecules CO1, CO6 A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErcocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO2, CO6 A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6			and free radicals enhances the understanding of organic tr	ansformations.
asymmetric synthesis, are explored to predict molecular behavior in various reactions. Through theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Value of Bonding in Organic Molecules A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, nannulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO2, CO6 Linit 2 Reaction Mechanism - Structure and Reactivity A A Types of reaction mechanisms: substitutions, cO2, CO6 eliminations, additions, rearrangements, thermodynamic and kinetic requirements B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of products, isotopic labelling and cross-over experiments. CO2, CO6 B Harmmond postulate, Classical and nonclassical, phenonium conson, norbornyl system, common carbocation rearrangement, Demjonove rearrangem			Stereochemical concepts, including chirality, conformationa	analysis, and
Various reactions. Infrough theoretical and applied perspectives, this course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Unit 1 Nature of Bonding in Organic Molecules A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO2, CO6 Mainetic requirements B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism consince and chemical evidences, Identification of products, isotopic labelling and cross-over experiments. CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition freatrangement. CO3, CO6 B Carbocations: Classical and no			asymmetric synthesis, are explored to predict molecula	r behavior in
Image: Course equips students with the skills necessary for research and industrial applications in organic chemistry 8 Outline syllabus CO Mapping Image: Conjugation in the skills necessary for research and industrial applications in organic chemistry CO Mapping A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4nt-2 lectron rule for conjugation in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO2, CO6 A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism CO2, CO6 B <th< th=""><th></th><th></th><th>various reactions. Through theoretical and applied per</th><th>spectives, this</th></th<>			various reactions. Through theoretical and applied per	spectives, this
Imagine applications in organic chemistry CO Mapping 8 Outline syllabus CO Mapping A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO1, CO6 Unit 2 Reaction Mechanism - Structure and Reactivity CO2, CO6 A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism CO2, CO6 Methods of dESErmination of products, isotopic labelling and cross-over experiments. CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition fons, norborny system, common carbocation rearrangement. CO2, CO6 B Hammond postulate, Curtin-Hammett principle, tr			course equips students with the skills necessary for research	and industrial
8 Outline synabus CO Mapping Init 1 Nature of Bonding in Organic Molecules CO Mapping A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, nanulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO1, CO6 Unit 2 Reaction Mechanism - Structure and Reactivity CO2, CO6 A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism CO2, CO6 Methods: DESEction of intermediates, Sterochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments. CO3, CO6 A Carbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement CO3, CO6	0		applications in organic chemistry	COM
Unit 1 Nature of Bonding in Organic Molecules CO1, CO6 A Delocalized chemical bonding: conjugation, cross conjugation, resonance, hyperconjugation, tautomerism; CO1, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO1, CO6 Unit 2 Reaction Mechanism - Structure and Reactivity A A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism to products, isotopic labelling and cross-over experiments. CO2, CO6 Methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments. CO3, CO6 M Thypes of rearrangement, and Pinacol-pinacolone rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangement CO3, CO6 B Car	8	Outline syllabus		CO Mapping
A Delocalized chemical bonding: conjugation, cross coll, CO6 conjugation, resonance, hyperconjugation, tautomerism; Coll, CO6 B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non-aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO1, CO6 Unit 2 Reaction Mechanism - Structure and Reactivity CO2, CO6 A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments. CO3, CO6 A Carbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangement CO3, CO6 B Carbonions: formation, stability and their reactions. CO3, CO6 CO3, CO6		Unit 1	Nature of Bonding in Organic Molecules	
B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n- annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. CO1, CO6 C Current concepts of aromaticity: Anti-aromatic, non- aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. CO1, CO6 Unit 2 Reaction Mechanism - Structure and Reactivity CO2, CO6 A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements CO2, CO6 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis CO2, CO6 C Methods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments. CO2, CO6 A Carbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: B CO3, CO6 B Carbanions: formation, stability and their reactions. HSAB principle and its applications CO3, CO6		А	Delocalized chemical bonding: conjugation, cross	CO1, CO6
B Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and nonbenzenoid aromatic compounds; Application in carbocyclic and hESErocyclic systems, n- annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes. C Current concepts of aromaticity: Anti-aromatic, non- aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity. C01, C06 Unit 2 Reaction Mechanism - Structure and Reactivity C02, C06 A Types of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirements C02, C06 B Hammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysis C02, C06 C Methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments. C02, C06 Unit 3 Reaction Intermediates C03, C06 A Carbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangement C03, C06 B Carbanions: formation, stability and their reactions. HSAB principle and its applications C03, C06			conjugation, resonance, hyperconjugation, tautomerism;	
Denzenoidanobenzenoidaromaticcompounds; Application in carbocyclic and hESErocyclic systems, n- annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes.CCurrentconcepts of aromaticity: Anti-aromatic, non- aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity.CO1, CO6Unit 2Reaction Mechanism - Structure and ReactivityCO2, CO6ATypes of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirementsCO2, CO6BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO3, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6		В	Criteria for aromaticity: Huckel's 4n+2 electron rule for	CO1, CO6
Application in carbocyclic and hESErocyclic systems, n- annulenes, heteroannulene, fullerenes, C-60, cryptates, azulenes.CCurrent concepts of aromaticity: Anti-aromatic, non- aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity.C01, C06Unit 2Reaction Mechanism - Structure and ReactivityAATypes of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirementsC02, C06BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisC02, C06CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.C03, C06Unit 3Reaction IntermediatesC03, C06ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangementC03, C06BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsC03, C06			benzenoid and nonbenzenoid aromatic compounds;	
CCurrent concepts of aromaticity: Anti-aromatic, non- aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity.CO1, CO6Unit 2Reaction Mechanism - Structure and ReactivityCO2, CO6ATypes of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirementsCO2, CO6BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction Intermediates Carbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, 			Application in carbocyclic and hESErocyclic systems, n-	
CCurrent concepts of aromaticity: Anti-aromatic, non- aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity.CO1, CO6Unit 2Reaction Mechanism - Structure and ReactivityAATypes of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirementsCO2, CO6BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction Intermediates Carbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6			annulenes, heteroannulene, fullerenes, C-60, cryptates,	
CCurrent concepts of aromaticity: Anti-aromatic, non- aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity.CO1, CO6Unit 2Reaction Mechanism - Structure and ReactivityCO2, CO6ATypes of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirementsCO2, CO6BHanmond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO3, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6			azulenes.	
aromatic and homoaromatic compounds, Effect of tautomerism and hyperconjugation on aromaticity.Unit 2Reaction Mechanism - Structure and ReactivityATypes of reaction mechanisms: substitutions, eliminations, additions, rearrangements, thermodynamic and kinetic requirementsBHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6		C	Current concepts of aromaticity: Anti-aromatic, non-	CO1, CO6
Tautomerism and hyperconjugation on aromaticity.Unit 2Reaction Mechanism - Structure and ReactivityATypes of reaction mechanisms: substitutions, CO2, CO6 eliminations, additions, rearrangements, thermodynamic and kinetic requirementsBHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.Unit 3Reaction IntermediatesACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementBCarbanions: formation, stability and their reactions, cageCFree radicals: formation, stability and reactions, cageCFree radicals: formation, stability and reactions, cage			aromatic and homoaromatic compounds, Effect of	
Unit 2Reaction Mechanism - Structure and ReactivityATypes of reaction mechanisms: substitutions, cO2, CO6 eliminations, additions, rearrangements, thermodynamic and kinetic requirementsBHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions, cageCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		TT :4 0	tautomerism and hyperconjugation on aromaticity.	
ATypes of reaction mechanisms: substitutions, CO2, CO6 eliminations, additions, rearrangements, thermodynamic and kinetic requirementsCO2, CO6BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		Unit 2	Reaction Mechanism - Structure and Reactivity	<u> </u>
BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement; Demjonove rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		A	Types of reaction mechanisms: substitutions,	CO_{2}, CO_{6}
BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6			eliminations, additions, rearrangements, thermodynamic	
BHammond postulate, Curtin-Hammett principle, transition states and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCO2, CO6CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		D	and kinetic requirements	CO2 $CO2$
States and intermediates, catalysis: electrophilic catalysis, acid and base catalysisCMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesCO3, CO6ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		В	Hammond postulate, Curtin-Hammett principle, transition	CO_{2}, CO_{6}
CMethods of dESErmination of reaction mechanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO6Unit 3Reaction IntermediatesACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementBCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCFree radicals: formation, stability and reactions, cageCO3, CO6			states and intermediates, catalysis : electrophilic catalysis,	
CMethods of dESErmination of reaction methanism methods: DESEction of intermediates, Stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.CO2, CO3Unit 3Reaction IntermediatesACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		C	Methods of dESErmination of reaction mechanism	CO2 $CO6$
Internots:DESEction of internetiates, stereochemical and chemical evidences, Identification of products, isotopic labelling and cross-over experiments.Unit 3Reaction IntermediatesACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		C	methods: DESEction of intermediates Storeochemical	CO_{2}, CO_{0}
Unit 3Reaction IntermediatesACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6			and chamical avidences. Identification of products	
Unit 3Reaction IntermediatesACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6			isotopic labelling and cross-over experiments	
ACarbocations: Classical and nonclassical, phenonium ions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCO3, CO6BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6		Unit 3	Boaction Intermediates	
ACarbocations: Classical and nonclassical, phenomumCOS, COOions, norbornyl system, common carbocation rearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementCos, COOBCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, COOCFree radicals: formation, stability and reactions, cageCO3, COO			Carbocations: Classical and nonclassical phenonium	CO3 CO6
India, indicontyl system, common curbocationrearrangement: Wagner Meerwein rearrangement, Demjonove rearrangement, and Pinacol-pinacolone rearrangementBCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCFree radicals: formation, stability and reactions, cageCO3, CO6		71	ions norbornyl system common carbocation	005,000
Demjonoverearrangement.WagnerHeerweinrearrangement,BCarbanions:formation, stability and their reactions.CO3, CO6CFree radicals:formation, stability and reactions, cageCO3, CO6			rearrangement: Wagner Meerwein rearrangement	
BCarbanions: formation, stability and their reactions. HSAB principle and its applicationsCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6			Demionove rearrangement and Pinacol-ninacolone	
BCarbanions: formation, stability and their reactions.CO3, CO6HSAB principle and its applicationsFree radicals: formation, stability and reactions, cageCO3, CO6CFree radicals: formation, stability and reactions, cageCO3, CO6			rearrangement	
Image: Construction of the state of the s		В	Carbanions: formation, stability and their reactions	CO3, CO6
C Free radicals: formation, stability and reactions, cage CO3, CO6		-	HSAB principle and its applications	200, 200
		С	Free radicals: formation, stability and reactions cage	CO3, CO6
effects, radical cations and radical anions;		-	effects, radical cations and radical anions;	

	Carbene: Synthesis, structure and reactions of singlet and				
	triplet carber				
Unit 4	Stereochem	istry I			
А	Elements of	symmetry, chir	ality (centre, axis, and plane),	CO4, CO6	
	molecules w				
	erythro isom				
В	Topicity of	ligand and fa	aces and their nomenclature,	CO4, CO6	
	stereogenecit	ty, chirogenie	city and pseudosymmetry,		
	stereospecifi	c and stereosele	ective reactions		
С	Asymmetric	synthesis: C	chiral auxiliaries, methods of	CO4, CO6	
	asymmetric	induction- sul	ostrate, reagent and catalyst-		
	controlled re	actions; deterr	mination of enantiomeric and		
	diastereomer	ic excess; enan	tio-discrimination, Resolution		
	- optical and	kinetic			
Unit 5	Stereochem	istry II			
А	Conformation	onal analysis o	f cyclic systems: Cyclohexane	CO5, CO6	
	and its deri	ivatives (mono	o- and di-substituted), fused		
	(decalins) an	d bridged bicy	clic systems,		
В	Nucleophilic	e addition t	o carbonyl group: Cram,	CO5, CO6	
	Franklin A	hn Model,	Cieplak effect, Effect of		
	conformation	n on the re	duction of cyclic ketones,		
	nucleophilic	substitution	on cyclohexane substrates,		
	cyclohexane	epoxide forma	tion and opening		
С	Elimination	reactions of cy	clohexyl halides, de-amination	CO5, CO6	
	of 2-aminod	cyclohexanols,	elimination vs substitution		
	competition	and neighborin	g group participation reactions		
	of acyclic an	d cyclic molect	ules.		
Mode of	Theory				
examination					
Weightage	CA	MSE	ESE		
Distribution	25%	25%	50%	4	
Text Book	1. Organic	Chemistry, R. T	C. Morrison and R. N. Boyd, (19)	92) 6 th Edition,	
	Prentice-	Hall.			
	2. Reaction Mechanism in Organic Chemistry, (1976) 1 st Edition, S. M.				
	Mukherji	and S. P. Sing	h, Macmillan.		
	3. Stereochemistry, P. S. Kalsi, (1994), 2 nd Edition, New Age				
0.1	International.				
Other	1. Advanced Organic Chemistry Reactions: Mechanism and Structure,				
references	Jerry March, (1992) 4 th Edition, John Wiley.				
	2. Stereoch	nemistry of Org	ganic Compounds by ELudwig	Eleil, Samual	
	H. Wile C	en, (1995) T.I	vi.H Edition, Tata McGraw-H	iiii Publishing	
	Compar	ly.		d Amaliation	
	3. Stereoc	nemistry of Org	ganic Compounds: Principles an	a Applications	
	by D. N	asıpurı, (1994)	^{2^m} Edition, New Age Internatio	nal Publishers.	

Mapping of CO vs. PO

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT4102.1	3	1	1	2	3	1	1	1
CHT4102.2	3	1	1	1	3	1	1	1
CHT4102.3	3	1	1	1	3	1	1	1
CHT4102.4	3	1	1	2	3	1	1	1
CHT4102.5	3	1	1	2	3	1	1	1
CHT4102.6	3	1	1	1	3	1	1	1

CHT4103 Advanced Physical Chemistry I

Scho	ool: SSES	Batch : 2025-27
Prog	gramme:M.Sc.	Current Academic Year: 2025-26
Bra	nch:Chemistry	Semester:I
1	Course Code	CHT4103
2	Course Title	Advanced Physical Chemistry I
3	Credits	4
4	Contact	4-0-0
	Hours	
	(L-T-P)	
	Course Status	Core
5	Course Objective	 To provide the understanding of physical states of matter and their practical applications. To define how the initially primitive models of real gases in physical chemistry are elaborated to take into account more detailed observations. To understand the concept of partial molar quantities and their variation with temperature and pressure. The concept of ensembles, partition function and their applications in studying gaseous molecules. To understand the concept and different theories of ions and electrolyte interactions To discuss the theoretical aspects of chemical kinetics and the importance of rate equations and different theories for studying the kinetics of complex reactions. To provide an in-depth analysis of various phenomenon, laws and applications of States of Matter, Thermodynamics, Electrochemistry,
6	Course Outcomes	 Phase Equilibrium and Chemical Kinetics CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamics and the concept of third law of thermodynamics. CO3: Familiarize with the applications of partition function and statistics in understanding the thermodynamics of molecules. CO4: Understand the concept of electrical double layer at the electrode electrolyte interface by studying different proposed models of it. CO5: Understand the detailed concepts of kinetics and its applications, Influence of physical and chemical parameters on reaction rates in solutions CO6: Do the in-depth analysis of various phenomenon and laws of States of Matter, applications of Thermodynamics, Electrochemistry and Chemical Kinetics and different functions of statistical thermodynamics.

7	Course	The course is framed to give broad view of states of matter,	chemical				
	Description	potential, concepts of electrical double layer in solutions and various					
		models to explain it. Concept of existence of different phases in the form					
		of phase diagrams and their existence with changing variab	les.				
8	Outline syllabus		CO Mapping				
	Unit 1	States of Matter					
	А	(a) Gaseous State : Maxwell-Boltzmann distribution of	CO1,CO6				
		molecular velocities of gases (b) Liquid State: Structure of					
		liquids, Radial distribution functions					
	В	Monte–Carlo method, Molecular dynamics (c) Solid State:	CO1,CO6				
		Types of solids, Debye- Scherrer method of X-ray					
		structure analysis of crystals, indexing of reflections,					
	С	structure of simple lattice and X-Ray intensities, structure	CO1,CO6				
		factor and its relation to intensity and electron density,					
		Rietveld analysis, particle size of crystallites.					
	Unit 2	Thermodynamics					
	А	Essentials of thermodynamics, fugacity, standard state of	CO2,CO6				
		real gases, the relation between fugacity and pressure,					
		Partial molar quantities, chemical potential and Gibbs-					
		Duhem equation,					
	В	Classius – Clayperon equation; law of mass action and its	CO2,CO6				
		thermodynamic derivation, variation of chemical potential					
		with temperature and pressure, chemical potential for an					
		ideal gas, deterrmination of partial molar volume,					
	С	thermodynamic functions of mixing (free energy, entropy,	CO2,CO6				
		volume and enthalpy), third law of thermodynamics,					
		residual entropy, meaning and scope of irreversible					
		thermodynamics.					
	Unit 3	Statistical Thermodynamics					
	А	Concept of distribution, Thermodynamic probability and	CO3,CO6				
		most probable distribution. Ensembles, Canonical, grand					
		canonical and microcanonical ensembles.					
	В	Partition function - Translational, Rotational, Vibrational	CO3,CO6				
		and Electronic partition functions, calculation of					
		thermodynamic properties in terms of partition function.					
		Applications of partition functions.					
	С	Heat capacity behaviour of solids - Chemical equilibria					
		and equilibrium constant in terms of partition functions,					
		Fermi-Dirac statistics, distribution law, Bose-Einstein					
		statistics - distribution law, Evaluation of Lagrange's					
		undeterrmined multipliers.					
	Unit 4	Electrochemistry					

	А		Deb	ye-Huck	theo	ory of i	on- ion	interac	tions, Del	bye-	CO4,CO6
			Huc	limitations							
	D		Debene Headed One () (CO1CO6	
	В		Deb	Debye - Huckel -Onsager treatment for aqueous solutions CO4,CO6							
			and	its limi	tations,	wein	effect, I	Jebye –	- Falkenna	agen	
	0				1 1 4	1	<u> </u>	TT1 1		1.1	001000
	C		Ine	electro		rolyte in $\mathbf{h} = \mathbf{D}$	iterface:	I ne ele	ctrical do	uble	CO4,CO6
			laye	r - The	Heimin	ffrage al	in para	ner plat	le model,	the	
			Gou	ly-Chapi	nan di	inuse-cn	arge n	lodel al	na the S	stern	
	TT .•4 F		mod	lei, exce	ss runct	ion					
	Unit 5		Che	mical K	inetics	1	C .	•		•	
	А		Sim	ple col	lision t	heory of	of react	tion rate	es, Arrhe	nius	CO5,CO6
			equa	ation a	and ac	tivated	comp	lex the	eory (A	CT),	
			ther	modyna	mic tre	atment,	chain	reaction	is (hydrog	gen-	
	5		halo	gen read	tions) d	lecompo	osition of	$t N_2O_5$			
	В		The	ory of	unim	olecular	reacti	ons: L	Indemann	l —	CO5,CO6
			Hins	shelwoo	d mec	hanism	of un	imolecu	lar reacti	ons,	
	~		RR	KM and	Slater ti	eatment	·,				<u> </u>
	C			Factors affecting rate of chemical reactions in solution CO5,CO6							
			Effe	Effect of solvent and ionic strength (Primary salt effect) on							
		-	rate	rate constants, secondary salt effect.							
	Mode o	of .	The	Theory							
	examin	ation	~								
	Weight	age	CA		MSE		ESE				
	Distrib	ution	25%	<u>23%</u> <u>20%</u>							
	Text bo	ook/s*	1. A	1. Atkins P. W., Physical Chemistry, Oxford University Press, New York.							
			2. K	2. Kapoor K. L., Textbook of Physical Chemistry (Volume 1)							
			3. K	3. Kapoor K. L., Textbook of Physical Chemistry (Volume 3)							
			4. K	4. Kapoor K. L., Textbook of Physical Chemistry (Volume 5)							
			5. P	5. Puri, Sharma and Pathania, A Textbook of Physical Chemistry, Vishal							
	0.1		Pub	Publishing Corp.							
	Other			1. Levine, I. N., Physical Chemistry, Tata McGraw Hill Pub. Co. Ltd., New							
	Keterei	nces									
			2. 3	2. Singh N. B., Gajbiye N.S. and Das S. S., Comprehensive Physical							
				Chemistry, New Age publishers, New Delhi							
			3. L	3. Laidler K. J., Harper & Row, Chemical Kinetics, New York.							
Monni	ng of CO	VE DO P-	4. IV. PSO	icQuarri	е D. A.	and Sill	юп J . D.	., Physic		шу	
CO/P	0	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2		
CHT ²	4103.1	3	3	3	1	1	3	2	3		
CHT ²	4103.2	3	3	3	1	1	3	3	3		
CHT4	4103.3	3	2	3	2	1	3	2	3		
CHT4	4103.4	3	2	3	2	1	3	3	3		
CHT2	+103.5 1102.6	3	2	3	2		3	3	3		
CH12	+103.0	3	3	3	1	1	3	3	3		

CHT4104 Advanced Analytical Chemistry I

Sch	ool: SSES	Batch : 2025-27
Prog	gramme: M.Sc	Current Academic Year: 2025-27
Bra	nch: Chemistry	Semester: I
1	Course Code	CHT4104
2	Course Title	Analytical Chemistry I
3	Credits	4
4	Contact	4-0-0
	Hours	
	(L-T-P)	
	Course Status	Core
5	Course	1. Provide and enrich the students to analytical techniques, various types
	Objective	of errors knowingly/ unknowingly introduced, accuracy and confidence
		limit in analytical process.
		2.Provide detailed insight of chemical equilibrium and its effect in
		chemical analysis of analyte.
		3.Provide detailed technical knowledge of various chromatogaraphic
		separation techniques based on physical state, contact and separation
		mechanism.
		4.Provide detailed technical knowledge of gas, thin layer chromatographic,
		integrated LC-MS and GC-MS separation techniques for qualitative and
		quantitative analysis.
		5.Enable the students to study the thermal behaviour of different
		compounds and study temperature dependent decomposition process and
		structural elucidation of unknown analyte.
		CO6:Estimate the temperature dependent weight loss in compound and
		model and optimize suitable temperature condition for further chemical
6	Course	processing.
0	Course	col. Apply the knowledge of analytical techniques to minimize the error
	Outcomes	CO2: Understand the role of different analytical techniques used for the
		separation of compounds present in very small quantity
		CO3:Understand the role of chemical equilibrium in chemical analysis
		CO4: Segregate and select the suitable indicator for measurement of pH
		CO5: Purify the various compounds for their further detailed structural
		elucidation and molecular mass analysis
		CO6. To learn analytical tools involving Chromatographic methods and
		thermo-analytical instruments of a lab for the identification of equilibrium
		process.
7	Course	Analytical chemistry I emphasizes on various factors as - types of errors.
	Description	accuracy and precision in chemical analysis, concepts of chemical
		equilibrium and its effects on qualitative and quantitative estimation,
		Chromatographic separation and Thermal analysis.

8	Outline syllabus		CO Mapping
	Unit 1	Introduction to Analytical Chemistry	
	А	Scope & objectives of Analytical chemistry and chemical	CO1,CO6
		analysis, Classification of analytical methods. Errors in	
		chemical analyses- Accuracy and precision	
	В	Types of error-determinant, indeterminate and gross.	CO1,CO6
		Nature of random errors, statistical treatment of random	
		errors, standard deviation of calculated results, reporting	
		of calculated data	
	С	ways of expressing accuracy and precision. variance and	CO1,CO6
		confidence limit. Comparison of mean with true values,	
		regression analysis (least-square method for linear plots)	
	Unit 2	Concept of Equilibrium	
	А	General treatment of equilibria in aqueous medium	CO2,CO6
		involving monoprotic weak acid and weak base, and salts	
		of weak acids and weak bases	
	В	Activity and activity coefficient; Effect of electrolytes on	CO2,CO6
		chemical equilibria, Calculation of pH	
	С	Constructing titration curves from charge balance and	CO2,CO6
		mass balance equations, Acid-base titrations and theory of	
		pH indicators.	
	Unit 3	Chromatographic Methods-I	
	А	General principle, classification of chromatographic	CO3,CO6
		methods based on physical state, contact and separation	
		mechanism	
	В	Nature of partition forces. Chromatographic behavior of	CO3,CO6
		solutes. Chromatographic resolution, selectivity factor	
		and column efficiency.	
	С	Column chromatography: Nature of column materials,	CO3,CO6
		Preparation of the column, Solvent systems, detection	
		methods and applications.	
	Unit 4	Chromatographic Methods-II	
	А	Gas chromatography- principle, experimental	CO4,CO6
		technique, carrier gas, sample injection, column, detector	
		and application	
	В	High Performance Liquid Chromatography (HPLC):	CO4,CO6
		instrumentation- solvent and reservoirs, pumping system,	
		sample injection, Column, detectors	
	C	Thin layer chromatography: coating of materials,	CO4,CO6
		preparation of TLC, Solvents, methods of detection and	
		applications. Theory and application of LC-MS, Pyrolysis	
		GC-MS, Thermal Desorption GC-MS.	
	Unit 5	Thermal Analysis	

				www.sharda.ac.	in			
А	Principle, dif	fferent methods	of thermal analysis	, i)	CO5,CO6			
	Thermo grav							
	Instrumentat	ion, thermogram	m and information f	rom				
	thermogram,	factors affectin	ng thermogram, app	lications				
	TGA for qua	intitative analys	sis (TG analysis of					
	$CaC_2O_4.H_2C$, CuSO ₄ .5H ₂ O	, dolomite ore, etc.)					
В	Problems bas	sed TGA, ii) Di	ifferential Thermal A	Analysis	CO5,CO6			
	(DTA): Instr	umentation, ge	neral principles, diff	ferential				
	thermogram,							
	(DTA analys	is of mixture of	f polymers, DTA of	CaC_2O_4				
	H_2O , DTA of CuSO ₄ 5 H_2O).							
С	Differential	Scanning Ca	lorimetry (DSC):	Principle,	CO5,CO6			
	Instrumentat	ion, and Ap	plications (DSC	curve of				
	polyethylene	terephthalate,	, DSC curve for	isothermal				
	crystallizatio	n of polyeth	ylene, DSC of pl	henacetin),				
	thermometrie	thermometric titrations, Evolved gas analysis.						
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
Distribution	15%	10%	75%					
Text book/s*	1.Analytical	Chemistry-An	Introduction, 7 th Ed	ition,D. A. S	Skoog, D.M.			
	West, F.J. H	oller, S.R. Crou	ich, Saunders Colleg	ge Publishin	g,			
	Philadelphia	, London.						
Other	1. Modern M	lethods of Cher	nical Analysis, 2 nd H	Edition,R. L	. Pecsok, L. D.			
References	Shields, T. C	Cairns and L.C.	Mc William, John V	Wiley, New	York.			
	2. Analytical	l Chemistry, 5 th	¹ Edition,G. D. Chri	stian, John	Wiley & Sons,			
	New York.							
	3. Analytical	Chemistry: Pr	inciples, 2 nd Edition	,J. H. Kenne	edy, Saunders			
	Holt, London	n.						

Mapping of CO vs. PO

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO1
CHT4104.1	3	2	1	2	3	1	1	1
CHT4104.2	3	2	1	3	3	1	1	1
CHT4104.3	3	2	1	1	3	1	1	1
CHT4104.4	3	3	1	3	3	1	1	1
CHT4104.5	3	3	1	3	3	1	1	1
CHT4104.6	3	3	1	3	3	1	1	1

School: SSES		Batch : 2025-27					
Program	me: M.Sc.	Current Academic Year: 2025-26					
Branch:	Themistry	Semester: II					
1	Course Code	CHT4105					
2	Course Title	Advanced Inorganic Chemistry II					
3	Credits	3					
4	Contact	3-0-0					
1	Hours (L.T.						
	P)						
	Course Status	Core					
5	Course	1. To introduce the basics concept of molecular symme	try and				
	Objective	group theory.					
	5	2. To demonstrate the various application of group theory	y in				
		spectroscopy.	•				
		3. To provide an introduction to basic concepts of organ	ometallic				
		chemistry.					
		4. To explain to the student the various application of organometallic					
		chemistry in industry.					
		5.To provide information various industrially important					
		organometallic compounds.					
		6.To provide structure, bonding and reactivity of transition n					
		carbonyls, nitrosyls and phosphine complexes.					
6	Course	CO1:Understand the various basics concept of molecul	ar symmetry				
	Outcomes	and group theory.					
		CO2: Apply their knowledge of group theory to underst	tand the				
		principles of spectroscopy.					
		CO3:Know the basic concepts of organometallic chemi	stry and its				
		application in industry.	notal alleri				
		cO4. Explain the structure and reactivity of transition f	netai aikyi,				
		CO5: Gain insight about transition metal carbonyls nit	rosuls and				
		nhosphin complexes	losyis and				
		phosphili complexes.					
		chemistry and group theory	lonictunic				
7	Course	The course includes the basic concept of group theory a	nd its				
	Description	application in chemistry: as well as organometallic che	nistry of				
	- ····	transition metals.	j •				
8	Outline syllabus	3	CO				
			Mapping				
	Unit 1	Molecular symmetry					
	А	Introduction, Meaning and examples of different	CO1,CO6				
		symmetry elements and generated operations; and					

CHT4105 Advanced Inorganic Chemistry II

	general rules. Derivation of matrices for rotation;	
	reflection; rotation; reflection and inversion	
	operations;	
В	Symmetry operations of all the molecular point	CO1.CO6
	groups (C_n , D_n , C_{nh} , D_{nb} , C_{nv} , D_{nd} , S_n , T , T_d and T_h ;	,
	Determination of the classes of operations by	
	similarity transform method (only C_{2v} , C_{2h} , C_{3v}) and	
	general rules	
С	Defining properties of 'group'; Types of groups,	CO1,CO6
	Subgroups; reducible and irreducible representations	
Unit 2	Application of Group Theory	
А	Construction of character table for C_{2y} and C_{3y} point	CO2,CO6
	group	, ,
В	Optical activity and dipole moment	CO2,CO6
С	Application of group theory to electronic and	CO2,CO6
	vibrational spectroscopy	
Unit 3	Organometallic Chemistry-I	
А	General Characteristics of organometallic compounds,	CO3,CO6
	Ligand hapticity, electron count for different types of	
	organometallic compounds, 16 and 18 electron rule	
	and exceptions, Fluxionality in organometallic	
	complexes.	
В	Synthesis, structure and bonding of organolithium	CO3,CO6
	compounds	
С	Organometallic reagents in homogeneous catalytic	CO3,CO6
	reactions (Hydrogenation, hydroformylation,	
	isomerisation, polymerisation).	
Unit 4	Organometallic Chemistry-II	
А	General synthetic routes, nature of bond and structural	CO4,CO6
	characteristics of alkyl, aryl, alkene alkynes	
	complexes of transition metals.	
В	Structure and bonding of metallocenes.	CO4,CO6
C	Synthesis, structure and reactivity of metal carbene	CO4,CO6
	and carbynes	
Unit 5	Organometallic Chemistry-III	
А	Ligand behavior of CO, General methods of	CO5,CO6
	preparation, structures, bonding, and vibrational	
	spectra of metal (Fe, Ru, Os, Cr, Ni) carbonyls.	
В	Ligand behavior of NO (NO ⁺ , NO ⁻ and bridging NO),	CO5,CO6
	preparation, structures, bonding of nitrosyls of Cr, Fe	
	and Ru	
С	and RuPreparation, structure, bonding and reactivity of metal	CO5,CO6
С	and RuPreparation, structure, bonding and reactivity of metal phosphines. Comparison of phosphine and carbonyl	CO5,CO6

Mode exami	of Theory ination							
Weig	htage CA	MSE	ESE					
Distri	bution 25%	25%	50%					
Text l	book/s* 1. Inorgan	nic Chemistry,	v, J.E. Huhey, Harper & Row.					
	2.Organo	2.Organometallic Chemistry, R.C.Mehrotra and A.Singh, New Age						
	Internatio	International.						
Other	1. Advance	ced Inorganic	Chemistry, F.A. Cotton and Wilkinson, John					
Refer	ences Wiley							
	2. Introdu	2. Introduction to Ligand fields, B.N. Figgis, Wiley, New York.						
	3. The Or	ganometallic (Chemistry of the Transit ion Metals, R.H.					
	Crabtree,	John Wiley.						
	4. Transit	ion metal chen	emistry, Fundamental concept and					
	applicatio	applications, A. Yamamoto, John Wiley, 1986.						

Mapping of CO vs. PO

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT4105.1	3	2	1	1	1	2	3	3
CHT4105.2	3	1	2	1	2	1	3	3
CHT4105.3	3	2	1	2	2	1	3	3
CHT4105.4	3	1	1	2	2	2	3	3
CHT4105.5	3	1	2	1	1	2	3	3
CHT4105.6	3	1	1	1	2	2	3	3

CHT4106 Advanced Organic Chemistry II

School:	SSES	Batch: 2025-27				
Program	nme: M.Sc.	Current Academic Year: 2025-26				
Branch: Chemistry		Semester: II				
1	Course No.	CHT4106				
2	Course Title	Advanced Organic Chemistry II				
3	Credits	3				
4	Contact	3-0-0				
	Hours (L-T-					
	P)					
	Course	Core				
	Status					
5	Course	This course aims to:				
	Objective	1. Develop an in-depth understanding of single bond (C-C) formation				
		strategies and explore the role of enolates, enamines, and				
		organometallic reagents in organic synthesis.				
		2. Develop the critical thinking to analyze the conditions required for				
		C=C bond formation				
		3. Introduce metal-catalyzed carbon- carbon bond formation				
		techniques and their applications.				
		4. Examine oxidation and reduction reactions, including				
		stereochemical aspects and selectivity.				
		5. Analyze key name reactions and molecular rearrangements in				
		organic synthesis				
6	Course	By the end of the course, students will be able to:				
	Outcomes	CO1: Utilize enolates, enamines, and organometallic reagents and				
		metal-catalyzed coupling reactions for C- C bond formation.				
		CO2: Differentiate between elimination strategies for double bond				
		formation and apply them effectively.				
		CO3: Implement oxidation techniques in organic synthesis with a focus				
		on selectivity.				
		CO4: Understand the functional mode of various reducing reagents				
		CO5: Understand and predict the mechanisms of key organic name				
		reactions and rearrangements.				
		CO6: Design synthetic routes using advanced organic transformations				
7	Carrier	This second and the second second sector diverse free down and second sector diverse free down and second s				
/	Course	This course provides a comprehensive understanding of modern organic synthesis, focusing on earbon carbon (C, C) and earbon carbon deviate				
	Description	synthesis, locusing on carbon-carbon (U-U) and carbon-carbon double hand $(C-C)$ formation strataging. It servers the chamistary of evolution				
		bolic $(C=C)$ formation strategies. It covers the chemistry of enolates,				
		enamines, and organometanic reagents, along with metal-catalyzed				
		ovidation and reduction methodologies including storeoscilective				
		transformations are explored in detail Additionally the course				
		oxidation and reduction methodologies, including stereoselective transformations, are explored in detail. Additionally, the course				

		examines important name reactions and molecular rearrangements,						
		emphasizing their mechanisms and applications in organic synthesis. By						
		integrating theoretical knowledge with practical applicat	tions, this course					
		prepares students for advanced research and industria	al challenges in					
		organic chemistry.	C					
8	Outline		CO Mapping					
	syllabus							
	Unit 1	Single bond (C-C) formations						
	А	Chemistry of enolates: Thermodynamic and kinetic	CO1, CO6					
		enolates, lithium and boron enolates in aldol and						
		Michael reactions, alkylation and acylation of enolates,						
		Enamines and its analogy with enolates						
	В	Organometallic chemistry: organolithium,	CO1, CO6					
		organomagnesium (Grignard), organozinc,						
		organocopper (Gilman & Normant) reagents in						
		synthesis						
	С	Metal-catalyzed C-C bond formations: Negishi,	CO1, CO6					
		Heck, Suzuki, and Sonogashira						
	Unit 2	Double bond (C=C) formations						
	А	Elimination reactions: Hoffmann vs. Saytzev's rule,	CO2, CO6					
		Cope elimination, Phospohorus, nitrogen and sulfur						
		ylids, Wittig reaction, Wittig-Horner reaction						
	В	Tebbe olefination, Julia olefination, Mannich reaction,	CO2, CO6					
		Robinson annulation, Peterson olefination, McMurry						
		reaction, Shapiro reaction, selenoxide elimination						
	С	Olefin metathesis: Schrock and Grubb catalyst, ring	CO2, CO6					
		closing metathesis, enyne metathesis, Thorpe reaction						
	Unit 3	Oxidation						
	А	Alkene oxidation: alkenes to carbonyls with bond	CO3, CO6					
		cleavage, alkenes to alcohols/carbonyls without bond						
		cleavage (Wacker oxidation),						
	В	Sharpless asymmetric dihydroxylation, Prevost	CO3, CO6					
		reaction and Woodward modification						
	С	Oxidation of Alcohols: alcohols to carbonyls,	CO3, CO6					
		alcohols to acids or esters, phenols (Fremy's salt),						
		Swern oxidation.						
	Unit 4	Reduction						
	А	Catalytic reduction (Pt, Pd, Ni), Dissolving metal	CO4, CO6					
		reductions (alkali metals in Liq. NH ₃ and Zn, Sn),						
	В	Reduction by hydride transfer reagents (Complex	CO4, CO6					
		hydrides of Li and Na); Steroeselectivity of reduction						
		with small hydride donors;						
	С	Reduction with non-metals: HI, Diimides and	CO4, CO6					
		hydrazine						

Unit 5	Name Rea					
А	Hoffmann,	Hoffmann, Lossen, Curtius, Schmidt rearrangement				
В	Mechanism	n of Bae	yer Villiger, Hauser rearrange	Favorskii	CO5, CO6	
C Mode of examination	Baylis-Hill reaction, S reaction Theory	Baylis-Hillman reaction, Henry reaction, Ritter reaction, Sakurai reaction, Tishchenko reaction, Ugi reaction Theory				
Weightage	CA 25%	MSE	ESE			
Text Book/s*	 Organ New A Organ Edition Reacti M. Mu 	ic Reactions an Age Internationa ic Chemistry, R n, Prentice-Hall on Mechanism Ikherji and S. P	d Mechanisms, P al Publishers. a. T. Morrison and l. in Organic Chem Singh, Macmilla	.S. Kalsi, (20 d R. N. Boyd histry, (1976) an.	002) 2 nd Edition, I, (1992) 6 th 1 st Edition, S.	
Other references	 Advan Jerry M Organ McGra Moder Carrut Univer Princip Chapn 	iced Organic Cl March, (1992) 4 ic Chemistry, aw-Hill Compa rn Methods of C hers, Iain Cold rsity Press ples of Organic nan and Hall	hemistry Reaction H th Edition, John V Francis A. Care nies, Inc. Drganic Synthesis ham, (2004) 4 th E Synthesis, R.O.C	ns: Mechanis Wiley. ey, (1996) 3 South Asia dition, Camb Norman, (1	m and Structure, ^{grd} Edition, The Edition W. pridge 978) 2 nd Edition,	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT4106.1	3	2	1	2	3	1	1	2
CHT4106.2	3	1	1	1	3	1	1	2
CHT4106.3	3	2	1	2	3	1	1	2
CHT4106.4	3	2	1	2	3	1	1	2
CHT4106.5	3	2	1	2	3	1	1	2
CHT4106.6	3	1	1	1	3	1	1	1

CHT4107 Advanced Physical Chemistry II

Sch	ool: SSES	Batch : 2025-27				
Prog	gramme:M.Sc.	Current Academic Year: 2025-26				
Bra	nch:Chemistry	Semester:II				
1	Course Code	CHT4107				
2	Course Title	Advanced Physical Chemistry II				
3	Credits	3				
4	Contact	3-0-0				
	Hours					
	(L-T-P)					
	Course Status	Core				
5	Course	1. To familiarise students with theoretical and mathematic	cal aspects of			
	Objective	quantised energy levels of particle in box,				
		2. To introduce the theoretical concept of Hydrogen atom	and hydrogen			
		molecule and hydrogen molecule ion.				
		3. To infer the concept of Charge on colloids, e	lectro kinetic			
		phenomenon's and different theories on colloids				
		4. To prioritise the surface phenomenon's and different	equations and			
		theories to explain them.				
		5. To describe equilibrium processes of one and more than o	one component			
		systems such as congruent, Peritectic and Monotectic Syste	ms.			
6	Course	COI: The concepts of quantum mechanics and its	mathematical			
	Outcomes	interpretation for atoms and molecules possessing single ele	ectron.			
		CO2: The results and their analysis obtained on the basis of N	MOT and VBT			
		for hydrogen atom, molecule and ion.	4.1			
		CO3: The nomenciature of particles on the basis of particles of the basis of particles on the basis of particles and results related to stability of colloids	ticle size and			
		different theories and results related to stability of colloids.	hiliantion			
		CO4: The concept of surface tension, micenization and solu	different			
		variables by visualizing the phase diagrams	ige in different			
		CO6: The concept of quantum mechanics, their application	n to MOT and			
		VBT how to draw phase diagrams and importance of collo	ds and surface			
		chemistry in daily life, their concepts, phenomenon and	mathematical			
		equations.	manomanoui			
7	Course	Concept of Ouantum mechanics and its applications in M	IOT and VBT			
	Description	were shared with students. Theories of colloids and conce	pts of surface			
1		chemistry were discussed. The phase diagram of different component				
		systems were discussed and explained how to plot them.	1			
8	Outline syllabus	· · · · · · · · · · · · · · · · · · ·	CO Mapping			
	Unit 1	Quantum Mechanics				
	A	Matter waves, The Uncertainty principle, the wave nature	C01,C06			
		of the electron, Postulates of Quantum Mechanics,				

		Commutatio	n of operator	rs, Eigen value and Eigen				
		function. An	gular momentu	m operator, Ladder operator.				
	В	The wave e	equation, Partie	cle in one dimensional box,	CO1,CO6			
		particle in th	ree-dimensiona	l box, Degeneracy.				
	С	Hydrogen	Hydrogen atom: Schrodinger wave equation.					
	Transformation of coordinates, separation of variable in							
		polar spherie						
		distribution f	function, radia	al distribution function.				
	Unit 2	Chemical Bo	onding					
	А	Born Oppen	heimer Approxi	imation, The variation method,	CO2,CO6			
		Ground state	e energy of the l	hydrogen atom,				
	В	Huckel mole	ecular orbital t	heory of conjugated systems,	CO2,CO6			
		Secular equa	tions, delocalis	ation energy,				
	С	MOT and Va	alence bond the	ory- Hydrogen molecule.	CO2,CO6			
	Unit 3	Colloids						
	А	Introduction,	, Origin of	the charges, electro-kinetic	CO3,CO6			
		phenomena	: electrop	horesis, electro osmosis,				
		sedimentatio	n and streamin	g potential.				
	В	The concept	of electrical do	ouble layer and various models	CO3,CO6			
		to explain its	s structure and j	properties,				
	С	DLVO theo	ry and stabilit	y of colloids. Smoluchowski	CO3,CO6			
		theory of k						
		colloids agg	colloids aggregates.					
	Unit 4	Surface Cher						
	A	Surface tensi	ion and surface	free energy; Pressure across an	CO4,CO6			
		interface: La	place equation,	Kelvin equation.				
	В	Adsorption i	n liquid system	ns: Gibbs adsorption isotherm;	CO4,CO6			
	~	Adsorption of	on solids: Langi	muir isotherm, BET isotherm.				
	С	Micelles-Sur	tace active	agents, micellization,	CO4,CO6			
		hydrophobic	interaction, c	ritical micellar concentration				
		(cmc), facto	ors affecting	cmc of surfactants, micro				
	I Init 5	Dhage Equili	everse micelles					
		Phase Equin	oria					
	A	Statement an	id meaning of t	he terms in Gibbs phase rule;	05,006			
	D	Two composed	ont solid liqui	d aquilibria (avampla of Cu Ni	CO5 CO6			
	D	I we compor	d avatam and C	u equilibria (example of Cu-Ni	005,000			
		alloy, DI - Co	u systelli allu C	$u_{3}O_{4} - \pi_{2}O_{3}$ system): simple				
	C	paritactic, coll	me and more	type,	CO5 CO6			
	C	concept of D	pe and mono hase equilibria	of three component systems				
	Mode of	Theory		or three component systems				
	examination	Theory						
	v.ammati011	CA	MSF	FSF				
1			1101					

Weightage	25%	25%	50%				
Distribution							
Text book/s*	1. Atkins P.	W., Physical C	hemistry, Oxford University Press, New York.				
	2. Levine I. N	N., Physical Ch	emistry, Tata McGraw Hill Pub. Co. Ltd., New				
	Delhi.						
	3. Adamson A. W., Physical Chemistry of Surfaces, John Wiley and Sons.						
Other	1. Day M. C	. and Selbin J.,	Theoretical Inorganic Chemistry.				
References	2. Pashley I	R. M. and Ka	raman M. E., Applied Colloid and Surface				
	Chemistry, V	Viley Publicati	ons.				
	4. Singh N.	B., Gajbhiye	N. S. and Das S. S. Comprehensive Physical				
	Chemistry, N	New Age publis	shers, New Delhi.				
	5. McQuarrie	e D. A. and Sin	non J. D., Physical Chemistry.				

Mapping of CO vs. PO & PSO

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT4107 .1	3	1	3	3	1	3	2	3
CHT4107 .2	3	3	3	1	1	3	3	3
CHT4107 .3	3	2	3	2	1	3	2	3
CHT4107 .4	3	2	3	2	1	3	3	3
CHT4107 .5	3	2	3	2	1	3	3	3
CHT4107 .6	3	1	3	1	1	3	3	3

CHT4108 Basic Principles of Computational Chemistry

Schoo	I. SSES	Batch 2025-27					
Progr	amme: M.Sc.						
Brand	ch : Chemistry	Semester II	Semester II				
1	Course Code	CHT4108					
2	Course Title	Basic Principles of Computational Chemistry	Basic Principles of Computational Chemistry				
3	Credits	2					
4	Contact hours	2-0-0					
	Course Status	DSE					
5	Course Object	 The objectives of the course are to 1.To provide basic knowledge of quantum mechanics 2. To learn MO theory in the perspective of quantum of 3. To understand Hartree-Fock theory of quantizations. 4. To teach the concept of ab initio theory in quantizations. 5. To introduce the implementation of DFT to an appearing analytications. 	chemistry. itum chemical itum chemistry solve quantum				
		mechanical problems.6.To provide knowledge of various electronic structuresolve problems theoretically.	re theory to				
6	Course Outcor	 After successful completion of the course, the student to: CO1:Develop the knowledge of quantum mechanics is chemical systems. CO2: Master fundamental concept of MO theory chemistry. CO3: Understand the essential features of Hartree Fock CO4: Apply the concepts of ab initio theory in chemistry. CO5: Able to understand the role of DFT to solve quar mechanical problems. CO6: Develop deep knowledge and application of elect structure theory to solve quantum mechanical problem 	s will be able n the context of ry of quantum theory. computational ntum tronic ns.				
7	Course Description The goal of this course is to provide basic concepts of Quant Chemistry and its applications in the field of Chemical Sciences. T course will review the various theories/approximations necessary understand most popular framework of Theoretical a Computational Chemistry and its applications						
8	Outline Syllab	18	CO mapping				
	Unit 1	Quantum Mechanics					
	A	Introduction of Quantum mechanics, Schrodinger equation,	CO1, CO6				

В	Position and mo operator,	omentum, Operato	ors, Hamiltonian	CO1, CO6	
С	Quantum oscill Quantum numbe	CO1, CO6			
Unit 2	Huckels MO th	neory			
А	Huckel's MO the	eory,		CO2, CO6	
В	approximate and	d exact solution of	f Schrodinger equation,	CO2, CO6	
С	exception value	es of energy, Co s of energy.	omputational techniques	CO2, CO6	
	Computational t	chniques			
Unit 3	SCF theory and	d Hartree-Fock e	equation		
А	Self consistent f	ield theory, Elem	ents of secular matrix,	CO3, CO6	
В	Vibrational calc	ulations, Semi en	pirical methods,	CO3, CO6	
С	Slater determina	ants, Hartree equa	tion, Fock equation.	CO3, CO6	
Unit 4	Ab initio theory	y			
А	Ab-initio calcula	ations,		CO4, CO6	
В	Gaussian implei	mentations		CO4, CO6	
С	Koopman's theo	Koopman's theorem,			
Unit 5	Density Function				
А	Concept of Den	sity Functional Tl	heory	CO5, CO6	
В	DFT for larger 1	nolecules.		CO5, CO6	
 С	DFT application	18		CO5, CO6	
Mode of examination	Theory				
Weightage	CA	MSE	ESE		
Distribution	25%	25%	50%		
Text book/s*	 Levine, I. N., Busch, D. H., & Shull, H. (2009). Quantum chemistry (Vol. 6). Upper Saddle River, NJ: Pearson Prentice Hall. Young, D. (2004). Computational chemistry: a practical guide for applying techniques to real world preshlaws. John Wiley, & Santa 				
Other	1. McQuarrie,	D. A. (2008). C	Quantum chemistry. Univ	versity Science	
References	Books.		, ,	2	
	2. Eyring, H. (19	944). J. Walter an	d GE Kimball. Quantum	Chemistry, 346.	
	3. Jensen, F. (2	017). Introduction	n to computational chemis	try. John wiley	
	& sons.			-	
	4. Leach, A. R. Pearson education	(2001). <i>Molecula</i> on.	r modelling: principles an	ad applications.	

					-	14 64 64.5110	Gu.uc.m	
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT4108.1	3	1	3	1	1	3	3	3
CHT4108.2	3	1	3	1	1	3	3	3
CHT4108.3	3	1	3	1	1	3	3	3
CHT4108.4	3	2	3	1	1	3	3	3
CHT4108.5	3	2	3	1	1	3	3	3
CHT4108.6	3	2	3	1	1	3	3	3

CHT5101 Advanced Molecular Spectroscopy

School: SSES		Batch : 2025-27	
Prog	gramme:M.Sc.		
Bra	nch:Chemistry	Semester:III	
1	Course No.	CHT5101	
2	Course Title	Advanced Molecular Spectroscopy	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	Compulsory	
5	Course Objective	 To know the principle and applications of molecular spect To understand the theories of UV, FT-IR, Raman, NM spectroscopic techniques. Analyze and identify simple organic molecules by using ¹H NMR and ¹³C NMR data. To evaluate the application of NMR and Mass spectroscopic to different molecules. To know the principle and instrumentation spectrophotometric techniques. To impart the knowledge of electronic, rotation, vibration 	roscopy. R, and Mass UV, IR, Mass, pic techniques of different . NMR, FTIR,
6	Course	ESR, spectroscopy and their applications. CO1:Explain the general principles and theory of spectrosco	py, distinguish
7	Outcomes	the specialities and applications of various types of spectrose CO2:Describe the concept and instrumentation of ator absorption, infrared NMR and Mass spectrometers. CO3:Apply Woodward Fieser Rules. CO4:Understand first and second order ¹ HNMR spectra. CO5:Solve analytical science problems involving uv-visit infrared ¹ H, ¹³ C and mass techniques. CO6:Predict UV, IR, Proton chemical shift, spin-spin coupl constants and apply ¹³ C resonance spectroscopy and mass s chemical structures.	ble absorption, ing, coupling pectroscopy to
7	Course Description	The course is framed to give fundamental concepts of U ¹ HNMR, ¹³ CNMR and Mass spectroscopy. Application spectroscopic techniques to organic/inorganic systems will	V-Visible, IR, as of these be discussed.
8	Outline syllabus		CO mapping
	Unit 1	UV-Visible Spectroscopy	
	A	Electronic spectra, Frank-Condon Principle, predissociation spectra, Fortrat diagram	CO1,CO6
	В	conjugated polyene and enone systems, and different types of charge transfer transitions and their basis	C01,C06

С	Charge transfer spectra in organic and inorganic systems	CO1,CO6
Unit 2	Infrared Spectroscopy	
А	Basic principle and sample handling. Modes of stretching and bending, bond properties and absorption trends,	CO2,CO6
В	Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and Fermi resonance.	CO2,CO6
С	Application of IR spectroscopy for determination of inorganic structures, bond strength, frequency shift reactions.	CO2,CO6
Unit 3	Nuclear Magnetic Resonance Spectroscopy-I	
A	¹ H NMR - Effect of magnetic field strength on sensitivity and resolution, chemical shift δ , inductive and anisotropic effects on δ , chemical structure correlations of δ , chemical and magnetic equivalence of spins, spin-spin coupling, structural correlation to coupling constant J	CO3,CO6
В	first order and second order spectra, examples of AB, AX, ABX, AMX and AA'BB' systems, simplification of second order spectrum, selective decoupling, double resonance; c l a s s i f i c a t i o n of splitting pattern; spin; de coupling; chemical exchange; effect of deuteration	CO3,CO6
С	Structural elucidation of organic and in or g an i c c o m p o u n d s using 1 H, 11 B, 15 N, 19 F, 31 P, 195 Pt etc.	CO3,CO6
Unit 4	Nuclear Magnetic Resonance Spectroscopy-II	
А	¹³ C NMR- Introduction, interpretation of ¹³ C NMR spectra, Chemical shifts and its calculation,	CO4,CO6
В	proton coupled and decoupled spin-spin splitting; Application of DEPT technique to the analysis of CH multiplicities in ¹³ C NMR spectroscopy. Correlation spectroscopy - Illustration of practical applications of ¹ H- ¹ H COSY, ¹ H- ¹³ C COSY.	CO4,CO6
С	Nuclear overhauser enhancement (NOE).Basic concept of Heternonuclear (F, P, Si) NMR.	CO4,CO6
Unit 5	Mass Spectrometry	
A	Measurement technique (El; FAB); Resolution; exact masses of nucleides; molecular ions; isotope ions; fragment ions of odd and even electron types; rearrangement ions	CO5,CO6
В	factors affecting cleavage patterns; simple cleavage; cleavage at a hetero atom; multi centre fragmentation	CO5,CO6
C	Structure elucidation of organic and inorganic compounds employing mass spectroscopy.	CO5,CO6

	resolution M	S.			
Mode of	Theory				
examination					
Weightage	CA	MSE	ESE		
Distribution	25%	25%	50%		
Text Book/s*	1. Spectrosco	py of Organic	Compounds – P.S.Kalsi, 6 th edit	tion, 2004.	
	2. Molecular Spectroscopy – Banwell, 5th Edition, 2013				
Other	1. Applicatio	ns of Absorpti	on Spectroscopy of Organic Co	mpounds –	
References	Dyer, 1 st Edition, 2009.				
	2. Spectrosco	pic Methods in	n Organic Chemistry by D.H. V	Williams and I.	
	Fleming, 4th	edition, Tata	McGraw-Hill Publishing comp	any Ltd., New	
	Delhi.				
	3. Spectrome	tric Identificati	on of Organic Compounds- R.	M. Silverstein,	
	F. X. Webste	er, D. Kiemle, 7	7th Edition, 2005.		
	4. Physical N	Aethods in Ino	rganic Chemistry by R. S. Dr	ago, Affiliated	
	East-West Press, 1 st Edition.				
	5. Spectrosco	pic identification	on of organic compounds by Ki	emle Webster	
	Silverstein, 7	⁷ 2 nd Edition, 20	005		

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5101.1	3	1	1	1	1	2	3	1
CHT5101.2	3	2	1	1	2	2	3	2
CHT5101.3	3	1	1	3	1	2	3	1
CHT5101.4	3	1	2	3	2	2	3	1
CHT5101.5	3	1	2	3	2	1	3	1
CHT5101.6	3	1	1	3	2	2	3	1

School: SSES Batch 2025-27 **Programme: M.Sc. Branch: Chemistry** Semester III **Course No CHT5102** 1 2 **Course Title Advanced Inorganic Chemistry III** Credits 3 4 Contact 4-0-0 4 hours(L-T-P) **Course Status** Core 5 Course 1. To explain the reaction mechanism of an inorganic reaction. 2. To discuss factors affecting stability of complexes. Objectives 3. To explain the route of addition of molecules in a reaction. 4. To have an overview of chemistry of CO complexes. 5. To explain the concept of stereoisomerism in inorganic complexes. 6. To demonstrate mechanisms of substitution reaction and compare it with associative reaction. 6 Course CO1: Explain the trends of rate constants and its dESErmination with different methods. Outcome CO2: Provide explanation for substitution in octahedral and square planar complexes. CO3: Explain ligand replacement reactions under different conditions. CO4: Distinguish between oxidative addition and reductive elimination mechanisms. CO5: Analyze the chemistry of carbonyl compounds and metal hydrides. CO6: Gain knowledge about various aspects of inorganic reaction mechanism The course gives a detailed view of reaction mechanism, electron transfer 7 Course mechanisms, oxidative addition and insertion reactions of transition Description metal complexes. **Reaction Mechanism of Transition metal complexes-I** Unit 1 Rate Law, Steady state, Activated complex theory. CO1.CO6 А Stepwise and overall formation constants, their interaction В determination of formation constant by pHmeter, Job's CO1,CO6 method and spectrophotometry. Trends in stepwise constants C factors affecting the stability of metal complexes with CO1,CO6 reference to the nature of metal ion and ligand. Chelate effect and its thermodynamic origin Unit 2 **Reaction Mechanism of Transition metal complexes-II**

CHT5102 Advanced Inorganic Chemistry III

A	Α	Inert and lab	ile complexes,	mechanisms of substitution	CO2,CO6		
		reactions (dis mechanism),	ssociative, asso the conjugate	ciative interchange mechanism,			
В	B direct and indirect evidence in favour of conjugate mechanism, substitution in cis and trans complexes, isomerism of chelate rings, <i>trans</i> effects, explanation <i>trans</i> effect				CO2,CO6		
C	2	Ligand repla octahedral co substitution,	Ligand replacement reactions of square planar and octahedral complexes: their factors and mechanism of substitution, Anation reactions.				
U	Unit 3	Electron Tra	ansfer Mechar	nisms			
A	A	Inner sphere mechanisms	and outer sphe	re reactions and their	CO3,CO6		
В	3	Racemization reaction rates	n and Isomeriza	ation, Effect of ligand field on	CO3,CO6		
C	2	Mixed valent Thermal and	ce complexes, I optical electro	Marcus-Husch theory, n transfer reactions.	CO3,CO6		
U	J nit 4	Oxidative-A Reactions)	ddition and M	ligration (Insertion			
A	A	Introduction: complexes, acceptor pro	CO4,CO6				
B	3	oxidative ad specific mo Organic ha productive el	CO4,CO6				
	Init 5	promotion of alkyl migration, insertion of CO into M-H bonds, other aspects of CO insertion reactions, Insertion of alkenes and C-C unsaturated compounds, Cleavage of C-H bonds; alkane activation, Cyclometallation reactions.			CO4,CO6		
A	A	Synthesis, str characterizat compounds-s	ructure and read ion of complex synthesis and re	ctions of hydrido complexes, es, molecular hydrogen eactions	CO5,CO6		
В	3	Mononuclear anions; carbo	r polyhydrides, onyl hydrides a	homoleptic polyhydride nd anion	CO5,CO6		
C	2	MH interacti	ons; synthetic a	applications of metal hydrides	CO5,CO6		
N e	Mode of examination	Theory					
V	Veightage	CA	MSE	ESE			
Ľ	Distribution	25%	25%	50%			
T	Text book/s*	1.J.E.Huheey Reactivity. H	y. Inorganic Ch Iarper Inter scie	emistry: Principles of Structure ence.	and		

Other	1.William L. Jolly, Modern Inorganic Chemistry, 2 nd Edn, Tata McGraw
References	Hill.
	2.E. A. V. Ebsworth, D. W. H. Rankin and S. J. Cradock. Structural methods in Inorganic Chemistry, Blackwell Scientific Oxford.
	3.I. P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Shriver and Atkins. Inorganic Chemistry, Oxford University Press.
	4.T. Moeller. Inorganic Chemistry: A Modern approach, John Wiley.
	5.F. Basalo and R.G.Pearson, Mechanism of Inorganic reactions,2 nd Edn
	,Wiley Eastern Ltd., New Delhi

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5102.1	3	1	1	1	1	2	3	3
CHT5102.2	3	1	2	1	2	1	3	3
CHT5102.3	3	2	2	2	2	1	3	3
CHT5102.4	3	1	1	1	2	2	3	3
CHT5102.5	3	1	2	1	1	2	3	3
CHT5102.6	3	1	1	1	2	2	3	3

CHT5103 Advanced Physical Chemistry III

Sahar	AL SSES		Ratah 2025 27				
Drog	JI: 55E5		Datch 2025-27				
Prop	annie: WI.SC.		Somostor III				
	Course Code		CITESION				
1	Course Code		Advanced Develop Chemistry III				
2	Course Thie		Advanced Physical Chemistry III				
3	Credits Contract horses	_	4				
4	Contact nours	5	4-0-0				
~	Course Status						
5	Course Object	ives	The main objectives of this program is to:	1			
			1: To provide deep knowledge on advanced quantum	i chemistry.			
			2: To provide a thorough proficiency in approximate	methods in			
			quantum chemistry.				
			3: To enable students to interpret many electron syste	ems quantum			
			mechanically.	•			
			4: To impart knowledge on kinetics of complex react	ions.			
			5: To make the student understand the kinetics of rea	iction in			
			solution.	11.			
			6: Apply the knowledge about quantum chemistry and kinetics to				
-	a o i		solve real life problems.				
6	Course Outcor	ne	After successful completion of the course, the student	s will be able			
			to:	lighting			
			CO2 apply the knowledge of time dependent perturbation theory and				
			CO2. apply the knowledge of time dependent perturbation theory and				
			variational method for quantum mechanical problems.				
			behaviour of multi electron systems				
			behaviour of multi electron systems.				
			CO5 Apply the knowledge of kinetics of reactions in solution				
			to solve kinetics problems				
			to solve kinetics problems.				
			CO/.Apply knowledge quantum chemistry to solve real life				
7	Course Doors		problems and kinetics to understand mechanism of	reactions.			
/	Course Descrip	otion	The course provides in-depth knowledge about advar	nced quantum			
0			chemistry and kinetics of complex reactions.	COmmunity			
8	Unit 1	us A dav	anaad Owantum abamistary Programisita	CO mapping			
		Adva	anced Quantum chemistry: Prerequisite	CO1 CO6			
	A Leg		endre, associated Legendre polynomials; Hermite	001,000			
	poly		nomials; Lagurre and associated Lagurre				
	poly		nomials; polynomials as orthonormal functions, their				
		prop	erties; step-up and step-down operators, application				
	D	to si	ngle electron and multi-electron atom,				
	В	eigei	n-ket-ladder and formulation of spherical harmonics	CO1, CO6			
		from	angular momentum rules, finite rotation operation				

	vs. angular momentum operators, spin angular	
	momentum, Pauli spin matrices — spin eigenfunctions	
	and their properties.	
 С	coupling of angular momentum for many electron system.	CO1, CO6
	spin-orbit coupling. Molecular term symbols. Quantum	
	tunnel effect. Fermi and Bose gases.	
 Unit 2	Approximate methods	
 А	Time dependent perturbation theory, semi classical	CO2, CO6
	treatment of radiation-matter interaction, transition	
	probability and rates. Einstein's A and B coefficients.	
	selection rules: Oscillator strength.	
 В	Variation theorem and variational methods: principles of	CO2, CO6
	linear and non-linear variation methods,	
С	stationary perturbation theory for non-degenerate and	CO2, CO6
	degenerate states - applications to rotator, Stark effect.	
Unit 3	Many electron systems	
А	Antisymmetry of many electron wave function, spin and	CO3, CO6
	spatial orbitals, Slater dESErminant; closed-shell and	
	open-shell electron configurations; multi-electron pure-	
	spin state wave functions - examples with 2- and 3-	
	electron systems,	
В	formulation of a multi-electron closed-shell electron	CO3, CO6
	configuration energy, introduction of core, Coulomb and	
	exchange integrals with their properties - example of He	
	atom, independent particle model, multi-electron atomic	
	Hartree Hamiltonian and related SCF equations solution,	
С	Roothaan-Hartree-Fock method vertical ionization	CO3, CO6
	potential and Koopman's theorem; Problems with open-	
	shell systems. Restricted and unrestricted HF methods	
	(elementary idea).discussion of electron correlation.	
Unit 4	Kinetics of complex reactions	
А	Application of statistical mechanics to transition state	CO4, CO6
	theory, comparison of transition state theory with	
	experimental results, Kinetics of complex reactions	
	(reversible, simultaneous and consecutive),	
В	chain reactions; branched and non-branched kinetic rate	CO4, CO6
	equations, population explosion, upper and lower	
	ignition/explosion limits; thermal ignition and ignition	
	temperature; chemical oscillation: conditions for	
	oscillation, chemistry of BZ reaction (Brusselator model);	
	autocatalysis,	
С	Fast reactions, experimental techniques for fast reactions	CO4, CO6
	(stopped-flow, temperature- jump and flash photolysis	
Unit 5	Reactions in solution	

	www.snarda.ac.in					
А	Reaction betwee	en ions, effect of	solvent (single & double	CO5, CO6		
	sphere models),	interpretation of	frequency factor and			
	entropy of activation					
	effect, reactions	involving dipole	s,			
В	influence of pres	ssure and volume	on reaction rates in	CO5, CO6		
	solution. Interm	olecular potential	and centrifugal barrier,			
	impact paramES	Er, collision cros	ss section and rate,			
	energy threshold	l, opacity functio	n and reaction cross			
	section					
С	Discussion of	physicochemical	techniques for kinetic	CO5, CO6		
	study.		_			
Mode of	Theory					
examination						
Weightage	CA	MSE	ESE			
Distribution	25%	25%	50%			
Text book/s*	1. Levine, I.	N., Busch, D	. H., & Shull, H. (2	009). Quantum		
	chemistry (Vol.	6). Upper Saddle	River, NJ: Pearson Prenti	ce Hall.		
	2. Laidler, K	K. J. (2013). <i>K</i>	Reaction kinetics: home	ogeneous gas		
	reactions (Vol.	1). Elsevier.				
Other	1. McQuarrie,	D. A. (2008). Q	Quantum chemistry. Univ	versity Science		
References	Books.	Books.				
	2. Eyring, H. (19	944). J. Walter an	d GE Kimball. Quantum (Chemistry, 346.		
	3. Alberty, R. A	A. (1960). The fo	oundations of chemical kin	netics (benson,		
	sidney W.).					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5103.1	3	1	3	1	1	3	3	3
CHT5103.2	3	1	3	1	1	3	3	3
CHT5103.3	3	1	3	1	1	3	3	3
CHT5103.4	3	2	3	1	1	3	3	3
CHT5103.5	3	2	3	1	1	3	3	3
CHT5103.6	3	2	3	1	1	3	3	3

CHT5104 Advanced Organic Chemistry III

School:	SSES	Batch 2025-27				
Program	mme: M.Sc.					
Branch	: Chemistry	Semester III				
1	Course No.	CHT5104				
2	Course	Advanced Organic Chemistry III				
	Title					
3	Credits	4				
4	Contact	4-0-0				
	Hours (L-					
	T-P)					
	Course	Core				
	Status					
5	Course	1.Oxidation and reduction reagents and their application	for functional			
	Objective	group conversion in organic synthesis.				
		2.Explain retro-synthesis of aromatic, alicyclic and aliphat	tic compounds			
		and synthons.				
		3. The ability to recognize reagents for functional group tran	nsformations.			
		4. Retrosynthetic simplification of target molecules and to pl	rovide forward			
		synthetic proposals.				
		5. Designing a retrosynthetic approach for the synthesi	s of a target			
-	~	molecule.				
6	Course	CO1:Role of various reagents used in organic chemistry.				
	Outcomes	CO2:Have a thorough grounding in protection and deprotection	on chemistry.			
		CO3:Identify the components of retrosynthesis.				
		CO4: Understand the synthesis and properties of metallocen	es, non-			
		benzenoids and polycyclic aromatics.	an of			
		COS: Design a green synthesis using principles of prevention	on of			
		CO6: Cain in depth knowledge in synthetic organic chemis	++**			
7	Course	The sim of this organic chemistry course is to provide an in (lenth overview			
/	Description	of retrosynthetic analysis and the disconnection approximation	ch These are			
	Description	fundamental concepts used by organic chemists in designing t	the synthesis of			
		target molecules in sectors such as pharmaceuticals agroched	micals and fine			
		chemicals	incuis una mie			
8	Outline svlla	DUS	CO mapping			
	Unit 1	Reagents in Organic Synthesis	<u>11_C</u>			
	Α	Use of the following reagents in organic synthesis and	CO1,CO6			
		functional group transformations; Gilman's reagent,	-			
		lithium diisopropylamide (LDA),				
		dicyclohexylcarbodiimide(DCC)				
	В	1,3-dithiane (reactivity Umpoloung), trimethylsilyl iodide,	CO1,CO6			
		tri-n-butyltin hydride, DDQ,				

	C	Phase transfer catalysts, crown ethers and Merrifield resin,				
		Wilkinson's				
	Unit 2	Protection a	nd Deprotecti	on of Functional Groups		
	А	Protection	and deprotect	ion of hydroxy, carboxyl	, CO2,CO6	
		carbonyl, car	boxy groups			
	В	Protection an	nd deprotection	of amino groups and carbon	- CO2,CO6	
		carbon multi	ple bonds			
	С	chemo- and	regioselective	protection and deprotection	, CO2,CO6	
		illustration of	of protection a	nd deprotection in multi-step)	
		synthesis				
	Unit 3	Retrosynthe	etic Analysis			
	А	Basic princ	iples and ter	minology of retrosynthesis	, CO3,CO6	
		guidelines, s	ynthesis of arou	matic compounds		
	В	one group an	nd two group C	C-X disconnections, one group	o CO3,CO6	
		C-C and two	group C-C dis	connections, amine and alkene		
		synthesis				
	С	important st	rategies of ret	rosynthesis, functional group	o CO3,CO6	
		transposition	, importa	nt functional group)	
		interconversi	ions, reversal o	f polarity (umpolung)		
	Unit 4	Metallocene	s, Non-ben	zenoid Aromatics and	I	
		Polycyclic A	romatic comp	ounds		
	А	General con	e CO4,CO6			
		representativ				
	В	General con	siderations, syn	nthesis and reactions of some	e CO4,CO6	
		representativ	e compounds -	ferrocene, fluorene,		
	C	General con	siderations, syn	nthesis and reactions of some	e CO4,CO6	
		representativ	e compounds -	phenanthrene and indene.		
	Unit 5	Green Chen	nistry			
	А	Principles of	Green Chemist	try, Concept of atom economy	, CO5,CO6	
		Tools of Gre	en Chemistry:	Alternative feedstocks/starting	r	
		materials, R	eagents, Solve	nts, Product/target molecules	,	
		Catalysis and	l process analy	tical chemistry.		
	В	Evaluation o	f chemical prod	duct or process for its effect or	n CO5,CO6	
		human healt	h and environ	ment, Evaluation of reaction	1	
		types and m	ethods to desig	in safer chemicals. Evaluating	5	
	~	the effects of	Chemistry:			
	C	Toxicity to humans, Toxicity to wildlife, Effects on local				
		l				
		green synthe	sis.			
	Mode of	Theory				
ļ	examination	~ .				
	Weightage	CA	MTE	ETE		
	Distribution	25%	25%	50%		

Text	1.Organic reactions and their mechanisms, P.S. Kalsi, New Age						
Book/s*	International.						
	2.Reagents for Organic Synthesis, L.F. Fieser and M. Fieser.						
	3.Organic Synthesis: The Disconnection Approach, Stuart Warren, Paul						
	Wyatt.						
	4. Organic Chemistry, I.L. Finar Volumes I & II.						
Other	1. Anastas, P., and Williamson, T. C., Green Chemistry Frontiers in						
references	Benign Chemical Synthesis and Processes, Oxford University Press						
	(1999).						
	2.Ahluwalia, V. K., and Kidwai, M., New Trends in Green Chemistry,						
	Anamaya Publishers (2004).						
	3. Protective Groups in Organic Synthesis, Peter G. M. Wuts, T.W.						
	Greene.						
	4.Sheldon, R.A., Arends, I., and Hannefed, U., Green Chemistry and						
	Catalysis, Wiley-VCH Verlag GmbH and Co. (2007).						

CO/PO	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4
CHT5104.1	3	2	1	2	3	1	1	2
CHT5104.2	3	2	1	2	3	1	1	2
CHT5104.3	3	2	1	2	3	1	1	2
CHT5104.4	3	1	1	1	3	1	1	2
CHT5104.5	3	2	1	2	3	1	1	3
CHT5104.6	3	2	1	2	3	1	1	2

CHT5105 Advanced Inorganic Chemistry-IV

Scł	nool: SSES	Batch 2025-27						
Programme:								
М.	Sc.							
Bra	anch:Chemistry	Semester:III						
Co	urse Code	CHT5105						
Co	urse Title	Advanced Inorganic Chemistry IV						
1	Credits	4						
2	Contact 4-0-0							
	Hour							
	Course	Core						
	Status							
5	Course	1.To describe about the structure, properties and uses of in	organic					
	Objective	chains.						
		2. To provide information about inorganic ring compound	S.					
		3. To introduce the basic concepts about cluster structure a	and their					
		reactivity.						
		4. To illustrate the basic concepts of inorganic photochemis	stry.					
		5.To describe the various photochemistry of various inorganic metal						
	complexes.							
	9	6. To know about the application of photochemistry.	. ,					
6	Course	COI: Explain the structure, properties and uses of inorgan	ic cages and					
	Outcome	chains.						
		CO2: Describe the structure and properties of inorganic ril	ngs.					
		CO3: Predict the structure of inorganic clusters using wat	le's rule.					
		cO4: Understand photochemical reactions of various coor	dination					
		COmpounds.	nrohloma					
		CO6: Goin knowledge about advanced tonics like increase	problems.					
		nhotochemistry and inorganic clusters						
7	Course	The course is designed to appraise the chemistry of inorga	nic chains					
,	Description	cages rings clusters. The photochemistry of inorganic compounds is						
	Description	also covered in detail.	inpounds is					
8	Outline syllabus		СО					
		manning						
	Unit 1	Chains and Cages						
	А	Structural aspects of silicate minerals and silicones,	CO1,CO6					
		Zeolites-Structure, applications and synthesis,						
		Intercalation Chemistry, One dimensional conductors,						
		(SN)x chains.						
	В	Cages: Electron deficient bonding in higher boranes and	CO1,CO6					
		its derivatives, Types of heteroboranes with special						
		reference to carboranes, structure, bonding and IUPAC						
		nomenclature.						

	www.sharda.ac	
С	Metallaboranes, metal σ and μ bonded borane/carborane	CO1,CO6
	clusters. Resemblance of Metallaboranes with ferrocene	
	and related compounds. Applications of Metallaboranes.	
Unit 2	Rings and Clusters	
А	Rings : Synthesis, structure and chemical application of	CO2,CO6
	borazine, Phosphazene, phosphazene polymers, Metal-	
	Metal bonds. Concept of quadrupolar bond and its	
	comparison with a C-C bond.	
В	Clusters: Types of metal clusters and multiplicity of M-	CO2,CO6
	M bonds. Simple and condensed metal carbonyl	
	clusters-types, calculation of number of M-M bonds	
	using 18/16 electron rule in low and high nuclearity	
	metal clusters, capping rule.	
С	Application of Wade's rule over metral carbonyl	CO2,CO6
	clusters. Metal halide and metal chalcogenide clusters.	
Unit 3	Photo Inorganic Chemistry-I	
А	Introduction, Absorption, excitation, photochemical	CO3,CO6
	laws, quantum yield, electronically excited states,	
	Photochemical laws; Jablonski Diagram	
В	radiative and non-radiative processes, Franck-Condon	CO3,CO6
	principle, photochemical stages-primary and secondary	
	processes, Kasha's rule, Thexi state	
С	Types of photochemical reactions in transition metal	CO3,CO6
	complexes-substitution, decomposition, fragmentation,	
	rearrangement and redox reactions.	
Unit 4	Photo Inorganic Chemistry-II	
А	Photo substitution reactions of Cr(III)- ammine	CO4,CO6
	complexes : Adamson's rules,	
В	Photochemistry of Co(III) and Rh(III) Ammine	CO4,CO6
	Complexes,	
С	Photochemistry of Ru- Polypyridyl complexes,	CO4,CO6
	comparison of Fe(II) and Ru(II) complexes. Ligand	
	photoreactions, photoredox reactions	
Unit 5	Applications of Photochemistry	
А	Solar Cells, semiconductor supported metal oxide	CO5,CO6
	systems, water photolysis.	
В	Applications of quenching and sensitization techniques	CO5,CO6
	in the identification of reactive state in coordination	
	complexes. Photoreactions and solar energy	
	conversions.	
С	Photochromism, Photocalorimetry, application of	CO5,CO6
	photochemistry in lasers.	
Mode of	Theory	
Examination		

Weightage	CA	MSE	ESE						
Distribution	25%	25%	50%						
Text Book/s*	1.J.E.Huhee	ey. Inorganic C	hemistry: Principles of Structure and						
	Reactivity.	Reactivity. Harper Inter science.							
	2.F. A. Cott	2.F. A. Cotton and G. Wilkinson. Advanced Inorganic Chemistry, Wiley							
	InterScienc	InterScience.							
	3.Concepts	of Inorganic Pl	notochemistry, A. W. Adamson and P. D.						
	Fleischauer	Fleischauer, Wiley.							
	4. Advance	d Inorganic Ch	emistry Vol-1 & 2, Gurdeep Raj, Krishna						
	Prakashan.								
Other	1.G. L. Mie	ssler, D. A. Ta	rr, Inorganic Chemistry, 3rd edition, Pearson						
References	Education.								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5105.1	3	1	1	1	1	2	3	3
CHT5105.2	3	1	2	1	1	1	3	3
CHT5105.3	3	2	2	2	2	1	3	3
CHT5105.4	3	2	1	1	2	2	3	3
CHT5105.5	3	2	2	2	1	2	3	3
CHT5105.6	3	1	1	1	2	2	3	3

CHT5106 Advanced Physical Chemistry IV

School: SSES		Batch 2025-27							
Progr	ramme: M.Sc.								
Brand	ch : Chemistry	Semester III							
1	Course Code	СНТ5106							
1	Course Title	Advanced Physical Chemistry IV							
3	Credits	4							
4	Contact hours	4-0-0							
	Course Status	Core							
5	Course	The main objectives of this course is to:							
	Objectives	1: To provide the details of advanced topics of s	pectroscopy.						
		2. To provide the detailed understanding of Rota	ational spectroscopy.						
		3. To provide the structure elucidation methods	using IR spectroscopy.						
		4. To provide the detailed knowledge of the	ne electric structure of						
		molecules.							
		5. To provide the knowledge of the phenor	menon associated with						
		photoelectron spectroscopy.							
		6. To enrich the student level of understanding of molecular							
-		spectroscopy.							
6	Course	After successful completion of the course, the stu	idents will be able to:						
	Outcome	COI: Analyse the essential paramESErs from a	absorption and emission						
		spectrum.	1						
		CO2: Analyse the microwave spectrum of a molec							
		CO4: Analyse the ground and evolted state A	a strength paramesers.						
		cO4: Analyse the ground and excited state A	dsorption and emission						
		Spectrum of the molecules.	a molaculas						
		CO6: Correctly predict the molecular structure a	and associated properties						
		using various spectroscopic techniques	and associated properties						
7	Course								
	Description								
8	Outline Syllabus	3	CO mapping						
	Unit 1	Principles of Spectroscopy							
	А	Electromagnetic radiation, Born-Oppenheimer	CO1, CO6						
		approximation, Heisenberg's Uncertainty							
		Principle,							
	В	Jablonski Diagram, Fourier Transform, Time	CO1, CO6						
		dependent perturbation, Einstein coefficients.							
		Lambert-Beer's law, Integrated absorption							
		coefficients, Transition dipole moments and							
		general selection rules based on symmetry							
		ideas,							
	C	Transition probability, oscillator strength, the	CO1, CO6						
		integrated absorption coefficient.							

Unit 2	Introduction to Rotational Spectroscopy:	
А	Rotational spectroscopy of diatomic molecules	CO2, CO6
	based on rigid rotator approximation,	
	Determination of bond lengths and/or atomic	
	masses from microwave data,	
В	Effect of isotopic substitution, Non-rigid	CO2, CO6
	rotator, Classification of polyatomic molecule	
С	Energy levels and spectra of symmetric top	CO2, CO6
	molecules and asymmetric top molecules, First	
	order Stark effect, FC principle.	
Unit 3	Vibrational Spectroscopy:	
А	Force constant and amplitudes, zero potential	CO3, CO6
	energy, Morse Potential, Normal coordinates	
	analysis of homonuclear and heteronuclear	
	diatomic molecules, Extension to polyatomic	
	linear molecules,	
В	Derivation of selection rules for diatomic	CO3, CO6
	molecules based on Harmonic oscillator	
	approximation. Anharmonic oscillator,	
	Overtones and combination bands, Dissociation	
	energies from Vibrational data, Vibration-	
	rotation spectra, P, Q and R branches,	
	Breakdown of the Born-Oppenheimer	
	approximation.	
С	Raman Spectroscopy: Classical and quantum	CO3, CO6
	theories, Stokes and anti-Stokes lines,	
	Polarizability ellipsoids, Rotational and	
	Vibrational Raman spectroscopy, pure	
	rotational Raman Spectrum of a linear	
	molecules. Selection rules-Mutually Exclusion	
TT 1 4	Principle, Polarization of Raman lines.	
Unit 4	UV-Visible Absorption and Emission	
•	Spectroscopy:	
А	Basic principle, Instrumentation and application	CO4, CO6
	of absorption and emission spectroscopy,	
	Electronic spectra, Frank-Condon Principle,	
	predissociation spectra, conjugated polyene and	
	enone systems, different types of charge transfer	
	transitions and their basis, Charge transfer	
	spectra in organic and inorganic systems,	
 D	Solvent effects.	
В	Steady-state fluorescence spectroscopy,	004,006
	Nilitor-image symmetry and its violation,	
	Radiative and radiationless deactivation,	
	Fluorescence Quenching (static and	

		D ·) D	The second secon				
		Dynamics), Ro	om Temperature				
		Phosphorescen	ce, Time-resolve	d (Time			
		correlated sing	le photon countir	ng-TCSPC)			
		fluorescence sp	pectroscopy, Fluc	prescence			
		lifetime measu	rement,				
	С	Introduction to	o Single molecu	le fluorescence	CO4, CO6		
		and fluorescen	ce imaging, Photo	ometric titration,			
		comparison	of Luminescer	nce and UV			
		Absorption M	ethods, Limitatio	n of absorption			
		and emission r	neasurement.				
	Unit 5	Photoelectron	Spectroscopy:				
	А	The photoioniz	ation processes,	Auger and	CO5, CO6		
		autoionization	processes, de-exe	citaion by			
		fluorescence,					
	В	outlines of UP	S, XPS and Auge	r techniques	CO5, CO6		
		and their appli	cations in interpre	etation of			
		valence and co	re shell spectra o	f atoms and			
		molecules,	_				
	С	Laser Spectros	copy.		CO5, CO6		
	Mode of	Theory					
	examination	-					
	Weightage	CA	MSE	ESE			
	Distribution	25%	25%	50%			
	Text book/s*	□ Banwell, C	N., 2018. Funda.	mentals of Molec	ular Spectroscopy. 3rd		
		ed. New York:	McGraw-Hill.	v			
		🗆 Pavia, D.L.	, Lampman, G.M	., Kriz, G.S. and	Vyvyan, J.R., 2014.		
		Introduction to	Spectroscopy. B	oston: Cengage I	earning.		
		Barrow, G.M., 1962. Introduction to Molecular Spectroscopy. New					
		York: McGraw-Hill.					
		□ Hollas, J.M., 2004. <i>Modern Spectroscopy</i> . 4th ed. Chichester: John					
		Wiley & Sons.					
		\Box Chang, R.,	1970. Basic Prin	ciples of Spectros	copy. New York:		
		McGraw-Hill.					
	Other	-					
	References						
Mappi	ng of CO vs. PO						
CO/PO) PO1 PC	2 PO3 PO4	PO5 PO6 P0	07 PO8 PO9	PO10 PSO1 PSO2		

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
CHT5106.1	3	2	3	2	3	2	1	1	2	1	3	2
CHT5106.2	3	2	3	2	3	2	1	1	2	1	3	2
CHT5106.3	3	2	3	2	3	2	1	1	2	1	3	2
CHT5106.4	3	2	3	2	3	2	1	1	2	1	3	2
CHT5106.5	3	2	3	2	3	2	1	1	2	1	3	2
CHT5106.6	3	2	3	2	3	3	1	1	2	1	3	3

CHT5107 Advanced Organic Chemistry IV

School: SSES		Batch: 2025-27					
Programme: M.Sc.							
Branch: Chemistry		Semester: III					
1	Course No.	CHT5107					
2	Course Title	Advanced Organic Chemistry IV					
3	Credits	4					
4	Contact	4-0-0					
	Hours (L-T-P)						
	Course status	Core					
5	Objective	 Understand the fundamental principles of photochemistry, including primary photophysical processes and energy transfer mechanisms. Explore the photochemical reactions of olefins and ketones with applications in organic synthesis. Scrutinize the photochemical reactions of aromatic compounds with 					
		 applications in organic synthesis. 4. Analyze pericyclic reactions using molecular orbital theory, including electrocyclic, cycloaddition, and sigmatropic rearrangements. 5. Apply theoretical models such as the Woodward-Hoffmann rules and frontier molecular orbital (FMO) theory to predict reaction outcomes 					
6	Course Outcomes	Upon successful completion of this course, students will be able to CO1: Explain the fundamental concepts of photochemistry, including Jablonski diagrams, spin rules, and photophysical processes. CO2: Identify and describe photochemical reactions of olefins and ketones such as Norish type I and Norish type II, distinguish inter & intra molecular cyclo addition, and photodissociation reaction. CO3: Learn photorearrangement reactions and compare them between types of singlet oxygen reactions. CO4: Analyze pericyclic reactions using orbital symmetry concepts and apply selection rules to predict the stereochemistry and feasibility of pericyclic reactions CO5: Identify various theories/rules governing electrocyclic reaction, cycloaddition, and sigmatropic shifts and analyze which type of pericyclic mechanism is operative in a reaction. CO6: Understand the concepts involved in organic photochemical reactions, their mechanisms, and their applications in organic synthesis.					
7	Course Description	This course provides an in-depth study of photochemistry and pericyclic reactions, emphasizing fundamental principles, reaction mechanisms, and applications in organic synthesis. It covers key photochemical processes such as energy transfer, quenching, and photochemical transformations of olefins, ketones, and aromatic compounds. Additionally, it explores pericyclic reactions using molecular orbital theory, including electrocyclic reactions, cycloadditions, and sigmatropic rearrangements. The course					

		equips students with theoretical and practical knowledge applicable to						
	research and industrial chemical processes.							
8	Outline syllabus		CO mapping					
	Unit 1	Introduction to Photochemistry						
	А	Introduction: Primary photophysical process of atoms	CO1, CO6					
		and diatomic molecules (absorption and emission),						
		spectroscopic notations, importance of electronic						
		excitation and spin configurations – Jabolanski diagram,						
		Wigner's spin rule, Frank Condon principle and its						
		applications, Kasha's rule, quantum efficiency/quantum						
		yield, potential surfaces						
	В	Fate of excited state, radiationless transition and	CO1, CO6					
		predissociation, energy transfer processes, quenching of						
		excited states species, rates of absorption and emission						
	C	C Organic photochemistry: Introduction, definitions,						
		Energy transfer and electron transfer processes, primary						
		and secondary photochemical reactions						
	Unit 2							
	А	Photochemistry of Olefins: Cis-trans isomerism,	CO2, CO6					
		cycloaddition, rearrangements. Reaction of conjugated						
		olefins; di- π -methane rearrangements (including oxa- and						
		aza-).						
	В	Photochemistry of Ketones: Excited state of C=O,	CO2, CO6					
		Norrish type-I and type-II cleavages.						
	C	Paterno-Buchi reaction, α , β -unsaturated ketones,	CO2, CO6					
		Rearrangement of cyclohexadienones.						
	Unit 3	Photochemistry of aromatic compounds	<u> </u>					
	А	Photochemistry of Aromatic compounds: Isomerization	CO3, CO6					
		of aromatic compounds, photochemical addition,						
	D	rearrangement and substitution reactions						
	В	photo-Fries reaction, photo-Fries reactions of anilides,	CO3, CO6					
		photochemistry of diazocompounds, Photochemistry of p-						
	C	Benzoquinones, Barton reaction,	CO2 CO6					
	C	Photo-oxidation and reduction: Cycloaddition of singlet	005, 006					
		approximate and a second secon						
	Unit A	Paricyclic Reactions I						
		CO4 $CO6$						
	Λ	1 3-butadiene 1 3 5-bexatriene and allyl system	04,000					
	B	Classification of pericyclic reactions Woodward _	CO4 $CO6$					
		Hoffmann correlation diagrams FMO and PMO approach	COT, COU					
		transition state (ATS) theory generalized orbital						
		symmetry (GOS) rule.						
	B C Unit 3 A B C Unit 4 A B	 Photochemistry of Ketones: Excited state of C=O, Norrish type-I and type-II cleavages. Paterno-Buchi reaction, α,β-unsaturated ketones, Rearrangement of cyclohexadienones. Photochemistry of aromatic compounds Photochemistry of Aromatic compounds: Isomerization of aromatic compounds, photochemical addition, rearrangement and substitution reactions photo-Fries reaction, photo-Fries reactions of anilides, photochemistry of diazocompounds, Photochemistry of p- Benzoquinones, Barton reaction, Photo-oxidation and reduction: Cycloaddition of singlet molecular oxygen, Oxidative coupling of aromatic compounds, photoreduction by hydrogen abstraction Pericyclic Reactions I Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. Woodward – Hoffmann correlation diagrams. FMO and PMO approach, transition state (ATS) theory, generalized orbital symmetry (GOS) rule. 	CO2, CO6 CO2, CO6 CO3, CO6 CO3, CO6 CO3, CO6 CO4, CO6 CO4, CO6					

С	Electrocyclic	c reactions –	conrotatory and disrotatory	CO4, CO6				
	motions, [4n], [4n+2] and a	llyl systems, torquoselectivity.					
Unit 5	Pericyclic R	eactions II						
А	Cycloadditic	ons – antarafaci	al and suprafacial additions, 4n	CO5, CO6				
	and 4n+2 sys	and 4n+2 systems. Regio, enantio and Endo selectivities in						
	Diels-Alder							
В	HESEro Die	CO5, CO6						
	Dipolar cycl							
С	Sigmatropic	CO5, CO6						
	shifts of H, sigmatropic shifts involving carbon moieties.							
	[i, j] - sigmatropic rearrangements (including Walk,							
	Claisen, Cope, oxy and aza-Cope rearrangements).							
Mode of	Theory							
examination		1						
Weightage	CA	MSE	ESE					
Distribution	25%	25%	50%					
Text book/s*	1. Photoche	emistry and Pe	ricyclic Reaction, J. Singh. Ec	litor, J. Singh,				
	(2006) 3	rd Edition, New	Age Science.	-				
	2. Fundame	entals of Photo	chemistry, K. K. Rohatgi-Muk	herjee, (2022),				
	4 th Editio	on, New Age In	ternational.					
Other	1. Organic	Photochemist	ry, J.M. Coxon and B. H	lalton, (1979)				
References	Cambrid	ge University p	press.					
	2. Aspects	of Organic	Photochemistry, W.M. Hor	spool, (1976)				
	Academi	c Press.						
	3. Organic	Reactions and	Orbital symmetry, T.L. Gilcl	nrist and R.C.				
	Storr, (19	972) Cambridge	e Press.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5107.1	3	1	1	1	3	1	2	2
CHT5107.2	3	1	1	1	3	1	1	2
CHT5107.3	3	2	1	2	3	1	1	2
CHT5107.4	3	2	1	2	3	1	1	2
CHT5107.5	3	2	1	2	3	1	1	2
CHT5107.6	3	1	1	1	3	1	1	2

CHT5109 Advanced Inorganic Chemistry V

School: SSES		Batch : 2025-27					
Program	me: M.Sc.						
Branch:	Chemistry	Semester: IV					
1	Course Code	CHT5109					
2	Course Title	Advanced Inorganic Chemistry V					
3	Credits	3					
4	Contact Hours	3-0-0					
	(L-T-P)						
	Course Status	Core					
5	Course	1. To describe about basic principles and importance of	of various				
	Objective	metals in natural systems.					
		2. To describe various ion transport through biologica	l membrane.				
		3.To explain the importance of Iron and Copper conta	ining				
		metallo-biomolecule.					
		4.To illustrate the chemistry of bio molecules like DN	A and RNA.				
		5.To describe the bioinorganic chemistry of Molybden	num,				
		Tungsten and Zinc containing Enzymes.					
		6. To describe the bioinorganic chemistry of Vitamin B_{12} .					
6	Course	CO1:Explain the transport of ions through membrane					
	Outcomes	CO2: Predict the structure and mechanism of Fe and Cu containing					
		metalloproteins.					
		CO3: Learn about structure and chemistry of DNA an	d RNA.				
		CO4:Understand the importance of Molybdenum, Tur	ngsten and				
		Zinc containing Enzymes.					
		CO5:Illustrate biologically important processes like p	hotosynthesis				
		CO6: Understand the role and importance of metal ion	ns in biology.				
7	Course	This course includes details discussion about various	bio				
	Description	molecules and metal containing enzymes with special reference to					
	-	iron, copper, zinc, tungsten and molybdenum.					
8	Outline syllabus		СО				
	-		Mapping				
	Unit 1	Bioinorganic Chemistry of Metals					
	А	Essential and trace elements in biological systems,	CO1,CO6				
	В	structure and functions of biological membranes;	CO1,CO6				
		mechanism of ion transport across membranes;					
		sodium pump, Role of calcium in blood clotting					
	С	Structure and functions of amino acids, proteins,	CO1,CO6				
		peptides					
	Unit 2	Bioinorganic Chemistry of Iron and Copper					
	A	Iron-sulphur proteins: rubredoxin and ferredoxins;	CO2,CO6				

В	Heme prote	n, myoglobin.	CO2,CO6	
	Cytochrome	P-450, Cytoch	rome c-oxidase and	
	cytochrome	c;		
С	Synthetic or	xygen carrier ar	d model systems. Non-	CO2,CO6
	heme protei	ns: hemerythrir	and hemocyanin.	
Unit 3	Bioinorgani	c Chemistry in	Biological Systems	
А	Metal comp	lexes of polynu	cleotides, nucleosides	CO3,CO6
	and nucleic	acids (DNA an	d RNA).	
В	Stability of	DNA and melti	ng temperature.	CO3,CO6
С	Role of met	CO3,CO6		
	process of n			
Unit 4	Molybdenu	m, Tungsten an	d Zinc containing	
	Enzymes			
А	Enzymes an	d their classific	ation; Importance of Zn	CO4,CO6
	in nature, ca	arbonic anhydra	se, carboxypeptidase,	
	alcohol deh			
В	Biological r	CO4,CO6		
~	abiological			
C	tungsten con	CO4,CO6		
	tungsten bea			
Unit 5	Biologically	005.004		
A	Photosynthetic electron transport chain, chlorophyll,			
D	PS-I and PS	- francian	CO5 CO6	
B	Vitamin B	2 coenzyme, it	s function	C05,C06
C	Availability		n toxicity.	005,000
Mode of	Theory			
examination				
Weightage	CA	MSE	ESE	
Distribution	25%	25%	50%	
Text book/s*	1. S. J. Lipp	ard & J. M. Be	rg. Principles of Bioorganie	c Chemistry;
	Panima Pub	l. Corpn. (2005).	
	2. EI. Och	niai. Bioinorgan	ic Chemistry; An Introduc	tion; Allyn
	and Bacon I	nc. (1977).		
Other	1.M. N. Hu	ghes. The Inorg	anic Chemistry of Biologic	cal Processes;
References	Wiley (198)	l).		• •
	2.R. P. Han	zlik. Inorganic	Aspects of Biological and (Jrganic
	Chemistry;	Academic Press	S(19/0).	Models in
	3.H. KraalZ	& N. Metzler-I	Volte (Eds.). Concepts and	Models in
	A Bortini. II	B Grow S I	Dinnard & I. S. Walantina	
	Hioinorgani	Chemister V	ive Books Dut I to (2004)	
	5 A W Ad	dison WR Cu	llen D Dolnhin & R R Ia	mes (eds.)
	Biological 4	Aspects of Inorg	anic Chemistry. John Wile	(1977)
	Diological P	Aspects of morg	game Chemistry, John Whe	ey (1977).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5109.1	3	1	1	1	1	2	3	3
CHT5109.2	3	1	2	1	2	1	3	3
CHT5109.3	3	2	1	2	2	1	3	3
CHT5109.4	3	2	2	1	2	2	3	3
CHT5109.5	3	2	2	2	1	2	3	3
CHT5109.6	3	1	1	1	2	2	3	3

CHT5110Advanced Physical Chemistry V

Scho	ool: SSBSR	Batch : 2025-2027						
Prog	gramme: M. Sc							
Bra	nch: Chemistry	Semester:IV						
1	Course Code	CHT5110						
2	Course Title	Advanced Physical Chemistry V						
3	Credits	3.0.0						
4	Contact Hours	(300)						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	1. To provide the understanding of Quantum mechan	1. To provide the understanding of Quantum mechanical aspect of					
	Objective	Band gap and Band theory in semi conductors.						
		2. To understand the various techniques for the preparation of						
		nanomaterial and properties of nanomaterials.						
	3. To extend the concept of X-Ray diffraction, their generation and different							
	experiments to study X-Ray diffraction.							
		4. To provide the understanding of physical aspects in Biologica						
		phenomenon. 5 To provide the indepth concept of polymore and their properties						
6	Course	5. To provide the indepth concept of polymers and their properties.						
0	Course	tunes and analysis of n n innetions.						
	Outcomes	types and analysis of p-n junctions.						
		CO2: Students will be able to prepare nanomaterials and will be able to						
		CO3: Students will be able to understand the generation	n of X rave and					
		diffraction patterns and will be able to refine the X-ray pa	itterns					
		CO4: Students will be able to understand the energy Tra	ansformation and					
		Thermodynamic principles and their application	s in biological					
		system	s in biological					
		CO5: Student will be able to calculate the molecular wei	ghts of polymers					
		using different techniques and will able to identify differ	rent physical and					
		rheological properties of polymers.	I January					
		CO6: In depth knowledge of semiconductors, nanomateri	als and polymers					
		with application of X-rays, their generation and refinem	nent of structure,					
		application of physical phenomenons in biological system	1.					
7	Course	Course emphasizing on the application part of Solid sta	te chemistry and					
	Description	analysis of structure using X-Ray diffraction, mate	erials chemistry,					
		Biophysical aspects and applications and properties of po	lymers.					
8	Outline syllabus		CO Mapping					
	Unit 1	Solid State Chemistry						
	А	Free Electron Theory of Metals, Quantum Mechanical	CO1,CO6					
		Treatment Explaining the Origin of Band Gaps						
		(Essential for understanding semiconductor physics),						
	Density of States, Band Theory							

В	Direct and Indirect Band Gap Semiconductors, Hole	CO1,CO6
	Concept. Free Carrier Concentration in Intrinsic and	,
	Extrinsic Semiconductors. Temperature Dependence of	
	Mobility and Electrical Conductivity	
С	Generation and Recombination of Carriers in	CO1,CO6
	Semiconductors, Fundamental for understanding	
	semiconductor behavior. Analysis of p-n Junction,	
	Including I-V Characteristics	
Unit 2	Materials Chemistry	
А	Definition of Nanomaterials, Fundamental for	CO2,CO6
	introducing the subject. Various Techniques for the	
	Preparation of Nanomaterials, Important for practical	
	applications. Thin Films	
В	Langmuir-Blodgett Films – Preparation Techniques –	CO2,CO6
	Fundamental for understanding LB films,	
	Evaporation/Sputtering – Key physical vapor deposition	
	(PVD) methods for thin film preparation, Chemical	
	Processes (MOCVD, Sol-Gel)	
С	Photolithography, Electronic Structure and Properties of	CO2,CO6
	Nanomaterials, Optical, Electrical, and Magnetic	
	Properties of Nanomaterials, Applications of	
	Nanomaterials	
 Unit 3	X-Ray Diffraction and Crystal Structure	
Unit 3 A	X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-	CO3,CO6
Unit 3 A	X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X- ray-based material characterization, Diffraction of X-	CO3,CO6
Unit 3 A	X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X- ray-based material characterization, Diffraction of X- rays by Crystals	CO3,CO6
Unit 3 A B	X-Ray Diffraction and Crystal StructureGeneration of X-rays, Fundamental for understanding X- ray-based material characterization, Diffraction of X- rays by CrystalsX-ray Diffraction Experiments – The Powder Method,	CO3,CO6 CO3,CO6
Unit 3 A B	X-Ray Diffraction and Crystal StructureGeneration of X-rays, Fundamental for understanding X- ray-based material characterization, Diffraction of X- rays by CrystalsX-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal	CO3,CO6 CO3,CO6
Unit 3 A B	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method 	CO3,CO6 CO3,CO6
Unit 3 A B C	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating 	CO3,CO6 CO3,CO6 CO3,CO6
Unit 3 A B C	X-Ray Diffraction and Crystal StructureGeneration of X-rays, Fundamental for understanding X- ray-based material characterization, Diffraction of X- rays by CrystalsX-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal MethodPatterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models.	CO3,CO6 CO3,CO6 CO3,CO6
Unit 3 A B C Unit 4	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry 	CO3,CO6 CO3,CO6 CO3,CO6
Unit 3 A B C Unit 4 A	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6
Unit 3 A B C Unit 4 A	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6
Unit 3 A B C Unit 4 A	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6
Unit 3 A B C Unit 4 A B	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure Cell Membrane and Transport of Ions, Structure and 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6
Unit 3 A B C Unit 4 A B	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure Cell Membrane and Transport of Ions, Structure and Functions of the Cell Membrane, Muscular Contraction 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6 CO4,CO6
Unit 3 A B C Unit 4 A B	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure Cell Membrane and Transport of Ions, Structure and Functions of the Cell Membrane, Muscular Contraction and Energy Generation in Mechanochemical Systems 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6 CO4,CO6
Unit 3 A B C Unit 4 A B C	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure Cell Membrane and Transport of Ions, Structure and Functions of the Cell Membrane, Muscular Contraction and Energy Generation in Mechanochemical Systems Active Transport Across Cell Membrane, Irreversible 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6 CO4,CO6
Unit 3 A B C Unit 4 A B C	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure Cell Membrane and Transport of Ions, Structure and Functions of the Cell Membrane, Muscular Contraction and Energy Generation in Mechanochemical Systems Active Transport Across Cell Membrane, Irreversible Thermodynamics Treatment of Membrane Transport 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6 CO4,CO6
Unit 3 A B C Unit 4 A B C Unit 5	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure Cell Membrane and Transport of Ions, Structure and Functions of the Cell Membrane, Muscular Contraction and Energy Generation in Mechanochemical Systems Active Transport Across Cell Membrane, Irreversible Thermodynamics Treatment of Membrane Transport 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6 CO4,CO6
Unit 3 A B C Unit 4 A B C C Unit 5 A	 X-Ray Diffraction and Crystal Structure Generation of X-rays, Fundamental for understanding X-ray-based material characterization, Diffraction of X-rays by Crystals X-ray Diffraction Experiments – The Powder Method, Bragg Condition, Bragg Method and Single Crystal Method Patterson Synthesis, R-Factor, Important for evaluating the quality of crystallographic models. Biophysical Chemistry Energy Transformation and Distribution of Energy, Thermodynamic Principles in Biological Systems, Osmotic Pressure Cell Membrane and Transport of Ions, Structure and Functions of the Cell Membrane, Muscular Contraction and Energy Generation in Mechanochemical Systems Active Transport Across Cell Membrane, Irreversible Thermodynamics Treatment of Membrane Transport Polymers Introduction, Classification of polymers, Concept of 	CO3,CO6 CO3,CO6 CO3,CO6 CO4,CO6 CO4,CO6 CO4,CO6

				-	www.share	Ja.ac.in				
В	Physical P	roperties of 1	Polymers,	Glass	Transition	CO5,CO6				
	Temperature	e (Tg) – Crucia	al for unde	erstandin	g polymer					
	behavior. Ci	rystalline Melti	ng Point ('	Tm)						
С	Biodegradal	Siodegradable and Biomedical Polymers, Rheological CO5,CO6								
	Properties	roperties								
Mode of	Theory	heory								
 examination										
Weightage	CA	CA MSE ESE								
Distribution	25%	25% 25% 50%								
Text book/s*	1. Billr	1. Billmeyer, F.W., <i>Polymer Chemistry</i> . New York: Wiley.								
	2. Gow	arikar, V.R., <i>P</i>	olymer Ch	emistry.	New Delhi:	New Age				
	Inter	national.	•	•		C				
	3. Hayı	nie, D.T., 2001	. Biologica	al Therm	odynamics.	Cambridge:				
	Cam	bridge Univers	ity Press.		2	U				
	4. Cant	or, C.R. and So	himmel, F	P.R., 198	0. Biophysic	cal Chemistry,				
	Vols	. 1-3. San Fran	cisco: W.H	H. Freem	an.	<i>,</i> ,				
	5. Upa	dhvav. A., 2009	9. Biophys	ical Cher	nistrv: Prin	ciples and				
	Tech	<i>niques</i> . Mumb	ai: Himala	va Publis	shing House	2.				
	6. Mart	in. R.B., 1964.	Introduct	ion to Bi	ophysical C	hemistry. New				
	Yorl	: McGraw-Hil	l.							
	7. Wes	t A.R. 1984	Solid State	Chemist	rv and Its A	pplications				
	Sing	apore: John Wi	ilev & Son	IS.	- y en en 115 1 - j	PP				
	8 Azar	off. L.V. 1977	Introduc	tion to S	olids. New I	Delhi: Tata				
	McC	raw-Hill								
	9 Sma	rt. L. and Mooi	e E 1992	2. Solid S	State Chemi	strv. Madras:				
	Char	oman & Hall	с, <u>ш</u> ., 1777	2. <i>50110</i> .		<i>y</i> . muunus.				
	10 Keer	\cdot HV 1993 μ	Princinles	of Solid S	State New I	Delhi: Wiley				
	Fact	, 11. v ., 1773. I ern	incipies (<i>oj 5011</i> a 1	<i></i>	John. Whey				
	11 Brau	n R D Instru	montal Ma	ethods of	Chemical A	nalysis New				
	Vori	McGrow Uil	1	inous 0j	Chemical A	<i></i>				
	York: McGraw-Hill.									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5110.1	3	3	2	1	1	1	3	2
CHT5110.2	3	3	3	2	1	2	3	3
CHT5110.3	3	3	2	1	1	1	3	2
CHT5110.4	3	3	2	3	1	1	2	2
CHT5110.5	3	3	2	1	1	2	2	3
CHT5110.6	3	3	3	2	2	3	3	3

CHT5111 Advanced Organic Chemistry V

Sch	ool: SSES	Batch : 2025-27			
Pros	gram: M.Sc.	Current Academic Year: 2026-27			
Bra	nch:Chemistrv	Semester: IV			
1	Course No.	CHT5111			
2	Course Title	Advanced Organic Chemistry V			
3	Credits	3			
4	Contact	3-0-0			
	Hours (L-T-P)				
	Course Status	Core			
5	Course	1.To impart knowledge on synthesis of five and six- member	er heterocyclic		
	Objective	compounds with two or more hetero atoms.	-		
	-	2.To familiarize with the synthesis of larger ring heterocycl	ic compounds.		
		3.To impart knowledge on synthesis of natural products.			
		4.To familiarize with structure determination of te	rpenoids and		
		carotenoids.			
		5.To understand the structure and significance of alkaloids.			
		6. To provide basic knowledge of natural product of	chemistry and		
		understand the importance heterocycles in biological sy	stems and in		
		pharmaceuticals.			
6.	Course	After completing the course students will be able to:			
	Outcomes	CO1: interpret the structure, properties, synthesis, reactions	and		
		applications of five-member heterocyclic compounds with	one and more		
		hetero atoms.			
		CO2: explain the structure, properties, synthesis and reaction	ons of five/six-		
		member heterocyclic compounds with one and more hetero	atoms.		
		CO3: describe the methods of extraction, structure and	synthesis of		
		terpenes and terpenoids.	1		
		CO4: elucidate the structure and synthesis of terpenoids and $CO5$: englying the structure of ellipsicile	a carotenoids.		
		CO6: demonstrate the knowledge of netural product chamic	sterr and		
		importance beterocycles in biological systems and in pharm	su y and		
7	Course	This course will provide a concise introduction to beterocy	clic chemistry		
/	Description	Emphasis will be given on the most important beteroo	velic systems		
	Description	particularly five and six-membered heterocyclic systems	with 2- or 3-		
		heteroatoms as well as fused heterocyclic systems Chem	ical synthesis		
	properties characteristics and applications of these systems will				
	discussed in detail. The course provides a basic knowledge of pat				
		products chemistry with emphasis on terpenoids car	rotenoids and		
		alkaloids.	and and		
8	Outline svllabus		CO Mapping		
	Unit 1	Heterocycles I	<u> </u>		
I			1		

 r					
А	Introduction, synthetic approaches, reactions and	CO1, CO6			
	important applications of five membered heterocyclic				
	compounds with two or three hetero atoms - imidazole,				
	oxazoles				
В	synthetic approaches, reactions and important applications	CO1, CO6			
	of - thiazoles, oxadiazoles,				
С	synthetic approaches, reactions and important applications	CO1, CO6			
	of - thiadiazoles	,			
Unit 2	Heterocycles II				
А	Introduction, synthetic approaches, reactions and	CO2, CO6			
	important applications of condensed five and six	,			
	membered heterocycles with one/two hetero atom – indole				
В	synthetic approaches, reactions and important applications	CO2. CO6			
	of – benzofuran	,			
С	Synthetic approaches, reactions and important applications	CO2, CO6			
C	of $-$ quinoline isoquinoline and pyrazine	002,000			
 Unit 3	Ternenoids I				
	Classification nomenclature occurrence isolation	CO3 CO6			
11	general methods of structure determination isoprene rule	005,000			
D	Monotorpopoida Citral garapiol (acyclic)	CO3 CO6			
D C	Structure determination and surthasis of the following	CO3, CO6			
C	structure determination and synthesis of the following	CO3, CO0			
	(menorequise)				
 TL 4 2					
Unit 3	Terpenoids II and Carotenoids				
А	Structure determination and synthesis of the following				
	representative molecules: Sesquiterpenoids - Farnesol				
	(acyclic), zingiberene (monocyclic),	<u></u>			
В	Structure determination and synthesis of the following				
	representative molecules: santonin (bicyclic),				
	Diterpenoids - Phytol				
C	Structure determination and synthesis of the following	CO4, CO6			
	representative molecules: β - carotene and vitamin A.				
Unit 5	Alkaloids				
А	Definition, nomenclature and physiological action,	CO5, CO6			
	occurrence, isolation, general methods of structure				
	elucidation, degradation, classification based on nitrogen				
	heterocyclic ring, role of alkaloids in plants.				
В	Occurence, synthesis and structure elucidation of	CO5, CO6			
	alkaloids – Reserpine				
C	Occurence, synthesis and structure elucidation of	CO5, CO6			
	alkaloids –morphine				
Mode of	Theory/Jury/Practical/Viva				
avamination					
examination					
 examination	CA MSE ESE				

	Weightage	25%	25%	50%	
	Distribution				
9	Text Book/s*	1. Gilchrist,	T. L. (2010). H	eterocyclic chemistry, Wiley.	
		2. Finar, I. L	2. Finar, I. L. (2002). Organic Chemistry, Volume 2:		
		Stereochemi			
		5/E. Pearson Education India.			
10	References	Joule, J. A.,	& Mills, K. (20	12). HESErocyclic chemistry	
		at a glance. J	ohn Wiley & S	ons.	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5111.1	3	3	2	2	1	2	1	1
CHT5111.2	3	3	2	2	1	1	1	3
CHT5111.3	3	3	2	2	1	2	1	3
CHT5111.4	3	3	2	2	1	2	1	3
CHT5111.5	3	3	2	2	1	2	1	3
CHT5111.6	3	3	2	2	1	2	1	3

School: SSES		Batch : 2025-27			
Prog	gramme:M.Sc.				
Bra	nch:Chemistry	Semester:IV			
1	Course Code	CHT5112			
2	Course Title	Advanced Inorganic Chemistry VI			
3	Credits	3			
4	Contact hours	3-0-0			
	Course Status	Core			
5	Course	1. Understand the importance of superconductors in	n engineering		
	Objectives	applications.			
		2. Relate the supramolecular role in ion dESEctions.			
		3. Understand the chemistry of glasses and ceramics and the	eir application		
		in daily routine.			
		4. Understand the role of superconductors in catalysis.			
		5. Describe the technique used in applications of nanomateri	als.		
		6. Understand the importance of nanomaterial based device	in daily.		
		routine.			
6	Course	CO1:Understand the concept of molecular recognition in th	e application		
	Outcome	of supramolecules.			
		CO2:Relate the applications of glass and ceramics on the b	asis of their		
		structure.			
		CO3:Explain the concept of superconductivity.			
		CO4:Synthesis of nanomaterials.			
		CO5:Identify the properties of nanomaterials and their ap	oplications in		
		electronic applications.			
-	9	CO6:Gain knowledge about various advanced inorganic ma	iterials.		
7	Course	The course is framed to give broad view of supramolecular,	smart		
	Description	inorganic materials, superconductors and nanomaterials.			
		Physicochemical properties and applications of nanomateria	ils have been		
0	Oratline and the base	covered in this paper.	CO Manufac		
8	Utiline syllabus		CO Mapping		
		Supramolecular Chemistry	001.000		
	А	Concepts of Molecular recognition: Molecular receptors	C01,C06		
		for different types of molecules including anionic			
		substrates, design and synthesis of co-receptor molecules			
	D	and multiple recognition	<u>CO1 CO(</u>		
	D	Catenanes, Kotaxanes, Denorimers and Supramolecular	01,000		
	C	Transport processes and comise design Symmetry laws	CO1 CO6		
	C	devices Some example of solf assembly in	01,000		
		supramolocular chemistry			
	Unit ?	Inorganic Smart Materials			
		morganic Sinari Materiais			

А	Structure of Glass and Ceramics: Ceramics crystal	CO2,CO6
	structures, density computations, silicate ceramics	

1	R	Class coronics Potractorics with reference to proparation CO2 CO6				
	D	Properties and applications.	02,000			
	С	fibre reinforced Composites, microscopic composites,	CO2,CO6			
		preparation procedure, special properties and applications				
	Unit 3	Superconductors				
	А	Inorganic semiconductors, Electrical, magnetic, thermal and optical properties of superconductors,.	CO3,CO6			
	В	Metallic bonds High temperature superconductors Structural features of cuprate superconductors:1-2-3 and 2-1-4 cuprates.	CO3,CO6			
	С	Electrical and magnetic properties of superconductors	CO3,CO6			
	Unit 4	Nanomaterials				
	А	Definition of nanomaterials, fullerenes, carbon nanotubes, graphene. Discovery of C60, Superconductivity in C60, Alkali doped C60.	CO4,CO6			
	В	Carbon nanotubes - Synthesis of Single walled carbon nanotubes. Synthesis methods - Arc discharge, Laser Abalation, Low temperature method, Chemical vapour deposition. Growth mechanisms on CNT.	CO4,CO6			
	С	Structure and characterization techniques. Surface area measurement, determination of size and textural studies of nanotubes.	CO4,CO6			
	Unit 5	Physiochemical Properties and Applications of Nanomaterials				
	A	Reactivity, effect of size and shape on nanocrystal reactivity, agglomeration and sintering, dispersibility and chemical stability in solution, surface modification of metallic and semiconductor nanoparticles, nanofabrication and nanomanipulation.	CO5,CO6			
	В	Magnetism in nanomaterials, Doping, functionalizing nanotube.	CO5,CO6			
	С	Applications of Graphene, CNTs and Fullerenes – sensing, organic transistor, odour sensor, electronics and optoelectronics and photovoltaics.	CO5,CO6			
	Mode of examination	Theory				
	Weightage	CA MSE ESE				
	Distribution	25% 25% 50%				
9	Textbook/s*	1. Timp.G., Ed.Nanotechnology, Springer-Verlag, N. Y 2. Supramolecular Chemistry by Jonathan W Steed; Jerry L.	Atwood.			
10	Other	1.Keer, H.V. Principles of the Solid State, Wiley Eastern	n Ltd., New			
	References	Delhi.				

-	
	2. West, A. R., Solid State Chemistry and its applications, John Wiley and
	Sons.
	3. Supramolecular Chemistry: Concept and Perspective by Jean Marie
	Lehn
	4. Mitchell, B. S. – An introduction to material engineering and
	Science.Wiley interscience.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5112.1	3	1	1	1	1	2	3	2
CHT5112.2	3	1	1	1	2	2	3	2
CHT5112.3	3	2	1	1	2	1	3	3
CHT5112.4	3	1	1	2	2	2	3	1
CHT5112.5	3	1	1	1	2	2	3	2
CHT5112.6	3	1	1	1	2	2	3	2

School: SSES		Batch : 2025-2027			
Prog	gramme: M. Sc				
Brai	nch:Chemistry	Semester: 04			
1	Course Code	CHT5113			
2	Course Title	Advanced Physical Chemistry VI			
3	Credits	3			
4	Contact	(300)			
	Hours				
	(L-T-P)				
	Course Status	Core			
5	Course	6. To provide the understanding of photophysical and	photochemical		
	Objective	processes of atoms and diatomic molecules.			
		7. To understand various nonradiative relaxation processe	s.		
		8. To get familiar with high energy radiation with ma	tter, radiation		
		dosimetry and flash photolysis.			
		9. To understand the meaning, scope, laws of irreversible the	ermodynamics.		
		10. To provide information about various laws, paramESErs,	and equations		
		related to transport phenomenon.			
		11. To provide the conceptual knowledge of molecular	and advanced		
		photochemistry; radiation chemistry, dosimetry, an	d photolysis;		
		irreversible thermodynamics and transport phenomenon.			
6	Course	CO1: To understand various photophysical and photoe	chemical		
	Outcomes	processes of atoms and diatomic molecules upon irradiation	1.		
		CO2: To study the various radiationless relaxation pathway	'S.		
		CO3: To learn about mechanism of interaction of high energy	radiation with		
		matter; radiation dosimetry and principle and application of fla	ash photolysis.		
		CO4: To understand the fundamental meaning, scope,	and laws of		
		irreversible thermodynamics.			
		CO5: To get familiarize with different parameters and la	aws related to		
		transport phenomenon.			
		CO6: To study molecular and advanced photochemis	try; radiation		
		chemistry, dosimetry, and photolysis; irreversible thermo	dynamics and		
		transport phenomenon.			
7	Course	Course emphasize on the basic concepts of molecular	and advanced		
	Description	photochemistry; radiation chemistry, dosimetry, and photolysis			
		irreversible thermodynamics and transport phenomenon.			
8	Outline syllabus		CO Mapping		
	Unit 1	Molecular photochemistry			
	А	Introduction-primary photophysical process of atoms and	CO1,CO6		
		diatomic molecules, the absorption and emission of light -			
		spectroscopic notations, spin-orbit coupling and spin			
		forbidden radiative transitions,			

CHT5113 Advanced Physical Chemistry VI

	В	Franck-Condon principle, selection rules, laws of	CO1,CO6	
		photochemical equivalence. Radiative transitions-		
		classical model of radiative transitions.		
	С	Jablonski diagram, Fluorescence, phosphorescence,	CO1,CO6	
		photosensitization, and chemiluminescence.		
	Unit 2	Advanced photochemistry		
	А	Fluorescence quenching: collisional quenching, Stern-	CO2,CO6	
	Volmer equation, concentration quenching, quenching by			
		excimer and exciplex emission		
	В	Energy transfer: Theory of radiationless energy transfer	CO2,CO6	
		and energy transfer by electron exchange. Fluorescence		
		resonance energy transfer between photoexcited donor		
		and acceptor systems and dexter energy transfer.		
	С	Triplet-triplet, triplet-singlet, singlet triplet energy	CO2,CO6	
		transfer. Multiphoton energy transfer processes, reversible		
		energy transfer.		
	Unit 3	Radiation Chemistry, Dosimetry and Photolysis: An		
		overview		
	А	G-value. The mechanism of interaction of high energy	CO3,CO6	
		radiation with matter, Photoelectric effect, Compton		
		effect, Pair production, total absorption co-efficient,		
		excitation and ionization, Stopping power and linear		
	.	energy transfer.		
	В	Radiation dosimetry: Radiation dose and its measurement,	CO3,CO6	
		standard free air chamber method,		
	0	chemical dosimeter (Frick's Dosimeter).	002 004	
	C	Flash photolysis: Principle and its applications. Radiolysis	CO3,CO6	
	T T •4 A	of water and aqueous solutions.		
	Unit 4	Irreversible thermodynamics	004 006	
	А	Meaning and scope of irreversible thermodynamics,	CO4,CO6	
		I hermodynamic criteria for non-equilibrium states,		
	D	Phenomenological laws- Linear laws, Globs equation,	<u>CO4 CO6</u>	
	D	Onsager's reciprocal relations, Entropy production-	04,000	
		specific examples of entropy production, Non-equilibrium		
	C	Drigoging's principle of maximum entropy production	CO1CO6	
	C	Coupled phenomena. Some important applications	04,000	
	Unit 5	Transport phonomena		
		Diffusion coefficients Fick's first and second laws	CO5 CO6	
	A	relation between flux and viscosity	005,000	
	B	relation between flux and viscosity,	CO5 CO6	
	Ч	relation between thermal conductivity/viscosity and mean	00,000	
		free nath of a perfect gas. Finstein relation		
	C	Nernst-Finstein equation Stokes-Finstein equation	CO5 CO6	
	\sim	Einstein-Smoluchowski equation		
1		Lanstein Smoratho wiki equation.		

Mode of	Theory		
examination			
Weightage	CA	MSE	ESE
Distribution	25%	25%	50%
Text book/s*	 Turro, N. J. (1991). Modern molecular photochemistry. University science books. Sood, D. D., Reddy, A. V. R., & Ramamoorthy, N. (2010) Fundamentals of radiochemistry. 4. Lakowicz, J. R. (Ed.). (2006). Principles of fluorescence spectroscopy. Boston, MA: springer US. Friedlander, G., Kennedy, J. W., Macias, E. S., & Miller, J. M (1981). Nuclear and radiochemistry. John Wiley & Sons. 		 A. V. R., & Ramamoorthy, N. (2010). aemistry. 4. Ed.). (2006). <i>Principles of fluorescence</i> IA: springer US. dy, J. W., Macias, E. S., & Miller, J. M. <i>iochemistry</i>. John Wiley & Sons.
Other	1. Rohatgi-M	Iukherjee, K.	K. (1978). Fundamentals of photochemistry.
References	New Age	International.	
	 Gilbert, Photocher (1990). Prigogine, Thomas. Richter, Photocher 	A., & Bagg nistry Blackwe , I. (1955). 7 H. W., Wis nistry and Rad	ot, J. (1991). Essentials of Molecular ell Scientific. <i>Publications: Oxford</i> , 265-267. <i>Thermodynamics of irreversible processes</i> . hart, J. F., & Nocera, D. G. (1998). iation Chemistry. <i>Adv. Chem. Series</i> , 5.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5113.1	3	2	3	2	1	3	3	2
CHT5113.2	3	1	3	2	1	3	3	2
CHT5113.3	3	1	3	2	1	3	3	2
CHT5113.4	3	1	3	1	1	3	3	2
CHT5113.5	3	1	3	1	1	3	3	2
CHT5113.6	3	2	3	2	1	3	3	2

CHT5114 Organic Chemistry VI

School: SSES		Batch 2025-27				
Prog	gramme: M.Sc.					
Bra	nch : Chemistry	Semester IV				
1	Course No.	CHT5114				
2	Course Title	Advanced Organic Chemistry VI				
3	Credits	3				
4	Contact Hours (L-T-P)	3-0-0				
	Course status	Core				
5	Course Objective	 1.10 provide a comprehensive introduction to biochemistry. 2.To learn the chemistry of enzymes, structures of nucleic acids, proteins and carbohydrates. 3.To know the chemistry of selected steroids, cholesterol and hormones. 4.To familiarize the chemistry and structure of oxytocin. 5.To know the kinetics of enzymes. 				
6	Course	CO1. To understand the chemistry of antibiotics.	atag and their			
7	Outcomes Outcomes Course Description	 derivatives. CO2:Understand the structure, function, and folding of prot CO3:Analyze the double helical structure of DNA and its rep and transcription. CO4:Learn kinetics of enzyme catalyzed reactions and enzy CO5:Convert cholesterol to progesterone, estrone and testo structure elucidation of cholesterol. CO6:Acquire knowledge of molecular structure and interact proteins, nucleic acids and carbohydrates and enzymes, th and working principles of various components present in live The course is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular structure is designed to give provide and between biomolecular structure is designed to give provide an ability to assess the of fundamental chemical properties on biomolecular properties on biomolecular structure is designed to give provide and between biomolecular structure is designed to give provide and between biomolecular structure is designed to give provide and between biomolecular structure is designed to give provide and between biomolecular structure is designed to give provide and b	teins. plication, RNA yme inhibition. sterone and tions present in the organization ving cell. he significance lar structure, structure and			
		the chemical reactions of biomolecules	molecules and			
8 Outline Syllabus		CO Mapping				
	Unit 1	Carbohydrates				
	A	Conformation of monosaccharides, structure and functions of important derivatives of monosaccharides like glycosides, deoxy sugars, myoinositol, amino sugars.	CO1,CO6			
	В	N-acetylneuraminic acid, sialic acid disaccharides and polysaccharides. Structural 82polysaccharides - cellulose and chitin. Storage polysaccharides- starch and glycogen.	CO1,CO6			
	C	Structure and biological functions of glucosaminoglycans or mucopolysaccharides.	CO1,CO6			

	Unit 2	Amino acids and Proteins				
	А	Chemical and	d enzymatic hy	drolysis of proteins to peptides,	CO2,CO6	
		amino acid	sequencing. Se	econdary structure of protein,		
		forces respon	nsible for holdi	ng of secondary structures. A-		
		helix, β -she	ets, super sec	ondary structure, triple helix		
		structure of o	collagen. Tertia	ry structure of protein- folding		
		and domain	structure. Quat	ernary structure		
	B	Amino acid	metabolism- de	egradation and biosynthesis of	CO2 CO6	
	D	amino acids	inclusionsin a	egradution and biosynthesis of	002,000	
	С	sequence d	etermination.	chemical/ enzymatic/ mass	CO2 CO6	
	C	spectral race	mization/ dete	ction	002,000	
	Unit 3	Nucleic Aci	de			
		Introduction	chemical and	enzymatic hydrolysis of	CO3 CO6	
	Α	multic acid	Structure and	visal and chamical properties	003,000	
		nucleic acids	s, Structure phy	A denine Creaning Creaning		
		of the netero	cycnc bases - 1	Adenine, Guanine. Cytosine,		
	D	Uracil and I	hiamine.		000 00 (
	В	Structure an	d synthesis of	mono and poly – nucleosides	CO3,CO6	
		and nucleo	tides. Deoxyr	ibose nucleic acid (DNA):		
		Primary, sec	ondary, tertiary	v structure of DNA.		
	С	Structure of	RNA. Types	of RNA – mRNA, rRNA and	CO3,CO6	
		tRNA.				
	Unit 4 Enzymes					
	А	Introduction	and historica	al perspective, chemical and	CO4,CO6	
		biological ca	talysis, remark	able properties of enzymes like		
		catalytic pov	ver, specificity	and regulation.		
	В	Nomenclatur	re and clas	ssification, extraction and	CO4,CO6	
		purification.	Fischer's loc	k and key and Koshland's		
		induced fit h	ypothesis, conc	ept and identification of active		
		site by the us	se of inhibitors	-		
	С	Enzyme kine	tics, Michaelis	-Menten and Lineweaver Burk	CO4,CO6	
		plots, revers	ible and irrever	sible inhibition, mechanism of		
		enzyme actio	on			
	Unit 5	Steroids and	l Hormones			
	А	Occurrence.	nomenclature.	Diel's hydrocarbon and	CO5.CO6	
		stereochemis	strv.			
	B	Isolation str	ucture determit	nation and synthesis of	CO5 CO6	
	D	Cholesterol, bile acids			005,000	
	С	Androsterone testosterone estrone progesterone			CO5 CO6	
	C	Androsterone, testosterone, estrone, progesterone,			005,000	
	Mode of	Vitamin D				
	Mode of	Theory				
	Waishter		MCE	ECE		
	weightage		MSE	ESE		
	Distribution	25%	25%	50%		
	Text Book/s*	1.A.L. Lehn	nger, Principle	s of Biochemistry, CBS Publish	ers, Delhi.	
		2.I.L. Finar Volume II.				

(Other	1.D. Voet, J.G. Voet & CW Pratt, Fundamentals of Biochemistry, John
1	references	Wiley & Sons, New York.
		2.H.R. Mahler and E.H. Cordes, Biological Chemistry, 2 nd Edition,
		Harper and Row Pub., New York.
		3.T.C. Bruice and S. Bentkovic, Bioorganic Mechanisms, Vol. I & II, W. A.
		Benjamin, New York.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5114.1	3	1	1	1	3	1	2	2
CHT5114.2	3	1	1	1	3	1	2	2
CHT5114.3	3	1	1	1	3	1	2	2
CHT5114.4	3	1	1	1	3	1	1	2
CHT5114.5	3	1	1	1	3	1	2	2
CHT5114.6	3	1	1	1	3	1	1	2

Scho	ool: SSES	Batch : 2025-27					
Prog	gramme: M.Sc.	Current Academic Year: 2025-26					
Bra	nch: Chemistry	Semester: II					
1	Course Code	CHT5116					
2	Course Title	ourse Title Advanced Analytical Chemistry II					
3	Credits	4					
4	Contact	4-0-0					
	Hours						
	(L-T-P)						
	Course Status	DSE					
5	Course	1. Understand the theories and principles of qualitative and	quantitative				
	Objective	analysis through optical and spectroscopic technique.					
		2. Analyse the textural information of bulk materials and pa	rticle				
		dimension.					
		3.Carry out qualitative and quantitative analysis employing	descriptive				
		knowledge of electrochemistry and electrochemical titration	n.				
		4.Separate and estimate macromolecule (proteins, enzymes	, blood and				
		natural products) electroanalytically.					
		5.Effectively use various sensors for estimation and gain idea about					
		developing technologically potent sensor materials.					
		6. To learn the advance spectroscopic and microscopic met	hods for the				
6		analysis of molecular materials.	analysis of molecular materials.				
6	Course	COI: Understand various optical and spectroscopic method	ls Ior				
	Outcomes	quantative and quantitative analysis of metals and non metal	al to trace				
		CO2: Evaluate the properties of materials such as porosity	density and				
		microstructure of materials					
		CO3: Develop new synthetic routes involving electrochemical redov					
		process.					
		CO4: Understand principles of Cyclic Voltammetry and Ele	ectrophoresis.				
		CO5: Develop quick, sensitive and selective sensory materials for					
		qualitative and quantitative estimation of analyte.					
		CO6: Investigate the molecular materials using advanced sp	pectroscopic				
		and microscopic techniques.					
7	Course	Analytical chemistry II emphasizes on various parts of analytical					
	Description	methods as - Atomic Spectroscopy comprises of AAS, AES and ICPMS,					
		Electron Microscopic techniques comprises of SEM, TEM and FESEM,					
	Polarography and amperometry, Cyclic voltammetry and electropho						
		Chemical sensors					
8	Outline syllabus	1	CO Mapping				
	Unit 1	Atomic Spectroscopy					
	A	Theory, sources, burners, atomic emission spectra, atomic	CO1,CO6				
		absorption spectra, effect of temperature on emission and					

CHT5116 Advanced Analytical Chemistry II

	absorption, Instrumentation for AES and AAS, standard	
	addition and internal standard method of analysis	
В	Comparison of atomic absorption and emission methods,	CO1,CO6
	Applications of AAS and AES	
	Features of atomic mass spectroscopy, Atomic weight in	
	mass spectroscopy, mass to charge ratio	
С	Types of atomic mass spectroscopy, quadruple mass	CO1,CO6
	analyzer, time of flight mass analyzer, Inductively	
	coupled mass spectroscopy (ICPMS), Instrumentation for	
	ICPMS, Applications of ICPMS	
Unit 2	Electron Microscopic Techniques	
А	Basic principle, instrumentation and application of	CO2,CO6
	Transmission Electron Microscope (TEM) and HRTEM	
В	Basic principle, instrumentation and application of	CO2,CO6
	Scanning Electron Microscope (SEM)	
С	Basic principle, instrumentation and application of	CO2,CO6
	FESEM	
Unit 3	Electroanalytical Technique I	
А	Polarography	CO3,CO6
	Introduction, Instrumentation, Ilkovic equation and its	
	verification	
В	Derivation of wave equation, Determination of half wave	CO3,CO6
	potential, qualitative and quantitative applications	
С	Amperometry: Basic principles, instrumentation, nature	CO3,CO6
	of titration curves and analytical principles	
Unit 4	Electroanalytical Technique II	
А	Cyclic Voltammetry Cell design, instrumentation,	CO4,CO6
	current-potential relation for linear sweep voltammetry	
	(LSV), cyclic voltammetry, interpretation of	
	voltammograms.	
B	Floetrophorosis: Separation by advorption Affinity	<u>CO4 CO6</u>
D	techniques, affinity elution from ion exchangers and other	04,000
	adsorbents	
C	Deeudo affinity adsorbents, polyacrylamide get	<u>CO4 CO6</u>
C	electrophoresis isoelecrictric focusing isotachophoresis	04,000
 Unit 5	Chemical Sensors	
A A	Principles types of chemical sensors based on the modes	CO5 CO6
A	of transductions. Types of chemical sensor based on the	005,000
	of transductions, Types of chemical sensor based on the	
	chemically sensitive materials	
В	chemically sensitive materials solid electrolyte gas semiconductor Humidity sensors	CO5 CO6
В	chemically sensitive materials solid electrolyte, gas, semiconductor, Humidity sensors, Biosensors sensors	CO5,CO6
B	chemically sensitive materials solid electrolyte, gas, semiconductor, Humidity sensors, Biosensors sensors Electrochemical sensors (Potentiometric sensors Ion-	CO5,CO6
B C	chemically sensitive materials solid electrolyte, gas, semiconductor, Humidity sensors, Biosensors sensors Electrochemical sensors (Potentiometric sensors, Ion- selective electrodes, Membrane electrodes, Amperometric	CO5,CO6 CO5,CO6

Mode of	Theory					
examination						
Weightage	CA	MSE	ESE			
Distribution	25%	25%	50%			
Text book/s*	Principles of	Instrumental A	Analysis, Skkog, Holler, Nieman, (Sixth Ed.)			
Other	1) Introducti	on to Instrume	ntal Analysis by R. D. Broun, Mc Graw Hill			
References	(1987)					
	2) Instrumen	tal methods of	chemical analysis by H. willard, L.Merrit, J.A.			
	Dean and F.	A. settle. Sixth	edition CBS (1986)			
	3) Fundamen	ntals of Analyti	cal Chemistry, 6th edition, D.A. Skoog, D.M.			
	West and F.J	. Holler, Saund	lers college publishing.			
	4) Principles	of Instrumenta	l Analysis, Skkog, Holler, Nieman, (Sixth Ed.)			
	5) Introducti	on to instrume	ntal analysis by R. D. Braun, MC. Graw Hill-			
	International	edition.				
	6) Analytical	Chemistry, Ed	. by Kellner, Mermet, otto, Valcarcel, Widmer,			
	Second Ed. Wiley –VCH					
	7) Electron r	7) Electron microscopy in the study of material, P. J Grundy and G. A				
	Jones, Edwa	rd Arnold.				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
C5116.1	3	2	1	2	3	1	1	2
C5116.2	3	2	1	2	3	1	1	2
C5116.3	3	2	1	2	3	1	1	2
C5116.4	3	2	1	2	3	1	1	2
C5116.5	3	2	1	2	3	1	1	2
C5116.6	3	2	1	2	3	1	1	2

CHT5117 Introduction to Environmental Chemistry

School: SSES		Batch : 2025-27				
Prog	gramme: M.Sc.					
Brai	nch:Chemistry	Semester: IV				
1	Course Code	CHT5117				
2	Course Title	Introduction to Environmental Chemistry				
3	Credits	4				
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course Status	DSE				
5	Course	1.To introduce the basics knowledge of chemistry of enviro	nment.			
	Objective	2.To describe the chemistry of hydrosphere.				
		3.To provide an introduction to chemistry of soil.				
		4.To explain to the student the causes of industrial pollution	1.			
		5.To provide information environmental toxicology.				
		6.To illustrate the infamous cases of environment related di	sasters.			
6	Course	CO1:Understand the chemistry of atmosphere.				
	Outcomes	CO2:Understand the chemistry of hydrosphere.				
		CO3:Explain the chemistry of soil.				
		CO4: Know about adverse effect of industrialization and po	ossible			
		prevention method				
		CO5:Know about environmental toxicology and a few examples	nple of			
		environmental disaster.				
		CO6: Gain knowledge about the chemistry of atmosphere. factors				
		affecting it and possible prevention methods				
7	Course	This course describes the chemistry of earth atmosphere,	soil and water			
	Description	bodies. It also describes the adverse effect of industrial po	ollution and its			
	-	possible prevention method.				
8	Outline syllabus		CO Mapping			
	Unit 1	Earth's Atmosphere				
	А	Introduction, composition of atmosphere, vertical	CO1,CO6			
		temperature,				
		heat budget of the earth atmospheric system, vertical				
		stability atmosphere				
	В	Bio-distribution of elements. Reactions in atmosphere,	CO1,CO6			
		Stratospheric chemistry. Chemistry of photochemical				
		smog, Precipitation, Acid rain, Production and removal of				
		nitric acid, Sulphuric acid				
	С	Atmospheric aerosols-Sources, Concentrations, Control.	C01,C06			
		Chemistry of global climate. Air sampling techniques,				
		Sources, effects and monitoring of air pollutants by				
		Instrumental methods, Control of air pollution				

Unit 2	Hydrosphere				
A	A Chemical composition of water bodies – lakes, streams, rivers and wetlands etc Hydrological cycle. Aquatic pollution-inorganic, organic, pesticides, agricultural, industrial and sewage, detergents, oil spills and oil pollutants				
В	water quality parameters-dissolved oxygen, biochemical oxygen demand, solids, metals, content of chloride, sulphate, phosphate, nitrate and micro-organisms, water quality standards, Analytical methods for measuring BOD, DO, COD, F, OILS, METALS (As, Cd, Cr, Hg, Pb, Se), Residual chloride and chlorine demand, purification and treatment of water.	CO2,CO6			
С	Distribution of species in aquatic systems: Single variable diagrams, Two variable diagrams, Method of calculating pE^{o}	CO2,CO6			
Unit 3	Soils				
A	Chemical composition of the soil, micro and macronutrients, the exploitation of the mineral resources and abuse of the earth	CO3,CO6			
В	soil pollution due to natural and artificial agencies and its effects, remedial measures to check the pollution. pollution-fertilizers, pesticides, plastics and metals, waste treatment.	CO3,CO6			
C	Humic material–Formation, Composition, Structure determination using spectroscopy, Properties. Radioactive pollution, disposal of radioactive waste	CO3,CO6			
Unit 4	Industrial Pollution				
А	Cement, sugar, distillery, drug, paper and pulp, thermal power plants, nuclear power plants, metallurgy, polymers, drugs etc	CO4,CO6			
B radionuclide analysis, disposal of wastes and thei management. Waste Water, Treatment of Industrial Waste Water,					
С	Environmental Impact Assessment process in India.	CO4,CO6			
Unit 5	Environmental Toxicology				
А	Chemical solutions to environmental problems, biodegradability,	CO5,CO6			
B principles of decomposition, better industrial processes. Bhopal Gas Tragedy, Chernobyl Disaster, Three Mile Island, Sewozo and Minamata disasters.					
C	Occupational safety Hazard Assessment, MSDS	CO5,CO6			
Mode of examination	Theory				
	CA MSE ESE				

Weightage	25%	25%	50%	
Distribution				
Text book/s*	1.Environme	ental Chemistry	y, A.K.Das.	
	2.Environme	ental Chemistry	y, Samir K. Banerji.	
	3.Environme	ental Chemistry	H. Kaur, 6th Edn, Pragathi Prakashan, Meerut,	
	2011.			
	4.Environme	ental Pollution	Analysis, S. M. Khopkar, New Age	
	International	(P) Ltd, 1993.		
Other	1.Analysis c	of Industrial W	vaste Water, K.H.Mancy and W,.J.Weber Jr.	
References	Wiley, Intere	escience New Y	York, 1971.	
	2.Environme	ental Chemistry	, L.W. Moore and E. A. Moore, McGraw Hill	
	Publication, New York			
	3.Environmental Chemistry, Colid Baird. W. H. Freemand and			
	Company, 19	995.		

CO/PO	PO1	PO2	PO3	PO4	PO1	PO2	PSO1	PSO2
CHT5117.1	3	2	1	2	3	2	2	3
CHT5117.2	3	1	1	2	3	2	2	3
CHT5117.3	3	2	1	3	3	2	2	3
CHT5117.4	3	1	1	2	3	2	2	3
CHT5117.5	3	2	1	1	3	2	1	3
CHT5117.6	3	2	1	1	3	2	1	3

CHP4102 Advanced Organic Chemistry Lab I

Scho	ool: SSES	Batch: 2025-27					
Prog	gramme: M.Sc.	Current Academic Year: 2025-26					
Brai	nch: Chemistry	Semester: I					
1	Course Code	CHP4102					
2	Course Title	Advanced Organic Chemistry Lab I					
3	Credits	1					
4	Contact	0-0-2					
	Hours						
	(L-T-P)						
	Course Status	Core					
5	Course	This course aims to					
	Objective	1. Develop proficiency in qualitative and quantitative organic analysis					
		techniques.					
		2. Equip students with practical skills in optical activity measurement					
		and stereochemical analysis.					
		3. Enable students to synthesize, purify, and characterize organic					
		compounds.					
		4. Provide hands-on experience in chromatography techniques for					
		compound separation.					
		5. Enhance problem-solving and analytical skills essential for research					
	~	and industrial applications.					
6	Course	By the end of this course, students will be able to					
	Outcomes	COI: Analyze and identify organic compounds in binary mixtures using					
		systematic qualitative methods.					
		CO2: Measure and interpret the specific rotation of optically active					
		compounds.					
		tochniques					
		CO4: Synthesize, purify, and characterize organic molecules officiently					
		CO5: Apply chromatographic methods for compound separation and					
		analysis					
7	Course						
,	Description	This practical course provides hands-on training in essential organic					
	Lesenption	chemistry techniques, including qualitative and quantitative analysis,					
		synthesis, and chromatography. Students will learn to identify organic					
		compounds in binary mixtures, measure optical activity, estimate aniline					
		concentration, and synthesize organic molecules. Additionally,					
		chromatographic techniques such as thin-layer chromatography (TLC) and					
		Column Chromatography will be used for compound separation.					
		Emphasizing analytical and problem-solving skills, this course prepares					
		students for research and industrial applications in organic chemistry.					
8	Outline syllabus	CO Mapping					

	Unit 1	Practical based on Qualitative binary mixture analysis				
		of organic compounds				
	А	To analyze the mixture of tw	o components. (Mixture 1)	CO1, CO6		
	В	To analyze the mixture of tw	o components. (Mixture 2)	CO1, CO6		
	С	To analyze the mixture of tw	CO1, CO6			
	Unit 2	Practical based on measure	ement of specific rotation of			
		an optically active compour	nd			
	Α	To determine the specific ro tartaric acid solution	station of a glucose/fructose/	CO2, CO6		
	В	To determine the kinetics of	Inversion of sucrose	CO2, CO6		
	С	To dESErmine the kinetics o	f Inversion of sucrose	CO2, CO6		
	Unit 3	Practical related to estimat	ion of organic compounds			
	А	To estimate the amount of Pl	nenol in the given solution	CO3, CO6		
	В	To estimate the amount of A	niline in the given solution	CO3, CO6		
	С	To Estimate the amount of G	lucose in the given solution	CO3, CO6		
	Unit 4	Practical related to Synthe	sis of Organic Compounds			
	Α	To synthesize p-bromoanilin substitutions)	e (Aromatic Electrophilic	CO4, CO6		
	В	To synthesize p-nitroaniline substitutions)	CO4, CO6			
	С	To synthesize picric acid from Electrophilic substitutions)	CO4, CO6			
	Unit 5	Practical related to Chrom				
		Compounds				
	А	To separate a mixture of dye	s using a thin-layer	CO5, CO6		
		chromatography (TLC) plate	chromatography (TLC) plate and optimize the ratio of			
		solvent mixture for efficient				
	В	To prepare the chromatograp	CO5, CO6			
		efficiency with the paper chr				
		the separation of a mixture o				
	С	To separate a mixture of ami	CO5, CO6			
		chromatography (TLC) and i				
		by measuring their Rf values	•			
	Mode of examination	Practical/Viva				
	Weightage	CA	ESE			
	Distribution	60%				
	Text book/s*	1. Comprehensive Practical 0	Organic Chemistry: Qualitative	e Analysis,		
		Ahluwalia, V.K., Dhingra, S. (2004), University Press.				
		2. Comprehensive Practical Organic Chemistry: Preparation and				
		Quantitative Analysis, Ahluv	valia, V.K., Aggarwal, R. (200	4), University		
		Press				
3. Practical Organic Chemistry: Volume–I, Pasricha, S., Chaud (2021), I.K. International Publishing house Pyt. I.td. New Delh						

Other	1. Quantitative Organic Analysis, Part 3, Vogel, A.I. (2012), Pearson	
References	Education.	
	2. Practical Organic Chemistry, Mann, F.G., Saunders, B.C. (2009)),
	Pearson Education.	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHP4102.1	3	1	1	2	3	1	1	1
CHP4102.2	3	1	1	1	3	1	1	1
CHP4102.3	3	1	1	1	3	1	1	1
CHP4102.4	3	1	1	2	3	1	1	1
CHP4102.5	3	1	1	2	3	1	1	1
CHP4102.6	3	1	1	1	3	1	1	1

Scho	ol: SSES	Batch:2025-27					
Prog	ramme: M.Sc	Current Academic Year: 2025-26					
Bran	ch: Chemistry	Semester:I					
1	Course number	CHP4103					
2	Course Title	Advanced Physical Chemistry Lab I					
3	Credits	1					
4	Contact Hours (L-T- P)	0-0-2					
5	Course Objective	 To find the individual strengths of acids and salts via titrations, conductometric titrations, precipitation titra metric titrations. Find the heat of neutralization using Calorimetry. To calculate the dissociation tendency of the acids. To construct the phase diagrams of binary and ternary. To learn software handling for chemistry problems. 	thermometric ations and pH y systems.				
6	Course Outcomes	 Students will be able to - To imply various types of titrations for quantitative analysis. Construct the phase change behaviour in graphical form. To carry out conductometric and potentiometric titrations. To find the acidity strength accurately. Utilize computational tools for solving chemical problems. To imply titrations, Calorimetry, computational and phase change phenomena towards appropriate quantitative and qualitative 					
7	Outline syllabus		CO mapping				
	Unit 1	Quantitative Analysis - I					
	А	To determine the concentration of two acids, HCl and ethanoic acid, by thermometric titration and use it to calculate the enthalpy change of neutralization	CO1,CO6				
	В	Calculate the heat of neutralization for NaOH and HCl mixture by Bomb Calorimeter.	CO1,CO6				
	С	To study precipitation titration between KCl and AgNO ₃ conductometrically and determine the strength of the given solution of AgNO ₃	CO1,CO6				
	Unit 2	Quantitative Analysis - II					
	А	To determine the dissociation constant of acetic acid using (a) pH meter and (b) conductivity meter and compare the results	CO2,CO6				

CHP4103 Advanced Physical Chemistry Lab I

В	Study of the variation of mutual solubility temperature with concentration for the phenol-water system and determination of the critical solubility temperature (CST).	CO2,CO6	
С	To determine the strength of H ₃ PO ₄ by titration with standard NaOH using pH meter	CO2,CO6	
Unit 3	Quantitative/Qualitative Assessment - I		
A & B	To determine the strength of strong acid and weak acid conductometrically by titrating against standard NaOH solution	CO3,CO6	
С	To estimate the amount of ferrous ions in a given solution potentiometrically.	CO3,CO6	
Unit 4	Quantitative/Qualitative Assessment -II		
А	To study the separation of dyes by thin layer chromatography (TLC)	CO3,CO4,CO6	
В	To determine the amount of BaCl ₂ in a given solution by conductometric titrations	CO3,CO4,CO6	
С	Study the conductometric titration of hydrochloric acid with sodium carbonate	CO3,CO4,CO6	
Unit 5	Data Handling		
A & B	To calculate Mean, Median, Mode, Standard deviation, Variance, Range by using Microsoft Excel	CO5,CO6	
С	To calculate and draw the first and second derivative of given data on excel sheet.	CO5,CO6	
Mode of			
examination	Practical/Viva		
Weightage	CA ESE		
Distribution	60% 0%		
Text book	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical Chemistry", S	S. Chand & Co.	
Other References Vogel's "Textbook of quantitative Analysis", Pearson.			

CO/PO	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4
CHP4103.1	3	1	1	2	3	1	1	1
CHP4103.2	3	2	1	1	3	1	1	1
CHP4103.3	3	1	1	1	3	1	1	1
CHP4103.4	3	1	1	1	3	1	1	1
CHP4103.5	3	2	1	1	3	1	1	1
CHP4103.6	3	1	1	1	3	1	1	1

CHP4105 Advanced Inorganic Chemistry Lab II

School: SSES		Batch:2025-27					
Prog	gramme: M.Sc	Current Academic Year: 2025-26					
Bra	nch: Chemistry	Semester:II					
1	Course Code	CHP4105					
2	Course Title	Advanced Inorganic Cl	nemistry Lab II				
3	Credits	1	•				
4	Contact Hours (L-T-P)	0-0-2	0-0-2				
	Course Status	Core					
5	Course Objective	To learn about types of and learn the techniques complexes	titration and estimation of e of jobs method and character	lements of alloys, ization of metal			
6	Course Outcomes	After doing this course the student should be able to CO1: Prepare solutions of different strength and standardize them CO2: Analyse domomite sample CO3: Analyse various ferro-alloys and steel CO4: Estimate one metal ion in a mixture CO5: Understand the Job's method CO6: Analyse given compound spectrochemically and using different volumetric methods					
7	Course Description	The course aims to appraise the students to learn basic methods of titration and characterisation of given material. It will enable students to analyse various materials like steel and alloys					
8	Outline syllabus			CO Mapping			
	Unit 1	Practical related to ana	lysis of samples				
		Sub unit – a ,b, c		CO1, CO6			
	Unit 2	Practical related to det a mixture	ermination of elements in				
		Sub unit –a, b, c		CO2, CO6			
	Unit 3	Practical based to analy steel	vsis of ferro alloys and				
		Sub unit- a, b, c		CO3, CO6			
	Unit 4	Practical related to Applications of jobs method					
		Sub unit – a, b, c		CO4, CO6			
	Unit 5	Practical based to synthesis and characterization of metal complexes.					
		Sub unit - a, b, c		CO5, CO6			
	Mode of examination	Practical/Viva					
	Weightage	CA ESE					
Distribution		60% 40%					

	Text book/s*	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical Chemistry", S. Chand & Co.
	Other References	Vogel's "Textbook of quantitative Analysis", Pearson.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHP4105.1	3	1	1	1	1	1	3	1
CHP4105.2	3	1	1	1	1	2	3	1
CHP4105.3	3	1	1	1	2	2	3	3
CHP4105.4	3	2	1	1	2	2	3	3
CHP4105.5	3	1	1	1	2	1	3	3
CHP4105.6	3	1	1	1	1	2	3	2

CHP4106 Advanced Organic Chemistry Lab II

Sch	ool: SSES	Batch: 2025-2027
Programme:		Current Academic Year: 2025-26
M.Sc.		
Bra	nch:	Semester: II
Che	emistry	
1	Course	CHP4106
	Code	
2	Course Title	Advanced Organic Chemistry Lab II
3	Credits	1
4	Contact	0-0-2
	Hours	
	(L-T-P)	
	Course	Core
	Status	
5	Course	This course aims to
	Objective	1. Develop hands-on experience in the qualitative analysis of organic
		2 Enhance understanding of fundamental arganic synthesis techniques and
		2. Eminance understanding of fundamental organic synthesis techniques and
		3 Introduce students to purification techniques such as chromatography for
		separating organic compounds
		4. Provide experience in instrumental techniques like UV and IR spectroscopy
		for product identification.
		5. Reinforce laboratory safety, precision, and best practices in organic
		chemistry experiments.
6	Course	Upon completing this course, students will be able to
	Outcomes	CO1: Understand the methods of separation of solid organic compounds on
		the basis of their solubility difference.
		CO2: Systematically analyze and identify components in binary organic
		mixtures.
		CO3: Synthesize specific organic compounds using standard laboratory
		procedures.
		CO4: Utilize spectroscopic methods (UV, IR) for the characterization of
		synthesized compounds.
		of organic compounds
		CO6: Develop proficiency in handling laboratory equipment and maintaining
		scientific documentation
7	Course	This course provides an in-depth exploration of qualitative and synthetic
,	Description	techniques in organic chemistry Students will analyze binary mixtures
	Description	perform organic syntheses, and apply chromatographic separation methods
		They will also gain hands-on experience in instrumental analysis for product
		identification. By the end of the course, students will develop essential

		laboratory skills necessary for research and industrial applications in organic				
	chemistry					
8	Outline syllabi	15		CO Mapping		
	Unit 1	Qualitative analysis of orga	anic compounds-I			
	А	To analyze the mixture of tw	CO1, CO6			
	В	To analyze the mixture of tw	vo components. (Mixture 2)	CO1, CO6		
	С	To analyze the mixture of tw	CO1, CO6			
	Unit 2	Qualitative analysis of orga	anic compounds-II			
	А	To analyze the mixture of tw	vo components (Mixture 4)	CO2, CO6		
	В	To analyze the mixture of tw	CO2, CO6			
	С	To analyze the mixture of tw	CO2, CO6			
	Unit 3	Organic synthesis-I				
	А	To prepare <i>m</i> -phenylenedian	nine form <i>m</i> -dinitrobenzene	CO3, CO6		
	В	To prepare Methyl orange	using aniline. Identify the	CO3, CO6		
		product with M.P., UV, and				
	С	To prepare Methyl orange us	sing aniline. Identify the	CO3, CO6		
		product with M.P., UV, and	IR analysis.			
	Unit 4	Organic synthesis-II				
	А	To prepare o-Chlorobenzoic	acid from phthalic	CO4, CO6		
		anhydride.				
	В	To prepare 2,4-dihydroxy eth	CO4, CO6			
		resorcinol. Identify the produ	uct with M.P. and IR			
		analysis.				
	С	To synthesize o-and p-nitro	o aniline by two two-step	CO4, CO6		
		process				
	Unit 5	Separation of Organic com	pounds			
	А	To separate Organic compou	ands with the help of the	CO5, CO6		
		Column Chromatographic te	chnique and report the			
		yield of pure components (sa	ample1).			
	В	To separate Organic		CO5, CO6		
		compounds with the help of				
		the Column Chromatographi	ic			
		technique and report the yiel	ld			
		of pure components (sample2	2)			
	С	To extract the mustard oil from	om mustard seed using the	CO5, CO6		
		soxhlet extraction technique				
	Mode of	Practical/Viva				
	examination					
	Weightage	CA E	ESE			
	Distribution	60% 4	40%			
	Text book/s*	1. Comprehensive Practical (Organic Chemistry: Qualitati	ve Analysis,		
		Ahluwalia, V.K., Dhingra, S	. (2004), University Press.			
		2. Comprehensive Practical (Organic Chemistry: Preparati	on and Quantitative		
		Analysis, Ahluwalia, V.K., Aggarwal, R. (2004), University Press				

	3. Practical Organic Chemistry: Volume–I, Pasricha, S., Chaudhary, A.
	(2021), I K International Publishing house Pvt. Ltd, New Delhi
Other	1. Quantitative Organic Analysis, Part 3, Vogel, A.I. (2012), Pearson
References	Education.
	2. Practical Organic Chemistry, Mann, F.G., Saunders, B.C. (2009), Pearson
	Education.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHP4106.1	3	2	1	2	3	1	1	2
CHP4106.2	3	1	1	1	3	1	1	2
CHP4106.3	3	2	1	2	3	1	1	2
CHP4106.4	3	2	1	2	3	1	1	2
CHP4106.5	3	2	1	2	3	1	1	2
CHP4106.6	3	1	1	1	3	1	1	1

School: SSES Batch: 2025-27 **Current Academic Year: 2025-26 Programme: M.Sc. Branch:**Chemistry Semester:II 1 **Course Code CHP4107** 2 **Course Title Advanced Physical Chemistry Lab II** 3 Credits 1 4 0-0-2 Contact Hours (L-T-P)**Course Status** Core 5 Course Instruments such as spectrophotometers, conductometers, polarimeters, and Objective potentiometers are extensively utilized in research laboratories and industrial applications. Therefore, understanding fundamental instruments, experiments, and advanced techniques is essential for Master's students. The course offers students comprehensive training in the operation of various instruments, enabling them to construct adsorption curves and thermometric titration curves and compute atomic parameters. 6 Course 1. Students will be able to understand the phenomenon of adsorption and how to determine the concentration of a solution after Outcomes adsorption. 2. The student will learn to use instruments like conductometers, potentiometers, UV/V spectrophotometers, and Polarimeters to determine the composition, strength, and dissociation constants of different chemicals/solutions. 3. Students will understand the concept of thermometric titrations. 4. Students will be able to determine atomic parameters using computational studies. 5. Students will be able to understand solubility, solubility product, and CMC and how to determine them practically. 6. The student will be able to understand the practical difference between the double alkali method and the salt line method. 7 This lab provides hands-on training in essential analytical instruments, Course spectrophotometers, conductometers, polarimeters, Description including and potentiometers, which are widely used in research and industrial applications. This course equips students with the skills to operate these instruments effectively, enabling them to perform advanced experiments such as constructing adsorption curves and thermometric titration curves and computing atomic parameters. Emphasizing both theoretical and practical aspects, the lab enhances students' understanding of instrumental techniques, preparing them for careers in scientific research, quality control, and industrial chemistry.

CHP4107 Advanced Physical Chemistry Lab II

8	Outline syllabus	yllabus			
	Unit 1	Practical based Conducton	neter and Potentiometer		
	A& B	To estimate the normality of	oxalic acid in given solutions	CO2	
		conductometrically			
		(a) Solution of pure oxal	ic acid		
		(b) Solution having HCl	and oxalic acid		
		The solution having acetic ac			
	С	To find out the compos	ition of Zinc ferrocyanide	CO2	
		precipitate on adding ZnSO ₄	potentiometrically.		
	Unit 2	Practical based on Adso	orption and Thermometric		
		Titration			
	A& B	To verify the Freundlich	and Langmuir adsorption	CO1	
	isotherms by studying the adsorption of oxalic acid/acetic				
		acid on activated charcoal.			
	С	To determine the concern	tration of strong acid by	CO3	
		thermometric titration and u	se it to calculate the enthalpy		
		of neutralization.			
	Unit 3	Practical based on Solubilit	ty product and CMC		
	A & B	Find the solubility and solub	pility product of the sparingly	CO5	
		soluble salt in water.			
	С	Find the CMC of a given su	urfactant and, hence, calculate	CO5	
		Δt Gmix of the surfactant.			
	Unit 4	Practical based on Polarim			
	А	Find out the rate constant o	f acid-catalysed hydrolysis of	CO2	
		sucrose by polarimeter. S	tudy the rate equation for		
		mutarotation of D-glucose in	water using polarimeter.		
	B & C	To determine the concentra	tion of KMnO ₄ solution after	CO2	
		adsorption using UV/Visible	spectrophotometer.		
	Unit 5	Computational Modeling, S	Salt line and Double Alkali		
		Method			
	А	To calculate the atomic para	meters using density function	CO4	
		calculations and molecular si	imulations.		
	B & C	Titrate using conductomete	er a moderately strong acid	CO6	
		(salicylic/mandelic acid) by	the (a) salt-line method (b)		
		double alkali method.			
	Mode of	Practical and/or Viva			
	examination				
	Weightage	CA	ESE		
	Distribution	60%	40%		
	Text book/s				
	Other	Practical Physical Chemistry	by B. D. Khosla, R. Chand and	l Co., New	
	References	Delhi			

CO/PO	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4
CHP4107.1	3	1	1	1	3	1	1	1
CHP4107.2	3	1	1	1	3	1	1	1
CHP4107.3	3	2	1	2	3	1	1	2
CHP4107.4	3	2	1	2	3	1	1	2
CHP4107.5	3	2	1	2	3	1	1	2
CHP4107.6	3	1	1	1	3	1	1	1

CHP5101 Advanced Organic Chemistry III

School: SSES		Batch:2025-2027					
Prog	ramme: M.Sc	1					
Bran	ch: Chemistry	Semester III					
1	Course number	CHP5101					
2	Course Title	Advanced Organic Chemistry Lab III	Advanced Organic Chemistry Lab III				
3	Credits	2					
	Contact						
4	4 Hours (L-T- 0-0-4						
	P)						
5	Course Objective	 This course aims to Understand and apply various techniques for the extraction separation of organic compounds from natural sources. Develop proficiency in the qualitative and quantitative anal organic compounds. Utilize chromatographic and spectroscopic techniques for the identification and characterization of organic compounds. Perform the synthesis of organic compounds using standard protocols. Enhance analytical and problem-solving skills in organic chrough experimental procedures. 	and ysis of he I laboratory nemistry				
6	Course Outcomes	 Upon successful completion of this course, students will be able to CO1: Extract and analyze organic compounds from natural sources, such as caffeine, piperine, and plant pigments. CO2: Separate and identify ternary organic mixtures using standard laboratory techniques. CO3: Perform quantitative estimations of organic compounds, including glucose, amino acids, and aspirin purity. CO4: Synthesize organic compounds using multi-step procedures and protecting group strategies. CO5: DESErmine the structure of unknown organic compounds using spectroscopic methods such as IR and ¹H-NMR. CO6: Develop proficiency in the extraction, separation, synthesis, and structural elucidation of organic compounds using analytical and spectroscopic techniques, enhancing their practical skills and 					
7	Outline syllabus		CO Mapping				
	Unit 1	Extraction of Organic Compounds					
	А	To study the extracted caffeine from tea leaves and report its percentage yield and m.pt.	CO1, CO6				
	В	To study the extract piperine from black pepper and report its percentage yield and m.pt.	CO1, CO6				

С	To extract plant pigments and then identify these pigments by chromatography.	CO1, CO6			
Unit 2	Separation of Organic compounds in a ternary mixture				
А	To separate and identify the organic mixture containing 3 components.	CO2, CO6			
В	To separate and identify the organic mixture containing 3 components.	CO2, CO6			
C To separate and identify the organic mixture containin components.		CO2, CO6			
Unit 3	Quantitative estimation of Organic compounds				
А	To determine the amount of Glucose by Fehling's solution.	CO3, CO6			
В	To determine the strength of amino acid in given unknown solution by Sorenson's formol titration.	CO3, CO6			
С	To determine the purity of synthesized aspirin by TLC and titration method.	CO3, CO6			
Unit 4	Synthesis of Organic compounds				
A & B	To prepare <i>p</i> -nitroaniline from aniline using the three steps protecting group strategy.	CO4, CO6			
С	To prepare <i>m</i> -nitroaniline from nitrobenzene and confirm its identity with FTIR.	CO4, CO6			
Unit 5	Structure elucidation of Organic compounds				
А	To determine the structure of the given unknown compound with the help of its IR and ¹ HNMR.	CO5, CO6			
В	To determine the structure of the given unknown compound with the help of its IR and ¹ HNMR.	CO5, CO6			
С	To determine the structure of the given unknown compound with the help of its IR and ¹ HNMR.	CO5, CO6			
Mode of	Practical/Viva				
 examination					
Weightage	CA				
Distribution	60% 40%				
Text book	 Comprehensive Practical Organic Chemistry: Qualitative Analysis, Ahluwalia, V.K., Dhingra, S. (2004), University Press. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, Ahluwalia, V.K., Aggarwal, R. (2004), University 				
	3. Practical Organic Chemistry: Volume–I, Pasricha, S., Chaud (2021), I K International Publishing house Pvt. Ltd, New Delhi	hary, A.			
Other References	 Quantitative Organic Analysis, Part 3, Vogel, A.I. (2012), P Education. Practical Organic Chemistry, Mann, F.G., Saunders, B.C. (2 Decrean Education 	earson 009),			
	r taison Euucation.				

CO/PO	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4
CHP5101.1	3	2	1	2	3	1	1	2
CHP5101.2	3	2	1	2	3	1	1	2
CHP5101.3	3	2	1	2	3	1	1	2
CHP5101.4	3	1	1	1	3	1	1	2
CHP5101.5	3	2	1	2	3	1	1	3
CHP5101.6	3	2	1	2	3	1	1	2

School: SSES		Batch:2025-2027				
Programme:	M.Sc.					
Branch: Che	mistry	Semester III				
1	Course	CHP5102				
	Code					
2	Course	Physical Chemistry Lab III				
	Title					
3	Credits	2				
4	Contact	0-0-4				
	hours					
	Course	Core				
	Status					
5	Course	To learn methods for determination of various physical	properties of			
	Objectives	compounds using spectrophotometric, UV-Vis, FTIR ar	nd kinetic			
		studies.				
6	Course	Student will be able to:				
	Outcome	7. Learn to use instruments like UV/Vis spectropho	tometers and			
		FTIR to determine the composition, charact	eristics, and			
		dissociation constants of different chemicals/sol	utions.			
		8. Determine the parameters from enzyme kinetic r	reaction.			
		9. Explain the phase diagram of a two-component	system.			
		10. Measure the molecular weight of a polymer.				
		11. Correlate the concept of Chemical kinetics and it	s application			
		in measuring rate constant and activation energy				
		12. Design experiments, analyse experimental	results and			
		represent the data through writing.				
7	Course	The course will help students learn the concepts of var	ious physical			
	Description	chemistry techniques from a practical point of view. It	will also help			
		students understand experiments related to spectro	photometric,			
		UV-Vis, and IR spectroscopy, kinetics, viscosity, Phase diagrams				
		of binary mixtures, etc. This course is framed to explain	the methods			
		used in physical experiments.				
8	Outline Sylla	abus	CO			
			mapping			
Unit 1	Practical re	lated to Spectrophotometric analysis	CO1, CO6			
	1. Deter	rmine the dissociation constant of phenolphthalein				
	spect	rophotometrically.				
	2. Calcu	alate the composition of a metal complex using Job's				
	meth	od and the mole ratio method.				
Unit 2	Practical re	lated to UV and IR Spectroscopy	CO1, CO6			
	1. Study	y the effect of solvent on the UV spectra of organic				
	comp	oound (Propanone).				

CHP5102 Advanced Physical Chemistry Lab III

		www.sharda.ac.in	
	 To study the effect of conjugation len structure of a molecule via UV-vis spectroscopy. Determine the concentrations of KMr mixture spectrophotometrically. 	gth on the electronic absorption and IR O_4 and $K_2Cr_2O_7$ in a	
Unit 3	Practical related to Phase diagram		CO3 CO6
	 To determine the eutectic temperature of the eutectic mixture for the naphthale system To determine the phase diagram of a bi benzoic acid) and find the eutect temperature. To investigate the eutectic behavior diphenylamine system. 	e and the composition ene and p-nitrotoluene nary system (urea and ic composition and r of a naphthalene-	
Unit 4	Practical based on Polymer	CO4, CO6	
	 Determination of the molecular weigh intrinsic viscosity measurements. To determine the number-average mole a polymer using osmotic pressure data. 		
Unit 5	Practical based on Kinetics		CO2, CO5
	 To determine the enzyme kinetics pa Vmax) using substrate concentration vs To measure enzyme activity using a column 		
Mode of	Practical/Viva		
examination			
Weightage	СА	ESE	
Distribution	60%	40%	
Text book/s*	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical C	hemistry", S. Chand &	Co.
Other	Vogel's "Textbook of Quantitative Analysis",	Pearson.	
References			

CO/PO	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4
CHP5102.1	3	1	1	1	3	3	2	2
CHP5102.2	3	1	1	1	3	3	2	2
CHP5102.3	3	2	1	2	3	3	2	2
CHP5102.4	3	1	1	1	3	3	2	2
CHP5102.5	3	1	1	1	3	3	1	2
CHP5102.6	3	1	1	1	3	3	2	2

CHP5103 Advanced Inorganic Chemistry Lab III

Scho	ol.	SSES						
Dens	artment	Department of Chemistry & Biochemistry						
Department Drogram:		M.Sc						
Brar	nch·	Chemistry						
1	Course	CHP5103						
-	Code							
2	Course	Advance Inorganic Chemistry Lab III	Advance Inorganic Chemistry Lab III					
_	Title	Auvance morganic Chemistry Lao 111						
3	Credits	2						
4	Con	0-0-4						
	tact							
	Hou							
	rs							
	(L-							
	T-P)							
	Cou	Core						
	rse							
	Stat							
	us							
5	Course	The main objective of this course is:						
	Object	1. To explain various types of titrations.						
	ıve	 2. 10 Illustrate gravimetric analysis. 3. To provide information about analysis of error and compart 						
		5. 10 provide information about analysis of ores and cement.						
		4. To explain analysis of alloys like brass and steel.						
6	Course	5. To learn to synthesize and characterize morganic compot	inus.					
0	Outco	CO1: Analyze brass sample						
	mes	CO2 : Analyze cement sample						
	mes	CO3: Analyze combine sample of alloy and steel						
		CO4 :To carry out the photochemical reactions						
		CO5 To synthesize and characterize transition						
		metal complexes						
		CO6 : Analyze samples of industrial and construction indus	try along with					
		synthesis of transition metal complexes						
7	Course	Various industrial and construction materials are a combination of various						
	Descripti	cripti different substances. In this course the student will learn to analyse such						
	on complex mixture.							
8	Outline syl	labus	CO Mapping					
<u> </u>	Unit 1	Analysis of industrially important materials-I						
	Α	Estimation of copper in a sample of brass	CO1,C06					
	В	Estimation of tin in a sample of brassCO1,C06						

)				
)				
1				
)				
)				
j				
I				
5				
5				
5				
5				
 O.P. Pandey, D.N. Bajpai, S. Giri, "Practical Chemistry", S. Chand & Co 				
ew Age				
۲ [د				

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHP5103.1	3	2	1	1	1	1	3	3
CHP5103.2	3	2	1	2	1	1	3	3
CHP5103.3	3	2	1	1	1	2	3	3
CHP5103.4	3	2	1	1	2	2	3	3
CHP5103.5	3	2	1	1	2	2	2	1
CHP5103.6	3	2	1	1	2	2	2	2

Sch	ool: SSES	Batch: 2025-2027
Pro	gramme:	Current Academic Year: 2025-2026
M. 5	Sc	
Bra	nch:	Semester: I
Che	emistry	
Bra	nch:	2025-26
1	Course	PHT1151
	Code	
2	Course Title	Artificial Intelligence and Machine Learning
3	Credits	2
4	Contact	2-0-0
	Hours	
	(L-T-P)	
	Course	SEC
	Status	
5	Course	This course provides a rigorous introduction to the core principles, algorithms,
	Objective	and mathematical foundations of Artificial Intelligence (AI) and Machine
		Learning (ML). Students will learn the theoretical aspects of AI and ML as
		well as their practical applications in solving complex real-world problems.
6	Course	CO1. To provide a comprehensive understanding of Artificial Intelligence
	Outcomes	(AI) and Machine Learning (ML), their definitions, history, and types (Narrow
		AI vs General AI), and their practical applications across various fields.
		CO2. To introduce and explore key supervised learning algorithms, including
		regression models, classification techniques, and support vector machines
		(SVM), alongside concepts like regularization, decision trees, random forests,
		and neural networks.
		CO3. To cover unsupervised learning techniques such as clustering (k-means,
		hierarchical, DBSCAN, Gaussian Mixture Models) and dimensionality
		reduction methods (PCA, t-SNE, ICA), along with anomaly dESEction
		techniques.
		CO4. To delve into the fundamentals and optimization techniques of neural
		networks and deep learning, including CNNs, RNNs, auto encoders, transfer
		learning, and strategies for overcoming issues like vanishing gradients.
		CO5. To examine ethical considerations in AI and ML, focusing on fairness,
		privacy, security, and accountability in AI systems, as well as discussing the
		social implications and regulatory challenges posed by AI advancements.
		CO6. To explore recent advances in AI and ML, current trends and challenges
		in the industry, and equip students with research skills, including how to read
		and understand academic papers, write research proposals, and ensure
_		reproducibility and research ethics.
7	Course	This course provides a comprehensive introduction to Artificial Intelligence
	Description	(AI) and Machine Learning (ML), covering their theories, algorithms, and
		real-world applications. Topics include supervised and unsupervised learning,

PHT1151 Artificial Intelligence and Machine Learning

		neural networks, deep learning, and optimization te	chniques. Additionally,					
		ethical considerations and recent advances in AI and ML are explored to						
		prepare students for both research and industry challe	nges.					
8		Outline Syllabus	CO Mapping					
	Unit 1	Introduction to AI						
	А	Overview of Artificial Intelligence (AI): Definition						
		and history, Types of AI: Narrow AI vs General AI,						
		AI in practice: Applications in different fields	CO1					
	В	Machine Learning (ML): Definition, scope, and	CO1					
		goals,						
	С	Types of Machine Learning: Supervised Learning,	CO1					
		Unsupervised Learning, Reinforcement Learning						
	Unit 2	Supervised Learning						
	А	Regression Models: Linear Regression, Logistic						
		Regression	CO2					
	В	Classification Models: k-Nearest Neighbors (k-NN)						
		Decision Trees and Random Forests	CO2					
	С	Naive Bayes Classifier	CO2					
	Unit 3	Unsupervised Learning						
	А	Clustering: k-Means Clustering, Hierarchical						
		Clustering, DBSCAN, Gaussian Mixture Models	CO3					
	В	Dimensionality Reduction: Principal Component						
		Analysis (PCA), t-SNE (t-Distributed Stochastic						
		Neighbor Embedding)	CO3					
	С	Independent Component Analysis (ICA), Anomaly						
		DESEction	CO3					
	Unit 4	Neural Networks and Deep Learning						
	А	Introduction to Neural Networks: Perceptron and						
		Multilayer Perceptron's (MLP), Activation						
		Functions, Back propagation and training process	CO4					
	В	Deep Learning: Convolutional Neural Networks	CO4					
		(CNNs)						
	С	Recurrent Neural Networks (RNNs), Auto encoders	CO4					
		and Generative Models						
	T T • 4 F							
	Unit 5	Ethics and Future of AI and ML						
	А	Ethical Considerations in AI: Bias and fairness in AI						
		models, Privacy and security concerns, AI in						
		decision-making: accountability and transparency	CO5					
	D	AI Sofatry Alignment and control problems AI and						
	D	An Salety. Anglinent and control problems, Al and						
		systems and regulations	C05					
1		jayawing and regulations						

				www.snarda.ac.in	
С	Recent Advanc art techniques a	es in AI and and and models, A	ML: Current state-of-the- AI in industry: Trends and		
	challenges, Res	earch Metho	ds in AI and ML:		
	Reading and ur	derstanding a	academic papers, Writing		
	research propos	sals, Research	n ethics and		
	reproducibility			CO6	
Mode of	Theory				
examination					
Weightage	CA	MSE	ESE		
Distribution	25%	25%	50%		
Text book/s*	1. "Patter	rn Recognitio	on and Machine		
	Learnii	ng" by Christ	opher Bishop		
	2. "Deep	Learning" by	Ian Goodfellow,		
	Yoshua	a Bengio, and			
	3. "Artifi	cial Intelliger			
	Approa	ich" by Stuar			
	Norvig				
	4. "Mach	ine Learning:	A Probabilistic		
	Perspec	ctive" by Kev			
Other	1. Course				
References	Ng				
	2. Fast.ai	s deep learnii	ng courses		
	3. Stanfor	d's CS231n	(Convolutional Neural		
	Netwo	rks for Visual	Recognition)		

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
PHT1151.1	1	2	3	3	1	2	1	1
PHT1151.2	2	3	3	3	1	2	1	1
PHT1151.3	1	3	3	3	1	2	1	1
PHT1151.4	2	3	3	3	1	2	1	1
PHT1151.5	1	3	3	3	1	3	2	1
PHT1151.6	2	3	3	3	1	3	2	1

PHP1153 Data Analysis Using Python

School: SSES Batch: 2025-2027

Pro	gramme: M.Sc	Current Academic Year: 2025-2026						
Bra	nch: Chemistry	Semester: I						
1	Course Code	PHP1153						
2	Course Title	Data Analysis Using Python						
3	Credits	2						
4	Contact Hours	0-0-4						
	(L-T-P)							
	Course Status	SEC						
5	Course	This course introduces Master's students to core stat	tistical concepts					
	Objective	and their application using Python. It covers	data analysis,					
		hypothesis testing, regression models, and statistica	l inference with					
		libraries like NumPy, pandas, and statsmodels. Stu	idents will gain					
		practical skills through hands-on coding assignment	s and projects.					
6	Course	CO1. To introduce students to Python librarie	es for statistics					
	Outcomes	(NumPy, pandas, Matplotlib, Seaborn, SciPy, and s	tatsmodels) and					
		enable them to manipulate data structures such as arr	rays, Series, and					
		Data Frames for statistical analysis and visualization	n.					
		CO2. To teach regression analysis techniques, inclu-	ding simple and					
		multiple linear regression, logistic regression, and m	odel evaluation					
		metrics such as R-squared, MSE, MAE, and AUC, I	nelping students					
		build and interpret predictive models.						
		CO3. To provide a solid foundation in time series an	alysis, focusing					
		on key concepts such as trends, seasonality, noise, s	stationarity, and					
		time series decomposition for effective data analysis	8.					
		CO4. To enable students to apply time series fore	casting models,					
		specifically ARIMA and Seasonal ARIMA (SARIM	IA), for making					
		accurate predictions based on historical data, ir	ncluding model					
		selection, fitting, and forecasting using Python's stat	smodels library.					
		CO5. To provide students with the opportunity	to apply the					
		statistical methods and techniques learned througho	out the course to					
		analyze a real-world dataset, including data cleani	ng, exploratory					
		data analysis (EDA), and statistical inference.						
		CO6. To develop students' ability to present their fi	ndings from the					
		analysis, effectively communicating their results an	d insights using					
		appropriate statistical tools and Python libraries.	0 0					
7	Course	This course covers statistical methods and their an	oplication using					
	Description	Python, focusing on regression analysis, time series	forecasting, and					
	1	real-world data analysis. Students will learn to	work with kev					
		Python libraries for data manipulation and visual	alization, apply					
		forecasting models like ARIMA and SARIMA, and	d gain hands-on					
		experience through a capstone project that involve	s data cleaning,					
		analysis, and presentation of findings.						
8		Outline Syllabus	CO Mapping					

Unit 1	Introduction to Python for Statistics						
А	Python Libraries for Statistics: NumPy, Pandas,	CO1					
В	Data Structures and Manipulation: Arrays, Series, DataFrames	CO1					
С	Matplotlib, Seaborn, SciPy, statsmodels						
Unit 2	Regression Analysis						
А	Simple Linear Regression: Theory, assumptions, model fitting in Python using statsmodels	CO2					
В	Multiple Linear Regression: Model interpretation, multicollinearity, regularization	CO2					
С	Polynomial Regression: Fitting and evaluating higher-degree models, fitting of custom equation	CO2					
Unit 3	Time Series Analysis						
А	Time Series Basics: Trends, seasonality, and noise	CO3					
В	Time Series Decomposition: Trend, seasonal	CO3					
С	Residual components	CO3					
Unit 4	Time Series Forecasting Models						
A	ARIMA Model: Concept and components (AR, I, MA):Model selection: Autocorrelation Function (ACF)	CO4					
В	Fitting and forecasting with ARIMA in statsmo						
С	Seasonal ARIMA (SARIMA): Extension of ARIMA for seasonal data, Identifying seasonal components (SARIMA model structure),SARIMA model fitting and forecasting	CO4					
Unit 5	Data Analysis Project						
А	Capstone Project: Students will apply the statistical methods.	CO5					
В	Students will apply Python tools learned throughout the course to analyze a real-world dataset.	CO5					
С	The project will require data cleaning, exploratory data analysis (EDA), statistical inference, and the presentation of findings.	CO6					
Mode of examination	Practical						
Weightage	CA ESE						
Distribution	60 40						
Text book/s*	 "Python for Data Analysis" by Wes McKinney "Statistics for Business and Economics" by Paul Newbold, William L. Carletta, and Theresa L. Miller 						

	3.	"Practical Statistics for Data Scientists" by	
		PESEr Bruce and Andrew Bruce	
	4.	"Machine Learning: A Probabilistic	
		Perspective" by Kevin P. Murphy	
Other	1.	Python Documentation for NumPy,	
References		pandas, Matplotlib, SciPy, and statsmodels	
	2.	Kaggle: Practical datasets and tutorials for	
		applying statistics to real-world problems	
		with Python.	
		-	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
PHP1153.1	1	2	3	2	1	2	1	1
PHP1153.2	2	3	3	3	1	2	1	1
PHP1153.3	1	2	3	3	1	2	1	1
PHP1153.4	2	3	3	3	1	2	1	1
PHP1153.5	1	2	2	2	3	3	2	1
PHP1153.6	2	2	3	2	3	3	2	1

CHP5104 Instrumental Methods of Analysis Lab

School: SSES	Batch:2025-27
Programme: M.Sc.	Current Academic Year: 2025-26
Branch: Chemistry	Semester: III

1	Course Code	CHP5104					
2	Course Title	Instrumental Methods of Analysis Lab					
3	Credits	2					
4	Contact Hours	0-0-4					
	(L-T-P)						
	Course Status	DSE					
5	Course Objective	1. To demonstrate AAS for determining the metal ion of	concentrations				
	-	2. To explain physicochemical and biochemical proper	ties of				
		environmental					
		and biological samples					
		. To interpret concept of CV					
		4. To provide demo of Column chromatography and H	PLC.				
		5. To explain interpretation of analytical data.					
6	Course Outcomes	After doing this course the student should be able to					
		CO1: Handle AAS to determine metal concentration					
		CO2. Evaluin working of Conductometer UV/Vis on	actuanhatamatan				
		CO2: A nalyza complex using concent of yeltermetry	ectrophotometer				
		CO3. Analyze samples using concept of voltaminetry	y and				
		HDI C	y and				
		CO5: Gain the practical knowledge of different analyt	tical				
		tochniques and data interpretation	lical				
		COG: Apply the skills in industries					
7	Course	Analysis of food water and soil samples for purity and	chemical				
'	Description	composition	enenneur				
	Description						
8	Outline syllabus		CO Mapping				
	Unit 1	To determine the concentration of different dyes and					
		metal ions in given sample using colorimeter.					
		To compare the lambda max of different organic	CO1, CO6				
		sample using UV and their quantification in given					
		sample.					
	Unit 2	To Analyse the physicochemical properties of					
		To Analyse the Biochemical properties of plant	CO2 CO6				
		leaves	C02, C00				
		Viva					
	Unit 3	To understand the working of Cyclic voltammogram					
		using K3[Fe(CN)6]					
		Cu and Zn from tap water by differential pulse	CO3, CO6				
		polarography and by square wave polarography.					
		Vitamin-C analysis in given sample using cyclic					
	.	voltammetry.					
	Unit 4	To prepare chromatography column and perform the					
		separation of mixture of Organic Compounds.					

	To quantif HPLC.	fy the caffeine in given samples of tea using	CO4, CO6			
Unit 5	To prepare Zn and Fe	Γο prepare the standard calibration graphs of Pb, Cd, Zn and Fe by AAS				
	To perform using AAS	Γο perform digestions of metal samples for analysis using AAS.				
	To determ AAS.	CO5, CO6				
Mode of examination	Practical/V	Viva				
Weightage	CA	ESE				
Distribution	60	40				

Text book/s*	J. Mendham, R. C. Denney, J.D. Barnes and M.Thomas, 2000. Vogel's textbook of quantitative chemical analysis. prentice hall.
Other References	Harris, D.C. 2016. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHP5104.1	3	1	2	2	1	3	3	2
CHP5104.2	3	1	2	2	1	3	3	2
CHP5104.3	3	1	2	2	1	3	3	2
CHP5104.4	3	2	2	2	1	3	3	2
CHP5104.5	3	1	2	2	1	3	3	2
CHP5104.6	3	1	2	2	1	3	3	2

CHP5106 : Advanced Organic Chemistry Lab IV

Scho	ool: SSBSR	Batch:2025-27					
Prog	gramme: M.Sc	Current Academic Year: 2025-26					
Bra	nch: Chemistry	Semester IV					
1	Course Code	CHP5106					
2	Course Title	Advanced Organic Chemistry Lab IV					
3	Credits	2					
4	Contact Hours (L-T-P)	0-0-4					
	Course Status	Compulsory					
5	Course Objective	To learn about types of titration and estimation of e and learn the techniques of jobs method and character complexes	lements of alloys, ization of metal				
6	Course Outcomes	After doing this course the student should be able to CO1: Estimate elements CO2: Analyse ores CO3:Estimate elements in alloys. CO4: Estimate elements colorimetrically. CO50synthesize metal complexes CO6: Analyze elements and ores and prepare metal con	nplexes.				
7	Course Description	The course aims to appraise the students to learn estimate elements in ores and alloys. It will enable st prepare metal complexes	The course aims to appraise the students to learn methods of estimate elements in ores and alloys. It will enable students to prepare metal complexes				
8	Outline syllabus		CO Mapping				
	Unit 1	Practical based on active pharmaceutical ingredients					
	A & B	Separation of active single component and mixture of components from pharmaceutical tablets; identification of components by m.p., functional groups and spectral data	CO1, CO2,CO6				
	С	Quantitative estimation of the components in pharmaceutical tablets					
	Unit 2	Practical related to reagents					
	A & B	Preparation of Grignard Reagent and it's reaction	CO3, CO6				
	С	Preparation of Wittig reagent and it's reaction					
	Unit 3	Multi-step synthesis of Organic Compounds					
	А	Advanced organic synthesis :Resorcinol \rightarrow 7- Hydroxy-4-methylcoumarin \rightarrow	CO4, CO6				

	7-Acetoxy						
	methylcou	$1 \text{marin} \rightarrow 4-\text{M}$	ethyl-7-hydroxy-8-				
	acetylcou	marin					
В	Advanced	organic synthe	esis :Hydroguinone \rightarrow				
_	Hydroquii	none Diacetate	$\rightarrow 2.5$				
	-Dihvdrox	-Dihydroxyacetophenone $\rightarrow 2, 5$					
	Dibenzoxy	Dibenzoxyacetophenone					
С	Direct Ox	idative esterific	cation of Aldehyde (using	CO5. CO6			
•	Iodine and	l Alcohol).	······································				
Unit 4	Green Sy	nthesis of Org	anic compounds(any 2)				
A, B & C	1. The Ald 2.ELECTI	CO4, CO6					
	REACTIC	DN-I (Nitration	of phenol)				
	3.COENZ	YME CATAL	YZED BENZOIN				
	CONDEN	SATION (Thia	amine hydrochloride				
	catalyzed	synthesis of be	nzoin)				
	4.ACETY	LATION OF P	RIMARY AMINE				
	(Preparatio	(Preparation of acetanilide)					
	5.RADICA	AL COUPLING	J REACTION (Preparation				
 TT 1 . A	of I, I-bis	-2-naphthol)					
Unit 5	Practical	based to synth	esis and characterization				
	of metal c	complexes.					
Α	Applicatio	on of column cl	nromatography	CO5, CO6			
В							
С							
Mode of examination	Practical/V						
Weightage	CA	CE	ETE				
Distribution	25%	25%	50%				

Text book/s*	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical Chemistry", S. Chand & Co.
Other References	Vogel's "Textbook of quantitative Analysis", Pearson.
	https://faculty.ksu.edu.sa/sites/default/files/green-chem.pdf

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHP5106.1	3	1	1	1	1	1	3	1
CHP5106.2	3	1	1	1	1	2	3	1
CHP5106.3	3	1	1	1	2	2	3	3
CHP5106.4	3	2	1	1	2	2	3	3
CHP5106.5	3	1	1	1	2	1	3	3
CHP5106.6	3	1	1	1	1	2	3	2

CHP5108 Advanced Physical Chemistry Lab IV

School: SSES	8	Batch:2025-2027
Programme:	M.Sc.	
Branch: Chemistry		Semester
1	Course	CHP5108
	Code	
2	Course	Advanced Physical Chemistry Lab IV
	Title	
3	Credits	2
4	Contact	0-0-3
	hours	
	Course Status	Compulsory
5	Course Objectives	The objective of the Advanced Physical Chemistry Lab IV course is to equip students with hands-on experience in applying physicochemical techniques to study complex chemical systems. The course aims to develop a comprehensive understanding of chemical kinetics through the oxidation of alcohols, spectrophotometric analysis of acid-base indicators, and UV-Visible spectroscopy for determining dissociation constants. It further introduces potentiometric and conductometric titrations for accurate analysis of redox reactions, halide ions, and acid-base equilibria, along with complexometric and precipitation reactions. Students will also gain skills in pH-metric titrations for quantifying components in commercial samples like washing soda, determining molecular weights of macromolecules via viscometry, and exploring semiconductor properties through band-gap determination. Overall, the course emphasizes analytical thinking, experimental precision, and interpretation of physicochemical data.
6	Course Outcome	 Student will be able to: 1. Apply principles of chemical kinetics to determine the order, rate constant, activation energy, and propose mechanisms for oxidation reactions (e.g., alcohol oxidation by potassium dichromate)
		 Utilize spectrophotometric and UV-Visible techniques to determine dissociation constants of acid-base indicators and weak acids across different pH conditions. Perform potentiometric titrations to accurately determine the concentration of redox-active species and

	halide ions using standard so	olutions and
	electrochemical methods	interiority and
	4 Conduct conductometric titrations to st	udy acid-base
	complexometric and precipitation t	reactions and
	interpret conductivity changes to identi	fy equivalence
	points	ry equivalence
	5 Employ pH matric titrations to	astimata tha
	5. Employ pri-metric infations to	Or in washing
	composition of basic saits (e.g., Na2C	J ³ III washing
	Social, enhancing understanding of acid-	base equilibria.
	6. Determine physical properties such as	the molecular
	weight of macromolecules by viscometry	/ and band-gap
7	energy of semiconductors using spectros	copic analysis.
/	Course Advanced Physical Chemistry Lab IV is desig	ned to provide
	Description students with practical exposure to experiment	ital techniques
	that reinforce theoretical concepts in physical	chemistry. The
	course focuses on a diverse range of topics, inc	luding reaction
	kinetics, spectrophotometry, electrochemical a	halysis, and the
	study of the physicochemical properties	of substances.
	Through experiments such as oxidation kinetic	s, colorimetric
	and UV-Visible analysis of dissociation	on equilibria,
	potentiometric and conductometric titratio	ns, pH-metric
	analysis, viscometry, and band-gap determin	ation, students
	gain hands-on experience with essenti	al laboratory
	instruments and analytical methods. These ex	xperiments are
	aimed at enhancing students' abilities to colle	ct and analyze
	data, interpret results, and apply fundamenta	l principles to
	real-world chemical problems. The course	outcomes are
	tailored to build competencies in both classic	al and modern
	physical chemistry techniques, preparing stude	ats for research
	and industry-oriented roles in chemistry and al	lied sciences.
8	Outline Syllabus	CO
		mapping
Unit 1	Experimental Studies in Chemical Kinetics and Catalysis	CO1, CO6
	1. Study the kinetics of oxidation of isopropyl alcohol	\checkmark
	ethanol by potassium dichromate.	
	2. Determine the order, rate constant, energy of activatio	n
	and possible mechanism for the reaction.	
	3. Study the kinetics of the acid-catalyzed iodination of	f
	acetone.	
Unit 2	Spectrophotometric Determination of Acid-Base Equilibri	a CO1, CO6
	1. Determine the dissociation constant of an indicate	r
	(methyl red) colourimetrically	
	2. Determination of pKa of p-Nitrophenol (in aqueous of	r
	aqueous-ethanol medium)	

Unit 3	Potentiometric Analysis of Redox and Precipitation	CO3, CO6				
	Reactions					
	1. Determination of ferrous ammonium sulfate					
	potentiometrically with standard ceric sulfate solution					
	(Direct and back titration).					
	2. Determination of concentration of halide ion(s) in the					
	given solution potentiometrically.					
Unit 4	Conductometric Titrations and Ionic Interactions	CO4, CO6				
	1. Conductometric titration of (I) strong acid, monobasic					
	weak acid or polybasic weak acid with strong base -					
	zinc with EDTA					
	2. Conductometric titration of (I) strong acid, monobasic					
	weak acid or polybasic weak acid with strong base- KCl					
	vs AgNO3					
Unit 5	Physicochemical Characterization Techniques	CO5, CO6				
	1. Determination of Na2CO3 content (in %) of washing					
	soda using a pH meter					
	2. The determination of the molecular weight of a					
	macromolecule by viscometry.					
	3. Determination of band-gap of a semiconductor					
Mode of	Practical/Viva	•				
examination						
Weightage	CA ESE					
Distribution	60% 50%					
Text	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical Chemistry", S. Chand					
book/s*						
Other	Vogel's "Textbook of Quantitative Analysis", Pearson.					
References						

CO/PO	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4
CHP5108.1	3	1	1	1	3	3	2	2
CHP5108.2	3	1	1	1	3	3	2	2
CHP5108.3	3	2	1	2	3	3	2	2
CHP5108.4	3	1	1	1	3	3	2	2
CHP5108.5	3	1	1	1	3	3	1	2
CHP5108.6	3	1	1	1	3	3	2	2

CHP5107 : Advanced	Inorganic	Chemistry	Lab IV
--------------------	-----------	-----------	--------

Scho	ool: SSES	Batch:2025-27		
Prog	gramme: M.Sc	Current Academic Year: 2025-26		
Bra	nch: Chemistry	Semester IV		
1	Course Code	CHP5107		
2	Course Title	Advanced Inorganic Chemistry Lab IV		
3	Credits	2		
4	Contact Hours (L-T-P)	0-0-4		
	Course Status	Compulsory		
5	Course Objective	To learn about types of titration and estimation of each and learn the techniques of jobs method and character complexes	lements of alloys, ization of metal	
6	Course Outcomes	After doing this course the student should be able to CO1: Estimate elements CO2: Analyse ores CO3:Estimate elements in alloys. CO4: Estimate elements colorimetrically. CO50synthesize metal complexes CO6: Analyze elements and ores and prepare metal cor	nplexes.	
7	Course Description	The course aims to appraise the students to learn estimate elements in ores and alloys. It will enable st prepare metal complexes	methods of udents to	
8	Outline syllabus		CO Mapping	
-	Unit 1	Practical based on Estimation of elements		
	А	Estimation of Iron	CO1, CO2,CO6	
	В	Estimation of Manganese		
	С	Estimation of Copper		
	Unit 2	Practical related to Analysis of ores		
	А	Analysis of Dolomite	CO3, CO6	
	В	Analysis of Pyrulosite		
	С	Analysis of Galena		
	Unit 3	Practical related to analysis of alloys		
	A	Estimation of lead in solder	CO4, CO6	
	В	Estimation of copper and zinc in brass		
	C	Estimation of Chromium and Nickel in stainless steel		
	Unit 4	Practical related to Colorimetric analysis		
	А	Colorimetric estimation of Iron	CO5, CO6	

		WWW.sharter date	with the second s
В	Colorimetric estimation of	of Nickel	
С	Colorimetric estimation of	of Manganese	
Unit 5	Practical based to synth	esis and characterization	
	of metal complexes.		
Α	Synthesis and characteri	zation of	CO6
	Tris(ethylenediamine)cobalt(III) chloride		CO6
В	Synthesis and characterization of Diisothiocyanato		
	upyriane manganese		CO6
С	Synthesis and characteri	zation of	
C	Bis(acetylacetonato)copper(II)		
Mode of	Practical/Viva		
examination			
Weightage	CA	ESE	
Distribution	60%	40%	
	B C Unit 5 A B B C Mode of examination Weightage Distribution	B CColorimetric estimation of Colorimetric estimation of Colorimetric estimation of Colorimetric estimation of of metal complexes.APractical based to synth of metal complexes.ASynthesis and characteri Tris(ethylenediamine)colBSynthesis and characteri dipyridine manganeseCSynthesis and characteri Bis(acetylacetonato)coppMode of examinationPractical/VivaWeightage DistributionCA	B CColorimetric estimation of Nickel Colorimetric estimation of ManganeseUnit 5Practical based to synthesis and characterization of metal complexes.ASynthesis and characterization of Tris(ethylenediamine)cobalt(III) chlorideBSynthesis and characterization of Diisothiocyanato dipyridine manganeseCSynthesis and characterization of Bis(acetylacetonato)copper(II)Mode of examinationPractical/VivaWeightage DistributionCAESE00%40%

Text book/s*	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical Chemistry", S. Chand & Co.
Other References	Vogel's "Textbook of quantitative Analysis", Pearson.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CHT5107.1	3	1	1	1	1	1	3	1
CHT5107.2	3	1	1	1	1	2	3	1
CHT5107.3	3	1	1	1	2	2	3	3
CHT5103.4	3	2	1	1	2	2	3	3
CHT5103.5	3	1	1	1	2	1	3	3
CHT5103.6	3	1	1	1	1	2	3	2

Scho	ool: SSES	Batch: 2025-2027		
Prog	ram: M.Sc.	Current Academic Year: 2025-26		
Brai	ich: Chemistry	Semester: III		
1	Course Code	CHT5108		
2	Course Title	Research Methodology and Intellectual Property Rights		
3	Credits	1		
4	Contact hours	2-0-0		
	Course Status	Compulsory SEC Theory		
5	Course	The course aims to equip students with the knowledge and skills to conduct		
	Objectives	research effectively and understand the importance of Intellect	tual Property	
	-	Rights (IPR), including how to protect and utilize them.		
6	Course	CO1: Know about types of publications, types of journals with th	eir indexing	
	Outcomes	& metrics, publication houses and academic social networking w	vebsites, and	
		able to search relevant literatures to find research problems, gaps	in research,	
		research objectives & design research methodology.		
		CO2: Identify the keywords for the search of different kinds of li	teratures on	
		various search engines and get to know about various softwa	re's for the	
		management of citations and references		
		CO3: Learn about different components of research papers, rev	view articles	
		and softwares for formatting of papers, preparation of posters and	slides.	
		CO4: Understand basics of intellectual property rights.		
		COS: To learn about copyright for their innovative works.		
		writing communication and research othics	aren proposar	
7	Course	This course will give an overview of basic concepts employed in gu	antitativaand	
/	Description	qualitative research. It focuses on ethical issues associated with res	earch writing	
	Description	and publication. Also describes the use of various computer	applications	
		required for research	applications	
8	Outline Syllabu		CO	
U	Outline Synusu	a.y	manning	
	Unit 1	Introduction to Research		
	A	Meaning and importance of Research – Types of Research –	CO1. CO6	
		Selection and formulation of Research	,	
	В	Developing a Research Plan – Exploration, Description, Diagnosis,	CO1, CO6	
		Experimentation, Determining Experimental and Sample Designs	,	
	С	Research Methods: Scientific method vs Arbitrary Method, Logical	CO1, CO6	
		Scientific Methods: Deductive, Inductive, Deductive-Inductive,		
		attern of Deductive – Inductive logical process – Different types		
		f inductive logical methods.		
	Unit 2	Importance of literature survey		
	A	Planning a literature search, Identifying key concepts and key	CO2, CO6	
		words, locating relevant literature, Reliability of a source.		
	В	Introduction to literature review process, types of literature review:	CO2, CO6	
		descriptive, systematic, state-of-the-art, etc. Literature review		
		using different platforms like Google, PubMed, science direct,		

CHT5108 Research Methodology and Intellectual Property Rights

	Elsevier, ACS			
С	Research ethics with respect to science and research, scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP)			CO2, CO6
 Unit 3	Academic Wr	iting & Reference Mana	gement	
A	Structure and Significance	Structure and components of scientific reports, types of report, Significance		
В	Different steps in the preparation, layout, structure and language of typical reports, illustrations and tables, bibliography			CO3, CO6
C	Citation styles: Harvard, IEEE, Zotero, Endnote	CO3, CO6		
Unit 4	Intellectual Pr	operty Rights		
А	Introduction to and incorporeal	intellectual property rig property	hts, concept of corporeal	CO4, CO6
В	Types of intelle act 1970 – ame and non-patenta	ectual property rights, Intr ndments of 1999, 2000, 2 able inventions, GMO pat	oduction to patents, patent 2002 and 2005, patentable ents in India and abroad	CO4, CO6
С	IP Rights and seeds/plants in lapsed patents, of patents	IP Rights and regulatory concerns for genetically modified seeds/plants in India, patent registration process, restoration of lapsed patents, surrender and revocation of patents, infringement of patents		
Unit 5	Patents, copyrights, and trademarks			
A	Origin, Meaning of Patent, Types, Inventions which are not patentable, Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Payoastion of Patents, Infringement, Pamadian & Panaltias			CO5, CO6
В		, 8, ,		CO5, CO6
С	Indian copyrigh trade mark a International re (WIPO, WTO,	t: definition, genesis, cop nd trademark laws-nat egime related to IPR, T GATTA)	yright laws etc., concept of ional and international, TRIPS and other treaties	CO5, CO6
Mode of examination	Theory			
Weightage	CA	MSE	ESE	
Distribution	25%	25%	50%	
Text book/s*	 Kothari, C. R. (2004). Research Methodology: Methods and Techniques. India: New Age International (P) Limited. Thomas, C. G. (2021). Research Methodology and Scientific Writing. Germany: Springer International Publishing. Nithyananda, K V. (2019). Intellectual Property Pights: Protection and Management India IN: 			
	Cengage			
Other References	1. Mukher Methode and Met 2. Ramakr Kumar,	jee, S. P. (2019). A G ology: An Overview of R hods. United States: CRC ishna, B., Anil H. S. (2017). Fundamenta	uide to Research esearch Problems, Tasks Press.	

	Property Rights: For Students, Industrialist and Patent	
	Lawyers. India: Notion Press.	

CO/PO/PSO	PO1	PO2	PO3	PO4	PO5	PSO6	PSO1	PSO2
CHT5108.1	3	3	2	2	1	3	2	2
CHT5108.2	3	2	2	2	1	2	2	2
CHT5108.3	2	2	2	2	1	1	2	1
CHT5108.4	2	1	2	2	1	1	2	2
CHT5108.5	2	2	2	2	1	1	2	2
CHT5108.6	2	1	2	2	1	1	2	2

CHR4101 Project

Schoo	ol: SSES	Batch:2025-27			
Progr	ramme: M.	Current Academic Year:2025-26			
Sc.					
Branc	ch:	Semester:04			
Chem	istry				
1	Course	CHR4101			
	Code				
2	Course	Project			
2	Title				
3	Credits	4			
4	Contact	0-0-8			
	Hours (L-				
_	T-P)		DCE	Dutut	
5	Course	Qualifying	DSE	Project	
6	Туре	This course will help to ansure that students are able t			
Ū		 Demonstrate advanced knowledge of the role 	of scientific	c research.	
		Analyze contribution to the disciplines related	d to the diff	erent fields of	
		science and technology.			
	Course	• Able to take out optimal research methods by	the content		
	Objective	• Understands methodology by the character of	cognitive a	ctivity	
		• Aim of the scientific task			
7		The student will be able to			
		CO1: Understand the main rules of handling scientific	c and techni	ical literature	
		CO2: To be able to understand different types of scien	ntific resear	ch and hypothesis.	
		CO3: Understand the advanced level of classification	of methods	s by the level of	
		investigation			
	Course	CO4: Extract the line of approach to overcome the res	search gap.		
	Outcomes	CO5: Understand to improve their skills in establishir	ng relations	between complex	
		topics.			
		CO6: To acquire an overview of important chai	racteristics	within technological	
8	Course	This course will deepen the student's understanding	of research	in general and basic	
0	Description	science and technological research in particular. The	students are	expected to apply	
	2 comption	knowledge of methodology, concepts, philosophical r	problems. a	nd creative manning	
		in this course to their own fields of exploration to get	optimal res	ults.	
	1		*		

.

Schoo	ol: SSES	Batch 2025-27		
Progr	ramme: Master of	Current Academic year 2025-26		
Scien	ce			
Brane	ch: Chemistry	Semester: III		
1	Course Code	CHR5101		
2	Course Title	Dissertation I(RBL-1)		
3	Credits	6		
4	Contact Hours	0-0-12		
	(L-T-P)			
5	Course Type		DSE	Project
6		The aim of the course is to give the research project within the field	e students an op	portunity to perform a
	Course	of chemistry under supervision acc	cording to an inc	lividual study plan, to
	Objective	summarize the results in a		
		research report and present the res	ults of the proje	ct.
7		CO1 : apply experimental methods	s to solve a giver	n scientific task,
		CO2 : collect data for evaluation a	and for statistical	l treatment, if relevant,
		CO3 : Show a professional attitud	e regarding time	planning, collaboration,
		and the link between theoretical and practical knowledge,		
		CO4 : reflect upon and discuss the relevance of the work in written and oral		
	Course	form		
	Outcomes	CO5 : document results by writing	g a research repo	ort,
		CO6: show independence, critica	l and creative th	inking

CHR5102 Dissertation I(RBL-1)

School	I: SSES	Batch:2025-27		
Progra	amme: M.Sc.	Current Academic Year:2025-26		
Brone	h. Chamistry	Semester: III		
		Substat		
1	Course Code	CHR5102		
2	Course Title	Dissertation I(RBL-1)		
3	Credits	2		
4	Contact	0-0-4		
	Hours (L-T-			
	P)			
5	Course Type	DSE Compulsory Project		
6		1. Demonstrate an ability to plan a research project, such as is required in a research		
		proposal prior to the launch of their work		
		2. Demonstrate an ability to comply with ethical, safety, and documentation processes		
	G	appropriate to their project.		
	Course	3. Demonstrate expert knowledge in the subject of their research project, such as		
	Objective	through an integrated literature survey		
		4. Demonstrate expert knowledge in the research methods appropriate to generating reliable data for their research questions		
		5. Demonstrate the ability to project manage and to make constructive use of expertise		
		associated with their project, while working as an independent learner Demonstrate an		
		ability to relate their original data to existing literature, or to create a novel synthesis		
		of existing materials		
		6. Demonstrate an ability to assemble their findings into a substantial piece of writing		
		that presents a clear thesis and a cohesive, evidence-based argument		
7		CO1: apply experimental methods to solve a given scientific task,		
	G	CO2: collect data for evaluation and for statistical treatment, if relevant,		
	Course	CO3: Show a professional attitude regarding time planning, collaboration, and the		
	Outcomes	link between theoretical and practical knowledge		
		CO4: reflect upon and discuss the relevance of the work in written and oral form		
		CO5: document results by writing a research report		
		CO6: show independence, critical and creative thinking		

School: SSES		Batch:2025-2027
Programme: M.Sc.		Current Academic Year: 2024-25
Branch:Chemistry		Semester III
1	Course Code	CHR5103
2	Course Title	Dissertation I(RBL-1)
3	Credits	16
4	Contact Hours	(0-0-32)
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	Develop knowledge of a specific area of specialization.
		Develop research skills in project writing and oral presentation.
6	Course Outcomes	CO1: Understand the objectives of research.
		CO2: Acquire the methodology of scientific work.
		CO3: Understand the reason behind scientific research.
		CO4: Prepare the model of research work.
		CO5: Prepare the roadmap for research work.
		CO6: Prepare students to face challenges in solving unsolved problems.
7	Course Description	This course is designed for students to study topics not offered in regularly
		available courses. This course encourages reading a field of special interest and
		gain in-depth update knowledge about it.

School: SSES		Batch:2025-2027
Programme: M. Sc.		Current Academic Year: 2024-25
Branch:Chemistry		Semester IV
1	Course Code	CHR5104
2	Course Title	Dissertation II(RBL-2)
3	Credits	14
4	Contact Hours (L-T-P)	(0-0-28)
	Course Status	Compulsory
5	Course Objective	 This course will help to ensure that students are able to demonstrate advanced knowledge of the role of science and of its contribution to the disciplines related to the field of technology. Critically analyze and interpret the results of scientific and technological research, and evaluate its limits and possibilities with respect to knowledge and its implementation.
6	Course Outcomes	 CO1: To be able to identify and describe methods within the philosophy of science in general. CO2: Extract line of approach to overcome the research gap. CO3: To acquire an overview of important characteristics within technological research and development. CO4: To identify the relation between pure science on the one hand and applied research on the other, the relation between research and practice, and the relation between technology and society. CO5: To demonstrate an understanding of the limits and possibilities for research in science and technology. CO6: To acquire skills of presenting arguments and results of scientific and technological research.
7	Course Description	This course will deepen the student's understanding of research in general, and with basic science and technological research in particular. The students are expected to apply knowledge of methodology, concepts, philosophical problems and arguments presented in this course to their own fields of exploration.

School: SSES		Batch :2025-27	
Programme: M.Sc.			
Branch: Chemistry		Semester: IV	
1	Course Code	CHR5105	
2	Course Title	Minor project/Term paper(Dissertation II or RBL-2)	
3	Credits	3	
4	Contact Hours (L-T-P)	0-0-6	
	Course Status	Compulsory	
5	Course Objective	 To enhance the practical knowledge and result analysis skills. To enable the students experience a real-life problem solving under the supervision of faculty members. To prepare the students perform functions that demand higher competence in national/international organizations. To train the students in scientific research. To help the students find meaning in life by broadening their field of vision. Develop deep knowledge of a specific area of specialization by literature search. 	
6	Course Outcomes	 CO1: Able to do literature search, develop deeper interest / inquisitiveness in chemistry and interdisciplinary subjects. CO2: Able to prepare stock solutions, buffers etc . CO3: Understand the basics of chemistry and become familiar with qualitative and qualitative estimations. CO4: Able to understand the chemistry of reactions. CO5: Able to analyse the results and understand the chemical reactions involved. CO6: Enhance the practical skills. 	
7	Course	This course provides the applied knowledge of chemistry and gives	
	Description	confidence and a solid foundation for future learning.	

School: SSES		Batch :2025-27
Programme: M.Sc.		
Branch: Chemistry		Semester: IV
1	Course Code	CHR5106
2	Course Title	Dissertation II(RBL-2)
3	Credits	6
4	Contact Hours (L-T-P)	0-0-12
	Course Status	Compulsory
5	Course Objective	 1.To enhance the practical knowledge and result analysis skills. 2.To enable the students experience a real-life problem solving under the supervision of faculty members. 3.To prepare the students perform functions that demand higher compESEnce in national/international organizations. 4.To train the students in scientific research. 5.Develop research/ experimentation skills as well as enhancing project writing and oral presentation skills 6.Inculcate team spirit and time management.
6	Course Outcomes	 CO1: Able to use lab instruments independently. CO2:Cultivate the understanding of problem, study design, methodology/ experimentation, significance of reproducibility of results. CO3:Understanding of ethics of science and research for supporting higher studies. CO4:Learn effective project organizational skills along with discussions, result interpretation and paper writing. CO5: Able to analyse the results and understand the chemical reactions involved. CO6: Enhance the practical skills.
7 Course This course will help to develop knowledge and research sk		This course will help to develop knowledge and research skills applicable
	Description	to a career in chemistry.

School: SSFS		Batch: 2025-27	
Program. M Sc		Current Academic Vear: 2025-26	
Branch: Chamister		Connector: I	
1 Course Code		CHP4104	
2	Course Code	Cill 4104 Desia Chamietry Softwares	
2	Course Thie		
3	Create et Herre		
4	(L T D)	0-0-2	
	(L-I-P)	Com	
5	Course Type	Core	()
3	Course	Students will gain knowledge and skills on the various important	software tools
	Objective	used in chemistry. They will learn now to plot a graph in Mi	icrosoft Excel,
		origin, draw, and visualize the chemical structure in ChemDraw,	origin, CCDC,
		Students will know of	•
		Students will know of:	
		• Drawing the graph in Microsoft Excel, Origin	D · ·
		• Drawing and visualizing the chemical structure in Cher	nDraw, origin,
6		• Students will also develop presentation skills in this cour	rse.
6	Course	CO1: The student will be able to understand the basis of Micros	off Excel and
Outcomes the tool used in the plotting of graphs and calculations.		the tool used in the plotting of graphs and calculations.	
		CO2: The student will be able to learn how to draw structures in	chem draw
			··· C 1
		CO3: The student will be able to learn the basis of origin and pla	otting of graph
		in origin	
		cO4: The student will be able to learn how to visualize and drav	w any
		CO5. The student will be able to goin browledge of the immediate	and of
		cos: The student will be able to gain knowledge of the importa	ance of
		COS. The student will be able to goin knowledge of the import	ant coftword
		COO: The student will be able to gain knowledge of the importa-	ant software
7	Course	This course introduces the most frequent and important software	and tools in
/	Description	ourse This course introduces the most frequent and important software and	
	Description	Event and DowerPoint. Students will be completed will be	viicrosoft
		Excel, and FowerFond. Students will be capable of utilizing this	soltware
0	Outling gyllabus	knowledge during their research and higher studies.	CO Manning
0	Unit 1	Introduction to Microsoft Eval	CO Mapping
		Download Microsoft Office 265 and Excel Program and view	CO1 CO6
	A	the basics of Excel and Excel spreadsheats for data entry and	01,000
		create simple formulas in an Excel spreadsheet to analyze	
		data	
	B	Untroduction to Excel Charting, Chart and Graph Editing	CO1 CO6
	D	Formatting Chart elements, Handling Graph in Chart	CO1, CO0
		i ormatting Chart cicilicitis, franching Oraph in Chart	
	С	Application of Excel in chemistry with a few examples	CO1 CO6
	Unit ?	ChemDraw and ChemSketch	
		Introduction of ChemDraw chemical name to structure	CO2 CO6
	Λ	conversion chemical structure to name conversion	CO_2, CO_0
	1		

	· · · · · · · · · · · · · · · · · · ·	
В	NMR spectrum simulation, structure clean up, 3D chemical structure.	CO2, CO6
С	Introduction to ChemSketch, creating and modifying images of chemical structures, writing and performing chemical equations and diagrams.	CO2, CO6
Unit 3	Origin lab: Origin and OriginPro Masterclass	
А	Downloading and installing the origin software, Learning the	CO3, CO6
	basic interface of Origin and OriginPro,	
В	Scatter plot, Line plot, customizing graphs to presentation	CO3, CO6
	quality levels, How to plot columns, bar, and stacked plots.	
С	Functional plots Statistics like cross-tabulation, chi-square	CO3, CO6
	analysis, etc. Mathematics on Data Linear and non-linear fitting	
	with built-in models	
Unit 4	Software to Visualize the Structure	
А	Mercury 4.0: from visualization to analysis, design, and	CO4, CO6
	prediction, Three-dimensional visualization of X-ray crystal	
	structure.	
В	ORTEP: Three-dimensional visualization of the X-ray crystal	CO4, CO6
	structure of organic and inorganic compounds	
С	CSD(CCDC): Deposition method of Three-dimensional of X-	CO4, CO6
	ray crystal structure of organic and inorganic compounds	
Unit 5	Software to Manage references/citation	
А	Introduction to Reference/citation	CO5, CO6
В	Various methods and formats of Reference/citation in a	CO5, CO6
~	research article	
C	Mendeley: Managing references and citations.	CO5, CO6
Mode of	Assignments, Quizzes & Viva	
 examination		