

Program and Course Structure

School of Engineering Technology M Sc Genetic Engineering Program code: SET0206 Batch: 2020-22

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- **1.** Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship to provide sustainable solution to the needs of the society

Mission of the School

- 1. To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conducive and enriching learning environment.
- **2.** To produce technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities and uphold ethical values.
- **3.** To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- **4.** To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

Core Values

- Integrity
- Leadership
- Diversity
- Community

Vision of the Department

To serve the society by being a global centre of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship to cater to the needs of biotechnology in health, agriculture and environment sectors.

Mission of the Department

- M1: To conduct cutting-edge multidisciplinary original research in plant, animal, medical, industrial and environmental biotechnology.
- M2: To train and transform students into thinking bioengineers, and scientists who are able to integrate theoretical knowledge with practical applications in diverse areas of Biotechnology
- **M3:** To adapt and update with rapidly changing technologies through self-improvement with continuous learning and education, without compromising with moral and professional ethics.
- M4: To provide opportunities for collaborative-learning beyond classrooms, in the broader community- across the diverse spectrum of disciplines.

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.3 Program Educational Objectives (PEO)

- **PEO1:** Graduates will be able to integrate the physical, biological and mathematical sciences with engineering principles for the study of biological systems and medical health related problems.
- **PEO2:** Graduates will demonstrate the applications of biotechnology and Genetic Engineering principles through development of processes related to crop improvement and health care.
- **PEO3:** Graduates will adapt to and update with rapidly changing biotechnologies through selfimprovement with continuous learning about the impact of technology and engineering solutions on the society and environment.
- **PEO4:** Graduates will develop research oriented approach towards various biological areas and develop solutions to various problems related to environment and society.
- **PEO5:** Graduates will develop leadership skills at levels appropriate to their experience and perform ethically and professionally in business, academia, industry and society.

1.3.3 Program Outcomes (PO's)

- **PO1:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO2:** Knowledge and Skill Set: Students will become proficient in understanding various biological systems and processes. The student will be skilled in latest interdisciplinary biological techniques that will beneficial for their future research/ employment.
- **PO3: Research:** Students will be able to independently think and identify a research problem, design experimental protocols to address that problem and analyse the results or solutions emanating out of his/ her work.
- **PO4: Biotechnology, Environment and Society:** Students will be able to develop and use genetically engineered organisms for betterment of environment and society after thorough evaluation of their side-effects/ negative impacts.
- **PO5:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **PSO1:** To create postgraduates with successful career as professional or a researcher through lifelong learning in the field of biotechnology.
- **PSO2:** Hands-on training and mandatory research projects will help our students by providing knowledge and technical experience of problem-solving in a research environment.
- **PSO3:** An ability to apply fundamental knowledge related to pure sciences in an interdisciplinary manner for providing innovative solutions to need based problems for global impact.

1.3.5 The components of the curriculum

Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Basic Sciences	2.38%	2	2
Engineering Sciences	26.19%	25	22
Humanities and Social sciences	2.38%	4	2
Program Core	57.14%	51	48
Project	11.9%	20	10

School of Engineering and Technology M Sc Genetic Engineering Batch: 2020-2022

		TERM	[: I	-			
	Course	Course	Tea	ching	Load		Type of course
S. No.			Credits	1. CC 2. AECC 3. SEC 4. DSE			
		THEORY C	LASSE	S			
1.	MGE10 1	Advanced Cell Biology	4	0	0	4	CC
2.	MGE10 2	Structure and Function of Biomolecules	4	0	0	4	AECC
3.	MGE10 3	Molecular Biology	4	0	0	4	AECC
4.	MGE10 4	Molecular Cloning	4	0	0	4	AECC
5.	MST111	1 Biostatistics 2 0			0	2	SEC
		PRACTIO	CALS				
6	MGP10 1	Advanced Cell Biology lab	0	0	3	2	SEC
7	MGP10 2	Macromolecule's lab	0	0	3	2	SEC
8	MGP10 3	Molecular Biology Lab 0 0		0	3	2	SEC
9		Community connects	0	0	4	2	SEC
		TOTAL CREDITS				26	

School of Engineering and Technology M Sc Genetic Engineering Batch: 2020-2022 TERM: II

S.	Course	Course	T	Teaching		Teaching			
No.	Code			Load		Credits			
			L	Т	Р	Creans	Type of		
							Course		
		THEORY SUBJECT	S						
1.	MGE105	Advances in Immunology	4	0	0	4	AECC		
2.	MGE106	Metabolic Pathways	4	0	0	4	AECC		
3.	MGE107	Techniques in Biology	4	0	0	4	SEC		
4.	MGE108	Bioinformatics	4	0	0	4	SEC		
5.	MGE109	Transgenic Organisms	4	0	0	4	AECC		
	PRACTICAL								
6	MGP104	Techniques in Biology Lab	0	0	3	2	CC		
7	7MGP105Bioinformatics lab003				2	SEC			
	TOTAL CREDITS 24								

School of Engineering and Technology M Sc Genetic Engineering Batch: 2020-2022 TERM: III

S.	Course	Course	Te	aching	Load	Credits	
No.	Code		L	Т	Р	Creans	Type of Course
THE	ORY SUBJ	IECTS					
1.	MGE201	Industrial Microbiology	4	0	0	4	AECC
2.	MGE202	Genomics and Proteomics 4 0 0 4		AECC			
3.	MGE203	Cancer and Stem Cell Biology	4	0	0	4	CC
4.	MGE204	Clinical Biotechnology	4	0	0	4	CC
5.	5. MGE205 Enzyme Technology 4		4	0	0	4	CC
PRA	PRACTICAL						
6.	MGP201	Industrial Microbiology lab	0	0	3	2	SEC
7.	MGP202	Genomics and Proteomics lab	0	0	3	2	SEC
	TOTAL CREDITS					24	

School of Engineering and Technology M Sc Genetic Engineering Batch: 2020-2022

TERM:	IV
	1 1

S.	Course	Course	Tea	aching	Load	Credits	
No.	Code		L	Т	Р	Credits	Type of Course
THE	ORY SUBJ	ECTS					
1.	MGP203	NPTEL/MOOC	0	0	0		CC
PRA	PRACTICAL						
2.	MGP204	Project	0	0	20	10	CC
	TOTAL CREDITS					10	

Syllabus

SU/SET/MSc Genetic Engineering

-	<u>E101 Advanced (</u> nool: SET	Batch : 2020-22
	ogram: MSc	Current Academic Year: 2020-21
	anch: Genetic	Semester:1
En	gineering	
1	Course Code	MGE101
2	Course Title	Advance Cell Biology
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Core
5	Course	(1) Many of the advancements in modern science are the result of a
	Objective	better understanding of cellular components and their functions.
		(2) At the end of the course, the students can gain in-depth knowledge of
		cell biology, which provides information about the composition,
		structure and function of organelles and other cellular components and
		their biological activities.
6	Course	After successfully completion of this course students will be able to:
	Outcomes	CO1: Understanding the structure, function of plasma membrane,
		cytoplasm and its composition.
		CO2:Illustrate the structure and function of various intracellular
		organelles
		CO3: Understanding the concept of cytoskeleton and its regulatory
		function.
		CO4: Describe the structure of chromatin and chromosomes
		CO5:Explain the general principles of cell communication, cell adhesion
		and roles of different adhesion molecules
		CO6: Gained the in-depth knowledge of cell biology, various cellular organelles, their structure and function
7	Course	The focus of cell biology is the study of the structure and function of the
<i>'</i>	Description	cell. In this course, we will cover topics such as plasma membrane
	Description	structure and composition, transport, cell organelles, cytoskeleton and
		cell movement, structure of chromatin, chromosome, and general
		principle of cell communication, cell adhesion and roles of different
		adhesion molecules.
8		
	Unit 1	Cellular organization
	A	Plasma Membrane and its Functions in Transport
	В	Exocytosis and Endocytosis
	С	Cytoplasm and its Composition, electrical properties of membranes
L	•	·]

MGE101 Advanced Cell Biology

SU/SET/MSc Genetic Engineering

Unit 2	Intracellular organelles			
А	Structure and	function of Ce	ell wall, nucleus, mitochondria	
В	Structure and	function of Go	olgi bodies, lysosomes, endoplasmic	
	reticulum,			
С	Structure and function of peroxisomes, plastids, vacuoles, chloroplast			
Unit 3	Cytoskeleton and Cell Dynamics			
А	Structures and assembly of Cytoskeleton and its Regulation			
В	Molecular Mo	otors, microfil	aments and microtubules	
С		keleton in moti		
Unit 4		of Gene and cl		
А			chromosomes, Heterochromatin,	
	Euchromatin,	transposons		
В	Gene concept	, Structural and	d numerical alterations of chromosomes.	
С	Cell cycle; mitosis and meiosis and their regulation			
Unit 5	Cellular communication			
А	General principles of cell communication, cell adhesion and roles of			
	different adhesion molecules			
В	Gap junctions	, extracellular	matrix, integrins	
С	Neurotransmi	ssion and its re	egulation	
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1.Devasena.T	, Cell Biology	. Oxford University Press India; First edition	
	(2012).			
			y. newagepublishers (2008).	
Other	3.David L I	Nelson & M	ichael M Cox, Lehninger -Principles of	
References	biochemistry.	W.H. Freeman	company New York 4th edition 2007.	
	4 Garrett Gri	sham Biochei	mistry. International student's edition. 3'rd	
	edition		inistry. International stadent s califon. s ra	
	Cantion			
	5.Karp G, Cell and Molecular Biology: Concepts and Experiments. John			
	Wiley & Sons. Inc. 6th Edition.2010 6.De Robertis E.D.P & De Robertis			
	E.M.F. Cell and Molecular Biology.2006.			
	-		han, R.E. The Cell: A Molecular Approach.	
	Sinauer Assoc	ciates, Inc.; 6 e	dition, 2013.	

Sch	nool: SET	Batch : 2020-22		
Pro	ogram: MSc	Current Academic Year: 2020-21		
Bra	anch: Genetic	Semester:1		
Eng	gineering			
1	Course Code	MGE102		
2	Course Title	Structure and Function of Biomolecules		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Core		
5	Course	(1)This paper trains students to appreciate the salient features of		
	Objective	biomolecules in the organization of life.		
		(2)It helps the students in understanding the classification, functions and		
		application aspects of biomolecules.		
6	Course	After successfully completion of this course students will be able to:		
	Outcomes	CO1: Understand the principles of biochemistry		
		CO2:Explain the structure, classifications and function of carbohydrates.		
		CO3: Explore the structure, types and functions of lipids.		
		CO4: Understand structure, classifications and function of proteins.		
		CO5:Understand structure, classifications and function of nucleotides		
		and nucleic acids		
		CO6:Gained the in-depth knowledge about structure and function of		
		various biomolecules		
7	Course	The focus of this subject is to understand the structure and function of		
	Description	various biomolecules namely carbohydrates, lipids, proteins and nucleic		
		acids.		
8	Outline syllabus			
	Unit 1	Principles of biochemistry		
	А	Structure of atoms, molecules and chemical bonds, Van der Waals,		
		electrostatic interaction		
	В	Hydrogen bonding, Hydrophobic interaction, pH, buffer		
	С	Reaction kinetics, thermodynamics, colligative properties		
	Unit 2	Carbohydrates		
	A	Classification of carbohydrates, Composition, structure and function of		
		Monosaccharides, oligosaccharides and polysaccharides		
	В	Structure and functions of polysaccharides such as starch, cellulose,		
		glycogen and chitin, Glycation and glycosylation of proteins,		
	С	Physical and chemical properties of carbohydrates, Gycosoaminoglycans		
		and proteoglycans.		

MGE102: Structure and Function of Biomolecules

Unit 3	Lipids					
А	Classification	, structure and	function of lipids, fatty acids and			
	triglycerides,	phospholipids	and their types, Sterols and steroid			
	hormones					
В	Sphingolipids	, eicosanoids, v	vitamins. Action of pain killers, Chemical			
		nature of blood groups				
C		Disease related to lipid metabolism. Purification and characterization of				
	lipids.					
Unit 4	Amino acids					
A	Structure and properties of a		of amino acids, chemical and physical			
В	Levels of prot	tein structure-p	rimary, secondary (Ramachandran plot,			
			s, motif and folds), tertiary and quaternary			
С	Chemical syn	thesis of peptic	les. Methods of sequencing of peptide and			
	proteins. Structure of hemoglobin, myoglobin, collagen and keratin.					
Unit 5	Nucleotides a	and Nucleic ac	ids			
А	Structure of P	urines and Pyr	imidines, nucleosides and nucleotides.			
	Structure and	function of DN	NA and its different forms, RNA and their			
	types					
В			on of DNA, DNA methylation and its role.			
C		s energy molec	cules, enzyme cofactors and regulatory			
	molecules.					
Mode of						
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*			nciples of Biochemistry CBS Publishers &			
		New Delhi, 4th				
Other			entals of Biochemistry by S.Chand and			
References	Company 4th edition, 1994.					
	3. M.N.Chatterjea and Ranashinde Text book of Medical biochemistry					
	Jaypee Brothers Medical Publisher (P) Ltd, 6th edition 2005					
	4. Lippincott edition 2007.	's illustrated	biochemistry – Champe and Harvey; 6th			
	5. D.Voet and	l J.G. Voet, Bio	ochemistry, John Wiley & Sons, USA 2004.			

	E103 Molecula nool: SET	Batch : 2020-2022				
	ogram: MSc	Current Academic Year: 2020-21				
	anch: Genetic	Semester: 1				
En	gineering					
1	Course Code	MGE103				
2	Course Title	MOLECULAR BIOLOGY				
3	Credits					
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course Status	Compulsory				
5	Course Objective	 To acquire a fundamental knowledge of central dogma of life relating processes of replication, transcription and translation. To understand the different theories of recombination. To learn about the fundamental concept of regulatory RNA. 				
6	Course Outcomes	 CO1: Differentiate between prokaryotic and eukaryotic replication, compare prokaryotic and eukaryotic transcription and examine the functions of different types of RNA polymerases. CO2: Demonstrate the regulation of transcription and identify post-transcriptional modifications. CO3: Experimentally demonstrate the process of translation in prokaryotes and eukaryotes and presence of post translational modification CO4: Recognize the process of recombination and formation of Holliday junction. CO5: Investigate the role of viral oncogenes, cellular oncogenes and tumour suppressor genes and proteins in cancer. CO6: Discuss the various aspects of central dogma and DNA repair mechanisms. 				
7	Course	Molecular biology is a course to acquire a fundamental knowledge of				
	Description	central dogma of life relating processes of replication, transcription and				
		translation. To understand the different theories of recombination. To				
0	learn about the fundamental concept of regulatory RNA.					
8	Outline syllabu					
	Unit 1	DNA replication, repair and recombination Unit of replication, enzymes involved, replication origin and replication fork, fidelity of				
	A Unit of replication, enzymes involved, replication origin and replication fork, fide replication					
		Extrachromosomal replicons, DNA damage and repair mechanism				
	С	homologous and site-specific recombination				

MGE103 Molecular Biology

SU/SET/MSc Genetic Engineering

Unit 2	RNA synthesis and processing				
А	Transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination				
В	RNA processing, RNA editing, splicing, and polyadenylation.				
С	Structure and function of different types of RNA, RNA transport				
Unit 3	Protein synthesis and processing				
А	Ribosome, formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, genetic code, aminoacylation of tRNA				
В	tRNA-identity, aminoacyl tRNA synthetase, and translational proof-reading				
С	translational inhibitors, Post- translational modification of proteins				
Unit 4	Control of gene expression				
А	Regulating the expression of phages, viruses, prokaryotic and eukaryotic genes, role of chromatin in gene expression and gene silencing.				
В	Operons and their regulation				
С	Histone modifications and their effects on gene expression, acetylation and methylation.				
Unit 5	REGULATORY RNAs				
А	Riboswitches, RNAs as defense agents				
В	CRISPR system in bacteria, CRISPR-Cas9 for genome editing, CRISPRi and CRISPRa for gene regulation.				
С	Synthesis and function of miRNA molecules, silencing of gene expression by small RNAs, RNAi, long noncoding RNAs and X-inactivation				
Mode of examination	Theory				
Weightage	CA MTE ETE				
Distribution	30% 20% 50%				
Text book/s*	1. Molecular Biology Lab Fax. T.A. Brown (Ed.), bios Scientific				
	Publishers Ltds., Oxford, 1991				
Other References	 Molecular biology of the Gene (4th Edition),J .D. Watson, N. H. Hopkins, J. W. Roberts,J.A. Steitz and A.M. Molecular Cell biology (2nd Edition) J. Darnell, H. Lodish and D. Baltimore, Scientific American Books, USA, 1994. 				
	3. Molecular Biology of the Cell (2 nd Edition) B. Alberts, D.Bray,				
	J.Lewis, M.Raff, K. Roberts, and J.D. Watson, Garland				
	publishing. Inc., New York, 1994.				

MGE 104 Molecular Cloning

Sc	hool: SET	Batch : 2020-2022			
Program: MSc		Current Academic Year: 2020-21			
Branch:		Semester: 01			
Ge	enetic				
En	gineering				
1	Course Code	MGE104			
2	Course Title	Molecular Cloning			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course	Compulsory			
	Status				
5	Course	1. To understand the basic principles of cloning.			
	Objective	2. To learn about applications of PCR			
		3. To analyse different strategies of gene cloning			
		4. To elaborate different concepts of protein expression			
6	Course	CO1: Test the ability of restriction endonucleases and other modification			
	Outcomes	enzymes used in genetic engineering			
		CO2: Correlate between different vectors used in plants, bacteria and			
		animal cells.			
		CO3: Perform gene amplification using polymerase chain reaction.			
		CO4: Use different types of cloning and expression vectors for genetic			
		transformation.			
		CO5:Construct genomic and cDNA libraries.			
		CO6: Understanding of different methods of molecular cloning and protein			
7	Course	expression.			
/	Description	This course covers various enzymes used in Genetic manipulation, Cloning Vectors and expression vectors, PCR amplification, cDNA cloning and			
	Description	genomic libraries. It also gives conceptual idea about protein expression.			
8	Outline syllab				
0	Unit 1	Enzymes and vectors used in gene cloning			
	A	Restriction enzymes, DNA polymerases, reverse transcriptase, terminal			
	**	transferase, alkaline phosphatase			
	В	Polynucleotide kinase, ligase, DNases, RNases, and topoisomerase.			
	C	Plasmid vectors, phage vectors, BAC vectors and plasmid incompatibility,			
		and vectors for cloning in yeast, and mammalian cells			
<u> </u>					
L	1				

Unit 2		f Gene clonin				
А		l cloning, blun riction digesti	at end cloning, checking the direction of cloning by on,			
В	Cloning using adapters. TA cloning, TOPO-TA cloning					
С	Screening m	Screening methods-complementation, insertional inactivation.				
Unit 3		Polymerase chain reaction				
А	PCR, factors	affecting PC	R, primer designing, Reverse transcriptase-PCR,			
В	Real-time PCR, Nested PCR and TaqMan probe, site directed mutagenesis by PCR,					
С	Screening by	PCR, LAMP	PCR.			
Unit 4	cDNA and	Genomic libra	ary			
А			rary, genomic DNA library			
В	Vectors used	l in the constr	uction of cDNA and genomic DNA libraries			
С	Screening the libraries using heterologous probes, Reporter genes and					
	assay.					
Unit 5	Expression of proteins					
А	Components of an expression plasmid vector, strategies for codon					
	optimization, optimization of induction of protein expression, inclusion body formation					
В	Factors affecting protein folding, solubilizing recombinant protein in inclusion bodies					
С	Purification	of recombinat	nt proteins with and without purification ligands.			
Mode of	Theory		· · · · · · · · · · · · · · · · · · ·			
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	Griffiths J. F	. "Introductio	on to Genetic Analysis", W. H. Freeman, 2010.			
Other	1. J. Sambrook. E. F. Fritsch and T. Maniatis, "Molecular Cloning: a					
References Laboratory Manual" Cold Spring Harbor Laboratory Press, New York, 2000.			l" Cold Spring Harbor Laboratory Press, New			

Program: MSc Current Academic Year: 2020-21 Branch: Genetic Engineering Semester:11 1 Course Code MGE105 2 Course Title Advances in Immunology 3 Credits 4 4 Contact Hours 4-0-0 (L-T-P) Course Status Core 5 Course 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 2. It also explains the various antigen-antibody reactions involved in vaccine development. 6 Course After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO3: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course This course will	School: SET		Batch : 2020-22
Branch: Genetic Engineering Semester:11 1 Course Code MGE105 2 Course Title Advances in Immunology 3 Credits 4 4 Contact Hours (L-T-P) 4-0-0 (L-T-P) 5 Course 1 6 Course 1 7 Course 1 6 Course Coi: Get a deep foundation of immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. 7 Course This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune response, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8	Program: MSc		
Engineering 1 Course Code MGE105 2 Course Title Advances in Immunology 3 Credits 4 4 Contact Hours (L-T-P) 4-0-0 Course Status Core 5 Course 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 2. It also explains the various antigen-antibody reactions involved in vaccine development. 6 Course Outcomes Outcomes After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B an			
1 Course Code MGE105 2 Course Title Advances in Immunology 3 Credits 4 4 Contact Hours 4-0-0 (L-T-P) Course Status Core 5 Course 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 2. It also explains the various antigen-antibody reactions involved in vaccine development. 6 Course After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and a			
3 Credits 4 4 Contact Hours 4-0-0 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 5 Course 1. This course is designed to impart the students the importance of immunology and Immunotechnology. 6 Course After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune response, self-tolerance and autoimmunity, the inflammatory response and the		0 0	MGE105
3 Credits 4 4 Contact Hours 4-0-0 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 5 Course 1. This course is designed to impart the students the importance of immunology and Immunotechnology. 6 Course After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune response, self-tolerance and autoimmunity, the inflammatory response and the	2	Course Title	Advances in Immunology
4 Contact Hours (L-T-P) 4-0-0 5 Course Status Core 5 Course 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 6 Course After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. 7 Course Description This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune response, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
(L-T-P) Course Status Core 5 Course 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 6 Course 1 talso explains the various antigen-antibody reactions involved in vaccine development. 6 Course After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course Description This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune response. self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens-Bacteria, Fungi, Viruses, Pr	_	Contact Hours	4-0-0
Course Status Core 5 Course 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 6 Course After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. 6 Course CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. 7 Course This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
5 Course Objective 1. This course is designed to impart the students the importance of immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 6 Course Outcomes After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. 7 Course Description This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;		· · · /	Core
Objective immunology and its theoretical aspects and on the principles of immunology and Immunotechnology. 6 Course After successfully completion of this course students will be able to: C01: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. C04: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. 7 Course This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;	5	Course	
immunology and Immunotechnology. 2. It also explains the various antigen-antibody reactions involved in vaccine development. 6 Course Outcomes 7 Course Description 8 Outline syllabus Unit 1 Microbes and parasites A 4 Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;		Objective	
2. It also explains the various antigen-antibody reactions involved in vaccine development. 6 Course Outcomes After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Limmune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course Description 7 Course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune response, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;		5	
in vaccine development. 6 Course Outcomes After successfully completion of this course students will be able to: CO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course Description This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
OutcomesCO1: Get a deep foundation on host pathogen relationship for generation of immune response. CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.7Course DescriptionThis course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabusUnit 1Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
of immune response.CO2: Get a deep foundation of Immune response.CO3: Demonstrate functions of cells and organs of the immune systemCO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response.CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation.CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.7Course Description7Course and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabus4Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;	6	Course	After successfully completion of this course students will be able to:
CO2: Get a deep foundation of Immune response. CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.7Course DescriptionThis course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune response, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabus4Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;		Outcomes	CO1: Get a deep foundation on host pathogen relationship for generation
CO3: Demonstrate functions of cells and organs of the immune system CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion. 7 Course Description This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			of immune response.
CO4: Elaborate how MHC recognizes self and non-self-molecules and helps in generation of immune response. CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation. CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.7Course DescriptionThis course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabus4Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
helps in generation of immune response.CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation.CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.7Course Description7Course Description7Course Teclls, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabus4Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			CO3: Demonstrate functions of cells and organs of the immune system
CO5: Examine the genetic and molecular mechanisms associated with autoimmunity and graft rejection and review clinical interventions required in organ transplantation.CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.7Course Description7Course Description8Outline syllabus9Unit 19Microbes and parasites A9Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			CO4: Elaborate how MHC recognizes self and non-self-molecules and
autoimmunity and graft rejection and review clinical interventions required in organ transplantation.CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.Course DescriptionThis course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.Outline syllabusUnit 1Microbes and parasites AAClassification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
required in organ transplantation.CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.Course DescriptionThis course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.Outline syllabusUnit 1Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
CO6: Students will gain knowledge on how the immune system works and also on the immune system network and interactions during a disease or pathogen invasion.7Course DescriptionThis course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabus4Microbes and parasites A Helminths, Arthropods and Prions;			
and also on the immune system network and interactions during a disease or pathogen invasion.7Course DescriptionThis course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabusImage: All classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
disease or pathogen invasion. 7 Course Description This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
7 Course This course will cover the major topics in cellular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
Descriptionincluding antigen recognition, antigen processing and presentation to B and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer.8Outline syllabusUnit 1Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;		~	· · ·
and T cells, the events leading to the generation of antibody and T cell receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;	7		
Image: syllabus receptor diversity, antibody effector functions, the role of CD4 and CD8 T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Image: Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;		Description	
T cell subsets and NK cells in immune responses, self-tolerance and autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
autoimmunity, the inflammatory response and the role of immunity in protection against pathogens and cancer. 8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			1 57 5 7
8 Outline syllabus Vinit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
8 Outline syllabus Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
Unit 1 Microbes and parasites A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;	· · · · · · · · · · · · · · · · · · ·		protection against pathogens and cancer.
A Classification of pathogens-Bacteria, Fungi, Viruses, Protozoa, Helminths, Arthropods and Prions;			
Helminths, Arthropods and Prions;			1
*		A	
		D	▲ ▲
B Host-parasite relationship, modes of transmission, factors predisposing		В	
to microbial pathogenicity			to incrodial pathogenicity

MGE105 Advances in Immunology

	С	stages methol	aciaal mattama	vimilance and infectivity		
		stages, pathological patterns, virulence and infectivityHumoral and cell mediated immunity				
	Unit 2	Cell mediated cytotoxicity: Mechanism of T cell and NK Cell mediated				
	А					
			• 1	ell mediated cytotoxicity and macrophage		
	D	mediated cyto				
	B	Cytokines and their role in immune regulation,				
	С	Biology of Complement system, Complement fixation test and				
				plexes in tissues. Immune suppression and		
		immune tolera				
	Unit 3		nmune system			
	А	1 0	• 1	hocytes, Dendritic cells, Natural killer cells,		
		1	eutrophils and			
	В		immune syster	n: Bone marrow, Spleen, lymph nodes,		
		MALT.				
	С		Haematopoiesis and differentiation, lymphocyte trafficking.			
	Unit 4	Antibody and Antigen				
	А	Antibody- biology, structure and functions in different classes of				
		immunoglobulin. Antigens, Biology of superantigens.				
	В	MHC structure and types, antigen recognition and presentation,				
		activation of B and T lymphocytes.				
	С	Design of different kinds of vaccines.				
	Unit 5	Hyper sensitivity reactions, Autoimmune disorders, Transplantation				
		immunology				
	А	Hypersensitivities and their types				
	В	Autoimmunity and autoimmune disorders				
	С	MLR, HLA Typing, Bone marrow transplantation, Organ transplants.				
	Mode of	Theory				
	examination					
	Weightage	CA	MTE	ETE		
	Distribution	30%	20%	50%		
	Text book/s*	Goldsby R A	"Kuby Immun	ology", Freeman, 2006.		
	Other	Roitt, I. M. Essentials of Immunology", Blackwell Scientific publishers,				
	References	London 1998.				

School: SET		Batch : 2020-22
Program: MSc		Current Academic Year: 2020-21
Branch: Genetic		Semester: II
	gineering	
1	Course Code	MGE106
2	Course Title	Metabolic Pathways
3	Credits	4
4	Contact Hours	4-0-0
-	(L-T-P)	+ 0 0
	Course Status	Core
5	Course	1. Understand the overall organization of the biochemical
5	Objective	metabolism.
	Objective	2. Describe the structure and function of various biomolecules in
		maintaining balance in body.
6	Course	After successfully completion of this course students will be able to:
Ũ	Outcomes	CO1: To understand the basic metabolic pathways of carbohydrates
		CO2: Elaborate different types of lipids and their metabolism
		CO3: Discuss the metabolism of amino acids, and demonstrate how they
		are responsible for protein building.
		CO4: Elaborate nucleotide metabolism and synthesis of energy
		compounds.
		CO5: Examine the various mechanisms responsible for the generation of
		ATP in plants and animals.
		CO6: Understanding of metabolic pathways (catabolism and anabolism),
		their diversity and how these are specifically regulated and interrelated
		in different cells
7	Course	The Biochemistry is designed to equip students with a broad
	Description	understanding of the chemical and molecular events involved in
		biological processes. It helps students in understanding of structural and
		functional aspects of different biomolecules. The Biochemistry provides
		a foundation for careers in medicine, biotechnology, or research in all
		branches of the biological sciences.
8	Outline syllabus	
	Unit 1	Metabolism of carbohydrates
	A	Photosynthesis, Biosynthesis of starch, glycogen and glucose,
	B	Glycolysis, TCA cycle, Gluconeogenesis, Pentose Phosphate pathway,
	С	Glycogen metabolism-Glycogenesis, glycogenolysis
	Unit 2	Lipid Metabolism
	A	Lipid profile, degradation and biosynthesis and regulation of fatty acids
	B	Metabolism and regulation of membrane lipids, Ketone bodies.
	С	Metabolism, regulation and fate of cholesterol.

MGE106 Metabolic Pathways

Unit 3	Amino acid and Protein metabolism			
А	Digestion and absorption, Biosynthesis and degradation of amino acid.			
В	Metabolism and regulation of ammonia as well as urea cycle.			
С	Metabolic network-Interrelationship of metabolisms Krebs cycle, amino			
	acid synthesis		-	
Unit 4	Metabolism o	of Nucleotides		
А	Biosynthesis,	degradation an	d regulation of nucleotides and related	
	molecules.			
В	Energy compo	ounds and its b	iosynthesis	
С	ATP, NAD, NADP, FAD, Creatin phosphates			
Unit 5	Photophosphorylation and Oxidative phosphorylation			
А	Redox reactions, standard oxidation reduction potential, mitochondrial			
	electron transport chain,			
В	Oxidative phosphorylation, structure of ATP synthase, chemiosmotic			
	hypothesis, coupled reaction, group transfer			
С	biological energy transducers.			
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	David L Nelson, Michael M Cox, "Principles of Biochemistry" W. H.			
	Freeman; S	Seventh editior	1 Jan, 2017.	
Other Distance I Washington Will N. W		Voot Wiley New York April 2012		
References Biochemistry by voet and voet, whey new ro			voet, whey new rork, April 2012.	
	B C Unit 4 A B C Unit 5 A B C Mode of examination Weightage Distribution Text book/s*	ADigestion and BBMetabolism at CCMetabolic net acid synthesisUnit 4Metabolism of AABiosynthesis, molecules.BEnergy compo CCATP, NAD, NUnit 5Photophosph AARedox reactio electron transpBOxidative phot hypothesis, coCbiological eneMode of examinationTheory 30%Veightage DistributionCAOtherBiochemistry	ADigestion and absorption, BiBMetabolism and regulation ofCMetabolic network-Interrela acid synthesis.Unit 4Metabolism of NucleotidesABiosynthesis, degradation ar molecules.BEnergy compounds and its bCATP, NAD, NADP, FAD, CUnit 5Photophosphorylation and electron transport chain,BOxidative phosphorylation, s hypothesis, coupled reactionCbiological energy transducerMode of examinationTheory 20%VeightageCAMTE 	

School: SET		Batch : 2020-22
Program: MSc		Current Academic Year: 2020-21
Branch: Genetic		Semester: II
	gineering	
1	Course Code	MGE107
2	Course Title	Techniques in Biology
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Core
5	Course	1.To develop and understanding of the principle, instrumentation,
	Objective	operation and applications of different analytical, separation
		2. Diagnostic techniques used in the fields of Biochemistry, Molecular
		Biology and Biotechnology.
6	Course	After successfully completion of this course students will be able to:
	Outcomes	CO1: Apply microscopic techniques to identify differences between cells,
		cell organelles and intracellular localization of proteins.
		CO2: Apply chromatographic techniques for separating pigments, drugs,
		amino acids and hormones.
		CO3: Apply the spectroscopy techniques (Absorption and fluorescence,
		atomic and circular dichroism) to characterize physio-chemical
		properties of biological molecules.
		CO4: Elaborate various ways to study Ag-Ab interactions.
		CO5: Examine the various techniques to study various interactions of
		biomolecules at molecular level.
		CO6: To develop and understanding of applications of different analytical, separation techniques used in the field of Biotechnology.
7	Course	Allow students to familiarize themselves with the specific requirements
	Description	of biomedical instrumentation and biotechnology tools and to enable
		them to use and apply these techniques and equipment's to solve
		experimental problems.
8	Outline syllabus	
0	Unit 1	Microscopic and Radiolabelling techniques
	A	Visualization of cells and subcellular components by light microscopy,
	Λ	resolving power, microscopy of living cells,
	В	scanning and transmission microscopes, different fixation and staining
	U	techniques for EM,

MGE107 Techniques in Biology

SU/SET/MSc Genetic Engineering

С	Detection on	d maaguramar	at of different types of redicisetones normally			
C		Detection and measurement of different types of radioisotopes normally used in biology, incorporation of radioisotopes in biological tissues and				
		cells, molecular imaging of radioactive material				
Unit 2						
Unit 2	Chromatogra	Chromatographic techniques				
А	Classificatio	n of Chromato	ography, Column and Ion-exchange			
	chromatogra	phy				
В	Adsorption a	Adsorption and Partition chromatography, Paper Chromatography, TLC,				
	Liquid Chro	Liquid Chromatography, Gel permeation chromatography				
С	HPLC and G	C				
Unit 3	Biophysical	Techniques				
А	Molecular an	alysis using U	JV/visible, fluorescence, circular dichroism			
В	NMR and ES	SR spectrosco	ру			
С	Surface plas	Surface plasma resonance methods.				
Unit 4	Histochemie	Histochemical and Immuno techniques				
А	Antibody ge	Antibody generation, Detection of molecules using ELISA, RIA,				
	immunoprec	immunoprecipitation				
В	flowcytomet	flowcytometry and immunofluorescence microscopy				
С		detection of molecules in living cells, in situ localization by techniques				
	such as FISH	such as FISH and GISH.				
Unit 5	Techniques	Techniques in Molecular Biology				
А	Template ch	Template challenge assay, Filter binding assay, Primer extension assay,				
В	DNA Helica	DNA Helicase Assay, Biochemical Fractionation and Biochemical				
	Complement	Complementation, DNA finger Printing				
С	SDS PAGE,	SDS PAGE, 2D GE, western blot and Northern blotting				
Mode of	Theory					
examinat	ion					
Weighta	ge CA	MTE	ETE			
Distribut		20%	50%			
Text boo	k/s* Wilson K. a	nd Walker J.,	"Principles and Techniques of Biochemistry			
and Molecular Biology", Cambridge University Pres						
Other			and Benore M., "Fundamental Laboratory			
Reference	References Approaches for Biochemistry and Biotechnology", Wiley, 2009.					

	108 DIOIIIO 1001: SET	Batch : 2020-22
Program: MSc		Current Academic Year: 2020-21
	anch: Genetic	Semester: II
	gineering	
1	Course Code	MGE108
2	Course Title	Bioinformatics
3	Credits	4
4	Contact Hours	4-0-0
-	(L-T-P)	T -0-0
	Course Status	Core
5	Course	1.
5	Objective	1.
	Objective	2.
6	Course	After successfully completion of this course students will be able to:
	Outcomes	CO1:Understand the basics, branches, and various applications of
		Bioinformatics
		CO2:Explore the importance, concepts and applications of various
		biological databases
		CO3: Understand the concepts, types, and uses of sequence alignment
		and explore the various methods and advantages for phylogenetic
		analysis
		CO4: Acquire the knowledge about structure predictions and their
		importance.
		CO5: Understand the basics, types and various applications of computer
		aided drug designing and discovery process.
		CO6: Overall understanding the concept, branches, tools, and various
		applications for Bioinformatics
7	Course	This syllabus will cover the important areas in Bioinformatics namely
	Description	sequence analysis, molecular phylogenetic analysis, structure
		predictions, computer aided drug designing and discovery process.
8	Outline syllabus	
	Unit 1	Basics of Bioinformatics
А		Introduction to Bioinformatics, Scope of Bioinformatics, Importance of
		Bioinformatics.
В		Different branches of Bioinformatics, Applications of Bioinformatics
	С	PERL/Bio-PERL, Python/Bio-Python. Importance of Computers in
		Bioinformatics.

MGE 108 Bioinformatics

SU/SET/MSc Genetic Engineering

Unit 2	Biological Databases				
А	Introduction to Databases and Biological Databases, Primary Databases,				
	Secondary Databases and Composite Databases.				
В	Nucleic acid sequence databases (GenBank, EMBL and DDBJ), Protein				
	Sequence Databases (UniProt, PIR, TrEMBL, MIPS).				
С	Secondary Protein Sequence Databases (Prosite, PFAM, BLOCKS),				
	Structural Databases: PubChem, Drug Bank, ZINC, PDB, PDBSUM.				
	Sequence/structure Submission				
Unit 3	Sequence alignment and Phylogenetic analysis				
A	Sequence Identity, Sequence similarity, Pairwise Sequence alignment,				
	Methods in Pair-wise sequence alignment (DOTPLOT, Dynamic				
	Programming, BLAST & FASTA), Multiple sequence alignment,				
В	Methods in Multiple sequence alignment (Dynamic Programming,				
	Progressive approach and Iterative Approach).				
C	Concepts of Phylogenetic analysis, Distance and Character based				
	methods.				
Unit 4	Structural Bioinformatics				
A	Protein structures, Experimental methods for protein structure				
	determination (X-ray Crystallography, Nuclear Magnetic Resonance and				
	Cryo electron microscopy),				
В	In silico structure prediction methods: Homology modeling, Threading				
	and Ab initio.				
C	Importance and limitation of in silico structure prediction methods.				
	Visualization Tools.				
Unit 5	Drug designing and discovery				
A	History, Concept of Molecular docking, Structure Based Virtual				
	Screening, Ligand Based Virtual Screening, Pharmacophore modeling,				
В	Quantitative Structure Activity Relationship (QSAR), Drug repurposing.				
С	Molecular docking tools, Concept and applications of Molecular				
	dynamics Simulations.				
Mode of	Theory				
examination					
Weightage	CA MTE ETE				
Distribution	30% 20% 50%				
Text book/s*					
Other	Baxevanis A., Ouellette F.B.F., "Bioinformatics: A practical guide to				
References	the analysis of genes and proteins", Wiley-Interscience, 2004.				

School: SET		Batch : 2020-22
Program: MSc		Current Academic Year: 2020-21
	anch: Genetic	Semester: II
	gineering	
1	Course Code	MGE109
2	Course Title	Transgenic Organisms
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
-	Course Status	Core
5	Course Objective	 To learn <i>in vitro</i> regeneration, transformation, and gene editing of plants for the purpose of generating genetically modified plants for basic and applied research. To learn <i>in vitro</i> techniques of animal cell and tissue culture for the purpose of generating genetically modified animals for basic and applied research. To understand the mechanism of genetic engineering of microbes.
6	Course Outcomes	After successfully completion of this course students will be able to:CO1:Understand <i>in vitro</i> regeneration of plants from different explantsCO2:Gain knowledge on the production of transgenic plantsCO3: Elaborate to the various culture techniques employed in animalsystems.CO4: Acquire the knowledge about application of genetically modifiedanimals in the various fields of science.CO5: Illustrate use of microbes and techniques for manipulation andanalysis of microbial cells for the production of economically importantproducts.CO6: Acquaint the students to the versatile tools and techniquesemployed in genetic engineering and transgenic organisms.
7	Course Description	The student will achieve a sound knowledge on methodological repertoire which allows them to innovatively apply these techniques in in basic and applied fields of life science researches related to transgenic organisms.
8		
-	Unit 1	In Vitro Propagation of Plants
	А	History of plant tissue culture, types of media and their preparation,
		plant hormones, direct and indirect organogenesis
	В	meristem, callus and suspension cell culture, micropropagation, somatic embryogenesis
L	1	

MGE109 Transgenic Organisms

С	protoplast fusion, somaclonal variation, and artificial seeds			
Unit 2	Transgenic Plants			
A	Difference between transgenic plants and genetically edited plants. Transgenic crops for tolerance to abiotic stress, engineering crops for male sterility and modification of flower colour, flowering, fruit ripening and senescence.			
В	Modern approaches for disease resistance. Cloning plant genes, Comparative genomics positional cloning-RNAi-mediated crop improvement.			
C	Examples of transgenic Plants			
Unit 3	Animal Cell Culture			
A	Different types of cell culture media, growth supplements, serum free media, balanced salt solution, Conditions required for culturing animal cells,			
В	Behaviour of cells in culture conditions, division, their growth pattern, Estimation of cell number, Culture of mammalian cells, tissues and organs, primary culture, secondary culture,			
C	Continuous cell lines, suspension cultures and cryopreservation.			
Unit 4	Applications of Animal Cell culture			
А	Animal cell culture for in vitro testing of drugs, testing of toxicity of environmental pollutants in cell culture,			
В	cell culture technology in production of human and animal viral vaccines and pharmaceutical proteins,			
С	Cloning of different animals, Cloning for conservation of endangered species.			
Unit 5	Applications of Transgenic Microbes			
A	Significance of transgenic microbes, Overexpression and tagging of recombinant proteins in <i>E. coli</i> . Overexpression systems in <i>S. cerevisiae</i> , Baculovirus overexpression system			
В	yeast one-hybrid assay, Yeast two hybrids system,			
С	Production of antibiotics, drugs, vitamins and therapeutic peptides using microbes.			
Mode of examination	Theory			
Weightage	CA MTE ETE			
Distribution	30% 20% 50%			
Text book/s*	S.B. Primrose, "Molecular Biotechnology" Blackwell Scientific Publishers, Oxford, 1994.			
Other References	Sambrook. E. F. Fritsch and T. Maniatis, "Molecular Cloning: a Laboratory Manual" Cold Spring Harbor Laboratory Press, New York, 2000.			

SU/SET/MSc Genetic Engineering

School: SET		Batch : 2020-22				
Program: MSc		Current Academic Year: 2020-21				
Branch: Genetic		Semester: III				
Eng	gineering					
1	Course Code	MGE201				
2	Course Title	Industrial Microbiology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Core				
5	Course	1. To enable students bridge the gap between theoretical concepts and				
	Objective	practical aspects in industrial microbiology.				
	0	2. To have In-depth knowledge and hands-on laboratory/industrial skills				
		required for employment or for creation of employment in desired				
		product processing.				
6	Course	After successfully completion of this course students will be able to:				
	Outcomes	CO1: Illustrate design and functioning of bioreactors.				
		CO2: Elaborate the Kinetics of fermentation process.				
		CO3: Describes various steps and methods of recovery and purification				
		of product.				
		CO4: Discuss the methods and challenges for production of metabolites.				
		CO5: Elucidate the various methods of production of enzymes,				
		biofertilizers, SCP and recombinant proteins.				
		CO6: Overall understanding of industrial application of Biotechnology.				
7	Course	The challenge for biochemical engineers is to design compact and clean				
	Description	processes to make and efficiently separate instable products, such as				
		recombinant proteins, from dilute complex fermentation broths to the				
		required pharmaceutical degree of purity. Therefore, the quantitative				
		systematic design of integrated downstream processes is the general				
		theme of this course and will help students in quantitatively and				
		systematically design an integrated industrial process.				
8	Outline syllabus					
	Unit 1	Bioreactor Design				
-		Fermenter structure-Construction material, Basic components – Agitator,				
		aerator, valves and steam traps, seals, stirrer glands.				
temperature, flow rate, pressure, pH, DO, gas analys		Measurement and control of parameters (on-line and off line sensors) –				
		temperature, flow rate, pressure, pH, DO, gas analysis, computer control				
pathways.						
	С	Types of Fermenters Air-lift, stirred tank, tower, fluidized bed, packed				
		bed, pulsed, photo bioreactors, PFR.				

MGE201 Industrial Microbiology

SU/SET/MSc Genetic Engineering

Unit 2	Kinetics of fermentation				
А	Kinetics of Batch, fed-batch and continuous process;				
В	Sterilization methods - batch sterilization, continuous sterilization of				
	medium and air. Solid state and submerged; aerobic and anaerobic				
	fermentation.				
C	Development of inoculum for yeast, bacterial, mycelial and vegetative				
	fungal processes. Transport phenomena - Mass transfer, heat transfer,				
	oxygen transfer. Applications of fermentation technology				
Unit 3	Downstream Processing				
A	Biomass separation by centrifugation, filtration, flocculation and other				
	recent developments				
В	Cell disintegration: Physical, chemical and enzymatic methods.				
	Extraction: Solvent, two phase, liquid extraction, whole broth, aqueous				
	multiphase extraction.				
C	Purification by different methods. Concentration by precipitation, ultra				
	filtration, reverse osmosis. Drying and crystallization				
Unit 4	Production of primary and secondary metabolites				
A	A brief outline of processes for the production of some commercially				
	important primary metabolites				
В	Production of citric acid, lactic acid, acetic acid, glutamic acid, aspartic				
	acid				
C	Production processes for various classes of secondary metabolites su				
	as beta-lactams (penicillin, cephalosporin), aminoglycosides				
	(streptomycin) macrolides (erythromycin)				
Unit 5	Production of enzymes and other bioproducts				
A	Production of industrial enzymes such as proteases, amylases, lipases				
B C	Production of biopesticides, biofertilizers, Single cell protein				
C	Production of recombinant proteins with therapeutic and diagnostic				
Mode of	applications				
	Theory				
examination Weightage	CA MTE ETE				
Weightage Distribution	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Text book/s*	Principles of Fermentation Technology by Stanbury, P.F., Whitekar A.				
	and Hall. 2017				
Other Bioreaction Engineering Principles by Nielsen, J. and Villadsen, p					
References					
References					

School: SET		Batch : 2020-22				
Program: MSc		Current Academic Year: 2021-22				
Branch: Genetic		Semester: III				
En	gineering					
1	Course Code	MGE202				
2	Course Title	Genomics and Proteomics				
3	Credits	4				
4	Contact Hours (L-T-P)	4-0-0				
	Course Status	Core				
5	Course Objective	 The aim of this course is to teach genomics, proteomics using model organisms representing plants and animals. The course will cover recent developments in genomics, gene expression and small RNAs. The course imparts advanced knowledge on proteins through a detailed study of protein Structure, its characteristics property and significance in biological systems. 				
6	Course Outcomes	 After successfully completion of this course students will be able to: CO1: Explain about various techniques and instrumentations used for nucleotide sequencing, genome sequencing and NGS CO2: Elaborate the concept of microarray, TILLING, and advances in genome analysis. CO3: Describes various steps and methods of protein purification and analysis. CO4: Discuss the methods and challenges for protein engineering. CO5: Elucidate the various applications of genomics and proteomics in human diseases, drug development and in food industry. CO6: Explain Genomics and Proteomics including fundamentals, current techniques and applications. 				
7	Course Description	The objectives of this course include understanding the various aspec				
8	Outline syllabus					
	Unit 1	Genome Sequencing				
	А	Overview of conventional and new sequencing technologies, Strategies used in whole genome sequencing, NGS technologies, RNAseq,				
	В	Genome annotation, Candidate gene discover and data mining, Transcription factor, Genome mapping by genetic and physical technique.				
L	1	1				

MGE202 Genomics and Proteomics

SU/SET/MSc Genetic Engineering

С	Evolution and phylogenetic relationships of genomes in prokaryotes and eukaryotes.					
Unit 2	Structural and Functional Genomics					
A	Advances in research related to human genome, Arabidopsis genome, rice genome, wheat genome, Comparative genomics and SNP analysis.					
В	Microarray technology introduction, Types of DNA-microarrays- cDNAs and Oligonucleotides spotted chips.					
С	TILLING as a functional genomics tool. In silico genomics and metabolomics.					
Unit 3	Scope of Proteomics					
А	Introduction and scope of proteomics; Protein separation techniques: ion-exchange, size- exclusion and affinity chromatography techniques, SDA-PAGE, Isoelectric focusing (IEF), 2D PAGE for proteome analysis; Image analysis of 2D gels					
В	Protein chips and functional proteomics; Clinical and biomedical application of proteomics					
С	Proteome database; Proteomics industry.					
Unit 4	Protein Engineering					
А	Protein engineering methods, Rational design and site directed mutagenesis, directed mutation, Receptor-based QSAR methods, Phage display, cell free translation					
В	Protein scaffold, stability of enzymes, chemical modification of proteins, incorporation of unnatural amino acids into proteins,					
С	Use of ribosomal frameshift-suppressor tRNAs and editing-defective aminoacyl-tRNA synthetases, in vitro evolution of proteins					
Unit 5	Applications of Genomics and Proteomics					
A	Genomics of human diseases, nutritional genomics, epigenomics and methods of epigenomics					
В	Proteomics in bio-marker technology, Drug discovery,					
С	Proteomics in biopolymer industry and food industry.					
Mode of examination	Theory					
Weightage	CA MTE ETE					
Distribution	30% 20% 50%					
Text book/s*	Concepts and Techniques in Genomics and Proteomics, N Saraswathy, P Ramalingam, Woodhead Publishing 2011					
Other References	1. Twyman, R.M. Principles of Proteomics. Bios Scientific Publisher, Oxford, 2004					

School: SET		Batch : 2020-22				
Program: MSc		Current Academic Year: 2021-22				
Branch: Genetic		Semester: III				
Engineering						
1	Course Code	MGE203				
2	Course Title	Cancer and Stem Cell Biology				
3	Credits	4				
4	Contact Hours (L-T-P)	4-0-0				
	Course Status	Core				
5	Course Objective	 To learn the biology and genetics of cancer and the genetic basis of cancer therapy. To learn the basics of stem cell biology and its application in healthcare 				
OutcomesCO1:Gain knowledge on biology and genetic CO2:Understand the signaling pathways involved in cancerCO3:Discuss various mechanism of angioge CO4: Illustrate knowledge about stem cells a embryonic stem cells and stem cell niche . CO5:Elaborate about the applications of stem and treatment of human diseases		CO3:Discuss various mechanism of angiogenesis and metastasis CO4: Illustrate knowledge about stem cells and their characteristics, embryonic stem cells and stem cell niche . CO5:Elaborate about the applications of stem cells in tissue engineering				
7	Course Description	This course provides understanding about the causes and mechanism of cancer and its spread and therapeutics. It also elaborates about the stem cells, their types and application in tissue engineering and diseases treatment.				
8	Outline syllabus					
	Unit 1	Introduction to Cancer				
	А	Definition of cancer, history of cancer research, DNA stability and its role in cancer development				
	В	Growth factors and their role in cancer, Overview of the hallmarks of cancer.				
CPhysical and chemical carcinogens.Unit 2Gene Expression and Cancer		Physical and chemical carcinogens.				
of oncogene activation, Role of growth factors and		Proto-oncogenes, oncogenes and tumor suppressor genes, Mechanisms of oncogene activation, Role of growth factors and receptors in carcinogenesis,				
В		Signaling in cancer, role of Ras, p53, myc, Rb, mTor pathways,				

MGE203 Cancer and Stem Cell Biology

SU/SET/MSc Genetic Engineering

	С	Telomeres, cellular immortalization, and Apoptosis						
	Unit 3	Metastasis ar	Metastasis and Angiogenesis					
	А	Metastasis; N	Aigration &	Invasion,	Metastasis	steps, E	pithelial	to
		Mesenchymal	Transition					
	В	Angiogenesis	; Hypoxia an	d VEGF,	Stroma in	nteraction;	Impact	of
		Tumor-Strom	a Interaction of	n Tumor D	evelopment	,		
	С	Angiogenesis- factors and process, Prevention and treatments for cancer						
	Unit 4	Stem Cells ar	nd Their Type	S				
	А	Properties of Stem cells, proliferation, medical applications of stem cells						
	В	Types of stem cells- embryonic stem cell, Adult stem cell,						
	С	Cancer Stem	cells					
	Unit 5 Therapeutic Applications of Stem Cells							
	А	Cell replacement therapy, application of stem cells in Neurological						
		diseases, Immunotherapy						
	B drug screening and toxicology, tissue remodelling, cancer trea					atment ar	nd	
development of scaffolds.								
	С	Ethical and le	gal issues in us	e of stem	cells.			
	Mode of	Theory						
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text book/s*	Bunz F. "Principles of Cancer Genetics", Springer Science, Second Edition (2016).						
	Other	Sell S. "Stem Cells Handbook", Humana Press, Second Edition (2004).						
	References	Sen S. Stem Cens Handbook, Humana Fress, Second Edition (2004).						

School: SET		Batch : 2020-22				
Program: MSc		Current Academic Year: 2021-22				
Branch: Genetic		Semester: III				
	gineering					
1	Course Code	MGE204				
2	Course Title	Clinical Biotechnology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Core				
5	Course	1. To acquire knowledge about the molecular pathology and pathogenesis.				
	Objective	2. To acquire knowledge about the diagnostic methods of infectious disease.				
6	Course	After successfully completion of this course students will be able to:				
	Outcomes	CO1: Explain various clinical aspects of infectious diseases.				
		CO2: Illustrate various factors involved in host pathogen relationship.				
		CO3: Describe the pathogenesis of various infectious diseases.				
		CO4: Understand the mode of actions of antibiotics, antimicrobial agents				
		CO5: Elaborate different aspects and phases of clinical research.				
		CO6: Discuss overall mechanism of infectious diseases and their				
		treatment.				
7	Course	This course provides understanding of molecular pathology, host defense				
	Description	mechanism against pathogens, pathogenesis, virulence factors of				
		pathogens, diagnostic methods and treatment of infectious diseases.				
8	Outline syllabus					
	Unit 1	Clinical Aspects of Infectious Diseases				
	А	Bacterial, Viral and Parasitic diseases, Disease pathology and clinical				
		spectrum, Clinical diagnosis of diseases;				
	В	Molecular genetics of the host and the pathogen,				
	С	Assays for the Diagnosis of bacterial, viral and parasitic diseases by				
		using ELISA, RT-PCR and Western blot				
	Unit 2	Host Pathogen Interaction				
	А	Different reservoirs and epidemiology of pathogenic diseases, Different				
		micro flora of skin, respiratory and excretory tract and other parts of				
		body, Factors responsible for infection				
	В	Colonization of pathogens inside body, Transmission via vector and				
		Toxins produced by pathogens, their types and their mode of action.				
		Nosocomial infections.				

MGE204 Clinical Biotechnology

SU/SET/MSc Genetic Engineering

	Unit 3	Dif 3 Pathogenesis of Infectious Diseases				
	А	Clinical featu	tures, diagnosis and treatment of Malaria, Leishmaniasis,			
		Tetanus, Botu	lism			
	В	Cholera, Plague, Tuberculosis, Measles, Mumps,				
C HIV, HBV, Corona viruses, HPV, Dengue						
	Unit 4	Antimicrobia	al Agents			
	А	Antimicrobial	drugs, antibio	tics and their types,		
	В	narrow spectr	rum and broa	d spectrum antibiotics, mode of action of		
		antibiotics				
	С	antiviral and antifungal agents. Antibiotic resistance				
	Unit 5	Clinical Research				
	А	Origin and history of drug development and clinical research				
B types and phases of clinical research, clinical trials in India				research, clinical trials in India- the national		
		perspective,				
	С	ethical consideration and guidelines of clinical research, clinical trial				
		management.				
	Mode of	Theory				
	examination					
	Weightage	CA	MTE	ETE		
	Distribution	30%	20%	50%		
	Text book/s*	Pommerville J.C. "Guide to Infectious Diseases by Body System", Jones				
		& Bartlett Learning", Second Edition (2012).				
	Other	Kasper D and	d Fauci A. "H	arrison's Infectious Diseases" McGraw-Hill		
	References	Education, Third Edition (2017).				

School: SET		Batch : 2020-22				
Program: MSc		Current Academic Year: 2021-22				
Branch: Genetic		Semester: III				
Engineering						
1	Course Code	MGE205				
2	Course Title	Enzyme Technology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Core				
5	Course	This course will result in understanding of				
	Objective	1. The importance and role of Enzymes in biological processes				
	5	2. Kinetics, Mechanism & Regulation of enzymes				
		3. Applications of enzymes in Medical, Biotechnological, industrial and				
		Agricultural fields.				
6	Course	After successfully completion of this course students will be able to:				
	Outcomes	CO1: Explain the nature, power and purification of enzymes.				
		CO2: Illustrate steady state and pre-steady state kinetics and mechanism of				
		enzyme action.				
		CO3: Describe and appreciate the intricate mechanism of enzyme				
		regulation and inhibition.				
		CO4: Understand and appreciate the application of enzymes and immobilized				
		enzymes				
		CO5: Elaborate different applications of enzymes in different areas of				
		health, industry and in food industry.				
		CO6: Discuss all the basic information necessary to understand,				
		appreciate and utilize enzymes in their higher studies and research in				
_	~	biotechnology.				
7	Course	This course will provide the basic understanding of the nature and				
	Description	properties of Enzymes. The students will learn, isolation, purification of				
		enzymes and would also learn about the mechanism and kinetics. The				
		students will be able to appreciate the application of enzymes in various				
sectors including Biotechnology.		sectors including Biotechnology.				
8 Outline syllabus						
	Unit 1	Introduction to Enzymes				
	A	Enzyme as biocatalysts, classification, nomenclature of enzymes				
enzymes.		extraction, isolation and large scale production and purification of				
	С	Cofactors and their role in enzyme activity				

MGE205 Enzyme Technology

SU/SET/MSc Genetic Engineering

Unit 2	Mechanism of Enzyme Action				
А	Concept of active site and energetics of enzyme-substrate complex				
	formation, sp	ecificity of enz	zyme action; kinetics of enzyme action		
В	estimation of Michaelis-Menten's parameters;				
C	multi-substrat Plot	e reactions-me	chanisms & Kinetics, Hill's Plot, Scatchard		
Unit 3		Enzymes and t	heir inhibition		
А	Enzyme inhibition, Enzyme Inhibitors, Competitive, uncompetitive and non-competitive inhibition.				
В	Mechanism, general principles, theories with examples of Chymotrypsin and Lysozyme, Feedback inhibition, allosteric and cooperativity, Isoenzymes, Covalent and non-covalent modification:				
С	-		phorylase, Aspartate transcarbamoylase.		
Unit 4	Immobilized				
A	Immobilization of enzyme and whole cells; Methods of immobilization – ionic bonding, adsorption, covalent bonding (based on R groups of amino acids), microencapsulation and gel entrapment.				
В	Process design and operation strategies for immobilized enzyme reactors, Immobilization of multiple enzyme system and immobilized enzymes in industrial processes.				
С	Enzymes modification and site directed mutagenesis.				
Unit 5	Applications of Enzymes				
A	Importance of enzymes in diagnostics, Enzyme pattern in dise. Myocardial infarctions (SGOT, SGPT & LDH).				
В		nes as markers	in cancer and other diseases. Enzymes in		
С	Enzymes used in detergents, use of proteases in food, leather and wool industries, starch hydrolyzing enzymes, uses of lactase in dairy industry, glucose oxidase and catalase in food industry. Theory				
Mode of examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	Price and Stevenson– 2009 Fundamentals Of Enzymology, 3rd Edition, Oxford University Press.				
Other References	L. Nelson, Michael M. Cox, Lehninger Principles of Biochemistry/Edition 7, Publisher: Freeman, W.H.& Company, 2017				