

Programme Structure

Master of Science (Physics)

Programme Code: SBR0201

Batch: 2023-25

Department of Physics

Sharda School of Basic Sciences & Research

Sharda School of Basic Sciences & Research MSc. Physics Batch: 2023-2025 TERM: I

S.	Subject	Subjects	L	- T -	·P		Pre-	Type of
No.	Code		L	T	P	Credits	Requisite/ Co Requisite	Course: 1.CC 2.AECC 3.SEC 4.DSE
		THEO	DRY	' SU	BJI	ECTS		
1.	MPH112	Solid state physics	4	0	0	4	Pre- Requisite	CC
2.	MPH119	Mathematical Physics	4	0	0	4	Pre- Requisite	CC
3.	MPH120	Quantum mechanics	4	0	0	4	Pre- Requisite	CC
4.	MPH111	Classical mechanics	4	0	0	4	Pre- Requisite	CC
5.	MMT129	Introduction to MATLAB and its Applications	2	0	2	3	Pre- Requisite	GE1
6.	MPH 159	Research Based Learning (RBL- 1)	0	0	2	0	Pre- Requisite	CC
			Pra	actio	cal			
7.	MPH155	Physics Lab-1	0	0	6	3	Pre- Requisite	CC
8.	MPH156	Physics Lab-2	0	0	6	3	Pre- Requisite	CC
	ТО	TAL CREDITS				25		

Programme Structure
Sharda School of Basic Sciences & Research
MSc. (Physics)
Batch: 2023-2025

		,	ГER	RM:	II			
S.	Course	Course	L	- T	- P		Core/Elective	Type of
No.	Code		L	T	Р	Cr edi ts		Course: 1.CC 2.AECC 3.SEC 4.DSE
		TH	EOR	RY S	UBJ	ЕСТ	S	
1.	MPH115	Renewable energy sources	4	0	0	4	Core	GE 2
2.	MPH113	Electronics	4	0	0	4	Core	CC
3.	MPH117	Statistical Mechanics	4	0	0	4	Core	CC
4.	MPH123	Atomic, molecular physics and spectroscopic techniques	4	0	0	4	Core	CC
5.	MPH122	Advanced quantum mechanics	4	0	0	4	Core	CC
6.	CCU 401	Community Connect	-	-	-	2	Elective	SEEC-1
7.	MPH 160	Research Based Learning (RBL-2)	0	0	2	0	Core	CC
			Pra	ctica	ıl			
8.	MPH157	Physics Lab-3	0	0	6	3	Core	CC
9.	MPH158	Physics Lab-4	0	0	6	3	Core	CC
	ТО	TAL CREDITS				28		

Programme Structure Sharda School of Basic Sciences & Research MSc. Physics Batch: 2023-2025 TERM: III

S.	Course	Course	L	- T ·	- P		Core/Elective	Type of	
No.	Code		L	Τ	Р	Credits		Course: 1.CC 2.AECC 3.SEC 4.DSE	
		THE	ORY	y St	JBJ	ECTS			
1.	MPH204	Electromagnetics	4	0	0	4	Core	CC	
2.	MPH205	Materials Physics	4	0	0	4	Core	DSE-1	
3.	MPH208	Synthesis of Materials	4	0	0	4	Core	DSE-2	
4.	MPH217	Nuclear and particle physics	4	0	0	4	Core	CC	
5.	MPH256	Dissertation – 1 (RBL-3)	0	0	0	4	Core	DSE-3	
Prac	ctical								
6.	MPH257	Specialized Physics lab	0	0	6	3	Core	CC	
	ТС	OTAL CREDITS		TOTAL CREDITS					

Programme Structure Sharda School of Basic Sciences & Research MSc. Physics Batch: 2023-2025 TERM: IV

S. No.	Course Code	Course	L	- T ·	- P P	Credits	Core/Elective	Type of Course: 1.CC 2.AECC 3.SEC 4.DSE
		THE	OR	Y SI	UBJ	ECTS		
1.	OPExxx	Open Elective	2	0	0	2	Elective	SEEC 2
2.	MPH209	Characterization of Materials	4	0	0	4	Core	DSE 4
3.	MPH210	Properties of Materials	4	0	0	4	Core	DSE 5
4.	MPH258	Dissertation – 2 (RBL-4)	0	0	0	6	Core	DSE 6
		TOTAL CREDITS	5: 16	6				

Course Modules

Sch	nool: SSBSR	Batch: 2023-2025						
	gramme: M.Sc.	Current Academic Year: 2023-2024						
	anch: Physics	Semester: I						
1	Course Code	MPH-112						
2	Course Title	Solid State Physics						
3	Credits	4						
4	Contact Hours	4-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course Objective	This course provides an opportunity to develop know understanding of the key principles and applications of physi						
6	Course Outcomes	CO1: Knowledge of real space, reciprocal space (k-space), I a Periodic Potential and Free electron theory. CO2: Knowledge and understanding the theory of defects ar	Electrons in					
		 in Solids. CO3: Knowledge and understanding the theory of lattice vil (phonons) and use that to determine thermal properties of solids CO4: Knowledge and understanding of dielectric and Ferro- Properties of Materials. CO5: Knowledge and understanding of magnetic and supercom properties of solids. CO6: Apply the knowledge gained to solve problems in sol physics using relevant mathematical calculations. 						
7	Course Description	This course provides students a full exposure to the basic pri- essential concepts of Solid-State Physics including description of crystal structure, lattice dynamics, thermal, el- magnetic properties of solids.	theoretical					
8	Outline syllabus		CO Mapping					
	Unit 1	Electronic Energy Bands						
	А	Wigner Seitz cell, Brillouin Zone, Bragg planes	CO1					
	В	Band structure, Bloch Theorem, Electrons in a Periodic Potential	CO1,CO6					
	С	Kronig-Penney Model, Classical and quantum Free electron theory	C01,C06					
	Unit 2	Defects and Diffusion in Solids						
	A	Point defects, line defects and dislocations	CO2					
	В	Fick's law, diffusion constant	CO2					
	С	self-diffusion, color centres and excitons.	CO2					
	Unit 3	Lattice Vibration and Thermal Properties of Solids						
	A	Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains	CO3,CO6					
	В	Acoustical and Optical Phonons. Qualitative description of the Lattice heat capacity	CO3,CO6					
	С	Classical theory of specific heat, Einstein's and Debye's theory of specific heat of solids.	CO3					

Unit 4	Dielectric and Ferro-electric Properties of Materials					
А	Local Field and Clausius-Mossotti Equation, Polarization	CO4				
	mechanism: Ionic Polarization, Orientational Polarization,					
	Interfacial Polarization, Total Polarization					
В	Piezoelectricity, Ferroelectricity, Pyroelectricity effect,	CO4				
	Ferroelectric effect,					
С	Curie-Weiss Law, Ferroelectric domains, Structural phase	CO4,				
	transition.	CO6				
Unit 5	Magnetism and Superconductivity					
А	Ferromagnetic Domains – Anisotropy energy, origin of	CO5,				
	domains, transition region between domains, Bloch wall,	CO6				
	Coercive force, Temperature dependence of spontaneous					
	magnetisation,					
В	Saturation Magnetization, Antiferromagnetism,	CO5				
	Ferrimagnetism, Anisotropic and Giant					
	Magnetoresistance, London equation;					
С	Elementary BCS theory, coherence Length, Quantization of	CO5				
	magnetic flux, Josephson effect.					
Mode of examination	Class test (10), Assignments (10) and presentation (10)					
Weightage	CA MTE ETE					
Distribution	25% 25% 50%					
Text book/s*	1. Introduction to solid state physics: C. Kittel					
Other References						
	3. Solid State Physics: A. J. Dekker					
	4. Physics of Materials: Richar Jerome Weiss					
	5. Introduction to solids: L.V. Azaroff					

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO112.1	3	3	1	2	1	1
CO112.2	3	3	1	2	1	1
CO112.3	3	3	1	2	1	1
CO112.4	3	3	3	2	2	1
CO112.5	3	3	3	2	2	1
CO112.6	3	3	1	2	2	1

1-Slight (Low)

```
2-Moderate (Medium)
```


		D (1, 2022 25						
	ool: SSBSR	Batch: 2023-25						
	gramme: M.Sc.	Current Academic Year: 2023-24						
	nch: Physics	Semester: I						
1	Course Code	MPH 119						
2	Course Title	MATHEMATICAL PHYSICS						
3	Credits	4						
4	Contact Hours (L-T-P)	4-0-0						
	Course Status	Compulsory						
5	Course Objective	 The objective of this course is to familiarize the students with various techniques of solving ordinary and partial differential equations. To understand the concepts of Laplace and Fourier transformations, basic statistical and numerical methods and their applications. 						
6	Course Outcomes	CO1: Explain the methods of solving differentia various types.	l equations of					
		CO2: Explains the methods of solving Heat, Wave Equations	and Laplace's					
		CO3: Know that any periodic function can be express series and fundamental mathematical properties of the Laplace transform.						
		CO4: Know the condition(s) for a complex variable analytic and/or harmonic, able to determine the points of a function and understand the concept of sequences respect to the complex numbers.	of singularities					
		CO5: Describe various probability distributions and thapplications.						
		CO6: Describe and use the concepts of different nume	erical methods.					
7	7 Course Description This course is an introduction to the fundamentals of Ordinary an partial differential equations, Integral transformations, complex variables, statistics and numerical analysis. The main objective of the course is to develop the basic understanding of differential equations, Fourier and Laplace Transforms, complex variables an numerical methods.							
8	Outline syllabus	Mathematical Physics	CO Mapping					
	Unit 1	Ordinary Differential Equations						
	А	Linear ordinary differential equations of first & second order.	CO1					
	В	Series solution of differential equation, Special functions (Hermite, Bessel, Laguerre and Legendre functions). Green's function	CO1					

С		rential equation three	ons (Laplace, wave and heat dimensions)	CO2		
Unit 2	Fourier ser					
A		ies in change of interval,	CO3			
	Half range s					
В			er Cosine and sine	CO3		
	Transform,	properties of I	Fourier			
С			e standard functions and its	CO3		
	properties, l	nverse Laplac	e transform and			
	Convolution					
Unit 3	Complex A	nalysis				
А	Elements of	complex anal	ysis, analytic functions.	CO4		
В	Taylor & La	aurent series.		CO4		
С	Poles, resid	ues and evalua	tion of integrals.	CO4		
Unit 4	Probability	and Statistic	S			
А	Elementary	probability th	eory, random variables.	CO5		
В	Binomial, P	oisson and no	rmal distributions	CO5		
С	Central limi	t theorem.		CO5		
Unit 5		Techniques				
A			l techniques: root of	CO6		
		nterpolation, e				
В			and Simpson's rule.	CO6		
С			erential equation using	CO6		
	-	a method and	Finite difference method			
Mode of	Theory					
examination		ſ	1			
Weightage	CA	MTE	ETE			
Distribution	25%	25%	50%			
Text book/s*			"Advanced Engineering			
			n Wiley & Sons Inc. yengar, S.R.K., "Advanced			
Other		Engineering Mathematics", Narosa Publications				
Other		 S.L. Ross, "Differential Equations", John Willey & Sons Inc. 				
References						
		-	. K. Kapoor: Fundamentals tatistics: Sultan Chand and			
	Sons		iausiics. Suitall Cliallu allu			
	301					

РО	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
СО								
CO119.1	3	3	3	3	2	2	1	1
CO119.2	3	2	3	3	2	2	1	1
CO119.3	2	2	2	2	1	2	1	1
CO119.4	2	2	1	2	1	2	1	1
CO119.5	3	2	2	3	1	2	1	1
CO119.6	3	2	1	3	1	2	1	1

1-Slight (Low)

2-Moderate (Medium)

School: SSBSR		Batch: 2023-2025					
	gramme: MSc (Phys						
	anch:	Semester: I					
1	Course Code	MPH 120					
2	Course Title	Quantum Mechanics					
3	Credits	4					
4	Contact Hours (L-T-P)	4-0-0					
	Course Status	Compulsory					
5	Course Objective	 pinpoint the historical aspects of development of quantum mechanics, understand the uncertainty dirac notations relations understand and explain the difference between classical and quantum mechanics understand the idea of wave function solve Schrodinger equation for simple potentials spot, identify and relate the eigenvalue problem for energy, momentum, angular momentum and central potentials. 					
6	Course Outcomes	After the completion of this course, the student will be abletoCO1 understanding and relating the events which led towardthe development of quantum mechanicsCO2 understanding the basic principles of wave mechanicsCO3 relating the knowledge of mathematics to the formalismof quantum mechanicsCO4 ability to solve simple problems exactlyCO5 adapting the gained knowledge to be implement.CO6 Understanding the concept of Quantum Mechanics andits application for real problems					
7	Course Description						
8	Outline syllabus	CO Mapping					
	Unit 1						
	L R	troduction to the course and Prerequisite required, CO1 inear vector space – State space, Dirac notation and epresentation of State Spaces, Concept of Kets, Bras and Operators					

В	Expectation Values, Orthogonality, Complete Vector, Non commutating	eness, Expansion of		CO1	
С	Commutation and Com Unitary operators. Gener Ehrenfest theorem	patibility, Change of		CO1	
Unit 2					
A	Postulates of Quantum me interpretation	echanics, State function	and its	CO2	
В	Wave-function in co representations, Expansion Superposition of states		entum and	CO2	
С	Matrix representation of Continuous Basis, Relation its wave function			CO2	
Unit 3					
A	Schrödinger equation and dimensional consideration dependent and time-indep	n: Schrödinger equation		CO3	
В	Eigenvalue problems: potential well (finite and states	CO3			
С	Solutions of different one-dimensional barriers (finite and infinite width) and penetration problems.			CO3	
Unit 4					
А	Schrödinger equation and its applications in three dimensional consideration: Free particle wave function				
В	Motion of a charged parti field			CO6 CO4	
С	Energy states associated wave functions of Hydrogen atom; Expression of Bohr radius				
Unit 5					
А	Schrödinger interaction Pictures in quantum mechanics				
В	Heisenberg interaction Pie	CO5, CO6			
С	Linear harmonic oscillator: solution of the Linear Harmonic Oscillator with Operator Method, Coherent States			CO5, CO6	
Mode of examination	Theory				
Weightage	СА	MTE	ETE		
Distribution	0 0				
Text Book/s	1. Nouredine Zetti applications, John Wiley	li, Quantum Mechani		•	

Other	1. B. H. Bransden and C. J. Joachain, Quantum Mechanics,
References	Pearson Education 2nd Ed. (2004)
	2. R. L. Liboff, Introductory Quantum Mechanics, Pearson
	Education, 4th Ed. (2003).
	3. J. J. Sakurai, Modern Quantum Mechanics, Pearson
	Education (2002).
	4. K. Gottfried and T-M Yan, Quantum Mechanics:
	Fundamentals,2nd Ed., Springer (2003).
	5. D. J. Griffiths, Introduction to Quantum Mechanics, Pearson
	Education (2005).
	6. P. W. Mathews and K. Venkatesan, A Textbook of Quantum
	Mechanics, Tata McGraw Hill(1995).
	7. F. Schwabl, Quantum Mechanics, Narosa (1998).

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO120.1	3	3	2	2	1	1	2	2
CO120.2	3	2	2	3	1	1	2	2
CO120.3	3	3	2	2	1	2	2	2
CO120.4	2	3	2	3	1	2	2	2
CO120.5	3	2	2	3	1	2	2	2
CO120.6	3	3	2	3	1	2	2	2

1-Slight (Low)

2-Moderate (Medium)

MPH111 Classical Mechanics

Scho	ool: SSBSR	Batch: 2023-25
	gramme: M.Sc.	Current Academic Year: 2023-24
,	nch: Physics	Semester: I
1	Course Code	MPH111
2	Course Title	Classical Mechanics
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	 To make the students familiar with the concepts Constraints and generalized coordinates, d' Alembert's principle and virtual work. To understand the concept of Hamilton's principle, Hamilton's canonical equations of motion, cyclic coordinates, Central Forces, Lagrangian and Hamiltonian, em forces, coupled oscillators. To know the concept of Canonical Transformations, Hamilton Jacobi theory, action and angle variables, Small oscillations, principal axis transformation, Degrees of freedom for a rigid body, Euler angles. To understand the concept of Two body central force problem, reduction to the equivalent one body problem, equation of motion and first integral, Virial theorem.
6	Course Outcomes	 CO1: Learn the basic concepts of Constraints and generalized coordinates, d' Alembert's principle and virtual work, Euler-Lagrange equations of motion. CO2: Understand the Hamilton's principle, Hamilton's canonical equations of motion, cyclic coordinates, Central Forces – Lagrangian and Hamiltonian, em forces, coupled oscillators. Canonical variables, Poisson's bracket. CO3: Able to explain the Canonical Transformations, Hamilton Jacobi theory, action and angle variables, centre of mass and laboratory systems. CO4: Figure out the Small oscillations, principal axis transformation, normal coordinates and its applications to linear molecules. Degrees of freedom for a rigid body, Foucault's pendulum. CO5: State the concepts of Two body central force problem, reduction to the equivalent one body problem, equation of motion and first integral, Virial theorem. CO6: Analyse the concepts of Lagrangian Formulation, Hamiltonian Formulations, Two Body Problem.
7	Course Description	This course is about describing the concepts of Lagrangian Formulation, Hamiltonian Formulations, Canonical Transformations, Thoery of Small Oscillations, Two Body Problem.

	Outline Syllabus		СО
8	j		Mappi
			ng
	Unit 1	Lagrangian Formulation	
	А	Constraints and generalized coordinates	CO1,
	A	Constraints and generalized coordinates	CO6
	В	d' Alembert's principle and virtual work	CO1, CO6
	С	Euler-Lagrange equations of motion, variational calculus.	CO1, CO6
	Unit 2	Hamiltonian Formulations	
		Hamilton's principle, Hamilton's canonical equations of	CO2,
	A	motion, cyclic coordinates, Central Forces	CO6
	В	Lagrangian and Hamiltonian, em forces, coupled oscillators	CO2, CO6
	С	Canonical variables, Poisson's bracket, Jacobi identity.	CO2, CO6
	Unit 3	Canonical Transformations	
	А	Canonical Transformations, generators of infinitesimal canonical transformations, symmetry principles and conservation laws	CO3, CO6
	В	Hamilton Jacobi theory, action and angle variables	CO3, CO6
	С	centre of mass and laboratory systems.	CO3, CO6
	Unit 4	Thoery of Small Oscillations	
	А	Small oscillations, principal axis transformation, normal coordinates and its applications to linear molecules	CO4, CO6
	В	Degrees of freedom for a rigid body, Euler angles, Rotating frame, Coriolis force, Foucault's pendulum	CO4, CO6
	С	Eularian coordinates and equations of motion for a rigid body, motion of a symmetrical top.	CO4, CO6
	Unit 5	Two Body Problem	
	A	Two body central force problem, reduction to the equivalent one body problem	CO5, CO6
	В	equation of motion and first integral, Virial theorem	CO5, CO6
	С	differential equation of orbit, Kepler problem, precessing orbits.	CO5, CO6
	Mode of Examination	Theory	
	Weightage Distribution		ETE 50%
	Text Book/s	 Classical Mechanics by H.Goldstein, Narosa Publishing New Delhi. Classical Mechanics by N.C.Rana and P.S.Joag, Tata Mc Hill Publishing Company Limited, New Delhi. 	

Other	3. Introduction to Classical Mechanics by R.G.Takawale and
	P.S.Puranik, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
	 Classical Mechanics by J.C.Upadhyaya, Himalaya Publishing House.

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO111.1	3	2	3	3	1	2
CO111.2	3	2	3	3	1	2
CO111.3	3	3	3	3	1	2
CO111.4	3	2	2	3	1	2
CO111.5	3	2	2	3	1	2
CO111.6	3	2	2	3	1	2

1-Slight (Low)

2-Moderate (Medium)

Sch	ool: SSBSR	Batch: 2023- 2025				
	gramme: M.Sc.	Current Academic Year: 2023-24 Semester: I				
	nch: Mathematics,					
	sics, Chemistry					
1	Course Code	MMT-129				
2	Course Title	Introduction to MATLAB and its applications				
3	Credits	3				
4	Contact Hours (L-T-P)	2-0-2				
	Course Status	Compulsory				
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts for MATLAB and cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific programming problems including curve fitting, ODE solving etc.				
6	Course Outcomes	 CO1: Describe the fundamentals of MATLAB and MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and t K3) CO3: Illustrate basic flow controls (if-else, for, wh CO4: Create plots and export this for use in report presentations. (K3, K5) CO5: Develop programme scripts and funct MATLAB development environment. (K4 CO6: Write the programme for evaluates life equations, ordinary differential equations i K5,K6) 	heir uses. (K2, nile). (K3) s and ctions using the , K5) inear system of			
7	Course Description	The course will give the fundamental knowledge a abilities in MATLAB required to effectively utiliz technical numerical computations and visualisatio courses. Syntax and interactive computations, programmin using scripts and functions, rudimentary algebra at One- and two-dimensional graphical presentations engineering applications.	e this tool in n in other g in MATLAB nd analysis.			
8	Outline syllabus applications	Introduction to MATLAB and its	CO Mapping			
	Unit 1	Introduction				
	А	Vector and matrix generation, Subscripting and the colon notation.	CO1			
	В	Matrix and array operations and their manipulations,	CO1			
	С	Introduction to some inbuilt functions.	CO1			
	Unit 2	Relational and Logical Operators				

А	Flow con	ntrol using va	rious statement and loops	CO1, CO3
	includin			
	statemen	nt		
В	Nested I	f-Else-End St	atement,	CO3
С	For – En	d and While-	End loops with break	CO3
	comman	ds.		
Unit 3	m-files			
А	Scripts a	nd functions		CO2,CO5
В	concept	of local and g	lobal variable	CO2,CO5
С	few exam	nples of in-bu	uilt functions, editing,	CO2,CO5
	saving n	n-files.		
Unit 4	Two din	nensional Gr	aphics	
А			n axes and annotation in a	CO4
	figure			
В	multiple plots in a figure			CO4
С	saving a	nd printing fig	gures	CO4
Unit 5	Applications of MATLAB			
А	Solving a linear system of equations,			CO5, CO6
В	Curve fitting with polynomials using inbuilt			CO5, CO6
	function such as polyfit, solving equations in one			
	variable,			
C	Solving	CO5, CO6		
	inbuilt functions			
Mode of	Theory			
examination		1		
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book	An introduction to MATLAB : Amos Gilat			
Other References	1. A	Applied Nume	erical Methods with Matlab	
	f	or engineerin	g and Scientists by	
	s	tevenchapra,	Mcgraw Hill.	
	2. 0	Getting started	l with Matlab: RudraPratap	
		0	·····F	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO129.1	1	3	2	3	1	3	1	1
CO129.2	1	3	2	3	1	3	1	1
CO129.3	1	3	2	3	1	3	1	1
CO129.4	1	3	2	3	1	3	1	1
CO129.5	1	3	2	3	1	3	1	1
CO129.6	1	3	2	3	1	3	1	1

1-Slight (Low)

2-Moderate (Medium)

Sch	ool: SSBSR	Batch: 2023-2025	
Pro	gramme: MSc	Current Academic Year: 2023-24	
(Ph	ysics)		
Bra	nch:	Semester: I	
1	Course Code	MPH 155	
2	Course Title	Solid state physics lab	
3	Credits	3	
4	Contact Hours (L-T-P)	0-0-6	
	Course Status	Compulsory	
5	Course Objective	 To Understand the significance and value physics, both scientifically and practically. To understand laboratory experiments to results, error analysis, writing reports and analy To learn the fundamental properties of semic Apply key analysis techniques to understand To understand laboratory experiments to 	o Interpreting zing data. conductors.
6	Course Outcomes	CO1: Student will be able to determine the Planck's excitation potential of mercury.	s constant and
		CO2: Student will be able conclude the value of the rat mass (e/m) of an electron using a cathode-ray tube.	io of charge to
		CO3: Student will be able to understand the co susceptibility of paramagnetic solution by Quinck`s Tul Energy Band Gap of Semiconductor materials.	-
		CO4: Student will be able to understand the Hyst Magnetic materials and the dielectric constant of some	
		CO5: Student will be able to understand the concept Carrier density and mobility of a semiconductor mater	
		CO6: Student will be able to know the python programmer	ning language
7	Course Description	This course integrates exposure of the theory of Solid with experimental demonstrations in the Physics Lab. T provide a valuable overview of the fundamental appli- physics of solids.	State Physics The course will
8	Outline syllabus	s	СО
0			Mapping

Unit 1	Practical re	lated to					
			's constant by measuring	CO1			
		radiation in a fixed spectral range.					
		1	tion potential of mercury				
		anck-Hertz me					
Unit 2	Practical re	lated to					
	3. To determ	ine the value o	f the ratio of charge to mass	CO2			
	(e/m) of an	electron by T	homson's method using a				
	cathode-ray	tube.					
	4. Measurer	ment of susce	eptibility of paramagnetic				
	solution (Qu	inck`s Tube M	lethod).				
Unit 3	Practical re						
		ding basics of	GM Counter.	CO3			
	6. St						
		and determination of its operating voltage, plateau length / slope.					
	Ĩ						
Unit 4	Practical re	lated to					
	7. To measure the dielectric constant of some			CO4			
	materials.						
	8. To under						
	efficient, C						
	semiconduct						
Unit 5	Practical re	lated to					
	-		to python programming	CO5, CO6			
	language-(1)						
	10. Experir	nent related	to python programming				
	language-(2)).					
Mode of	Practical and	l Viva					
examination							
Weightage	CA	MTE	ETE				
" orginugo			50%				
Distribution	50%	0%	JU70				
Distribution	-	0%	5070				
		0%	5070				

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO155.1	1	3	1	2	1	1
CO155.2	1	3	1	2	1	1
CO155.3	1	3	1	2	1	1
CO155.4	1	3	1	1	1	1
CO155.5	1	3	1	1	1	1
CO155.6	1	3	1	1	1	1

1-Slight (Low)

2-Moderate (Medium)

Programme: M.Sc. Current Academic Year: 2023-2024 Brauch: Physics Semester: 1 st 1 Course Code MPH156 2 Course Title Quantum physics lab using sci-lab software 3 Credits 3 4 Contact Hours 0-0-6 (L-T-P) Course Status Compulsory 5 Course Course Quantum mechanics problems 6 Course To learn inbuild functions of scilab and will learn to define new function 6 Course Col: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for hydrogen atom in sci lab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab 7 Course 9 Description 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outlin	Sch	ool: SSBSR	Batch: 2023-2025						
Branch: Physics Semester: 1 st 1 Course Code MPH156 2 Course Title Quantum physics lab using sci-lab software 3 Credits 3 4 Contact Hours 0-0-6 (L-T-P) Course Status Compulsory 5 Course Status Compulsory 6 Course Status Contact Hours 7 Course Ode • To Understand Scilab basics 6 Course • To verify various physics laws • To verify various physics laws • To solve quantum mechanics problems 6 Course CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays 7 Course CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab 7 Course This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will lear									
1 Course Code MPH156 2 Course Title Quantum physics lab using sci-lab software 3 Credits 3 4 Contact Hours 0-0-6 (L-T-P) Course Status Compulsory 5 Course • To Understand Scilab basics 6 Objective • To learn inbuild functions of scilab and will learn to define new function 6 Course • To solve quantum mechanics problems 7 Course CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays 7 Course CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) 7 Course CO6: Learn physics concepts via writing scilab programme. 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanic									
2 Course Title Quantum physics lab using sci-lab software 3 Credits 3 4 Contact Hours 0-0-6 (L-T-P) Course Status Compulsory 5 Course To Understand Scilab basics 0bjective • To Understand Scilab basics 6 Course • To verify various physics laws 6 Course CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Learn physics concepts via writing scilab programme. 7 Course 9 This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems.									
3 Credits 3 4 Contact Hours 0-0-6 (L-T-P) Course Status Compulsory 5 Course • To Understand Scilab basics 0bjective • To verify various physics laws 6 Course • To solve quantum mechanics problems 6 Course CO2: Learn the Basics of Sci lab, Inbuild functions and plotting function, Multidimensional arrays 7 Course CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays 7 CO2: Learn to preserve data, Complex and Character data, string functions in scilab CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) 7 Course CO6: Learn physics concepts via writing scilab programme. 7 Course CO6: Learn physics concepts via writing scilab programme. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8									
4 Contact Hours (L-T-P) 0-0-6 (L-T-P) Course Status Compulsory 5 Course Objective To Understand Scilab basics 0 To learn inbuild functions of scilab and will learn to define new function • To verify various physics laws • Course CO1: Learn the Basics of Sci lab, Inbuild functions and plotting function, Multidimensional arrays C03: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics pr									
(L-T-P) Course Status Compulsory 5 Course Status To Understand Scilab basics 6 Objective To earn inbuild functions of scilab and will learn to define new function To verify various physics laws To solve quantum mechanics problems 6 Course CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 8 Outline syllabus: This course is about to understand Scilab basi									
Course Status Compulsory 5 Course Objective • To Understand Scilab basics 6 Course Outcomes • To verify various physics laws • To solve quantum mechanics problems 6 Course Outcomes CO1: Learn the Basics of Sci lab, Inbuild functions and plotting function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 8 Unit 1 Practical based on gases of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and	•								
5 Course Objective To Understand Scilab basics 6 To learn inbuild functions of scilab and will learn to define new function 6 Course Outcomes CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve the Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab 7 Course Description 7 Course Description 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 4 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting Sub Unit - a: Introduction to Scilab, C		, ,	Compulsory						
Objective • To learn inbuild functions of scilab and will learn to define new function 6 Course CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays 7 CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) 7 Course CO6: Learn physics concepts via writing scilab programme. 7 Course Description 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Variables and arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierarachy of operations, Sub Unit c: Introduction to plotting, 2D and 3D	5								
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, window, Figure window, Variables and arrays, Initializing variables in Scilab, Command window, Figure window, Edit window, Variables and arrays, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D	U			earn to define					
8 • To verify various physics laws • To solve quantum mechanics problems 6 Course Outcomes CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO Mapping 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO1 9 Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array ope		j		cam to define					
6 Course CO1: Learn the Basics of Sci lab, Inbuild functions and plotting 6 Outcomes CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 8 Outline syllabus: This course is nabult to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO1 8<									
6 Course Outcomes CO1: Learn the Basics of Sci lab, Inbuild functions and plotting CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D									
Outcomes CO2: Learn to preserve data, Complex and Character data, string function, Multidimensional arrays CO3: Able to write the programme for Hookes law, spring constant and Classical equation of motion: harmonic oscillator (low, moderate & high damping case) CO4: Able to solve Schrodinger equation for the ground and excited state of an atom and to find their energies and to plot corresponding wavefunctions in scilab CO5: Able to solve the Schrodinger equation for hydrogen atom in sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to solve quantum mechanics problems. CO 9 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Int	6	Course		1 plotting					
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics CO 9 Unit 1 Practical based on Basics of Sci lab, Inbuild functions, to were physics laws and to solve quantum mechanics CO 9 Sub Unit - a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and ar	0			1 0					
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 9 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO 9 Sub Unit - a: Introduction to Scilab. Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO 9 Sub Unit bild if in Scilab functions, Scilab functions, Scilab basics of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics CO 9 Unit 1 Practical based on Basics of Sci lab, Inbuild functions, and plotting CO 9 Sub Unit - a: Introduction to Scilab. Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Sub Unit bild functions, Scilab functions, Scilab Sub Unit bild functions, Scilab 9 Sub Unit bild to the control to scilab functions, Scilab Sub Unit bild functions, Scilab CO 9 Sub Unit bild tildimensional arrays, Sub-array, Special rand array operations, Hierararchy of operations, Built in Scilab functions, Scilab functions, Scilab functions, Sub Unit		Outcomes		ata, string					
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 9 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 1 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO1 9 Sub unit built bild timetions, Sub and array, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub unit c. Introduction to plotting, 2D and 3D CO1				ring constant					
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D I									
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outlint 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Unit 1 Practical based on Basics of Sci lab, Inbuild function, built b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting									
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 9 Unit 1 Practical based on Basics of Sci lab, Inbuild functions, and plotting CO1 9 Sub Unit - a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables				d and excited					
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, operations, Built in Scilab functions, operations, Hierararchy of operations, B									
sci lab CO6: Learn physics concepts via writing scilab programme. 7 Course This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO1 9 Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D CO1									
7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO1 9 Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, operations, Built in Scilab functions, Image: Content operations, Content operati			CO5: Able to solve the Schrodinger equation for hydro	gen atom in					
7 Course Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO Mapping Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D			sci lab						
Description This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Image: Scilab and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D			CO6: Learn physics concepts via writing scilab program	mme.					
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D	7	Course							
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO 8 Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 9 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO1 9 Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D Sub Unit c: Introduction to plotting, 2D and 3D		Description							
8 Outline syllabus: This course is about to understand Scilab basics, to learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. CO Mapping Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO1 Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D Sub Unit c: Introduction to plotting, 2D and 3D				•					
learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. Mapping Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab August and arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D			various physics laws and to solve quantum mechanics	problems.					
learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. Mapping Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab August and arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D									
learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. Mapping Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab August and arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D									
learn inbuild functions of scilab and will learn to define new function, to verify various physics laws and to solve quantum mechanics problems. Mapping Unit 1 Practical based on Basics of Sci lab, Inbuild functions and plotting CO1 Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab August and arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D	0	Outling gullabu	. This course is shout to understand Sailah having to	CO					
to verify various physics laws and to solve quantum mechanics problems. If the constraint of	0	•							
problems. Practical based on Basics of Sci lab, Inbuild CO1 Unit 1 Practical based on Basics of Sci lab, Inbuild CO1 functions and plotting Sub unit – a: Introduction to Scilab, Command CO1 window, Figure window, Edit window, Variables and arrays, Initializing variables in Scilab CO1 Sub Unit b:Multidimensional arrays, Sub-array, Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D Sub Unit c: Introduction to plotting, 2D and 3D			,	Mapping					
Unit 1Practical based on Basics of Sci lab, Inbuild functions and plottingCO1Sub unit - a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in ScilabCO1Sub Unit - a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in ScilabCO1Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions,Sub Unit c: Introduction to plotting, 2D and 3D		•	us physics laws and to solve quantum mechanics						
functions and plottingSub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in ScilabSub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions,Sub Unit c: Introduction to plotting, 2D and 3D		1	Practical based on Basics of Sci lab Inbuild	CO1					
Sub unit – a: Introduction to Scilab, Command window, Figure window, Edit window, Variables and arrays, Initializing variables in ScilabSub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions,Sub Unit c: Introduction to plotting, 2D and 3D			,	cor					
window, Figure window, Edit window, Variables and arrays, Initializing variables in ScilabSub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions,Sub Unit c: Introduction to plotting, 2D and 3D									
arrays, Initializing variables in ScilabSub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions,Sub Unit c: Introduction to plotting, 2D and 3D			,						
Sub Unit b:Multidimensional arrays, Sub-array, Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D			-						
Special values, Displaying output data, data file, Scalar and array operations, Hierararchy of operations, Built in Scilab functions,Sub Unit c: Introduction to plotting, 2D and 3D	ļ								
Scalar and array operations, Hierararchy of operations, Built in Scilab functions, Sub Unit c: Introduction to plotting, 2D and 3D									
operations, Built in Scilab functions,Sub Unit c: Introduction to plotting, 2D and 3D									
Sub Unit c: Introduction to plotting, 2D and 3D			• •						
			*						
design, Relational and logical operators, the while			design, Relational and logical operators, the while						

	loop for loop details of loop operations break and	
	loop, for loop, details of loop operations, break and continue statements, nested loops, logical arrays and	
	vectorization. User defined functions	
TI		CON
Unit 2	Practical related to lean to preserve data,	CO2
	Complex and Character data, string function,	
	Multidimensional arrays	
	Sub unit - a, Introduction to Scilab functions,	
	Variable passing in Scilab, optional arguements,	
	preserving data between calls to a function,	
	Sub Unit b: Complex and Character data, string	
	function, Multidimensional arrays an introduction to	
	Scilab file processing, file opening and closing,	
	Sub Unit c: Binary I/o functions, comparing binary	
	and formatted functions, Numerical methods and	
	developing the skills of writing a programme	
Unit 3	Practical related to write the programme for	CO3, CO6
	Hookes law, spring constant and Classical	
	equation of motion: harmonic oscillator (low,	
	moderate & high damping case	
	Sub unit - a, Sci-lab programme of following	
	physical relations: Hookes law, Calculate spring	
	constant, Classical equations of motion,	
	Sub Unit b: Harmonic oscillator (no friction)	
	Damped Harmonic oscillator (i) Overdamped (ii)	
	Critical damped (iii) Oscillatory	
	Sub Unit c: Forced Harmonic oscillator (i) Transient	
	and (ii) Steady state solution	
Unit 4	Practical related to solve Schrodinger equation	CO4, CO6
	for the ground and excited state of an atom and to	,
	find their energies and to plot corresponding	
	wavefunctions	
	Sub unit – a Solve the s wave Schrodinger equation	
	for the ground state and the first excited state of the	
	hydrogen atom. Obtain the energy eigenvalues and	
	plot the corresponding wavefunctions. Remember	
	that the ground state energy of the hydrogen atom is	
	≈ -13.6 eV. Take $e = 3.795 (eVÅ)^{1/2}$, $\hbar c = 1973$	
	$(eVÅ)$ and $m = 0.511 \times 10^6 \text{ eV/c}^2$	
	Sub Unit b & c: Solve the s-wave radial Schrodinger	
	equation for an atom. Where m is the reduced mass	
	of the system (which can be chosen to be the mass of	
	an electron), for the screened coulomb potential. Find the energy (in aV) of the ground state of the store to	
	the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the	
	an accuracy of three significant digits. Also, plot the	
	corresponding wavefunction. Take $e = 3.795$	
	$(eVÅ)^{1/2}$, m = 0.511x10 ⁶ eV/c ² , and a = 3 Å, 5 Å, 7	
	Å. In these units $\hbar c = 1973$ (eVÅ). The ground state	
	energy is expected to be above -12 eV in all three cases	

Unit 5	Practical rela	ated to solve	Schrodinger equation	CO5, CO6		
	for hydroger					
	equation for a oscillator pote	n particle of mential for the	ave radial Schrodinger hass m. For the anharmonic ground state energy (in hracy of three significant			
	digits. Also, p Choose $m = 9$ 10, 30 MeV f The ground st and 110 MeV					
	Sub Unit b & equation for t Where μ is th for the Morse energy (in Me three signification wave function 0.755501 eV,					
Mode of examination	Practical					
Weightage	CA	MTE	ETE			
Distribution	50%	0%	50%			
Text book/s*	• Comp 2015,					
Other References	Lipsm Camb • Gettin	 A Guide to MATLAB, B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, 2014, 3rd Edn., Cambridge University Press Getting started with Matlab, Rudra Pratap, 2010, Oxford University Press 				

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO156.1	1	3	1	2	1	1
CO156.2	1	3	1	2	1	1
CO156.3	1	3	1	2	1	1
CO156.4	1	3	1	1	1	1
CO156.5	1	3	1	1	1	1
CO156.6	1	3	1	1	1	1

1-Slight (Low)

2-Moderate (Medium)

Scho	ool: SSBSR	Batch:2023-2025	
	gramme: M. Sc	Current Academic Year: 2023-24	
	ich:Physics	Semester I	
1	Course Code	MPH159	
2	Course Title	Research Based Learning 1	
3	Credits	Audit Based	
4	Contact Hours	(0-0-2)	
-	(L-T-P)	(0-0-2)	
	Course Status	Compulsory	
5	Course Objective	Develop an interest towards research	
,	Course Objective	• Develop an interest towards research	
6	Course Outcomes	 CO 1: Recognize research-based investigation carried out on problems in physics and interdisciplinary science CO 2: Comprehend and compare a research article with a review article or a survey-based article CO 3: Demonstrate capacity to follow research articles CO 4: Identify concepts of physics referred in research articles CO 5: Extract important results of research findings CO 6: Report research findings in written and verbal forms 	
7	Course Description	Reading in a field of special interest under the supervision of a faculty member. Intended for students interested in studying topics not offered in regularly available courses. Format and grading are determined by the supervising faculty member and the audit members then approved by the Head of Department.	
8	Outline		CO Achievement
	Part 1	Introduction to various research problems	CO1
		•	
	Part 2	Identify a research question	CO2, CO3
	D4 2		<u> </u>
	Part 3	Literature survey	CO4
	Part 4	Report writing	CO5
	Part 5	Presentation	CO6
	Mode of examination	 Rubric assessment Monthly Presentation to be audited by supervisor Mid Term Presentation and End Term Presentation 	
	Text book/s*	10 Recent International Journal Articles of repute.	
	Other References	-	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO159.1	1	1	2	2	1	1	1	1
CO159.2	1	1	2	2	1	1	2	2
CO159.3	1	1	2	2	1	1	1	1
CO159.4	1	1	2	2	1	1	2	2
CO159.5	1	1	2	2	1	1	2	2
CO159.5	1	1	2	2	1	1	1	1

1-Slight (Low)

2-Moderate (Medium)

Sch	ool: SSBSR	Batch : 2023-2025					
Pro	gramme: M.Sc	Current Academic Year: 2023-2024					
	inch: Physics	Semester: II					
1	Course Code	MPH115					
2	Course Title	Renewable Energy Sources					
3	Credits	4					
4	Contact Hours	4-0-0					
-	(L-T-P)						
	Course Status	Compulsory					
5	Course	1. To know the importance of Physics and Materials Sector	cience.				
	Objective	 To utilize the various synthesis procedure to develo To explain the practical application of materials in v 	p materials.				
6	Course	CO1: Learn the basics of Materials/Technology					
	Outcomes	CO2: Understand the correlation between Applied science	ce and				
		Technology					
		CO3: Apply the concept of materials and technology at c	certain levels.				
		CO4: Develop devices using materials.					
		CO5: Create the path to handle materials.					
		CO6: Expertise in various tools will make a bridge betwee					
		students and find out the platform for employment in hig	tech industries				
7	Course	This course is based on renewable energy that is collected from renewable					
	Description	resources, which are naturally replenished on a human timescale, such as					
	1	sunlight, wind, rain, tides, waves, and geothermal heat. R					
			eas: <u>electricity</u>				
		generation, air and water heating/cooling, transportation	n, and <u>rural (off-</u>				
		<u>grid</u>) energy services					
8	Outline syllabus		CO Mapping				
	Unit 1	Natural and Renewable Energy Resources					
	A	Natural resources and associated problems, Forest,	CO1,				
		Water, Mineral, Food, Energy and Land resources	CO2,CO3				
	В	Use and over-exploitation, Concept of an ecosystem,	CO1,CO2				
		Environmental Pollution, Nuclear hazards					
	C	Renewable Energy sources: Definition and types of	CO3				
		renewable sources, Wind, Ocean, Geothermal,					
		Biomass, Hydro as renewable energy resources					
	Unit 2	Solar Energy: Fundamental and Material Aspects					
	A	Fundamentals of photovoltaic Energy Conversion	CO2,CO4				
		Physics and Material Properties, Types of solar energy					
	D	conversion					
	В	solar thermal: basics and design of water heaters, solar	CO1, CO3				
		ponds, Basic to Photovoltaic Energy Conversion:					
	0	Optical properties of Solids	002.007				
	C	Direct and indirect transition semiconductors,	CO3,CO5				
		interrelationship between absorption coefficients and					
		band gap recombination of carriers.					

Unit 3	Solar Energ			
A	Types of Sol	ar Cells, p-r irrent Densit	junction solar cell, Transport y, Open circuit voltage and	CO1,CO4
В	and Polymer	Solar Cells, olar Cells e.g	e crystal silicon and organic Elementary Ideas of g. Tandem Solar cells, Solid lls	CO3,CO4,CO6
C	Nature of electrochemi		-	- CO1,CO5
Unit 4	Hydrogen E Storage	nergy: Fun	damentals, Production and	
A	Hydrogen as through Phot	oelectrolysi	energy, Solar Hydrogen s, Physics of material ction of Solar Hydrogen	CO1, CO4
В	features of so	olid hydroge	us storage processes, special n storage materials	CO1,CO3
C	Structural a material, Nev		ic characteristics of storage odes.	cO4,CO6
Unit 5	Hydrogen E	nergy: Safe	ty and Utilization	
A		Vehicular tr	to safety, use of Hydrogen as ansport, Hydrogen for	CO2,CO6
В	Fuel Cells, V Fuel Cell	arious type	of Fuel Cells, Applications of	CO6
C	Elementary of such as Hydr	-	other Hydrogen- Based devices	CO4,CO6
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	Energy :Fahr	 1.Fundamentals of Solar Cells Photovoltaic Solar Energy :Fahrenbruch&Bube 1.Solar Cell Devices-Physics :Fonash 2. Phoptoelectrochemical Solar Cells: Chandra 3. Hydrogen as an Energy Carrier Technologies Systems Economy : Winter &Nitch (Eds.) 4. Hydrogen as a Future EngeryCarrier : Andreas Zuttel, Andreas Borgschulte and Louis Schlapbach 		
Other References	2. Phoptoeled3. HydrogenSystems Eco4. Hydrogen			

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO115.1	3	3	1	2	1	2
CO115.2	3	3	2	3	2	2
CO115.3	2	2	2	3	3	1
CO115.4	2	3	2	3	3	1
CO115.5	3	2	3	2	2	2
CO115.6	3	3	2	2	3	3

1-Slight (Low)

2-Moderate (Medium)

Sche	ool: SSBSR	Batch: 2023-2025]
	gramme: M.Sc.	Current Academic Year: 2023-24	-
,	nch: Physics	Semester: II	-
1	Course Code	MPH113	-
2	Course Title	Electronics	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Course Objective	 1.To make students aware of Physics of semiconductors. 2. To impart the in depth knowledge of electronic devices like amplifiers, op-amp, oscillators etc. 3. To give the idea of digital electronics. 	
		After the completion of this course, the student will be able to CO1: understand the physics and underlying phenomena in semiconductors. CO2: know the working of transistor and use it as amplifier	
6	Course Outcomes	CO3: use operational amplifier as mathematical operator.	
		CO4: appreciate the working of oscillators and its applications. CO5: understand the components of digital electronics like flipflops, counters, converters, decoders etc. CO6: appreciate the physics of semiconductors and will be able	
	Comme	to apply the concept on various devices.	
7	Course description	This course teaches the students about the physics of the semiconductor materials and then how to apply this knowledge in understanding the working of various devices like transistors, op-amps, oscillators and digital electronics.	
8	Outline Syllabu		CO Mapping
	Unit 1	Review of Semiconductors	
	А	Energy bands, Intrinsic and extrinsic semiconductors, direct and indirect band gap semiconductors, concept of density of states and Fermi-level	CO1, CO6
	В	carrier concentrations at equilibrium, Temperature dependence of carrier concentrations and mobility, carrier generation and recombination	CO1, CO6
	С	Continuity equation, p-n junction : qualitative description of current flow, Small signal of model of p-n junction	CO1, CO6
	Unit 2	Transistor as Amplifier	
	А	Transistor action, Charge transport and amplification, Minority carrier distributions and terminal currents	CO2, CO6
	В	Base width modulation, Ebers – Moll Model, Hybrid pi model, RC coupled transistor amplifier	CO2, CO6
	С	Multi-stage transistor amplifier, Frequency response, negative feedback	CO2, CO6
	Unit 3	Operational Amplifier	

А	Review of Op-amps, curre	ent mirror, input impedance	ce of OP-	CO3, CO6	
В	OP-AMP parameters and t	heir frequency response, D ristics of a differential amp		CO3, CO6	
С	Comparators (Schmitt trigger) and F to V and V to F Converters				
Unit 4	Oscillators				
А	Positive feedback, conditio	ons for oscillation		CO4, CO6	
В	Phase shift oscillator, Mult	ivibrators: types of multi-vi	ibrators	CO4, CO6	
С	timer 555: block diagram and operations, applications				
Unit 5	Digital Electronics				
А	Review of Flipflops, Asynchronous and synchronous Counter				
В	Mod counters, Ring counte PISO, PIPO), A to D and D	ers, Shift Registers (SISO, S D to A converter	SIPO,	CO6 CO5, CO6	
С	Multiplexer, Demultiplexer			CO5, CO6	
Mode of Examination	Theory				
Weightage Distribution	CA 25%	MTE 25%		ГЕ)%	
Text Book/s	 Solid State Electronic Devices- Streetman and Banerjee, Pearso Education. Integrated Electronics- Millman - Halkias, Tata Mc Graw Hill. Electronic Devices and Circuit Theory- Robert Boylestad and Lour Nashelsky, Prentice Hall. Digital Electronics, Malvino and Leech Prentice Hall of INdia Op-amp and Linear Integrated Circuits by – R.A.Gayakwad Op-amp and Circuits by – Coughlin and Driscoll Digital electronics by Floyd. 				
Other References					

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO113.1	3	1	1	2	1	1
CO113.2	3	2	1	2	1	1
CO113.3	3	2	1	2	1	1
CO113.4	3	2	1	2	1	1
CO113.5	3	2	1	2	1	1
CO113.6	3	2	1	2	1	2

1-Slight (Low)

2-Moderate (Medium)

School: SSBSR Batch: 2		Batch: 2023-2025						
Programme: MSc		Current Academic Year: 2023-2024						
Branch: Physics		Semester: II						
1	Course Code	MPH 117						
2	Course Title	Statistical Mechanics						
3	Credits	4						
4	Contact Hours	4-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	This course aims:						
	Objective	1. To establish a foundation in Statistical mechanics.						
		2. To impart the concept of phase space ensembles, the						
		distinction between distinguishable and indistinguishable						
		particles.						
		3. To provide detailed understanding of Bose Einstein						
		statistics and Fermi-Dirac statistics.						
		4. Introduction to random walk, diffusion, Landau theory of						
		phase transitions and Ising model.						
6	Course	Upon successful completion of this course, the student will be						
0	Outcomes able to:							
	0.00000000							
		CO1: Acquire knowledge of phase space, ensembles, Liouville's theorem, phase space volume.						
		CO2: understand the concepts of Boltzmann entropy, Boltzman statistics, equipartition of energy and apply them to equilibriu properties of ideal systems.						
		CO3: learn fundamentals of Bose-Einstein statistics and Bose condensation, and apply them to gain understanding of Photon gas and superfluidity.						
		CO4: Learn the derivation and use of Fermi Dirac statistics and Fermi level and apply them to cases of ideal gas of fermions, electrons in metals and stability of whte dwarf stars						
		CO5: Learn about random walk and diffusion phenomena and their relationship, learn about types of phase transitions, and qualitative aspects of Landau theory and learn about Ising model of ferromagnetism.						
		CO6: Gain a theoretical as well as applied knowledge of statistical mechanics of classical and quantum systems and learn to apply them into gaining understanding of ideal systems of large number of particles.						

7	Course Description	tion This course introduces the various concepts, methods terminologies of statistical mechanics that are further develop the statistics for Bose-Einstein, Fermi-Dirac Mechanics can be used to explain the thermodynamic large system.					
8	Outline syllabus			CO Mapping			
	Unit 1	Review of					
	A	Review of t Micro cano Ensembles.	CO1, CO6				
	В	Density of formulation Indistinguis	CO1, CO6				
	С	Liouville's	CO1, CO6				
	Unit 2			ical Statistics			
	А	Law of equi-partition of energy and its application to specific heat and its limitations			CO2, CO6		
	В	Equilibriun Harmonic o	CO2, CO3, CO6				
	С	Rigid rotators, Para magnetism. Chemical potential.			CO2, CO6		
	Unit 3	Bose Einst					
	А	B-E distribution function, properties of ideal Bose gas, Photon Gas, Bose Einstein Condensation			CO3, CO6		
	В	Properties of liquid He (qualitative treatment), Transition in liquid He ⁴ , Superfluidity in He ⁴ .			CO3, CO6		
	С	Radiation a functions o Law.	CO3, CO6				
	Unit 4	Fermi Dira					
	A	F-D distrib gas, Compl	CO4, CO6				
	В	Fermi energy level and the potential of	CO4, CO6				
	С	Specific he Chandrashe	CO4, CO6				
	Unit 5	Diffusion,					
	А	Diffusion equation, Random walk			CO5, CO6		
	В	First and second order phase transitions, Landau theory			CO5, CO6		
	С	1-D Ising model, Graphical explanation of Ising model of ferromagnetism.			CO5, CO6		
	Mode of examination	Theory/Jur					
	Weightage	CA	MTE	ETE			
	Distribution	25%	25%	50%			

Text book/s*	 Statistical Physics by F Reif (Tata McGraw- Hill Company Ltd, 2008) Statistical Mechanics, R.K. Patharia, Pergamin press, Oxford. Statistical Mechanics by K. Huang, Wiley and sons. Statistical Mechanics and dynamics by Henry J. Eyring, Wiley and sons. Fundamentals of classical and statistical thermodynamics, Bimalendu N. Roy, Wiley
Other References	 Thermal Physics, S. C. Garg, R. M. Bansal, C. K. Ghosh, Tata McGraw-Hill Thermodynamics and Statistical Mechanics, Greiner, Springer Statistical and Thermal Physics: an introduction by S.Lokanathan and R.S.Gambhir.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO117.1	3	2	2	2	1	3	1	1
CO117.2	3	3	2	2	1	3	2	1
CO117.3	3	3	2	2	1	3	1	1
CO117.4	3	3	2	2	1	3	2	1
CO117.5	3	3	2	2	1	3	2	1
CO117.6	3	2	2	2	1	3	1	1

1-Slight (Low)

2-Moderate (Medium)

S	chool: SSBSR	Batch: 2023-25
	rogramme: MSc (Physics)	Current Academic Year: 2023-24
-	ranch: Physics	Semester: II
1	Course Code	MPH 123
2	Course Title	Atomic, molecular physics and
		spectroscopic techniques
3	Credits	4
4	Contact Hours	3-1-0
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	1. To know concept of atomic physics of one electron
		atom
		2. To understand concept of atomic physics of many
		electron atom
		3. To understand effect of magnetic and electric field
		on an atom.
		4. To understand the concept of molecular Physics.
		5. To understand the working principle of
		spectroscopic techniques.
		specifoscopic recliniques.
6	Course Outcomes	After the completion of this course, the student will be able to CO123.1: know about different atom model and will be able to differentiate different atomic systems, different coupling schemes, Discuss the relativistic corrections for the energy levels of the hydrogen atom and their effect on optical spectra CO123.2: Explain the observed dependence of atomic spectral lines on externally applied electric and magnetic fields CO123.3: Discuss the importance of spin orbit interactions. CO123.4: State and justify the selection rules for various optical spectroscopies in terms of the symmetries of molecular vibrations CO123.5: Identify the basic components of spectroscopic instrumentation. Demonstrate a working knowledge of IR, NMR, ESR and Mossbauer spectroscopy. CO123.6: Understanding spectroscopy the way other common tools of measurement like the watch or the ruler are understood and also understanding basic concepts of instrumentation, data acquisition and data processing.
7	Course Description	This course addresses various aspects of spectroscopic analysis relevant to both research and industry. Students will learn the relative merits of the techniques, the operating principles, and develop problem solving skills generally useful in chemical analysis. The objectives of this subject are

		to provide students with an increased known advanced principles, with emphasis on: - understanding how light interacts with matter can be used to quantitatively understand samples - understanding spectroscopy the way other commeasurement like the watch or the ruler are under - seeing that spectroscopy is a set of tools that together in different ways to understand system problems	and how it non tools of rstood can put be
		- understanding basic concepts of instrument	ation, data
		acquisition and data processing.	<u></u>
8	Outline syll	labus	CO Monning
	Unit 1	Fine and Hyperfine Structure	Mapping
	A	Fine and Hyperfine Structure	CO123.1,
		General discussion in Hydrogen spectra, Hydrogen-like systems, Spectra of monovalent atoms	CO123.1, CO123.6
	В	Introduction to electron spin, spin-orbit interaction and	CO123.1,
		fine structure, relativistic correction to spectra of	CO123.1, CO123.6
		hydrogen atom, Selection rules; Lamb shift.	
	С	Effect of external magnetic field - Strong, moderate and	CO123.1,
		weak field. Hyperfine interaction and isotope shift;	CO123.6
		Hyperfine splitting of spectral lines; Broadening of	
		spectral lines.	
	Unit 2	Many Electron Atom	
	A	Independent particle model; He atom as an example of	CO123.2,
		central field approximation; Central field approximation	CO123.6
	D	for many electron atom;	00102.0
	В	Slater determinant; L-S and j-j coupling; Equivalent and	CO123.2, CO123.6
	С	nonequivalent electrons	CO123.6 CO123.3,
	C	Energy levels and spectra; Spectroscopic terms; Hunds rule; Lande interval rule; Alkali spectra.	CO123.5, CO123.6
	Unit 3	Rotational and Vibrational Spectra	0123.0
	A A	Concept of molecular potential, Born-Oppenheimer	CO123.3,
		approximation and separation of electronic and nuclear	CO123.3, CO123.4,
		motions in molecules	CO123.6
	В	Band structures of molecular spectra. Molecular	CO123.3,
		rotation: Energy levels of diatomic molecules under	CO123.6
		rigid rotator and non-rigid rotator models, Selection	
		rules, Spectral structure, Structure determination	
	С	Isotope effect, Centrifugal distortion, Symmetric top	CO123.4,
		molecules, Molecular vibrations: Harmonic oscillator	CO123.6
		and the anharmonic oscillator approximation, Morse	
		potential. Vibration-rotation spectra: Pure vibrational	
		transitions, Pure rotational transitions, Vibration- rotation transitions.	
	Unit 4	Electronic and Raman Spectra	
			CO100 1
	А	Electronic transitions: Franck-Condon principle,	CO123.4,
		Rotational structure of electronic transitions	CO123.6

	_				
	В	Dissociation energy of mo	plecules, Continuous spe	ectra	CO123.4,
					CO123.6
	С	Raman transitions and Ran			CO123.4,
		Raman Lines, Stoke's	and Anti-Stoke's	Lines,	CO123.6
		Complimentary Characte	er of Raman and ir	nfrared	
		Spectra.			
	Unit 5	Basic Aspects of Photo P			
	А	Radiative and non-radiat	tive transitions; fluore	scence	CO123.5,
		and phosphorescence			CO123.6
	В	Nuclear Magnetic reson	ance spectroscopy. El	lectron	CO123.5,
		spin resonance spectrosco	ру		CO123.6
	С	Mossbauer spectroscopy.			CO123.5,
			CO123.6		
	Mode of	Theory			
	examination				
	Weightage	CA	MTE		ETE
	Distribution	25%	25%		50%
	Text Book/s	1. Introduction of atomic s	spectroscopy: White		
		2. C. L. Banwell and E. M	I. McCash. 'Fundament	als of M	lolecular
		Spectroscopy' Tata- McG	raw-Hill.		
	Other		'Molecular Spectros	scopy	(Diatomic
	References	Molecules)' Van-N	-	± •	`
		9. G. M. Barrow. 'M	olecular Spectroscopy'.	McGra	w-Hill.
			' Modern spectroscop		
		sons.			
		11. G.Aruldhas 'Mole	cular Spectroscopy'.		
			hin. 'Atoms and Molec	ules'	
L					

CO's	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO123.1	3	1	2	1	1	2	2	2
CO123.2	3	1	2	1	1	2	2	2
CO123.3	3	1	2	2	1	2	2	2
CO123.4	3	3	2	2	1	2	2	2
CO123.5	2	2	2	3	1	2	2	2
CO123.6	2	3	2	3	1	2	2	2

1-Slight (Low)

2-Moderate (Medium)

	ol: School of	Batch:2023-2025	
	c Sciences and		
Rese			
0	ramme: M. Sc	Current Academic Year: 2023-2024	
	nch: Physics	Semester: II	
1	Course Code	MPH 122	
2	Course Title	Advance Quantum Mechanics	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Course Objective	 The course should give the in depth knowledge foundations of quantum mechanics and skills i solving in quantum mechanics. Various approximation methods for not exactl systems. To know the concept of angular momentum and The course treats non-relativistic quantum mechanics detail and gives an introduction to relativistic 	n problem y solvable scattering. chanics, in
6	Course	After the completion of this course students will be abl	
-	Outcomes	 CO 1: Explain orbital and spin momentum operator for CO 2: Demonstrate the time independent perturbation CO 3: Explain the variational and WKB methods. CO 4: Apply the scattering theory to various problem CO 5: Explain the relativistic quantum mechanics. CO 6: Comprehend quantum mechanical application research level 	ormalism. 1 theory. s.
7	Course description	"Advanced Quantum Mechanics" is a core continuation quantum mechanics including angular momentum, ap methods, scattering theory and relativistic quantum that aim at the applications of quantum mechanics. T should give you deeper knowledge about the found quantum mechanics and skills in problem solving in mechanics.	proximate mechanics The course dations of
8	Outline Syllabus		CO Mapping
	Unit 1	Angular Momentum	
	A	Generalized angular momentum, Infinitesimal rotation, Generator of rotation, Commutation rules, Matrix representation of angular momentum operators	CO1
	В	Spin, Pauli spin matrices, Rotation of spin states	CO1
	С	Coupling of two angular momentum operators, Clebsch Gordon coefficients, Applications	CO1
	Unit 2	Approximate methods: Time Independent Perturbation Theory	
	A	Approximation methods: Time-independent perturbation theory for non-degenerate states,	CO2

В	Approximation methods: Time-independent	CO2	
	perturbation theory for degenerate states,		
С	Time independent perturbation theory Applications: anharmonic oscillator, Helium atom, Stark effect in	CO2	
	hydrogen atom.		
Unit 3	Approximation Methods: Time dependent perturbation, variational and WKB methods		
A	Time-dependent perturbation theory; Harmonic perturbation; Fermi's golden rule. Sudden approximation.	CO3	
В	Variational method and its applications (1-D harmonic oscillator, ground state energy of Hydrogen atom),	CO3	
С	WKB approximation and application to 1-D harmonic oscillator, WKB method; Connection formula,	CO3	
Unit 4	Scattering Theory		
A	Scattering theory- Scattering of a particle by a fixed centre of force, scattering amplitude differential and total cross sections,	CO4	
В	Method of partial waves, Phase shifts, Optical theorem, Scattering by a hard sphere and potential well	CO4	
С	Integral equation for potential scattering, Green's function, Born approximation, Yukawa and Coulomb potential.	CO4, CO6	
Unit 5	Relativistic quantum mechanics		
А	Introduction to Relativistic quantum mechanics	CO5	
В	Klein-Gordon and Dirac equations,	CO5, CO6	
С	Semi-classical theory of radiation.	CO5, CO6	
Mode of Examination	Theory		
Weightage	CA MTE E	ETE	
Distribution	25% 25% 5	0%	
Text books	 Quantum Mechanics by L.I. Schiff Quantum mechanics – concepts and applicate Zettili. 	ons by N.	
Other References	 Modern quantum mechanics by J.J. Sakurai and San Fu Tuan Introductory Quantum Mechanics, R. L. Liboff, Addison- Wesley. Principles of Quantum Mechanics, R. Shankar. 		

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO122.1	3	3	1	1	1	2
CO122.2	3	3	1	1	2	2
CO122.3	3	3	1	1	2	2
CO122.4	3	3	1	1	2	2
CO122.5	3	3	1	1	2	2
CO122.6	3	3	1	1	2	2

1-Slight (Low)

2-Moderate (Medium)

SCI	HOOL: SSBSR	Batch :2023-2025				
Pro	gramme: M. Sc	Current Academic Year: 2023-24				
_						
Bra	nch: Physics	Semester: II				
1	Course	Course Code: CCU 401/ Course ID: 30804				
	Number					
2	Course Title	Community Connect				
3	Credits	2				
4	(L-T-P)	(0-0-2)				
5	Learning	Contact Hours 30				
	Hours	Project/Field Work 20				
		Assessment 00				
		Guided Study 10				
		Total hours60				
6	Course	1. Contribute to the holistic development of students by				
	Objectives	making them more aware of socially and economically				
		disadvantaged communities and their specific issues				
		2. Provide more richer context to classrooms, so as to make				
		them more effective laboratories of learning by aligning them				
		to social realities beyond textbooks				
		3. Provide scope to faculty members to align their teaching				
		and research goals by giving them ample opportunity to				
		carry out community -oriented projects				
		4. Ensure that the community connect programs provides				
		benefits to communities in tangible ways so that they may				
		feel perceptibly better off post the interaction and				
		involvement of the Sharda academic community				
		5. Provide ample opportunity for Sharda University				
		academic community to contribute effectively to society				
		and nation building				
7	Course	After completion of this course students will be able to:				
,	Outcomes	CO1: Students learn to be sensitive to the living challenges				
	outcomes	of disadvantaged communities.				
		CO2: Students learn to appreciate societal realities beyond textbooks and classrooms				
		CO3: Students learn to apply their knowledge via research, and training for community benefit				
		CO4: Students learn to work on socio-economic projects with teamwork and timely delivery				

	CO5: Students learn to engage with communities for meaningful contribution to society
8 Theme	Major themes for research:
	 Survey and self-learning: In this mode, students will make survey, analyze data and will extract results out of it to correlate with their theoretical knowledge. E.g. Crops and animals, land holding, labour problems, medical problems of animals and humans, savage and sanitation situation, waste management etc. Survey and solution providing: In this mode, students will identify the common problems and will provide solution/ educate rural population. E.g. air and water pollution, need of after treatment, use of renewable (mainly solar) energy, electricity saving devices, inefficiencies in cropping system, animal husbandry, poultry, pest control, irrigation, machining in agriculture etc. Survey and reporting: In this mode students will educate villagers and survey the ground level status of various government schemes meant for rural development. The analyzed results will be reported to concerned agencies which will help them for taking necessary/corrective measures. E.g. Pradhan Mantri Jan Dhan Yojana, Pradhan Mantri MUDRA Yojana, Pradhan Mantri Awas Yojana, Pradhan Mantri FasalBima Yojana, Swachh Bharat Abhiyan, Soil Health Card Scheme, Digital India, Skill India Program,BetiBachao, BetiPadhao Yojana, DeenDayal Upadhyaya Gram Jyoti Yojana, Shyama Prasad Mukherjee Rurban Mission, UJWAL Discom Assurance Yojana, Pradhan Mantri KhanijKshetra Kalyan Yojana, Pradhan Mantri Yuva Yojana, Pradhan Mantri Jan Aushadhi Yojana, Pradhan Mantri Suraksha Bima Yojana, UDAN scheme, DeenDayal Upadhyaya Grameen Kaushalya Yojana, Pradhan Mantri Sukanya Samriddhi Yojana, Sansad Adarsh Gram Yojana, Pradhan Mantri SurakshitMatritva Abhiyan, Pradhan Mantri KojgarProtsahan Yojana, Midday Meal Scheme, Pradhan Mantri Vaya Vandana Yojana, Pradhan Mantri Kanja Yojana, and Ayushman Bharat Yojana.

	~								
9.1	<u>Guidelines</u>	It will be a group assignment.							
	<u>for Faculty</u>	There should be not more than 10 students in each group.							
	Members	The faculty guide will guide the students and approve the project title							
		and help the student in preparing the questionnaire and final report.							
		The questionnaire should be well design and it should carry at least							
		20 questions (Including demographic questions).							
		The faculty will guide the student to prepare the PPT.							
		The topic of the research should be related to social, economical or							
		environmental issues concerning the common man.							
		The report should contain 2,500 to 3,000 words and relevant charts,							
		tables and photographs.							
		Plagiarism check of the report must.							
		ETE will conduct out of 100, divided in three parts (i) 30 Marks for							
		report (ii) 30 Marks for presentation (iii) 40 Marks for knowledge.							
		The student should submit the report to CCC-Coordinator signed							
		by the faculty guide by							
		The students have to send the hard copy of the report and PPT , and							
		then only they will be allowed for ETE.							
9.2	Role of CCC-	The CCC Coordinator will supervise the whole process and assign							
	Coordinator	students to faculty members.							
		1. PG- M.ScSemester II - the students will be allocated to							
		faculty member (mentors/faculty member) in odd term.							
		racuity member (memors/racuity member) in oud term.							
9.3	Layout of the	Abstract (250 words)							
1.0	Report								
	Report	a. Introduction							
		b. Literature review(optional)c. Objective of the research							
		c. Objective of the research							
		d. Research Methodology							
		e. Finding and discussion							
		f. Conclusion and recommendation							
		g. References							
		8							
		Note: Research report should base on primary data.							
9.4	Guideline for	Title Page: The following elements must be included:							
	Report	• Title of the article;							
	Writing								
		• Name(s) and initial(s) of author(s), preferably with first							
		names spelled out;							
		• Affiliation(s) of author(s);							
		• Name of the faculty guide and Co-guide							
		Abstract: Each article is to be preceded by a succinct abstract, of							
		up to 250 words, that highlights the objectives, methods, results,							
		and conclusions of the paper.							
		Text:Manuscripts should be submitted in Word.							
		• Use a normal, plain font (e.g., 12-point Times Roman) for							
		text.							

 Use the automatic page numbering function to number the pages. Save your file in docx format (Word 2007 or higher) or doc format (older Word versions) Reference list: The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book kingte engineering — from auxiliary to key technologies. In: Broy, M.: Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. 9.5 Format: The report should be Spiral/ hardbound The report should be Spiral/ hardbound The Dacein of the Co		ſ	
pages. • Save your file in docx format (Word 2007 or higher) or doc format (older Word versions) Reference list: The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajfi, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always us the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For mattic Tables: All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. 9.5			• Use italics for emphasis.
 Save your file in docx format (Word 2007 or higher) or doc format (older Word versions) Reference list: The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software ongineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. Format: The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices Important Students should prepare questionnaire and get it approved by concern faculty member and submit the final qu			• Use the automatic page numbering function to number the
format (older Word versions) Reference list: The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For mat: The report should be Spiral/ hardbound Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. Content Project report Appendices			
ParticleReference list: The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2.kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
9.6The list of references should only include works that are cited in the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2, kB) Tables: All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			format (older Word versions)
 the text and that have been published or accepted for publication. The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321-354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2.kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals. Format: The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within 			Reference list:
9.6The entries in the list should be in alphabetical order. Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formating of in-text citations and reference list. EndNote style (zip. 2 kB) Tables: All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.6Important Project report AppendicesStudents should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			The list of references should only include works that are cited in
9.6Journal article Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321-354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			the text and that have been published or accepted for publication.
9.6Format:Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formating of in-text citations and reference list. EndNote style (zip, 2 kB)9.5Formati:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			The entries in the list should be in alphabetical order.
9.6Format:nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995) Article by DOI Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Journal article
Appl. 169, 321–354 (1995)Article by DOISajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z BookGeddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Hamburger, C.: Quasimonotonicity, regularity and duality for
Article by DOISajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			nonlinear systems of partial differential equations. Ann. Mat. Pura
Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator-CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Appl. 169, 321–354 (1995)
9.5Format:nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z Book Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Article by DOI
doi:10.1007/s00339-007-4137-zBookGeddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New
doi:10.1007/s00339-007-4137-zBookGeddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			nanohybrid materials for biophotonics. Appl. Phys. A (2007).
9.5Format:Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
Algebra. Kluwer, Boston (1992) Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Book
Book chapter Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesSudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer
9.5Format:Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Algebra. Kluwer, Boston (1992)
9.5Format:Format:technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Book chapter
9.5Format:10–13. Springer, Heidelberg (2002) Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip. 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Broy, M.: Software engineering — from auxiliary to key
9.5Format:Online document Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp.
9.5Format:Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			10–13. Springer, Heidelberg (2002)
PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007 Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Online document
Accessed 26 June 2007Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals. Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Cartwright, J.: Big stars have weather too. IOP Publishing
Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see www.issn.org/2-22661-LTWA-online.php For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list. EndNote style (zip, 2 kB) Tables:All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007).
9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesThe report should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Accessed 26 June 2007
9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesThe report should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Always use the standard abbreviation of a journal's name according
9.5For mat:For export should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesStudents should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			to the ISSN List of Title Word Abbreviations, see
9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report AppendicesThe report should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			www.issn.org/2-22661-LTWA-online.php
EndNote style (zip, 2 kB)Tables:All tables are to be numbered using Arabic numerals.Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			For authors using EndNote, Springer provides an output style that
9.5Format:Tables: All tables are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			supports the formatting of in-text citations and reference list.
Figure Numbering: All figures are to be numbered using Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			EndNote style (zip, 2 kB)
Arabic numerals.9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			Tables: All tables are to be numbered using Arabic numerals.
9.5Format:The report should be Spiral/ hardbound The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			0 0 0
ImportantThe Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
9.6 Important Dates: Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within	9.5	Format:	The report should be Spiral/ hardbound
9.6 Important Dates: Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
9.6 Important Dates: Acknowledgement Content Project report Appendices 9.6 Important Dates: Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
9.6 Important Dates: Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
9.6 Important Dates: Project report Appendices 9.8 Important Dates: Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
Important Appendices 9.6 Important Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			
9.6Important Dates:Students should prepare questionnaire and get it approved by concern faculty member and submit the final questionnaire within			5 1
Dates: concern faculty member and submit the final questionnaire within			**
	9.6	<u>Important</u>	
to CCC Coordinator		Dates:	
			to CCC- Coordinator.

9.7	ETE	The students should submit the hard copy and soft copy of the report to CCC-Coordinator signed by the faculty guide withinThe students should submit the soft copy of the PPT to CCC- Coordinator signed by the faculty guide withinThe final presentation will be organized onThe students will be evaluated by panel of faculty members on
		report to CCC-Coordinator signed by the faculty guide within
		 submit the same to concern faculty member. (Each group should complete 50 questionnaires) The student should show the 1st draft of the report to concern faculty member within and submit the same to concern faculty member. Faculty members should give required inputs, so that students can improve their project work and make the final report submission on

10	Course Evaluation	
10.01	Continuous Assessment	50%
	Questionnaire design	20 Marks
	Report Writing	30 Marks
10.02	ETE (PPT presentation)	50%

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CCU 401.1	2	2	2	1	3	3
CCU 401.2	2	2	2	1	3	3
CCU 401.3	2	3	3	2	3	3
CCU 401.4	2	3	3	2	3	3
CCU 401.5	2	3	3	3	3	3

1-Slight (Low)

2-Moderate (Medium)

C -1	ool: School of	Detah. 2022 2025						
	ic Sciences and	Batch: 2023-2025						
	earch							
	gramme: MSc	Current Academic Year: 2023-2024						
	nch: Physics	Semester: II						
1	Course Code	MPH 158						
2	Course Title	Physics Lab 3 (Electronics Lab)						
3	Credits	2						
4	Contact Hours	0-0-6						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	1.To gain practical knowledge of electronics experiment	nts					
	Objective	2.To study basic electronic components						
		3.To observe the characteristics of the OpAmp, diffe	erent types of					
		FETs and Flipflops. 4. To study amplitude modulation demodulation.						
6	Course	After successful completion of this course the studen	ts will/will be					
	Outcomes	able to:						
	outcomes							
		CO1: Acquire knowledge of Operational amplifier and will be able						
		to construct various circuits using ICs and different con	mponents.					
		CO2: Analyze the characteristics and various operations of the						
		OpAmp.						
		CO3: Determine the parameters of JFET.						
		CO4: Determine characteristics of MOSFET, UJT.						
		CO5: Build various Flip-Flops, shift registers etc. CO6: Use equations/theoretical concept to verify the e	vnerimental					
		results with ability to conduct, analyze and interpret ex						
		results with domey to conduct, unaryze and interpret ex	permients					
7	Course	This course is designed to provide students with lab	experience in					
	Description	designing various electronic circuits, study their chara						
	_	analyze the results.						
8	Outline syllabus	3	СО					
			Mapping					
	Unit 1							
	A	1. To calculate the Operational Amplifier	CO1,					
	B	parameter common mode rejection ratio	CO6					
	С	(CMRR) 2. To study the Operational Amplifier as a						
		negative feedback amplifier						
		nogative recount ampiriter						
	Unit 2							
	A	3. To study the Operational Amplifier as Adder	CO2					
	В	and Subtractor	CO6					
	С	4. To study Amplitude Modulation and						
		Demodulation						
ļ								
	Unit 3							

А	5	To di	raw the static	characteristics of a junction	CO3,
B				stor (JFET) and hence to	CO3, CO4,
C C					CO4, CO6
C			mine its parar	000	
	6.	10 st	udy the chara	cteristics of a MOSFET.	
 Unit 4					
А	7.	To st	udy the chara	CO5,	
В		Trans	sistor (UJT).	CO6	
С	8.	To bi	uild JK Maste	r-slave flip-flop using Flip-	
		Flop			
Unit 5					
А	9.	To bu	uild a 4-bit Co	ounter using D-type/JK Flip-	CO5,
В		Flop	ICs and study	timing diagram.	CO6
С	10.	To n	nake a 4-bit	Shift Register (serial and	
		paral	lel) using D-t	ype/JK Flip-Flop ICs.	
 Mode of	Practica	al/Viv	va –		
examination					
Weightage	CA		MTE	ETE	
Distribution	50%		0%	50%	
Text book/s*	1.	Basic	electronics	and linear circuits – N N	
		Bhar	gava, D C Ku	lshreshtha, S C Gupta, Tata	
		McG	- raw-Hill publ	ishing company Ltd.	
		Linea			
Other				· C L Arora, S. Chand	
References		Publi	shing		
			Manual		

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO158.1	3	3	2	2	3	1	1	1
CO158.2	3	3	2	2	2	1	1	1
CO158.3	2	3	2	2	2	1	1	1
CO158.4	2	3	2	1	2	1	1	1
CO158.5	2	3	3	2	2	1	1	1
CO158.6	2	3	3	2	3	1	1	1

1-Slight (Low)

2-Moderate (Medium)

SCII	ool: SBSR	Batch: 2023-2025			
	gramme: MSc ysics)	Current Academic Year: 2023-24			
	nch:	Semester: I			
1	Course Code	MPH 157			
2	Course Title	Physics Lab 4 (Nuclear lab)			
3	Credits	2			
4	Contact Hours	0-0-6			
-	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective	To understand laboratory experiments to Interp error analysis, writing reports and analyzing dat			
		• To develop a sense of understanding of statistic	al mechanics		
		• To develop working knowledge of Nuclear phy	sics		
		• To have understanding of software scilab			
6	Course Outcomes	CO1: Students will be able to understand the particle nature of light. CO2: Students will be able to use scilab for understanding the basic important laws of statistical and nuclear physics CO3: Students learn to plot Planck's law of Black body radiation, Rayliegh Jeans law, Specific Heats of Solids etc. CO4: Students will learn plotting different functions (a) Maxwell- Boltzmann distribution b) Fermi-Dirac distribution c) Bose-Einstein distribution with energy. CO5: Students will be able to understand the statistics of the nuclear counting and show that the mean, variance, and standard deviation follow Poisson distribution and the mean value (N) is equal to the variance (σ^2) CO6: Students will learn how to use GM counter and its applications in determination of its operating voltage, plateau length / slope, Verification of Inverse Square Law for γ rays, estimate the efficiency of the GM counter, determine the range and maximum energy of beta particle using half thickness method. And backscattering of beta particles.			
7	Course Description	This course integrates exposure of the theory of Statistical and Nuclear Physics with experimental demonstrations in the Physic Lab. The course will provide a valuable understanding of softwar scilab and its use to understand the basic concepts of Statistica Mechanics.			
8	Outline syllabus	3	CO Mapping		
	Unit 1	Practical based on semi-conductors			
		 Plot Planck's law for Black Body radiation and compare it with Raleigh-Jeans Law at high temperature and low temperature. Plot Specific Heat of Solids (a) Dulong-Petit law, (b) Einstein distribution function, (c) 	CO1, CO2, CO3		

			w temperature and compare					
Unit 2	Practical re	lated to						
	3.Plot the fol temperatures Fermi-Dirac 4.To study t show that th follow Poiss equal to the	b) CO 5 on d on						
Unit 3	Practical re	lated to						
	Applications 5. Study of	Understanding the basics of GM counter and its Applications.5. Study of the characteristics of a GM tube and determination of its operating voltage, plateau length / slope.						
Unit 4	Practical re	lated to						
	6. Verification of Inverse Square Law for γ rays.7. To estimate the efficiency of the GM counter.							
Unit 5	Practical re	lated to						
	 8. To determ beta particle 9. To study b 	of CO6						
Mode of examination	Practical/Viv							
Weightage	CA 50%	MTE	ETE					
Distribution	50%							
Text book/s*	-							

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO157.1	2	3	2	2	1	1
CO157.2	2	3	1	2	1	1
CO157.3	2	3	1	2	1	1
CO157.4	2	3	1	2	1	1
CO157.5	2	3	1	2	1	1
CO157.6	2	3	1-	2	1	1

1-Slight (Low)

2-Moderate (Medium)

Scho	ool: SSBSR	Batch:2023-2025	
	gramme: M. Sc.	Current Academic Year: 2023-24	
	ich:Physics	Semester II	
1	Course Code	MPH160	
2	Course Title	Research Based Learning 1	
3	Credits	Audit Based	
4	Contact Hours	(0-0-2)	
-	(L-T-P)	(0-0-2)	
	Course Status	Compulsory	
5	Course Objective	Develop an interest towards research	
5	Course Objective	• Develop an interest towards research	
6	Course Outcomes	 CO 7: Recognize research-based investigation carried out on problems in physics and interdisciplinary science CO 8: Comprehend and compare a research article with a review article or a survey-based article CO 9: Demonstrate capacity to follow research articles CO 10: Identify concepts of physics referred in research articles CO 11: Extract important results of research findings CO 12: Report research findings in written and verbal forms 	
7	Course Description	Reading in a field of special interest under the supervision of a faculty member. Intended for students interested in studying topics not offered in regularly available courses. Format and grading are determined by the supervising faculty member and the audit members then approved by the Head of Department.	
8	Outline		CO Achievement
	Part 1	Introduction to various research problems	CO1
	Part 2	Identify a research question	CO2, CO3
	Part 3	Literature survey	CO4
	Part 4	Report writing	CO5
	Part 5	Presentation	CO6
	Mode of examination	 Rubric assessment Monthly Presentation to be audited by supervisor Mid Term Presentation and End Term Presentation 	
	Text book/s*	10 Recent International Journal Articles of repute.	
	Other References	-	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO159.1	1	1	2	2	1	1	1	1
CO159.2	1	1	2	2	1	1	2	2
CO159.3	1	1	2	2	1	1	1	1
CO159.4	1	1	2	2	1	1	2	2
CO159.5	1	1	2	2	1	1	2	2
CO159.5	1	1	2	2	1	1	1	1

1-Slight (Low)

2-Moderate (Medium)

Sah	ool: SSBSR	1	Batch : 2023-25					
	gramme :MSc (Pl		Current Academic Year: 2024-25					
	nch: Physics		Semester: III					
1	Course Code		MPH 204					
2	Course Title		Electromagnetics					
3	Credits		4					
4	Contact Hours	4	-0-0					
	(L-T-P)							
	Course Status	(Compulsory					
5	Course Objective	;	1. To know concept of electrostatics, magnet	ostatics				
			and electromagnetism.					
			2. To understand the propagation of electrom	agnetic				
			waves.					
			3. To utilize the laws of electromagnetism on	various				
			problems.					
			4. To explain the practical application of					
			electromagnetism and electromagnetic way					
6	Course Outcome		After the completion of this course, the student	will be able				
		-	0 201: Learn the concents of electromognetism					
			CO1: Learn the concepts of electromagnetism. CO2: Learn the .basic concepts of electromagne	tic wayas				
			CO3: Understand the reflection and transmissi					
			vaves	ion of c. m				
			CO4: Apply the concept of electromagnetism	n at certain				
			evels.	i ut cortain				
			CO5: Apply the concept of relativistic electrodynamics at					
			certain levels.					
		(CO6: Understand the application of electromagnetics on real					
		F	problems.					
7	Course Descripti	on 7	The course is a one semester advanced	course on				
			Electrodynamics at the M.Sc. Level. It will start					
			he behaviour of electric and magnetic fields, in					
			vell as matter, and casting it in the language of					
			vector potentials. Writing Maxwell equations i					
			anguage will lead to the analysis of electromagn	etic waves,				
			heir propagation, scattering and radiation.	1 allow the				
			Special relativity will be introduced, which will covariant formulation of Maxwell's equation					
			Lagrangian formulation of electrodynamics.					
			notion of charges in electromagnetic fields, and					
			of electromagnetic fields through matter will b					
			vith plenty of examples.	. covereu,				
8	Outline syllabus		rend of enamproo.	СО				
Ũ				Mapping				
	Unit 1	Electros	tatics and Magnetostatics					
	A		ion to the course and Prerequisite required,	CO1				
			's Equations in differential and integral form					

	and their Physical Meaning, Displacement						
	current, Modified Ampere's Law and explanation of						
	Modified Ampere's Law.						
В	Scalar and Vector Potential, Poisson and Laplace	CO1					
	Equation, Laplace equation in Cartesian, Cylindrical and						
	Spherical co-ordinate system. Brief introduction to all						
	the three Co-ordinate system (Cartesian, Cylindrical and						
	Spherical) and how to relate with each other. Boundary						
	conditions and Boundary Value Problems, Methods of						
	Images						
С	Green Function formalism, Magnetic field, Magnetic	CO1					
	flux and Magnetic Induction for a circular carrying loop,						
	Boundary Value problems, Magnetic shielding and						
	Magnetic field in conductors.						
Unit 2	Electromagnetic waves						
A	Derive electromagnetic wave equation in free space,	CO2					
	dielectric medium and in conducting medium.						
В	Solution of electromagnetic wave equation in free space,	CO2,					
D	dielectric medium and conducting medium, skin depth.	CO3					
С	Reflection and refraction of em waves through different	CO3					
C	medium for normal incidence and oblique incidence,						
	Total internal reflection, Brewster's Law, Complex						
	Refractive index						
Unit 3	Wave Guides						
A	Electromagnetic waves between parallel conductors						
Λ	Licenomagnetie waves between paranet conductors						
В	TE and TM waves	CO4 CO3					
C							
C	Rectangular and Cylindrical wave Guide, Resonant Cavities	CO4					
Unit 4	Potentials and Fields						
Unit 4							
Α	Gauge Transformation, Coulomb and Lorentz Gauges	CO4					
В	Retarded Potential, L W Potential	CO4					
С	Field of an accelerating point charge and localized	CO5,					
	oscillating source, Electric and Magnetic dipole fields	CO6					
	and radiation						
Unit 5	Relativistic Electrodynamics						
А	Covariant formalism of Maxwell's equations	CO5,					
		CO6					
В	Transformation Laws and its applications	CO5,					
		CO6					
С	Relativistic Generation of Larmor;s Frequency,	CO5,					
-	Relativistic formulation of radiation by single moving	CO6					
	charge.						
Mode of	Theory						
examination							
Weightage	CA MTE	ETE					
Distribution							
DISTIDUTION	25% 25%	50%					

Text Book/s	 D. J Griffths, "Introduction to Electrodynamics", W. H Hayt & J. A. Buck, "Enginerring Electromagnetics", TMH
Other References	 13. R. Reitz, F. J. Milford and R. W. Chirsty, "Foundations of Electromagnetic Theory" Narosa. 14. J. D. Jackson, "Classical Electrodynamics", Wiley.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO204.1	3	1	1	2	1	1	1	1
CO204.2	3	1	1	2	1	1	1	1
CO204.3	3	1	1	2	1	2	1	1
CO204.4	2	3	1	2	1	2	1	1
CO204.5	2	2	1	3	1	2	1	1
CO204.6	1	3	1	3	1	2	1	1

1-Slight (Low)

2-Moderate (Medium)

Sah	ool: SSBSR	Batch : 2023-2025							
		Current Academic Year: 2024-25							
	gramme: M.Sc. nch: Physics	Semester: III							
1 1	Course Code	MPH205							
2	Course Title	Materials Physics							
3	Credits	4							
4	Contact Hours	4-0-0							
4	(L-T-P)	4-0-0							
	Course Status	Compulsory							
5	Course	1. To know the importance of Physics and Materials Scien							
	Objective	2. To utilize the various synthesis procedure to develop ma							
		3. To explain the practical application of materials in vario	us area.						
6	Course	CO1: Learn the basics of Materials.							
	Outcomes	CO2: Understand the correlation between Materials & Phy							
		CO3: Apply the concept of materials and technology at cer							
		CO4: Develop devices using materials and understand scie	nce.						
		CO5: Create the path to handle materials.							
		CO6: Expertise in various tools will make a bridge betwee							
7	Carrier	students. Find out the platform for employment in high tec							
7	Course	Material physics is the use of <u>physics</u> to describe the physic	cal properties						
	Description	of materials. It is a synthesis of <u>physical sciences</u> such	ariala agianga						
		as chemistry, solid mechanics, solid state physics, and mat	errais science.						
8	Outline syllabus		CO Mapping						
0	Unit 1	Materials: Basic Concepts							
	A	Concept of amorphous	CO1, CO2						
	В	single and polycrystalline structures and their effect on	CO2						
	-	properties of materials	001						
	С	Crystal growth	CO3						
	Unit 2	Imperfections in Solids							
	A	Defects, Point Defects: vacancy, substitutional,	CO1, CO2						
		interstitial, Frenkel and Schottky defects, equilibrium	,						
		concentration of Frenkel and Schottky defects							
	В	Line Defects: slip planes and slip directions, edge and	CO1, CO3						
		screw dislocations, Burger's vector, cross-slip, glide and							
		climb, jogs, dislocation energy, super & partial							
		dislocations, dislocation multiplication, Frank-Read							
		sources							
	С	Planar Defects: grain boundaries and twin interfaces;	CO4						
		Dislocation Theory – experimental observation of							
		dislocation, dislocations in FCC, HCP and BCC lattice.							
	Unit 3	Semiconductors							
	А	Metals and Semiconductors: Conduction in metals,	CO4						
		Mobility, Semiconductors: Intrinsic, Extrinsic							
	В	Band structures of semiconductors, Quantum well	CO5						
		structures, Intrinsic carrier concentration, Defect levels in							
		semiconductors							

С	Type – III- V	CO4, CO5		
0	junctions, Hal	001,000		
Unit 4	Ceramics and			
A			applications of traditional and	CO1, CO3
			glass transition temperature,	,
			chanical properties	
В	high temperat		* *	CO3
С			mers, Random network model,	CO6
		•	from glasses, photosensitive	
	and photochro	1		
Unit 5	Polymers and	d Composite	S	
А	Polymers, typ	es and classi	fication, Insulating, conducting	CO1, CO3
	and ion condu	acting polymo	ers, resins	
В	-		nt-Matrix Interface, Metal	CO1, CO3
			cs matrix composite, Carbon	
	fiber composi			
С	Properties and	CO4, CO6		
Mode of	Theory			
examination		I		
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*			tions of Materials Science and	
			11 Book Co., 2000.	
			damentals of Ceramics",	
0.1	McGraw Hill			
Other			a, "Composite Materials	
References	Science	ce and Engine	eering", Springer, 2001.	
	2 Darals	Uull "Intro	luction to Composite	
			luction to Composite idge University Press, 1988.	
	Iviater		luge Oniversity 11555, 1700.	
	3 Georg	e Odian "Pri	nciples of Polymerization",	
	-		ns, Inc, 2002.	
	Joint	, neg und son		

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO205.1	2	3	1	1	2	1	3	3
CO205.2	3	2	1	1	1	1	2	3
CO205.3	2	3	1	1	2	1	2	3
CO205.4	2	3	1	1	1	1	3	2
CO205.5	3	3	1	1	2	1	3	3
CO205.6	2	2	2	2	3	3	3	3

1-Slight (Low)

2-Moderate (Medium)

Sch	ool: SSBSR	Batch :2023-2025							
	gramme: M.Sc.	Current Academic Year: 2024-25							
	nch: Physics	Semester: III							
1	Course Code	MPH 208							
2	Course Title	Synthesis of Materials							
3	Credits	4							
4	Contact Hours	4-0-0							
	(L-T-P)								
	Course Status	Compulsory							
5	Course	1. To know the importance of Physics and Materials Scien	ice.						
	Objective	2. To utilize the various synthesis procedure to develop ma	aterials.						
		3. To explain the practical application of materials in varie	ous area.						
6	Course	CO1: Learn the basics of Materials/Technology							
	Outcomes	CO2: Understand the correlation between Applied science	and						
		Technology							
		CO3: Apply the concept of materials and technology at ce	rtain levels.						
		CO4: Develop devices using materials.							
		CO5: Create the path to handle materials.	n inductory and						
		CO6: Expertise in various tools will make a bridge betwee students. Find out the platform for employment in high tec							
		students. Find out the platform for employment in high tec	II IIIdustries						
7	Course	Chemistry has many aspects; but there are three general re	gions: the						
,	Description	study of structures of materials, the study of reactions of n							
	F	the synthesis of materials. Previously, it was generally tho							
		synthesis, compared with structure and reactions, was more							
		and devoid of rigid theory. As our understanding of structu							
		reactions has advanced, however, synthesis has also gradu	ally become						
		theoretically grounded and systematized.	1						
8	Outline syllabus		CO Mapping						
	Unit 1	Chemical Techniques							
	A	Chemical precipitation and co-precipitation, Wet	CO1, CO2						
		chemical methods, Metal crystals by reduction, Sol-gel							
	D	synthesis.							
	В	Microemulsions or reverse micelles, Hydrothermal & Solvothermal synthesis, Thermolysis routes	CO1, CO2						
	С	Microwave heating synthesis, Electrochemical synthesis.	CO1, CO2						
	Unit 2	Synthesis of Nano Particles							
	A A	Preparation of materials by Ball milling, Attrition and	CO1, CO2						
		Vibration milling	001,002						
	В	Cluster compounds, Preparation of nano particles	CO1, CO3						
	C	Preparation of nanostructured polymers/Conducting	CO1, CO3						
		polymers, composites.							
	Unit 3	Vacuum Systems							
	А	Characteristics of vacuum: Mean free path	CO5						
	В	Measurement of Vacuum: Pressure gauges – Pirani and	CO5						
		Penning Gauge; Mechanical pumps							
	С	Rotary Vane Pumps, Diffusion & Molecular pump,	CO5						
		pumping speed, Liquid Nitrogen trap							

Unit 4	Physical Vapour Deposition							
А	Physical Vap	or Depositio	on - Hertz Knudsen equation;	CO1, CO3				
	mass evapora	tion rate; ev	aporators, e-beam					
В	pulsed laser a	pulsed laser and ion beam evaporation, Hybrid and Modified PVD- Ion plating, reactive evaporation						
	Modified PV							
С	ion beam ass	isted deposit	ion, Sputtering techniques	CO6, CO4				
Unit 5	Chemical Va	apour Depo	sition					
А	Chemical Va	por Depositi	on - reaction chemistry and	CO1, CO3				
	thermodynam							
В	Thermal CVI)		CO1, CO3				
С	laser & plasn	na enhanced	CVD, Pyrolytic synthesis	CO1, CO3				
Mode of examination	Theory							
Weightage	CA	MTE	ETE					
Distribution	25%	25%	50%					
	Text book/s*Carbon Nanotubes: Synthesis, Characterization Applications by Kamal K Kar, Research Public Singapore, 2011Principles of Nanoscience and Nanotechnolog Shah, Tokeer Ahmad (Narosa Publishing 							
Other References	Nanos McGr 2007. 5. 6. Charl Nanos 7. 8. Masu Toyol Hand 9. 10. Synth Rao e 11. Nanos Nanos	science and aw-Hill Pub es P.Poole Ji technology" o Hosokawa kazu Yokoya book, Elsevi esis, propert t.al.2002 chemistry: A	NO The Essential, understandin Nanotechnology". Tata Ishing Company Limited, r. "Introduction to , John Willey & Sons, 2003. , Kiyoshi Nogi, Makio Naito, ama Nanoparticle Technology er Publishers (2007) ies and applications by CNR A Chemical Approach to Royal Society of Chemistry, 2005	g				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	POS1	POS2
CO208.1	2	3	1	1	1	1	2	3

CO208.2	3	2	1	1	1	1	3	1
CO208.3	2	3	1	1	1	1	3	2
CO208.4	2	3	1	1	1	1	2	2
CO208.5	3	3	1	1	1	1	2	3
CO208.6	2	2	2	2	3	3	3	2

1-Slight (Low)

2-Moderate (Medium)

Scl	hool:	Batch: 2023-2025							
SS	BSR								
	ogramme:	Current Academic Year: 2024-2025							
M									
	anch:	Semester: III							
Ph	ysics								
1	Course	MPH 217							
	Code								
2	Course	Nuclear and Particle Physics							
-	Title	-							
	Credits	4							
4	Contact	4-0-0							
	Hours								
	(L-T-P)								
	Course	Compulsory							
	Status								
5	Course	This course aims:							
	Objective	1.To introduce students to the fundamental principles and concepts of	nuclear						
		and particle physics							
		2. To make students acquire profound working knowledge of advance	-						
-	9	in nuclear and particle physics and their applications to real life pro							
6	Course	Upon successful completion of this course, the student would be a	ble to:						
	Outcomes								
		CO1: Understand and differentiate the types of nuclear forces, their							
		and explain the nuclear forces using Meson theory and Yukawa potential.							
		CO2: Remember the conservation laws and analyze different types	of nuclear						
		reactions and their energetics.	of nuclear						
		reactions and their energenes.							
		CO3: Compare different types of nuclear models to obtain the angula	r momenta						
		of nuclear states.	momentu						
		CO4: Recognize and discriminate types of nuclear decays and the	governing						
		theories.	0 0						
		CO5: Classify the elementary particles and understand their standard	model.						
		CO6: Acquire relevant knowledge about the nuclear and particle phy	sics to						
		apply it to the real-life problems.							
7	Course	This course illustrates in depth various nuclear interactions, nuclear for							
	Description	different models depicting the nucleus, nuclear decay, types of nuclear							
		reactions and introduces particle physics while classifying the element	itary						
		particles.							
8	Outline syllab	bus	CO						
			Mapping						
	Unit 1	Nuclear Interaction and Nuclear Forces							
	А	Nuclear forces: Nuclear forces - properties of nuclear forces,	CO1,						
		exchange forces, nuclear force has tensor component, charge	CO6						
		independence, spin dependence of nuclear forces							

В	Two body problem: Two body problem- ground state of deutron,	CO1,					
	magnetic moment, quadrupole moment, nucleon nucleon interaction						
С	Meson Theory of Nuclear Forces: Meson theory-Yukawa						
C	potential, nucleon nucleon scattering, charge symmetry, isospin.	CO1, CO6					
Unit 2	Nuclear Reactions						
A A	Nuclear Reactions: Types of reactions and conservation laws,	CO2,					
Λ	Energetics of nuclear reactions, Dynamics of Nuclear reactions, Q	CO2, CO6					
	value equations.	000					
В	1	C02					
D	Scattering and Reaction Cross sections: Scattering cross section,	CO2, CO6					
	reaction cross section, compound nucleus reactions and direct	000					
<u> </u>	reactions.	000					
C	Resonance Scattering: Breit-Wigner one level formula (Qualitative						
	analysis)	CO6					
Unit 3	Nuclear Models						
A	Liquid drop model: Liquid drop model, Bohr Wheeler theory of	СОЗ,					
	fission.	CO6					
В	Shell Model: Experimental evidence for shell effects, shell model,	CO3,					
	spin orbit coupling, magic numbers, angular momenta and parities	CO6					
	of nuclear ground state.						
С	Schimdt lines: Estimate of transition rates, Magnetic moments and	CO3,					
	Schmidt lines.	CO6					
Unit 4	Nuclear Decay						
А	Beta Decay: Fermi theory of beta decay, shape of the beta						
	spectrum, Mass of the neutrino, angular momenta and parity	CO4, CO6					
	selection rule, allowed and forbidden decays						
В	Comparative half-lives, neutrino physics, non-conservation of	CO4,					
	parity.	CO6					
С	Gamma decay Multipole transition in nuclei, angular momenta and	CO4,					
C	parity selection rules, Internal conversion, nuclear isomerism	CO6					
Unit 5	Particle Physics						
A	Classification of Elementary Particles Basic forces, classification	CO5,					
Λ	of elementary particles, spin and parity, determination of isospin,	CO5, CO6					
	strangeness, lepton and baryon no., conservation laws						
В	Gellmann-Nishijima Scheme Meson and baryon octet, elementary	CO5,					
	ideas of SU (3), symmetry quark model	CO3, CO6					
С							
	High Energy Physics: Types of interaction, typical strength and time scale, conservation laws, parity and time reversal CPT	CO5,					
	time scale, conservation laws, parity and time reversal, CPT theorem	CO6					
Mada -f							
Mode of	Theory/Jury/Practical/Viva						
examination							
Weightage	CA MTE ETE						
Distribution	25% 25% 50%						
Text	6. Bernard L Cohen, "Concept of Nuclear Physics" Mc Graw						
book/s*	Hill.						
	7. S N Ghoshal, "Nuclear Physics"						
	8. M K Pal, "Theory of Nuclear Structure" East West Press Pvt						
	Ltd, Delhi.						
	9. S P Kuila, "Concept of Nuclear Physics" New Central Book						
	9. S P Kulla, "Concept of Nuclear Physics" New Central Book Agency Ltd						

	10. Kakani and Kakani, "Nuclear and Particle Physics" Viva
	Books
Other	4. M L Pandya and R P S Yadav, "Elements of Nuclear
References	Physics" Kedar Nath Ram Nath
	5. R R Roy and B P Nigam, "Nuclear Physics" New Age
	International Ltd
	6. D C Tayal, "Nuclear Physics" Himalaya Publication Home
	7. D Griffiths, "Introduction to Elementary Particle Physics"
	Harper and Row
	8. NP-TEL (National Program on Technology Enhanced
	Learning)
	https://www.youtube.com/playlist?list=PLbMVogVj5nJRvq-
	w3zway7k3GzmUDte3a

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO217.1	3	1	1	2	1	3	1	1
CO217.2	3	1	1	3	1	2	1	1
CO217.3	2	1	1	3	1	1	1	1
CO217.4	3	1	1	2	1	2	1	1
CO217.5	3	2	1	3	2	3	1	1
CO217.6	3	1	1	2	1	3	1	1

1-Slight (Low) (High) 2-Moderate (Medium)

3-Substantial

Sch	ool: SSBSR	Batch :2023-2025	
	gramme: M.Sc	Current Academic Year: 2024-25	
	anch: Physics	Semester: III	
1	Course Code	MPH 256	
2	Course Title	Dissertation 1	
2		4	
	Credits		
4	Contact Hours (L-T-P)	0-0-0	
	Course Status	Compulsory	
5	Course Objective	 To synthesize carbon nano materials To develop solvent free polymer electrolyte To study the electrical, optical and thermal studies of a systems 	
6	Course Outcomes	 CO1: In depth knowledge of carbon nano materials and their functionalization. CO2: In depth knowledge of different types of electrolytes. CO3: Familiar with the basic principle and working in systems like CH-Impedance, Kethley-24, POM and many more in laboratory. CO4: Fabrication of Third generation solar cells. CO5: Fabrication of Super capacitors. CO6: Seminars/workshops are in regular intervals and students present their own work. 	
7	Course Description	Synthesis of carbon nano materials and their application in energy storage devices like DSSC, Super capacitors etc. Additionally, synthesis of solvent free polymer electrolyte, application of ionic liquids in energy devices.	
8	Outline syllabus		CO Achievement
	Unit 1	Introduction	
		Sub unit - a, b and c detailed in Instructional Plan	CO1, CO6
	Unit 2	Case study	
		Sub unit - a, b and c detailed in Instructional Plan	CO2, CO6
	Unit 3	Conceptual	, · ·
		Sub unit - a, b and c detailed in Instructional Plan	CO3, CO6
	Unit 4	Development	
		Sub unit - a, b and c detailed in Instructional Plan	CO4, CO6
	IInit E		C04, C00
	Unit 5	Finalisation	
		Sub unit - a, b and c detailed in Instructional Plan	CO5, CO6
	Mode of examination	Jury/Practical/Viva	

Weightage	CA	MTE	ETE				
Distribution	50%	0%	50%				
Text book/s*	Handbook	of Photovoltaic	Science and Engineering				
	Antonio Lu	ique, Steven Heg	gedus; Copyright © 2003				
	John Wiley	v & Sons, Ltd; D	OI:10.1002/0470014008				
Other References	1. Zakaria	NA, Isa MI	N, Mohamed NS, et al.				
	Characteriz	ation of po	lyvinyl chloride/polyethyl				
	methacryla	te polymer blen	d for use as polymer host in				
	polymer el	ectrolytes. J A	ppl Polym Sci 2012; 126:				
	E419-E424	1.					
	5		Y and Mohamed NS. Ionic				
	conductivit	y of PVC-NH	I4I-EC proton conducting				
	polymer el	ectrolytes. Adv	Mater Res 2012; 545: 312-				
	316.						
	3. Chauras	3. Chaurasia SK, Saroj AL, Shalu, et al. Studies on					
	· · · ·	structural, thermal and AC conductivity scaling of PEO-					
	-	LiPF6 polymer electrolyte with added ionic liquid					
	[BMIMPF6	5]. AIP Adv 201	5; 5: 077178.				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO256.1	3	3	1	1	1	1	2	3
CO256.2	3	3	1	1	1	1	2	2
CO256.3	2	2	1	1	1	3	2	3
CO256.4	2	2	1	1	1	3	2	2
CO256.5	2	2	1	1	1	3	2	3
CO256.6	1	1	3	3	1	1	2	2

1-Slight (Low)

2-Moderate (Medium)

Sch	ool: SSBSR	Batch: 2023-2025				
Pro	gramme: MSc	Current Academic Year: 2024-25				
	ysics)	~				
	nch:	Semester: III				
1	Course Code	MPH 257				
2	Course Title	Specialized Physics lab				
3	Credits	2				
4	Contact Hours (L-T-P)	0-0-6				
	Course Status	Compulsory				
5	Course Objective	 To gain knowledge on the synthesis procedunanomaterials. To understand laboratory experiments to it 				
		properties of materials.				
		3. To learn the operation of the advanced cl instruments.	haracterization			
		4. To understand the structural, electrical, monotic properties of materials	echanical and			
6	Course Outcomes Course Description	 Optic properties of materials CO1: Student will be able to use UTM machine and calculate stress, strain (mechanical properties) of materials CO2: Student will be able to know about young modulus and how to find out the value of young modules of a wire. CO3: Student will be able to synthesis nano materials by different methods CO4: Student will be able to operate different characterization tools. CO5: Student will be able to analysis the output of different characterization techniques CO6: Student will be able to find out the structural, electrical, optical and mechanical properties of nano materials and how to tune them by chemical substitution method. In this course of MSc (Physics), students will synthesis nano materials and nano composite by different chemical methods. How to use different characterization tools to understand the structural, electrical, 				
8	Outline syllabus	5	CO Mapping			
	Unit 1	Practical based on mechanical properties				
		 To determine tensile strength by Universal Testing Machine. To determine Young's Modulus of Steal wire by applying Load. 	CO1, CO2			
	Unit 2	Practical related to				
	Out 2 Practical related to 3. To synthesis Zinc Oxide nanoparticle by chemical method. CO 4. To synthesis Titanium Oxide nanoparticle by chemical method. CO					

Unit 3	Practical re	lated to		
	5. To sy	nthesis Comp	osite by chemical method.	CO3
Unit 4	Practical re	lated to		
	6. Grow	th of nanopart	icles by solid state	CO3
	method.			
Unit 5	Practical re	lated to		
	7. To an	nalyze XRD da	ata for the determination	CO3, CO4
	crystallite siz	ze and structur	e of the sample.	CO5, CO6
	8. To de	etermine dieleo	ctric properties of Zinc	
	Oxide/TiO2	nano particles.		
	9. Anal	ysis of uv/vis a	bsorption spectrum of	
	nanomateria	ls.		
Mode of	Jury/Practica	ul/Viva		
examination				
Weightage	CA	MTE	ETE	
Distribution	50%	0%	50%	
Text book/s*	-			
Other				
References				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO257.1	1	3	1	2	1	1	2	2
CO257.2	1	3	1	2	1	1	2	2
CO257.3	1	3	1	2	1	1	2	1
CO257.4	1	3	1	1	1	1	2	2
CO257.5	1	3	1	1	1	1	1	2
CO257.6	1	3	1	1	1	1	2	2

1-Slight (Low)

2-Moderate (Medium)

	ol: School of c Sciences and arch	Batch: 2022-2024	
Prog	ramme: M. Sc	Current Academic Year: 2023-2024	
Bran	ch: Physics	Semester: IV	
1	Course Code	MPH 209	
2	Course Title	CHARACTERIZATION OF MATERIALS	

3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
	Course Status	Compulsory	
5	Course Objective	 The course will focus on the structur correlations and how these could be unraveled of simple characterization methods such as o scanning electron microscopy, x-ray diffra Raman spectroscopy. 	ptical and
		2. To understand the characterization methods use state-of-the-art materials.	ed for
		3. To appreciate the results from characterization and their reliability.	methods
		4. To appreciate the multiscale and multidisciplina of materials	ary nature
6	Course	After the completion of this course students will be abl	e to:
	Outcomes	CO 1: Explain know the basics of optical and Atom	
		Microscope.	
		CO 2: Explain the properties of electrons and the accelerating potential and basic operational m SPM, SEM and TEM.	
		CO 3: Understand the Electronic, Vibrational,	Structural,
		Compositional properties of materials via	different
		spectroscopy and diffraction techniques. CO 4: Demonstrate dc conductivity and ac i	impedance
		spectroscopy.	impedance
		CO 5: Explain the phase transitions in materials b characterization.	y thermal
		CO 6: Apply materials characterization methods microscopy, chemical, physical and structure an thermal analysis techniques to various research	alysis, and
	Course	Determination of the structural character and	•
	description	composition of a material is an essential activity o	
7		science. After completion of the course the student sh obtained knowledge of characterization of mat	
,		introducing the basic principles and performing experi	•
		large range of techniques used to characterize differen materials.	
8	Outline Syllabus		СО
	TIn:4 1	Mianagaania Taabniguag	Mapping
	Unit 1 A	Microscopic Techniques Basics of Microscope and its resolving power;	CO1
		Construction,	COI

В		polarizin	g microscop	е, –	oplications of	_	CO1
C		Magnetic	force micro Electron Ton	scope, A	tomic force mi	croscope	CO1, CO6
U	nit 2	SPM Teo					
A		Scanning			c (SPM) Tec by (STM),	chniques:	CO2
В		Scanning	Electron M	icroscop	y (SEM)		CO2, CO6
C			sion Electro lispersion X-		scopy (TEM), a ysis)	and EDX	CO2, CO6
U	nit 3		copic Techr				
A			le, FT-IR,		and Atomic at	osorption	CO3, CO6
В					angle and wic ocation densit		CO3, CO6
С		AUGER Spectroscopy and X-ray photoelectron spectroscopy (XPS)					CO3, CO6
U	nit 4	Solid state Techniques					
Α		Conductivity measurement: Four probe techniques					CO4
В		Dielectric and Impedance measurement				CO4	
C		Dielectric	e measuren	nent of	materials: Fi	requency	CO4,
		dependen measurer		ment and	temperature d	ependent	CO6
U	nit 5	Thermal	techniques				
A		Thermog	ravimetry, D	oifferenti	al Thromograv	imetry,	CO5
В		Different	ial Scanning	Calorim	netry,		CO5
C		Different	ial Thermal	Analysis			CO5, CO6
	lode of xamination	Theory					
W	Veightage	(CA		MTE	E	TE
D	istribution	2	5%		25%	50)%
T	ext books	 Characterization of materials (Vol. 1 and 2) by E.N Kaufmann, John Wiley and Sons. Introduction to Nanotechnology - Charles P. Poole Jr. and Franks. J. Qwens (Wiley Interscience, 2003) Processing & properties of structural nano materials by Leon L. Shaw (Warrendale, 2003) Chemistry of nanomaterials: Synthesis, properties and applications by CNR Rao (Taylor & Francis 2008) 					•
	ther eferences						erties and

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
-----	-----	-----	-----	-----	-----	-----	------	------

CO209.1	3	3	2	3	1	2	3	3
CO209.2	3	3	2	3	2	2	3	3
CO209.3	3	3	2	3	2	2	3	3
CO209.4	3	3	2	3	2	2	3	3
CO209.5	3	3	2	3	2	2	3	3
CO209.6	3	3	2	3	2	2	3	3

1-Slight (Low)

2-Moderate (Medium)

MPH210 Properties of Materials

Scho	ol: SSBSR	Batch: 2022-24							
Prog	gramme:	Current Academic Year: 2022-23							
M.S									
	nch: Physics	Semester: IV							
1	Course Code	MPH210							
2	Course Title	Properties of Materials							
3	Credits	4							
4	Contact Hours(L-T- P)	4-0-0							
	Course Status	Compulsory							
5	Course Objective	 To make the students familiar with the Stress Strain diagram for different engineering materials, Engineering and true stress strain diagram, Ductile and brittle material, Fatigue, Creep. To understand the concept of Classification of magnetic materials, Diamagnetism, Paramagnetism, Langevin theory of dia and paramagnetism, Weiss theory, Structure of Ferrite. To know the concept of Dielectric Materials: Basic concepts: complex permittivity, dielectric loss factor, polarization, mechanism of polarization, Optical Properties: Refractive index and dispersion, Transmission. To understand the concept of The Gibbs Phase Rule and Phase Diagrams, Phase diagram of one component system, Methods for the Study of Phase Diagrams of Condensed (solid – liquid) Systems, Binary phase diagrams, Lever rule intermediate phases. 							
6	Course Outcomes	 CO1: Learn the basic concepts of Engineering and true stress strain diagram, Ductile and brittle material, Tensile strength, Hardness, Impact strength, Fracture (Types and Ductile to brittle transition), Fatigue, Creep. CO2: Understand the Diamagnetism, Paramagnetism, Langevin theory of dia and paramagnetism, Weiss theory, Susceptibility measurement, Ferromagnetism, Curie-Weiss law. CO3: Able to explain the Dielectric Materials: Basic concepts : complex permittivity, dielectric loss factor, polarization, mechanism of polarization, Clausius-Mossotti Relation, Ferroelectricity. CO4: Figure out the Optical Properties: Refractive index and dispersion, Transmission, Reflection and absorption of light, Optical material for UV and IR, Optical anisotropic, Non-linear optical crystals, Photoluminescene. CO5: State the concepts of The Gibbs Phase Rule and Phase Diagrams, Phase diagram of one component system, Methods for the Study of Phase Diagrams of Condensed (solid – liquid) Systems, Binary phase diagrams, Lever rule intermediate phases, Eutectics, peritectic and eutectoids iron-iron carbide phase diagram, Microstructure, Nucleation and Growth 							

		CO6: Analyse the concepts of Mechanical Properties, Magnetic promaterials, Dielectric properties, Optical properties of solids, Phase	-
7	Course Description	This course is about describing the concepts of Mechanical Propert Magnetic properties of materials, Dielectric properties, Optical prop solids, Phase Diagrams.	
8	Outline Syllab		CO Mappin g
	Unit 1	Mechanical Properties	
	А	Stress Strain diagram for different engineering materials, Engineering and true stress strain diagram, Ductile and brittle material, Tensile strength, Hardness	CO1, CO6
	В	Impact strength, Fracture (Types and Ductile to brittle transition), Fatigue, Creep	CO1, CO6
	С	Factors affecting mechanical properties.	CO1, CO6
	Unit 2	Magnetic properties of materials	
	А	Classification of magnetic materials, Diamagnetism, Paramagnetism, Langevin theory of dia and paramagnetism, Weiss theory	CO2, CO6
	В	Susceptibility measurement, Ferromagnetism, Curie-Weiss law, Antiferromagnetism	CO2, CO6
	С	Ferrimagnetism, Structure of Ferrite.	CO2, CO6
	Unit 3	Dielectric properties	
	A	Dielectric Materials: Basic concepts : complex permittivity, dielectric loss factor, polarization, mechanism of polarization, classification of dielectrics-frequency dependence of dielectric constant; Langevin's Theory of Polarization	CO3, CO6
	В	Clausius-Mossotti Relation, Ferroelectricity, Piezoelectricity, pyro-electric states, transition temperature	CO3, CO6
	С	polarization catastrophe, Landau theory of first and second-order phase transitions, antiferroelectricity, ferro electric domains.	CO3, CO6
	Unit 4	Optical properties of solids	
	А	Optical Properties: Refractive index and dispersion, Transmission, Reflection and absorption of light	CO4, CO6
	В	Optical material for UV and IR	CO4, CO6
	С	Optical anisotropic, Non-linear optical crystals, Photoluminescene.	CO4, CO6
	Unit 5	Phase Diagrams	
	А	The Gibbs Phase Rule and Phase Diagrams, Phase diagram of one component system, Methods for the Study of Phase Diagrams of Condensed (solid – liquid) Systems	CO5, CO6
	В	Binary phase diagrams, Lever rule intermediate phases	CO5, CO6
	С	Eutectics, peritectic and eutectoids iron-iron carbide phase diagram, Microstructure, Nucleation and Growth	CO5, CO6

Mode of	Theory							
Examination								
Weightage	CA	MTE	ETE					
Distribution	25%	25%	50%					
Text Book/s	1988	1. Mechanical Metallurgy', 3rd Edition, McGraw Hill, by G. E. Dieter, 1988						
	2. Testing of Metallic 1979.	Materials', Prentice Hall In	dia,by Suryanarayana,					
	3. Structure and Properties of Materials', Volume III, by R. M., R Shepard L. A., Wulff J., 4th Edition, John Wiley, 1984							
Other References		4. Introduction to Magnetic Materials, Addison-Wesley Publications, California, London, by B. D. Cullity, 1972						
	 Magnetism and Magnetic Materials, Institute of Materials, London, by J. P. Jakubovics 1994 Introduction to Magnetism and Magnetic Materials, Chapman & Hall,by D. Jiles 1991 							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO210.1	3	2	3	3	1	2	3	3
CO210.2	3	3	3	3	1	2	3	3
CO210.3	3	3	3	3	1	2	3	3
CO210.4	2	3	2	3	1	2	3	3
CO210.5	3	2	2	3	1	2	3	3
CO210.6	3	2	3	3	1	2	3	3

1-Slight (Low) (High) 2-Moderate (Medium)

3-Substantial

Sch	ool: SSBSR	Batch :20	23-2025						
	gramme: M.Sc			Year: 2024-25					
	inch:Physics	Semester							
1	Course Code	MPH 258							
2	Course Title		Dissertation 2						
3	Credits	6	<u> </u>						
4	Contact Hours	0-0-0							
•	(L-T-P)	000							
	Course Status	Compulso	orv						
5	Course Objective	· ·	,	e carbon nano materials					
_	j		•	olvent free polymer electroly	te				
			-	e electrical, optical and the					
			idies of a s	· •	IIIai				
6	Course Outcomes			ledge of carbon nano materia	1s				
U	Course Outcomes		functional	0	15				
				ledge of different types of					
		electrolyte	-	leage of anterent types of					
				the basic principle and working	nø				
				Impedance, Kethley-24, POM	-				
		•	more in la	1 .					
		•		Third generation solar cells.					
				Super capacitors.					
				kshops are in regular intervals	5				
			and students present their own work.						
7	Course		Synthesis of carbon nano materials and their						
	Description	applicatio	n in energ	y storage devices like DSSC,					
		Super cap	acitors	etc.					
		Additiona	lly, synthe	sis of solvent free polymer					
		electrolyte	e, applicat	on of ionic liquids in energy					
		devices.							
8	Outline syllabus				CO				
		1			Achievement				
	Unit 1	Introductio							
				etailed in Instructional Plan	CO1, CO6				
	Unit 2	Case study							
				etailed in Instructional Plan	CO2, CO6				
	Unit 3	Conceptua			CO3, CO6				
			Sub unit - a, b and c detailed in Instructional Plan						
	Unit 4		Development						
				etailed in Instructional Plan	CO4, CO6				
	Unit 5	Finalisatio							
				etailed in Instructional Plan	CO5, CO6				
	Mode of	Jury/Practic	cal/Viva						
	examination								
	Weightage	CA	MTE	ETE					
	Distribution	50%	0%	50%					

Text book/s*	Handbook of Photovoltaic Science and Engineering Antonio Luque, Steven Hegedus; Copyright © 2003 John Wiley & Sons, Ltd; DOI:10.1002/0470014008	
Other References	 Zakaria NA, Isa MIN, Mohamed NS, et al. Characterization of polyvinyl chloride/polyethyl methacrylate polymer blend for use as polymer host in polymer electrolytes. J Appl Polym Sci 2012; 126: E419–E424. Khatijah S, Subban RHY and Mohamed NS. Ionic conductivity of PVC-NH4I-EC proton conducting polymer electrolytes. Adv Mater Res 2012; 545: 312– 316. Chaurasia SK, Saroj AL, Shalu, et al. Studies on structural, thermal and AC conductivity scaling of PEO- LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 2015; 5: 077178. 	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO258.1	3	3	1	1	1	1	3	3
CO258.2	3	3	1	1	1	1	3	3
CO258.3	2	2	1	1	1	3	3	3
CO258.4	2	2	1	1	1	3	3	3
CO258.5	2	2	1	1	1	3	3	3
CO258.6	1	1	3	3	1	1	3	3

1-Slight (Low)

2-Moderate (Medium)