

Program and Course Structure School of Engineering and Technology Department of Mechanical Engineering Program: M.Tech Mechanical Engineering

Program code: SET0616

(Batch: 2018-2020)

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School of Engineering and Technology

Vision of the School of Engineering and Technology

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship to provide sustainable solution to the needs of the society

Mission of the School Engineering and Technology

- To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conducive and enriching learning environment.
- 2. To produce technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities and uphold ethical values.
- 3. To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- 4. To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

1.2.1 Vision and Mission of the Department of Mechanical Engineering

Vision of the Department of Mechanical Engineering

To be a centre of learning for preparing professional mechanical engineers, having passion for innovation, entrepreneurship and research, to provide a sustainable solution to the needs of the society

Mission of the Department of Mechanical Engineering

- M1. To offer a curriculum that prepares students with knowledge, skills and ethical values for exploring professional practices.
- M2. To train students in to global leaders through industry driven and research oriented teaching-learning pedagogy.
- M3. To groom students into globally competent professionals and entrepreneurs, who are sensitive to the issues of environment, energy, and emergent needs of the society.
- M4. To equip students with necessary skills to contribute innovatively in creating knowledge through higher learning.

1.3 Program Educational Objectives (PEO)

1.3.1 Program Educational Objectives (PEO) M.Tech Mechanical Engineering

The Educational Objectives of M.Tech Mechanical Engineering are:

- **PEO1:** Graduates will be excel in applying knowledge of production engineering to create novel products and solutions for complex problems.
- **PEO2:** Graduates will be able to understand and explore the behaviour of existing and new materials suitable for the design and development of products.
- **PEO3:** Graduates will be able to apply the knowledge of industrial engineering to recognize, comprehend, analyze and to solve complex real life problems.
- **PEO4:** Graduates will be able to build up the adequate communication skills, proficient personality and moral esteems to be a good human beings, responsible citizens and capable experts.
- **PEO5:** Graduates will be capable of applying relevant skills of research and development and other creative/ innovative efforts in their professional career.

1.3.3 Program Outcomes (PO's)

- PO1: Apply the engineering knowledge of mechanical engineering practices such as design, manufacturing, thermal sciences, automation and industrial engineering to the solution of complex mechanical systems.
- PO2: Identify, formulate, solve and analyse the mechanical system such as machine tools, press tools and thermal systems such as IC engines, refrigeration, air-conditioning and power generating systems.
- PO3: Conceptualize and evaluate the mechanical engineering aspects and select feasible solution using modern industrial management techniques and quality assurance systems considering safety, environment, and other realistic constraints.
- PO4: Develop the skills of good researchers to work on a problem, starting from the scratch, to research in to literatures, methodologies, techniques, tools and conduct experiments and interpret data.
- PO5: Make use of modern engineering tools, software and equipment to analyse and complex mechanical engineering problems.
- PO6: Demonstrate the traits of manager in handling engineering projects, related finance and coordinate work force towards achieving desired goals.
- PO7: Perceive the traits of professional integrity and ethics, and demonstrate the responsibility to implement the research outcome for sustainable development of the society.
- PO8: Communicate effectively to comprehend and write effective reports following engineering standards.
- PO9: Demonstrate the skills of presenting the work unequivocally before scientific community and exchange the scientific thoughts.
 - PO10: Recognize the need for and ability to engage in life-long learning in the broadest context to work in research laboratories and multidisciplinary environments.

School of Engineering and Technology

M.Tech-Mechanical Engineering

Batch: 2018-2020

TERM: I

S.	Course Code Course Na	Course Name	Teaching Load			Credits
No.		Course Name	L	Т	P	Credits
		THEORY COURSES	5			
1.	MME122	Finite Element Methods with Matlab	3	0	0	3
2.	PE I	Program Elective I	3	1	0	3
3.	PE II	Program Elective II	3	0	0	3
4.	PE III	Program Elective III	3	0	0	3
5.	MME104	Advanced Materials Engineering	3	0	0	3
		PRACTICAL/VIVA-VOCE	JUR	Y		
6.	MPI787	Design and Modeling Tool Lab	0	0	4	2
7.	MMP122	Finite Element Methods with Matlab	0	0	2	1
	TOTAL CREDITS					

${\bf School\ of\ Engineering\ and\ Technology}$

M.Tech-Mechanical Engineering

Batch: 2018-2020

TERM: II

a			Tea	ching 1	Load	
S. No.	Course Code	Course Name	L	T	P	Credits
		THEORY COURSE	ES			
1.	PE IV	Program Elective IV	3	1	0	4
2.	PE V	Program Elective V	3	1	0	4
3.	PE VI	Program Elective VI	3	1	0	4
4.	PE VII	Program Elective VII	3	0	0	3
5.	PE VIII	Program Elective VIII	4	0	0	4
6.	MRM001	Research Methodology	2	0	0	2
		PRACTICAL/VIVA-VOC	E/JUR	Ÿ	<u> </u>	
7.	MPI786	Experimental Design and Analysis Lab	0	0	4	2
8.	CCU101	Community Connect	0	0	4	2
9.	MPI788	Automation Lab	0	0	2	1
		TOTAL CREDITS	L			26

${\bf School\ of\ Engineering\ and\ Technology}$

M.Tech-Mechanical Engineering

Batch: 2018-2020

TERM: III

S. No.	Course Code	Course Name	Teaching Load		Credits		
			L	T	P		
	PRACTICAL/VIVA-VOCE/JURY						
1.	MME691	Seminar	-	-	-	2	
2.	MME693	Dissertation-I	-	-	-	10	
	TOTAL CREDITS					12	

School of Engineering and Technology

M.Tech-Mechanical Engineering

Batch: 2018-2020

TERM: IV

S. No.	Course Code	Course Name	Teaching Load		Credits	
			L	T	P	
	PRACTICAL/VIVA-VOCE/JURY					
1.	MME694	Dissertation-II	-	-	32	16
	TOTAL CREDITS					

List of Program Electives: B.Tech- Mechanical Engineering with Specialization in Production and Industrial Engineering:

Elective 1: MPI112- Advanced Manufacturing Techniques (3-0-0) 3

Elective 2: MME114- Industrial Robotics (3-1-0) 4

Elective 3: MPI101- Production and Inventory Decisions (3-0-0) 3

Elective 4: MPI107- Computer Integrated Manufacturing Systems (3-0-1) 4 (Lab)

Elective 5: MME118- Smart Manufacturing (4-0-0) 4

Elective 6: MME015- Supply Chain Management (4-0-0) 4

Elective 7: OEM015- Renewable Energy & Energy Management (3-0-0) 3

Elective 8: MME127- Advance Operations Research (4-0-0) 4

List of Program Electives: B.Tech- Mechanical Engineering with Specialization in Machine Design:

Elective 1: MME121- Mechanics of Composite Materials (3-0-0) 3

Elective 2: MME114- Industrial Robotics (3-1-0) 4

Elective 3: MME123- Advanced Machine Design (3-0-0)3

Elective 4: MME119- Machine Tool Design (3-1-0) 4

Elective 5: MEP120- Fracture Mechanics (4-0-0) 4

Elective 6: MPI107- Computer Integrated Manufacturing Systems (3-0-1) 4 (Lab)

Elective 7: OEM015- Renewable Energy & Energy Management (3-0-0) 3

Elective 8: MME124- Design For Manufacture And Assembly (4-0-0) 4

List of Program Electives: B.Tech- Mechanical Engineering with Specialization in Fluid and Thermal Engineering:

Elective 1: MME010- Advanced Power Plant Engineering (3-0-0) 3

Elective 2: MME102- Heat and Mass Transfer (3-1-0) 4

Elective 3: MME108- Advance Mechanics of Fluids (3-0-0) 3

Elective 4: MME125- Gas Turbine and Compressors (4-0-0) 4

Elective 5: MME126- Advanced Thermodynamics (3-0-1) 4 (Lab)

Elective 6: MME115- Refrigeration & Air-Conditioning and Cryogenics Engineering (4-0-0) 4

Elective 7: OEM015- Renewable Energy & Energy Management (3-0-0) 3

Elective 8: MME128- Solar Energy Technology (4-0-0) 4

Sc	hool: SET	Batch: 2018-2020				
_	ogram: M.Tech	Current Academic Year: 2018				
Br	anch:	Semester: I				
	echanical					
	gineering					
1	Course Code	MME 122				
2	Course Title	Finite Element Method with MATLAB				
3	Credits	3-0-0				
4	Contact Hours (L-T-P)	3-0-0				
	Course Status	Program Core				
5	Course Objective	This course provides an introduction to Finite Element Method with a focus on 1D and 2D problems in structures, heat transfer, static and dynamics as well as writing algorithm for problem solving using MATLAB				
6	Course	On successful completion of this course, students will be able to				
	Outcomes	CO1: Formulate the basic principles of elasticity, equilibrium, energy and				
		virtual work.				
		CO2: Formulate the finite element characteristics for solving complex				
		structural and thermal problems				
		CO3: Apply finite element method to solve problems in solid mechanics,				
		fluid mechanics and heat transfer				
		CO4: Analyze the various static and dynamic structural problems by				
		formulating appropriate finite element method.				
		CO5: Analyze the various fluid and heat transfer problems by formulating				
		appropriate finite element method.				
		CO6: Solve the complex engineering problem based on finite element				
		formulations using MATLAB.				
7	Course Description	This course introduces finite element methods for the analysis of solid, structural, fluid and heat transfer problems. Applications of finite element methods, modelling and analysis of problems, and interpretation of numerical results.				
8	Outline syllabus					
	Unit 1	Introduction				
	A	Review of elasticity, mathematical models for structural problems,				
	В	Equilibrium of continuum-Differential formulation				
	1					

С	Energy Approach-integral formulation, Principle of virtual work-					
	Variational formulation.					
Unit 2	Finite element formulation					
A	Philosophy and general	Philosophy and general processes of finite element method.				
В	Concept of discretisation					
С	Formulation of finite el	ement characteristic matric	ces and vectors,			
	Compatibility, Assemb	ly and boundary condition.				
Unit 3	Analysis of one dimer	nsional Structural problem	ms			
A	Formulation of stiffnes	ss matrix, mass matrices an	d lumped load vectors.			
В	Introduction to higher of	order elements and their ad	vantages and			
	disadvantages					
C	Static and dynamic ana	lysis of one dimensional ax	kial and beam problems			
Unit 4	Analysis of Two dimen	nsional Structural Proble	ms:			
A	Shape functions in two	o dimensions, natural coo	ordinates, Isoparametric			
	representation, Concept	t of Jacobian.				
В	Triangular and Quadrila	ateral elements for membra	nne elements.			
С	Quadrilateral elements	for plate bending elements	S			
Unit 5	FEM in Heat Transfer and Fluid Mechanics problems:					
A	Finite element solution	for one dimensional heat c	onduction with			
	convective boundaries.					
В		t characteristics and simple				
C		cations in one dimensi				
		Potential function and strea	m function.			
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*		Finite Element Analysis, Ph				
Other References	1 Reddy, J.N., Finite Element Method in Engineering, Tata McGraw					
	Hill, 2007.					
	2. Singiresu S.Rao, Finite element Method in Engineering, 5ed, Elsevier, 2012					
	3. Zeincowicz, The Finite Element Method for Solid and Structural					
	Mechanics, 4th Edition	, Elsevier 2007.				
	4. Young W Kwon and	Hyochoong Bang, The fin	ite element method			
	using MATLAB, 2ed, 0	CRC Press, London. 2000.				

Sc	hool: SET	Batch: 2018-2020				
Pr	ogram: M.Tech	Current Academic Year: 2018				
Br	anch: Mechanical Engineering	Semester: I				
1	Course Code	MMP 122				
2	Course Title	Finite Element Method with MATLAB Lab				
3	Credits	1				
4	Contact Hours	0-0-2				
	(L-T-P)	D				
	Course Status	Program Elective				
5	-	Finite Element Method with a focus on 1D and 2D tatic and dynamics as well as writing algorithm for				
6	Course Outcomes On successful completion of this course,	, students will be able to				
	CO1: Formulate the basic principles of e	elasticity, equilibrium, energy and virtual work.				
	CO2: Formulate the finite element chara	acteristics for solving complex structural and thermal				
	problems					
	CO3: Apply finite element method to so	olve problems in solid mechanics, fluid mechanics and				
	heat transfer					
	CO4: Analyze the various static and dyn	namic structural problems by formulating appropriate				
	finite element method.					
	CO5: Analyze the various fluid and hea	at transfer problems by formulating appropriate finite				
	element method.					
	CO6: Solve the complex engineering p	problem based on finite element formulations using				
	MATLAB.					
7	Course Description This course introduces finite element methods for the analysis of solid, structural, fluid and					
	heat transfer problems. Applications of	f finite element methods, modelling and analysis of				
	problems, and interpretation of numerical	al results.				
8	Outline syllabus					
	List of Experiments					

*	SHARI	DA
	UNIVERS	

Beyond Boundaries			
Introduction to interface of MATLAB limited to use of finite			
element formulation and analysis.			
Formulation of finite element simulation of static and			
dynamic responses of uniform rod using MATLAB.			
Computation of finite element simulation of static and			
dynamic responses of uniform beam using MATLAB			
Formulation of finite element simulation of static analysis of			
uniform rectangular plate using MATLAB.			
Formulation of finite element simulation of dynamic analysis			
of uniform rectangular plate using MATLAB.			
Computation of finite element simulation of buckling			
analysis of uniform beam subjected to axial load using			
MATLAB			
Formulation of finite element simulation of buckling analysis			
of uniform rectangular plate subjected to in-plane loading			
using MATLAB.			
Computation of finite element simulation dynamic analysis of			
rotating uniform beam using MATLAB			
Formulation of finite element simulation of heat transfer			
problem of uniform rod using MATLAB.			
Computation of finite element simulation dynamic analysis of			
tapered beam using MATLAB			
Practical			
CA MTE ETE			
60% 0% 40%			
1. Young W Kwon and Hyochoong Bang, The finite element			
,			
method using MATLAB, 2ed, CRC Press, London. 2000.			
MATLAB			

Sc	hool: SET	Batch: 2018-2020			
	ogram: M.Tech	Current Academic Year: 2018			
_	anch:	Semester: I			
PI	E(Mechanical				
En	gineering)				
1	Course Code	MME112			
2	Course Title	Advanced Manufacturing Techniques			
3	Credits	3			
4	Contact Hours	3-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective	1. To present the fundamentals of advanced manufacturing techniques			
		2. To prepare students to apply their understanding of advanced			
		manufacturing processes based on Mechanical, Chemical & Electro-			
		Thermal Energy.			
7	Course Outcomes Course Description	On successful completion of this course students will be able to CO1: Analyze the characteristics of Ultrasonic machining, Abrasive jet machining and water jet machining. CO2: Explain various chemical processes in advance manufacturing techniques. CO3: Classify non-traditional manufacturing processes according to the source of energy. CO4: Elaborate the various HERF process. CO5: Discuss various advanced casting processes. CO6: Determine the various advance machining processes. This course introduces students to learn about various non-conventional machining process. These processes are generally used when traditional methods are not technically or economically feasible like machining of very hard or tough materials, machining of very complex shapes and to			
		obtain high surface finish and accuracy in manufacturing process.			
8	Outline syllabus				
	Unit 1	Advanced Machining Process (Mechanical)			
	A	Introduction, Need of advanced manufacturing processes,			
	В	Mechanical machining, Types - Ultrasonic machining (USM), Abrasive Jet Machining (AJM), Parametric Analysis of USM & AJM.			
	С	Water Jet Machining (WJM). Operating principle, Process parameters,			
	Unit 2	Advanced Machining Process (Chamical)			
	A	Advanced Machining Process(Chemical) Flactro chemical machining Chemical material removal, its types			
	B	Electro chemical machining, Chemical material removal, its types.			
	D	Electro chemical machining (ECM), Operating principle			

*	SHARDA
	UNIVERSITY

С	Process parameters, Ap	plications & Limitations.			
Unit 3	Advanced Machining	Process (Electro-Therma	al)		
A	Thermo electrical mach	nining, Types, Electrical di	scharge machining		
	(EDM), Electrical disch	narge wire cutting (EDWC	<i>(</i>).		
В	Electron beam machini	ciple, Process			
	parameters, Applications & Limitations				
С	Laser materials processing, Laser types, Processes. Laser beam				
	machining (LBM), App	olications – Limitations			
Unit 4	High Energy Rate For	rming			
A	Introduction to HERF	_			
В	Explosive forming, H				
C	Electro hydraulic form	ning, Electromagnetic for	rming		
Unit 5	Advanced Casting Processes				
A	Pressure Die Casting, V	acuum die casting,			
В	Centrifugal casting, She	ell mould casting, Investm	ent casting		
С	Introduction to Powder	metallurgy and its applica	ition.		
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1. Pandey, P.C and Shar	n, H.S., "Modern Machini	ng Process", 2014.		
Other References		k, A.K., "Theory of Mech			
	1988.				
	3. P K Mishra, "Non-Conventional Machining", Narosa India				
	Publication, a Text Boo				
	4. Abdel, H. and El-H	ofy, G. "Advanced Mach	ining Processes",		
	McGraw-Hill, USA, 2	=			

Program: M.Tech Branch: Mechanical Engineering 1	School: SET		Batch: 2018-2020		
Branch: Mechanical Engineering 1	Program: M.Tech				
Course number Industrial Robotics					
number 2 Course Title Industrial Robotics 3 Credits 4 4 Contact Hours (L-T-P)	Engine	ering			
Course Title	1	Course	MME114		
3		number			
Contact Hours (L-T-P)		Course Title	Industrial Robotics		
Hours (L-T-P) Course Status Department Elective 1. To be familiar with the automation and brief history of rob applications. 2. To give the student familiarities with the kinematic motion to robots. 3. To give knowledge about robotic machine vision system. 4. To learn about Robot Manipulators and it's applications. 5. To give knowledge about Robot Planning, Installation and Procedures. Course Outcomes After successful completion of this course students should be all CO1: apply the knowledge of the automation and brief history of and applications. CO2: Analyze the kinematic motions of robot. CO3: classify about robotic grippers and their design concepts. CO4: Demonstrate machine vision system of robots. CO5: Explain the principles of various Sensors and their applic robots. CO6: Create and analyze an industrial manipulator Course Description This course covers all aspects of mobile robot systems design programming from both a theoretical and a practical perspective basic subsystems of control, localization, mapping, perception planning are presented. For each, the discussion will include remethods from applied mathematics, aspects of physics necessare the construction of models of system and environmental behavior and core algorithms which have proven to be valuable in a wide	3	Credits			
1. To be familiar with the automation and brief history of rob applications. 2. To give the student familiarities with the kinematic motion to robots. 3. To give knowledge about robotic machine vision system. 4. To learn about Robot Manipulators and it's applications. 5. To give knowledge about Robot Planning, Installation and Procedures. 6 Course Outcomes After successful completion of this course students should be all CO1: apply the knowledge of the automation and brief history of and applications. CO2: Analyze the kinematic motions of robot. CO3: classify about robotic grippers and their design concepts. CO4: Demonstrate machine vision system of robots. CO5: Explain the principles of various Sensors and their applic robots. CO6: Create and analyze an industrial manipulator		Hours (L-T-P)			
Objective applications. 2. To give the student familiarities with the kinematic motion to robots. 3. To give knowledge about robotic machine vision system. 4. To learn about Robot Manipulators and it's applications. 5. To give knowledge about Robot Planning, Installation and Procedures. 6 Course Outcomes After successful completion of this course students should be all CO1: apply the knowledge of the automation and brief history of and applications. CO2: Analyze the kinematic motions of robot. CO3: classify about robotic grippers and their design concepts. CO4: Demonstrate machine vision system of robots. CO5: Explain the principles of various Sensors and their applic robots. CO6: Create and analyze an industrial manipulator Course Description This course covers all aspects of mobile robot systems design programming from both a theoretical and a practical perspective basic subsystems of control, localization, mapping, perception planning are presented. For each, the discussion will include remethods from applied mathematics, aspects of physics necessare the construction of models of system and environmental behavior and core algorithms which have proven to be valuable in a wide					
Outcomes CO1: apply the knowledge of the automation and brief history of and applications. CO2: Analyze the kinematic motions of robot. CO3: classify about robotic grippers and their design concepts. CO4: Demonstrate machine vision system of robots. CO5: Explain the principles of various Sensors and their applic robots. CO6: Create and analyze an industrial manipulator Course Description This course covers all aspects of mobile robot systems design programming from both a theoretical and a practical perspective basic subsystems of control, localization, mapping, perception planning are presented. For each, the discussion will include remethods from applied mathematics, aspects of physics necessate the construction of models of system and environmental behavior and core algorithms which have proven to be valuable in a wice	5		 applications. To give the student familiarities with the kinematic motion related to robots. To give knowledge about robotic machine vision system. To learn about Robot Manipulators and it's applications. To give knowledge about Robot Planning, Installation and Safety 		
Outcomes CO1: apply the knowledge of the automation and brief history of and applications. CO2: Analyze the kinematic motions of robot. CO3: classify about robotic grippers and their design concepts. CO4: Demonstrate machine vision system of robots. CO5: Explain the principles of various Sensors and their applic robots. CO6: Create and analyze an industrial manipulator Course Description This course covers all aspects of mobile robot systems design programming from both a theoretical and a practical perspective basic subsystems of control, localization, mapping, perception planning are presented. For each, the discussion will include remethods from applied mathematics, aspects of physics necessate the construction of models of system and environmental behavior and core algorithms which have proven to be valuable in a wice	6	Course			
Description programming from both a theoretical and a practical perspective basic subsystems of control, localization, mapping, perception planning are presented. For each, the discussion will include remethods from applied mathematics, aspects of physics necessate the construction of models of system and environmental behave and core algorithms which have proven to be valuable in a wide		Outcomes	CO1: apply the knowledge of the automation and brief history of robot and applications. CO2: Analyze the kinematic motions of robot. CO3: classify about robotic grippers and their design concepts. CO4: Demonstrate machine vision system of robots. CO5: Explain the principles of various Sensors and their applications in robots. CO6: Create and analyze an industrial manipulator		
engineering.			programming from both a theoretical and a practical perspective. The basic subsystems of control, localization, mapping, perception, and planning are presented. For each, the discussion will include relevant methods from applied mathematics. aspects of physics necessary in the construction of models of system and environmental behavior, and core algorithms which have proven to be valuable in a wide range of circumstances. This also includes various applications of robotics		
7 Outline syllabus	7	Outline syllabus	S		
7.01 Unit 1 Robotics Introduction					

7.02		Beyond Boundaries			
7.02	A	Evolution of Robots and Robotics, Laws of Robotics			
7.03	В	Role of robotics in automated manufacturing system, Robot anatomy			
7.04	C	Robot classifications and specifications, Manipulation and Control.			
7.05	Unit 2	Robot Kinematics & Gripper Mechanism			
7.06	A	Robot kinematics, forward and reverse transformation, homogeneous transformations			
7.07	В	Fundamental Rotation matrices, Kinematic modeling of the			
7.07	D	manipulator, Denavit-Hartenberg Notation.			
7.08	С	Robot end-effectors, mechanical, magnetic, and vacuum grippers,			
		gripping forces RCC and design features of grippers.			
7.09	Unit 3	Robotic vision systems & Application of Robots			
7.10	A	Robot vision and their interfaces, Machine Vision Applications			
7.11	В	Applications of robots in materials handling, Inspection			
ff7.12	С	Welding, spray painting and finish coating, Parts Mating & Parts Joining Operations.			
7.13	Unit 4	Robot Manipulators, Actuators and Drives			
7.14	A	Types of Robot Manipulators, Application of Robot Manipulators,			
,	11	Construction of a Robot Manipulators			
7.15	В	Characteristics of actuating systems, Comparison of actuating systems			
7.16	С				
7.10	C	Hydraulic Actuators, Pneumatic, Actuators, Electric Actuators,			
ì		Dobotio Drivos			
7.17	TT .*4 F	Robotic Drives			
7.17	Unit 5	Robot Sensors and Robot Safety			
7.17 7.18	Unit 5	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors			
7.18	A	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors.			
		Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors			
7.18	A	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors.			
7.18 7.19	A B	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety.			
7.18 7.19 7.20	A B C	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety.			
7.18 7.19 7.20	A B C Course Evalua Mode of examination	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory			
7.18 7.19 7.20	A B C Course Evalua Mode of examination Weightage	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE			
7.18 7.19 7.20 8	A B C Course Evalua Mode of examination Weightage Distribution	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory			
7.18 7.19 7.20 8	B C Course Evaluate Mode of examination Weightage Distribution References	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 50%			
7.18 7.19 7.20 8	A B C Course Evalua Mode of examination Weightage Distribution	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 20% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and			
7.18 7.19 7.20 8 9 9.1	B C Course Evalua Mode of examination Weightage Distribution References Text book	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and Application", McGrawhill			
7.18 7.19 7.20 8	A B C Course Evalua Mode of examination Weightage Distribution References Text book Other	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 20% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and			
7.18 7.19 7.20 8 9 9.1	B C Course Evalua Mode of examination Weightage Distribution References Text book	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and Application", McGrawhill Reference Books and Monographs			
7.18 7.19 7.20 8 9 9.1	A B C Course Evalua Mode of examination Weightage Distribution References Text book Other	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and Application", McGrawhill Reference Books and Monographs 1. Koren, Y., "Robotics for Engineers", McGrawhill.			
7.18 7.19 7.20 8 9 9.1	A B C Course Evalua Mode of examination Weightage Distribution References Text book Other	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and Application", McGrawhill Reference Books and Monographs 1. Koren, Y., "Robotics for Engineers", McGrawhill. 2. Deb, S.R., "Robotics Technology and Flexible Automation"			
7.18 7.19 7.20 8 9 9.1	A B C Course Evalua Mode of examination Weightage Distribution References Text book Other	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and Application", McGrawhill Reference Books and Monographs 1. Koren, Y., "Robotics for Engineers", McGrawhill. 2. Deb, S.R., "Robotics Technology and Flexible Automation" Tata Mc Graw Hill Elwood S Bufa and Rakesh K Sarin "			
7.18 7.19 7.20 8 9 9.1	A B C Course Evalua Mode of examination Weightage Distribution References Text book Other	Robot Sensors and Robot Safety Sensors in Robotics, classification of Robotic sensors, Acoustic sensors Optical Sensors, Pneumatic Sensors. Touch Sensors, Force Sensors, Force Sensing Wrist and its applications Robot Planning and Installation, Robot Safety, Need of Robot Safety. tion Theory CA MTE ETE 30% 50% 1.Groover, M.P., "Industrial Robotic Technology - Programming and Application", McGrawhill Reference Books and Monographs 1. Koren, Y., "Robotics for Engineers", McGrawhill. 2. Deb, S.R., "Robotics Technology and Flexible Automation"			

School: SET		Batch: 2018-2020		
Program: M.Tech		Current Academic Year: 2018		
Branc	h: ME	Semester: I		
1	Course number	MPI 101		
2	Course Title	Production and Inventory Decisions		
3	Credits	3		
4	Contact Hours (L-T-P)	3-0-0		
		The objective of PID is to equip the learner with the knowledge and		
		skills necessary to be able to perform in one of the many disciplines		
5	Course Objective	associated with production and inventory management such as		
	Objective	planning, Demand forecasting, Production planning and control		
		inventory control, materials planning etc.		
6	Course Outcomes	 After successful completion of this course students should be able to: CO1. Identify the principles and applications relevant to Production and operations of manufacturing/service firms. CO2. Forecast situations in a production system environment that suggests the use of certain quantitative methods to assist in decision making. CO3. Explain how Enterprise Resource Planning and MRPII systems are used in managing operations. CO4. Plan and contribute to manufacturing and business operations. CO5. Demonstrate the managerial responsibility for Operations and inventory management. CO6. Apply planning, control, and inventory management in real-life complex problem 		
7	Outline syllabu	5		
7.01	Unit 1	INTRODUCTION		
7.02	A	An Overview of production systems,		
7.03	В	Production management objectives		
7.04	С	Manufacturing strategy, Technological innovations in Manufacturing		
7.05	Unit 2	FORECASTING		
7.06	A	The forecasting process		
7.07	В	Monitoring and controlling the forecasting system		
7.08	С	multi-item forecasting		
7.09	Unit 3	PLANNING ACTIVITIES		
7.10	A	Aggregate Planning Strategies and methods		

*	SHARI	DA
	UNIVERS	

7.11	В	The Master Production Schedule,		
667.10	C	Planning of material requirements - MRP, Manufacturing Resources		
ff7.12 C		Planning		
7.13	Unit 4	CONTROL ACTIVITIES		
7.14	A	Capacity planning and control		
7.15	В	Production Activity control, , Scheduling in Manufacturing,		
7.16	C	Theory of constraints and synchronous manufacturing.		
7.17	Unit 5	INVENTORY MANAGEMENT		
7.18	A	Basic Inventory systems, Inventory systems under risk,		
7.19	В	Distribution inventory management,		
7.20	C	Just - in - time systems and Lean manufacturing		
8	Course Evaluat	tion		
	Mode of	Theory		
	examination	Theory		
	Weightage CA MTE			
	Distribution	30% 20%		
8.2	MTE	One, 20 percent		
8.3	End-term exami	End-term examination: 50%		
9	References			
		1. Lee J.Krajewski,Larry P.Ritaman," Operations Management		
9.1	Text book	",Addison-Wesley,2000.		
9.2	Other references	Reference Books and Monographs		
		Seetharama L.Narasimhan, Dennis W.McLeavy, Peter J. Billington, ."		
		Producion planning and inventory control ", PHI.		
		Averetle E Adam, Jr Ronaald J. Ebert "Production and operational		
		management, PHI		
		Elwood S Bufa and Rakesh K Sarin "Modern Production/Operations		
		Management", Wiley India Edition, Reprint 2009		
		Shailendra Kale, "Production and Operations Management", TMH		
		Education		

School: SET		Batch: 2018-2020				
Program: M.Tech		Current Academic Year: 2018				
1	Course No.	MPI107				
2	Course Title	Computer Integrated Manufac	Computer Integrated Manufacturing Systems			
3	Credits	4				
4	Contact Hours (L-T-	3-0-1				
	P)					
5	Course Objective	This course will provide in-depth coverage of Computer Integrated Manufacturing. It contains a high proportion of hands-on study, particularly in the areas of Computer Aided Design/Computer Aided Manufacturing (CAD/CAM), and Computer Numerical Control (CNC).				
6	Course Outcomes	On successful completion of this module students will be able to CO 1- identify the types of production and various costs involved in manufacturing with its analysis. CO 2 – Analyse and solve the design problems of different type of transfer mechanism. CO 3 – Demonstrate the CNC turning & milling Programme and get knowledge about industrial robot. CO 4 – Design and analysis of automatic storage and retrieval system CO 5 – Explain various automated Inspection methods. CO 6 Apply the system modelling tools in CIM and the fundamental concepts of data communications for computer integrated manufacturing.				
7	Outline syllab	1				
7.01	MPI107.A	Unit A	Introduction and Automated Flow Lines			
7.02	MPI107.A1	Unit A Topic 1	Types of production - Functions - Automation strategies.			
7.03	MPI107.A2	Unit A Topic 2	Production economics - Costs in manufacturing			
7.04	MPI107.A3	Unit A Topic 3	Break-even-analysis.			
7.05	MPI107.B	Unit B	Automated flow lines			
7.06	MPI107.B1	Unit B Topic 1	Transfer mechanism - Buffer storage			
7.07	MPI107.B2	Unit B Topic 2	Analysis of transfer lines - Line unbalancing concept			
7.08	MPI107.B3	Unit B Topic 3	Automated assembly systems.			
7.09	MPI107.C	Unit C	Numerical Control			
7.10	MPI107.C1	Unit C Topic 1	NC-CNC Programming			
7.11	MPI107.C2	Unit C Topic 2	Part programming DNC - Adaptive			
7.12	MPI107.C3	Unit C Topic 3	Robot anatomy - Specifications - End effectors – Sensors, Robot cell design.			
7.13	MPI107.D		AUTOMATED HANDLING AND			

*	SHARDA	١
	UNIVERSIT	

			STORAGE	Beyond Boundaries			
7.14	MPI107.D1	Unit D Topic 1	Automated material handling				
/.14	WIF1107.D1	Omt D Topic 1	systems				
7.15	MPI107.D2	Unit D Topic 2	AS/RS				
7.16	MPI107.D3	Unit D Topic 3	Carousel storage				
7.17	MPI107.E	Unit E	INSPECTION ME	THODS			
7.18	MPI107.E1	Unit E Topic 1	Contact methods				
7.19	MPI107.E2	Unit E Topic 2	Non- contact method	ds			
7.20	MPI107.E3	Unit E Topic 3 Automated Inspection					
8	Course Evalua	ation					
8.1	Course work: 3	0%	1%				
	Mode of	Theory					
8.11	examination						
	Weightage	CA	MTE	ETE			
8.12	Distribution	30%	20%	50%			
8.2	MTE	One, 20 percent					
8.3	End-term exam	nination: 50 marks					
9.1	Text book	1. Mikell P.Groover, "Automati	on, Production System	ms and Computer			
9.1		Integrated Manufacturing," PHI	, 1995.				
1. Weatherall, "Computer Intergrated Manufacturing: A				A Total Company			
9.2	Other	Strategy," 2nd edition, 1995.					
7.2	References	2. Ronald G. Askin, "Modeling and analysis of Manufacturing Systems,"					
		John Wiley & Sons, 1993.					

School: SET		Batch: 2018-2020
Pr	ogram:	Current Academic Year: 2018
M	.Tech	
	anch:	Semester: II
	echanical	
	ngineering	
1	Course Code	MPI 107
2	Course	
_	Title	Computer Integrated Manufacturing Systems Lab
3	Credits	1
4	Contact	0-0-2
	Hours	
	(L-T-P)	Communication
	Course Status	Compulsory
5	Course	To impart knowledge about the integration of interdisciplinary fields of
	Objective	computer aided design, computer aided manufacturing. Undergoing this lab
		the students will learn to use the CNC machines efficiently for manufacturing
		desired products and knowledge of programming and use of CNC tooling.
6	Course	After successfully completion of the course the students will able to
	Outcomes	CO 1 Acquire knowledge on how to prepare program in CNC Machine.
		CO 2 – Impart knowledge on how to prepare program in CNC turning
		machine
		CO 3 – Prepare a turned sample operate CNC turning machine
		CO 4 – Apply software for simulation of milled parts in CNC
		CO 5 – Infer on how to prepare program in CNC milling machine
		CO 6 - Apply the concepts of machining and select appropriate cutting tools
		for CNC milling and turning equipment, set-up, program, and operate CNC
		milling and turning equipment.
7	Course	This course will help to develop Programming skills and crate an component
	Description	for required drawing, Simulate the prepared part programme using available
		simulation software's. and prepare the parts on CNC machines.
8	Outline syllab	bus
	Experiment 1	To study the operational procedure for CNC turning and milling.

	Beyond Boundaries			
Experiment 2	Develo	Develop a CNC program for step turning and simulate		
Experiment 3	Develop a CNC program for taper turning and simulate			
Experiment 4	Develo	op a part	program for linear feature and simulate on CNC Milling	
Experiment 5	Develor milling		program for circular interpolation and simulate on CNC	
Experiment 6	Develo	op a part	program for drilling and simulate on CNC milling.	
Experiment 7		To write a program to perform the Circular pocketing operation on the given work piece.		
Mode of examination	Practio	cal		
Weightage Distribution	CA	MTE	ETE	
Distribution	60%	0%	40%	
Text book/s*	 CAD/CAM: computer aided design and manufacturing by Groover Mikell P, Zimmer W Emory Computer Numerical Control-Turning and Machining centers by Quesada Robert 			
Reference	Manua	Manuals provided in the lab		

Sc	hool: SET	Batch: 2018-2020			
Program:		Current Academic Year: 2018			
M.Tech					
Branch:		Semester: II			
Me	echanical				
En	gineering				
1	Course Code	MME118			
2	Course Title	Smart Manufacturing			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To familiarize students with applications Of various quality control tools			
	Objective	used in industrial engineering			
		2. To provide students an understanding of lean manufacturing process			
		2. To provide students an understanding of lean manufacturing process.			
		3. To teach the basics of Industry 4.O.			
		4. To teach students the basics of Industry 4.O applications in modern			
		manufacturing industry.			
6	Course	CO1: Apply the basic concepts of quality engineering in industry.			
	Outcomes	CO2: Illustrate the statistical process tools in an actual manufacturing plant.			
		CO3: Explain the basic concepts of Lean manufacturing.			
		CO4: Compare Internet of things and Industrial internet of things			
		CO5: Elaborate the Industry4.O Applications in Manufacturing Industry.			
		CO6: Identify the various quality management tools.			
7	Course	The objective of this course is to make the students realize about the various			
	Description	concepts of quality engineering, statistical tools, lean manufacturing and			
	-	applications industry 4.O and IiOT. After learning this course the student			
		will be able to implement all these techniques in an industry to help his as			
		well as the industries growth in the market.			
8	Outline syllabus				
	Unit 1	Quality Tools			
	A	Benchmarking – Reasons to Benchmark, Benchmarking Process,			
	В	Quality Function Deployment (QFD) – House of Quality, QFD Process,			
		Benefits, Taguchi Quality Loss Function			
	С	Total Productive Maintenance (TPM) – Concept, Improvement Needs,			
	Unit 2 Statistical Process Control				
	A	The seven tools of quality			
	В	Statistical Fundamentals – Measures of central Tendency and Dispersion,			
		Population and Sample, Normal Curve, Control Charts for variables and			
		attributes, Process capability			
	С	Concept of six sigma, New seven Management tools.			
	_				

	Unit 3 Lean Manufacturing						
	A	Introduction to Lean Manufacturing, Industry Examples					
	В	Lean Manufacturing Too	ols and Techniques, Overvie	ew of the Toyota			
		Production System (TPS	_				
	lanufacturing Tools &						
		Techniques application.					
	Unit 4	Industry 4.0					
	A	Concept of Internet of th	ings, Industrial internet of the	hings, IT & OT			
		Convergence					
	В	Requirements of Industr	y 4.0 concepts				
	С	Virtual and Augmented	reality in Industry4.O, Digit	al twins in Industrial			
		IoT and Industry 4.O					
	Unit 5	Industry4.O Applications in Manufacturing Industry					
	A	Rise of Collaborative rol	oot (COBOT), Edge Compu	ting & IoT, Industrial			
		Data Space.					
	В	Logistics4.O, Industrial	•				
	С	_	s and evolution, liot commu				
			Maintenance and asset mar	nagement with IioT.			
	Mode of .	Theory					
	examination		C 2 cm 20				
	Weightage	CA	MTE	ETE			
	Distribution	30%	20%	50%			
	Text book/s*	1. Industrial Engineering and Production Management- Martand Telsang-S.Chand & CO.					
	Other	1. Samuel Eilon, "Elements of Production Planning and control", Universal					
	References	Book Corp., 1999. 2. Buffa, E.S., "Modern Production/Operations Management", John Wiley sons, 2003					
		3. Elsayed A Elsayed, Thomas O. Boucher, "Analysis and control of Production System", Prentice Hall, 2002.					

School: SET		Batch: 2018-2020
Program: M.Tech		Current Academic Year: 2018
Branch:		Semester: II
Mechanical		
Engineering		
1	Course Code	MME015
2	Course Title	Supply Chain Management
3	Credits	4
4	Contact Hours	4-0-0
	(L-T-P)	
	Course Status	Department Elective
5	Course	1. To familiarize students with various drivers and metrics of supply chain
	Objective	management system
	-	
		2. To provide students an understanding of different types of supply chain
		networks
		3. To teach the basics of economics in supply chain management system
		4. To teach students the basics of cross functional supply chain metrics
6	Course	After successful completion of this course students should be able to:
	Outcomes	CO1: explain basic terminology and supply chain operations in the context of
		today's business environment.
		CO2: design the supply chain networks.
		CO3: manage inventory effectively and planning policy, demand variability, forecasting and lead time on inventory level and cost.
		CO4: improve in transportation and logistics in supply chain operations.
		CO5: perceive the importance of strategic supply chain alliances and the
		impact of information Technology in SCM.
		CO6: develop supply chain which is financially and environmentally
		sustainable
7	Course	The objective of SCM is to introduce the major building blocks, major
	Description	functions, major business processes, performance metrics, major
	1	decisions (strategic, tactical, and operational) and role of IT in supply chain
		Management.
8	Outline syllabus	
	Unit 1	INTRODUCTION
	A	Understanding the Supply Chain
	В	Supply Chain Performance: Achieving Strategic Fit and Scope
C Supply Chain Drivers and Metrics		Supply Chain Drivers and Metrics
Unit 2 DESIGN		DESIGNING THE SUPPLY CHAIN NETWORK
	A	Designing Distribution Networks
	В	Network Design in the Supply Chain
	С	Network Design in an Uncertain Environment

Unit 3	PLANNING AND MANA	AGING INVENTORIES IN	A SUPPLY CHAIN	
A	Managing Economies of S	Scale in a Supply Chain: Cyc	le Inventory	
В	Managing Uncertainty in	a Supply Chain: Safety Inver	ntory	
С	Determining the Optimal Level of Product Availability			
Unit 4	DESIGNING AND PLANNING TRANSPORTATION			
	NETWORKS			
A	The Role of Transportation in a Supply Chain			
В	Modes of Transportation	Modes of Transportation		
С	Trade-Offs in Transportat	ion Design		
Unit 5		INCTIONAL DRIVERS IN	A SUPPLY CHAIN	
A	Sourcing Decisions in a Supply Chain			
В	Information Technology i			
С	Coordination in a Supply	Chain, Sustainability in SCM	1	
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	-	ndl Peter and Kalra Dharam vir	; Supply chain	
	Management, Pears			
Other		S., Managing the global supp	ly chain, Viva books,	
References	New Delhi, 2000.		mi a r	
	-	ok of supply chain manageme	ent, The St.Lencie press,	
	2000.		,	
	3. Nicolas, J.N., Competeive manufacturing management-			
		continuous improvement, Lean production, customer focussed		
	quality, McGraw Hill, NY, 1998. 4 Steudel, H.J. and Desruelle, P., Manufacturing in the ninetees-How to			
		world class competitor, Van		
	1992.	world class competitor, vali	mostraliu Kellillolu, N I ,	

Sc	chool: SET	Batch: 2018-2020			
_	ogram: M.Tech	Current Academic Year: 2018			
_	anch: ME	Semester: II			
1	Course Code	OEM015			
2	Course Title	Renewable Energy and Energy Management			
3	Credits	3			
4	Contact Hours	3-0-0			
	(L-T-P)				
5	Course Status Course Objective	Open Elective 1. To develop and demonstrate knowledge and understanding,			
]	Course Objective				
		qualities, skills and other attributes in the areas of renewable			
		energy.			
		2. to develop and demonstrate knowledge and understanding,			
		qualities, skills and other attributes in the areas of non-			
		conventional energy			
6	Course Outcomes	Identify the current worldwide energy usage and its impact on			
		climate.			
		2. Compare the various renewable energy sources (solar, wind,			
		hydro, wave, tidal and bio energy).			
		3. Design of windmills and its site selection			
		4. Create and utilize a biogas plant and classify the geothermal			
		plants			
		5. Evaluate and construct energy management system			
		6. Develop a habit where energy conservation and energy			
		management is a way of life.			
7	Course	This course provides opportunities for students to develop and			
	Description	demonstrate knowledge and understanding, qualities, skills and other			
		attributes in the areas of renewable and non-conventional energy			
8	Outline syllabus	us			
		Solar Energy			
		The sun as source of energy, direct solar energy utilization; solar thermal applications – water heating systems			
	B	space heating and cooling of buildings, solar cooking, solar ponds, solar			
		green houses			
	C solar thermal electric systems; solar photovoltaic power generation; solar				

	production of hydrogen	Beyond Boundaries	
Unit 2	Energy from Oceans and Hydro Power		
A		from waves; wave energy conversion	
	devices; advantages and disadvan		
В		idal power generation systems; estimation	
	of energy and power; advantages		
	generation; Ocean thermal energ		
С		c power generation. Classification of	
		ns; description of basic civil works	
		nd generators for SHP; advantages and	
	limitations		
Unit 3	Wind Energy		
A	Basic principles of wind energy of	conversion	
В	Design of windmills; wind data a		
С	Site selection considerations		
Unit 4	Biomass and Geothermal Energ	· V	
A		ion; types of biogas plants; applications of	
	biogas; energy from wastes		
В		energy; classification of geothermal	
	resources		
С	schematic of geothermal power plants; operational and environments		
	problems	-	
Unit 5	Energy conservation management	ent	
A		gement profession; general principles	
	of energy management and en	ergy management planning	
В	application of Pareto's model for energy management; obtaining		
	management support; establishing energy data base; conducting energy		
	audit;		
C	evaluating and implementing feasible energy conservation opportunities;		
		g, evaluating and following up energy	
	saving measures/projects		
Mode of	Theory		
examination			
Weightage			
Distribution 30% 20% 50%			
Text book/s*	Companies.		
2. Renewable Energy Sources and Emerging Tech, by D P Kotha			
	Singal and R Ranjan, EEE		
Other		John W Twidell and Anthony D Weir.	
References 2. 'Renewable energy – power for sustainable future'. Edited by Go			
	Boyle. Oxford		

Scho	ol: SET	Batch: 2018-2020		
Program: M.Tech		Current Academic Year: 2018		
Bran	ch: Mechanical	Semester: II		
Engi	neering			
1	Course code	MME127		
2	Course name	Advanced Operations Research		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
5	Course	The objective of this course is to provide a scientific basis to the		
	Objective	managers of an organization for solving problems involving interaction		
		of the components of the system, by employing a system approach by a		
		team of experts drawn from different disciplines, for finding a solution		
	C	which is in the best interest of the organization as a whole.		
6	Course Outcomes	After successful completion of this course students should be able to:		
	Outcomes	1: Formulate and solve mathematical model (advanced linear		
		programming problem) for a physical situations like production,		
		distribution of goods and economics		
		2: Apply Dynamic programming in real world practical problems.		
		3: Demonstrate queuing theory and inventory management problems		
		4: Design the best strategy using decision making methods under		
		uncertainty and game theory.		
		5. Develop cost effective solutions for network problems using		
		PERT/CPM techniques.		
		6. Compare various solutions applying decision making techniques for		
		complex problems		
7	Outline syllabus			
7.01	Unit 1	Advanced Topics in Operations Research		
7.02	A	Formulation of Linear Programming Problems, Graphical solution		
7.03	В	Simplex procedure for maximization and minimization, Duality concept		
7.04	С	Integers Programming		
7.05	Unit 2	Dynamic Programming		
7.06	A	Dynamic Programming Approach, Formulation of Dynamic		
		Programming problems		
7.07	В	Optimum solution of dynamic Problems		
7.08 C Application of dynamic Progra		Application of dynamic Programming		
7.09 Unit 3		Queuing & Inventory Models		
7.10	A	Queuing Model: Introduction, Kendall's notation, Classification of		
		queuing models, Sequencing of n jobs and 2 & 3 machines, 2 jobs and m		
		machines		

7.11	В	Inventory control: Introduction, models of inventory,				
7.12	С	Fixed order quantity system, periodic quantity system EOQ model.				
7.13	Unit 4	Decision Theory ar	Decision Theory and theory of games			
7.14	A	Decision making un	der certainty and uncertainty	/,		
7.15	В	Decision tree				
7.16	С	Theory of games-de	finition, pure and mixed stra	tegy, algebraic and		
		graphical Methods.				
7.17	Unit 5	Network Models				
7.18	A	Basic concept, Rule	s for drawing the network di	agram,		
7.19	В	* *	M and PERT techniques.			
7.20	C	Cost analysis and cr	ashing the network			
8	Course Evaluat					
8.1	Mode of examination	Theory				
8.11	Weightage	CA	MTE	ETE		
0.2	Distribution	30%	20%	50%		
8.3	End-term exami	nation: 50%				
9	References	1 11' 0 C + O	' D 1 0 Cl	1 0 C N D 11'		
9.1	Text book	1. Hira & Gupta, Operations Research, S. Chand & Co. New Delhi, 2007.				
9.2	Other	1. Sharma,J.K., Ope	rations Research: Theory an	d Application, McMillan		
	references		ew Delhi, 3 rd Edition.	41.		
			oduction to Operation Resea	rch, PHl Publication, 9 th		
		edition.	otion and Operation Manage	mont Soitoch		
		3. Tripathy, Production and Operation Management, Scitech Publication, 2007 edition.				
		4. Rajgopal, K., Operation Research, PHI Learning Pvt Ltd., 1 st Edition,				
		2012.				
		6. Paneerselvam, R., Operation Research, PHI Learning Pvt Ltd.,2 nd				
		Edition, 2009.				
		7. Use MATLAB Software– MATLAB R2011b; Version 8.1, and				
		Microsoft Office Ex	cei 2007 or2012.			

School: SET		Batch: 2018-2020
Program:		Current Academic Year: 2018
M	.Tech	
Bı	ranch: ME	Semester: II
1	Course Code	MME121
2	Course Title	Mechanics of Composite Materials

3	Credits	Beyond Boundaries		
4	Contact	3-0-0		
	Hours (L-T-			
	P) .			
	Course Status	Elective		
5	Course	1. To describe the characteristics and the manufacturing principles of		
	Objective	composite laminates		
		2. To understand the micro-macro analyses of composite materials.		
		3. To perform hygro-thermo-elastic analyses for the determination of the		
		stress and strain state in a multi-axial laminate		
		4. To understand the bending-twisting-extensional coupling in symmetrical		
		and unsymmetrical laminates.		
		5. To establish the failure criteria for laminates based on failure of individual		
		lamina in a laminate.		
6	Course	CO1: Describe various types of composite materials and their		
	Outcomes	manufacturing processes.		
		CO2: Demonstrate an understanding of isotropic, transversely isotropic,		
		orthotropic, and anisotropic material behaviour using generalized Hooke's law.		
		law.		
		CO3: Apply various micro-mechanics models to evaluate the macroscopic		
		properties including stiffness and strength of the composites.		
		properties including surmess and strength of the composites.		
		Demonstrate the fundamental building components for composite systems		
		under hygrothermal environment.		
		CO5: Analyze laminates using classical laminated plate theories and		
		demonstrate an understanding of stacking sequence, lamina properties, ply		
		orientation, and lamina geometric properties on stiffness of the laminate.		
		CO6: Estimate the failure loads of the composite laminates subjected to		
		various loading using various failure theories.		
7	Course	This course provides students a background in modern lightweight		
	Description	composite materials which are being used in an ever-increasing range of		
		applications and industries. Basic knowledge of composites will allow		
		engineers to understand the issues associated with using these materials, as		
		well as gain insight into how their usage differs from metals, and ultimately		
		be able to use composites to their fullest potential. Topics covered include:		
		current and potential applications of composite materials, fibers, matrices,		
		manufacturing methods for composites, review of elasticity of anisotropic		
		solids, micromechanics of continuous and discontinuous fiber systems, laminated plate analysis, static analyses of laminated composites, edge		
		effects in laminates and both macroscopic and microscopic failure analysis		
		of composite materials and laminates.		
8	Outline syllabu			
U	Jumine symaou	U		

	Unit 1	Introduction		Beyond Boundaries	
	A	Introduction to composi	te materials and its limitation	ıs	
	В	Classifications of compo	osite materials		
C Manufacturing techniques for polymer, metal and ceramic matrix materials			ramic matrix composite		
	Unit 2	Macro mechanical analysis of laminated composite materials			
	A	Macro mechanical analy	sis of a lamina -linear elastic	c stress-strain	
		characteristics of fiber-re	einforced material.		
	В		a global coordinate system,		
			duced compliances & stiffne	ess	
	С		trains and moisture strains		
	Unit 3		lysis of laminated composit		
	A	Micromechanical analys and Void content	sis of a lamina, Volume and	mass fractions, Density,	
	В	Prediction of engineerin	g properties using micromed	hanics, Material	
		properties of the fiber ar	nd matrix		
	C	Experimental techniques	s for evaluating mechanical p	properties of composite	
		materials			
	Unit 4	Classical Lamination T			
	A		Laminate nomenclature, Lam		
		displacements, Implications of the Kirchhoff hypothesis.			
	В		Laminate stresses & strains -Stress distributions through the thickness		
	С	Force and moment resultants-Laminate stiffness matrix: ABD matrix,			
			tes and their effect on the AI	BD matrix, Elastic	
	TT 14 F	couplings.			
	Unit 5	Theories of Failures of Laminates			
	A	Symmetric laminates, Cross-ply laminates, Angle ply laminates,			
	D	Antisymmetric laminates, Balanced laminate, Quasi-isotropic laminates.			
	В	Failure theories for fiber-reinforced materials, Maximum stress criterion,			
	С	Tsai-Wu criterion Environmental effects- Effect of laminate classification on the unit thermal			
		force and moment result		ion on the unit theimal	
	Mode of	Theory	ши		
	examination	1 IICOI y			
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*		anics of Composite Material		
	TOAT GOOR/S	2006.	amos of Composite Material	s, raylor & rancis,	
	Other	1. Robert Millard Jones, Mechanics of composite materials, Taylor &			
	References	Francis, 1999	1.100manico of composite int		
		2. Laszlo, P. Kollar, George, S. Springer, Mechanics of composite structures, Cambridge University Press, 2003.			
ь	1				

School: SET		Batch: 2018-2020			
	ogram:	Current Academic Year: 2018			
	.Tech				
Br	anch: ME	Semester: I			
1	Course Code	MME 119			
2	2 Course Title Machine Tool Design				
3	Credits	4			
4	Contact	3-1-0			
	Hours (L-T-				
	P)				
	Course	Compulsory			
	Status				
5	Course	1. To provide a thorough understanding and application of the concepts of			
	Objective	design of machine tools.			
		2. To gain the knowledge of critical functional and operational requirements			
		of different types of machine tools.			
		3. To gain adequate understanding on tool designer's aims and objectives.			
		4. To develop skills for designing machine components and machine tools.			
6	Course	CO1: Infer basic motions involved in a machine tool.			
0	Outcomes				
	Outcomes	CO2: Design and Analyze systems for specified speeds and feeds. CO3: Design of machine tool structure, bed, table and ram			
		CO4: Design of drives and power screws			
		CO5: Design of spindles and supports.			
		CO6: Analysis of stress in design of various parts of machine tool			
		a coordinately six of stress in design of various parts of maximic toor			
7	Course	To impart the fundamental notions of the machine tools including the			
/	Description	different types, construction, applications and their technological capabilities.			
	Description	To provide exposure to the systematic methods for solving the problems of			
		designing machine tools and their components by exploring the various			
		design aspects of machine tools elements like transmissions, structures,			
		materials, kinematics, dynamics and construction of machine tools, etc.			
8	Outline syllabi				
	Unit 1	Introduction			
	A	Parameters defining working motions of a machine tool			
	В	Machine tool drives, Mechanical transmission and its elements, General			
		requirements of machine tool design			
	С	Engineering design process applied to machine tools			
	Unit 2	Regulations of Speed and Feed Rates			
	A	Aim of speed and feed rate regulation			
	В	Design of speed box, Design of feed box			
	С	Classification of speed and feed boxes			
	Unit 3	Design of Machine Tool Structures			

A Design criteria for machine tool structures, Materials of machine to			machine tool		
		structures, Static and dynam	nic stiffness		
	В	Design of beds, columns an	d housings		
	С	Design of bases, tables and rams			
	Unit 4	Design of Guideways and Power Screws			
	A	Functions and types of Guid	leways, Design criteria and	calculations for	
		slideways			
	В	Design of aerostatic and anti-friction slideways			
	С	Design of power screws			
	Unit 5	Design of Spindles and Spindle Bearings			
	A	Functions of spindle unit and its requirements			
	В	Design calculations of spindles			
	С	Design of anti-friction and sliding bearings			
	Mode of	Theory			
	examination	-			
	Weightage	CA MTE ETE			
	Distribution	30%	20%	50%	
	Text book/s*	ther 1. Ryder, G.H., "Strength of Materials", Macmillan(2002),3rd Edition			
	Other				
	References				

School: SET		Batch: 2018-2020	
Pr	ogram:	Current Academic Year: 2018	
\mathbf{M}	.Tech		
Branch: ME		Semester: I	
1	Course Code	MME123	
2	Course Title	Advance Machine Design	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Elective	
5	Course		
	Objective	1. To understand the the fatigue of materials.	
		2. To understand the role of mean stress and factors influences S-N curve.	
		3. To understand how to estimate the life using strain life approach and	
		properties.	
		4. To understand the concept of residual stresses	
		5. To understand types of surface failure.	
6	Course	C01: Interpret the conept of modes of failure (macroscopic and microscopic	
	Outcomes	features in fatigue fracture and the concept of fatigue design model &	
		methods.)	
		CO2: Analyze statistical nature of fatigue using S-N approach.	
		CO3:Interpret monotonic stress-strain behaviour of material and its life	
		estimation by ε-N approach.	
		CO4:Estimate residual stresses and understand the concept of statistical	
		aspects of fatigue.	
		CO5: Analyze dynamic contact stresses and surface fatigue strength.	
		CO6: Interpret the concept of fatigue under various load condition	
7	Course	The course focuses on applied engineering design, with a view to producing	
	Description	products that are safe, reliable, and economical. It offers in-depth coverage	
		of today's most common analytical methods of fatigue design and fatigue	
		life predictions/estimations for metals.	
8	Outline syllabus		
	Unit 1	Introduction and Fatigue of Materials	
	A	Role of failure prevention analysis in mechanical design ,Modes of	
		mechanical failure, Review of failure theories for ductile and brittle	
		materials including Mohr's theory and modified Mohr's theory	
	В	High cycle and low cycle fatigue, Fatigue design models, Fatigue design	
		methods, Fatigue design criteria, Fatigue testing, Test methods and standard	
		test specimens	
	C	Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and	
		microscopic features.	
	Unit 2	Stress-Life (S-N) Approach	

	A	S-N curves Statistical na	ature of fatigue test data, Ge	neral S-N behavior	
B Mean stress effects, Different factors influencing S-N be representation and approximations					
			v benaviour, b iv curve		
	С	Constant life diagrams, Fatigue life estimation using S-N approach.			
	Unit 3	,	<u> </u>	з-п арргоасп.	
		Strain-Life(S-N)approa		and manath and a Creation	
	A		pehavior ,Strain controlled to	est methods, Cyclic	
	D	stress-strain behavior	life and an Determination		
	В		life estimation, Determinati	on of strain fife fatigue	
	C	properties FG - to FG	-4 - C C C 1 - T - C 4		
	С		ct of surface finish, Life esti	imation by ε -in	
	TT *4 4	approach	4° 4° 1 A 4 6T 4°		
	Unit 4		tistical Aspects of Fatigue		
	A		tresses and Fatigue Resistar	-	
			rement of Residual Stresses	s, Stress Intensity	
	.	Factors for Residual Stre		**************************************	
	В	_	ation of data scatter, Probab	oility distributions,	
	~	Tolerance limits			
	С		tigue data ,Reliability analy		
	Unit 5		Amplitude Loading and Su		
	A	Spectrum loads and cumulative damage, Damage quantification			
		concepts of damage fraction and accumulation			
	В	<u> </u>	ries, Load interaction and se	equence effects, Cycle	
		counting methods			
	C		g surface, Friction, Adhesiv		
			fatigue spherical contact, C		
			c contact stresses, Surface f	atigue strength.	
	Mode of	Theory			
	examination			_	
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*	1. Metal Fatigue in engineering, Ralph I. Stephens, Ali Fatemi, Robert .R.			
			s, John wiley Newyork, Sec		
		2. Failure of Materials in Mechanical Design, Jack. A. Collins, John		x. A. Collins, John	
		Wiley, Newyork 1992.			
		3. Machine Design , Rob			
	Other	C	, S.Suresh, Cambridge unive	ersity press, Cambridge,	
	References	U.K.			
			tal Fatigue Analysis, Julie	A.Benantine Prentice	
		Hall,1990			
		3. Fatigue and Fracture, ASM Hand Book, Vol 19,2002			

School: SET		Batch: 2018-2020	
	ogram:	Current Academic Year: 2018	
	Tech canch: ME	Semester: II	
DI	Tallell: NIE	Semester: 11	
1	Course Code	MME120	
2	Course Title	Fracture Mechanics	
3	Credits	4	
4	Contact	4-0-0	
	Hours		
	(L-T-P)		
_	Course Status	Compulsory	
5	Course Objective	• Introduce students to the concepts of materials fracture and failure	
	Objective	analysis; and	
		• Equip them with knowledge on how to design against catastrophic failures	
	~	and skills required in carrying out failure analysis	
6	Course	CO1: Apply the concepts of fracture mechanics to predict brittle	
	Outcomes	fracture.	
		CO2: Identify and describe the basic fracture and fatigue mechanisms	
		CO3: Use the concepts of Linear Elastic Fracture Mechanics on brittle	
		materials.	
		CO4: Students shall be able to identify the plane stress and plane strain	
		conditions based on the shape and size of plastic zones.	
		CO5: Understand the relation among crack tip opening displacement,	
		SIF and ERR and application of such parameters for ductile and brittle	
		materials	
		CO6: Familiarize the experimental techniques to determine the critical	
_		values of parameters at crack tip	
7	Course Description	This course is an elective, designed for students interested in building	
		knowledge and technical expertise in the principles governing: (1.) design of	
		engineering materials against crack induced fracture in service applications,	
		(2.) diagnosis of cause(s) and mechanisms of failure, and (3.) experimental	
		techniques for characterizing fractures. The course covers the fundamental	
		types of fracture and their characteristic features, fracture modes and theories	
		of fracture mechanics (the efforts of Griffith, Irwin etc will be highlighted).	

*	SHARI	DA
	UNIVERS	

8 Outline sylla	abus			
Unit 1	Introduction			
A	Fracture mechanics principles: Introduction and historical review, Sources of micro and macro cracks. Stress concentration due to elliptical hole, Strength ideal materials, Griffith's energy balance approach			
В	Fracture mechanics approach to design. NDT and Various NDT methods used in fracture mechanics, Numerical problems			
С	The Airy stress function. Complex stress function. Solution to crack problems. Effect of finite size. Special cases, Elliptical cracks, Numerical problems.			
Unit 2	Determination of SIF and Plain Strain Fracture Toughness			
A	Introduction, analysis and numerical methods, experimental methods, estimation of stress intensity factors			
В	Plasicity effects, Irwin plastic zone correction. Dugdale approach. The shape of the plastic zone for plane stress and plane strain cases, Plastic constraint factor. The Thickness effect, numerical problems			
С	Plane strain fracture toughness test, The Standard test. Size requirements. Non-linearity. Applicability.			
Unit 3	Elastic –Plastic Fracture Mechanics			
A	The energy release rate, Criteria for crack growth. The crack resistance (R curve). Compliance, J integral. Tearing modulus. Stability			
В	Fracture beyond general yield. The Crack-tip opening displacement. The Use of CTOD criteria.			
С	Experimental determination of CTOD. Parameters affecting the critical CTOD. Use of J integral. Limitation of J integral.			
Unit 4	Dynamics and Crack Arrest			
A	Crack speed and kinetic energy. Dynamic stress intensity and elastic energy release rate.			
В	Crack branching. Principles of crack arrest. Crack arrest in practice			
С	Dynamic fracture toughness			
Unit 5	Fatigue Crack propagation and Applications of Fracture Mechanics			
A	Crack growth and the stress intensity factor. Factors affecting crack propagation			
В	Variable amplitude service loading, Means to provide fail-safety, Required information for fracture mechanics approach			
С	Mixed mode (combined) loading and design criteria			
Mode of examination				
Weightage	CA MTE ETE			
Distribution	30% 20% 50%			
Text book/s	Elementary Engineering Fracture Mechanics - David Brock, Noordhoff. Elements Of Fracture Mechanics - Prashant Kumar.			
Other References	Fracture Mechanics-Fundamental and Application - Anderson, T.L CRC press 1998.			

School: SET		Batch: 2018-2020	
Program: M.Tech		Current Academic Year: 2018	
Branch:		Regular	
Me	chanical		
En	gineering		
1	Course Code	MME 124	
2	Course Title	Design for Manufacture and Assembly	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
	Course Status	Elective	
5	Course	DFM involves designing for the ease of manufacture of a pro-	oduct's
	Objective	constituent parts. It is concerned with selecting the most cost	e-effective
	-	materials and processes to be used in production, and minim	ising the
		complexity of the manufacturing operations. DFA involves of	lesign for a
		product's ease of assembly. It is concerned with reducing the	product
		assembly cost and minimising the number of assembly opera	itions.
6	Course	CO1: Apply the principles of limits and tolerances in design	and
	Outcomes	assembly of mechanical parts.	
		CO2: Apply design principles while processing the products	through
		casting processes.	
		CO3: Demonstrate the fundamental design principles applied in the	
	metal extrusion processes.		
CO4: Apply design principles while processing the products through		through	
machining processes		machining processes	
		CO5: Demonstrate the fundamental assembly principles appli	lied in
		mechanical assembled systems.	iicu iii
		CO6: Apply the knowledge of design and assembly principle	e with case
		studies.	25 With case
7	Course	DFM involves designing for the ease of manufacture of a pro-	oduct's
	Description	constituent parts. It is concerned with selecting the most cost	
	r	materials and processes to be used in production, and minim	
		complexity of the manufacturing operations. DFA involves of	
		product's ease of assembly. It is concerned with reducing the	
		assembly cost and minimising the number of assembly opera	•
8	Outline syllabus		CO
			Mapping
	Unit 1	Introduction	11 0
	A	Geometric tolerances and Feature tolerances Dimensioning	CO1

	W S	INIVERSII eyond Boundarie	
В	B Assembly limits- Datum features- Tolerance stacks.		
С	Selection of Materials and Manufacturing process, Design requirements	CO1	
Unit 2	Design for Casting		
A	Design of castings based on parting line considerations, minimizing core requirements	CO2	
В	Metal injection moulded parts: Processes and suitable materials	CO2	
С	Design recommendations for metal injection-molded parts.	CO2, CO6	
Unit 3	Design for Metal Extrusion		
A	Design recommendation for metal extrusion and stamping	CO3	
В	Design recommendation for fine blanked parts and Rolled formed section	CO3	
С	Design for Forging: Forging processes, Suitable materials and Design recommendations	CO3, CO6	
Unit 4	Design for Machining		
A	Economics of machining Features to facilitate machining-surface finish.	CO4	
В	Review of relationship between attainable tolerance grades and different machining processes.	CO4	
С	Design for Turning, drilling and milling.	CO4, CO6	
Unit 5	Design for Assembly	001,000	
A	Design for Assembly principles and process	CO5	
В	Design for Welding, Brazing and Soldering	CO5	
С	Design for Joining of Plastics	CO5, CO6	
Mode of examination	Theory		
Weightage	CA MTE ETE		
Distribution	30% 20% 50%		
Text book/s*	1. Boothroyd, G., Peter Dewhurst, Winston A. Knight,		
	Product Design for Manufacture and Assembly, Third		
	Edition, CRC Press, Taylor &Francis 2010.		
Other	Bralla James G., Hand Book of Product Design for		
References	Manufacturing, McGraw Hill. 1986.		
	2. G. Boothroyd, P. Dewhurst and W. Knight, Product		
	Design for Manufacture and Assembly, Mercel Dekker		

Inc. New York, 2002.

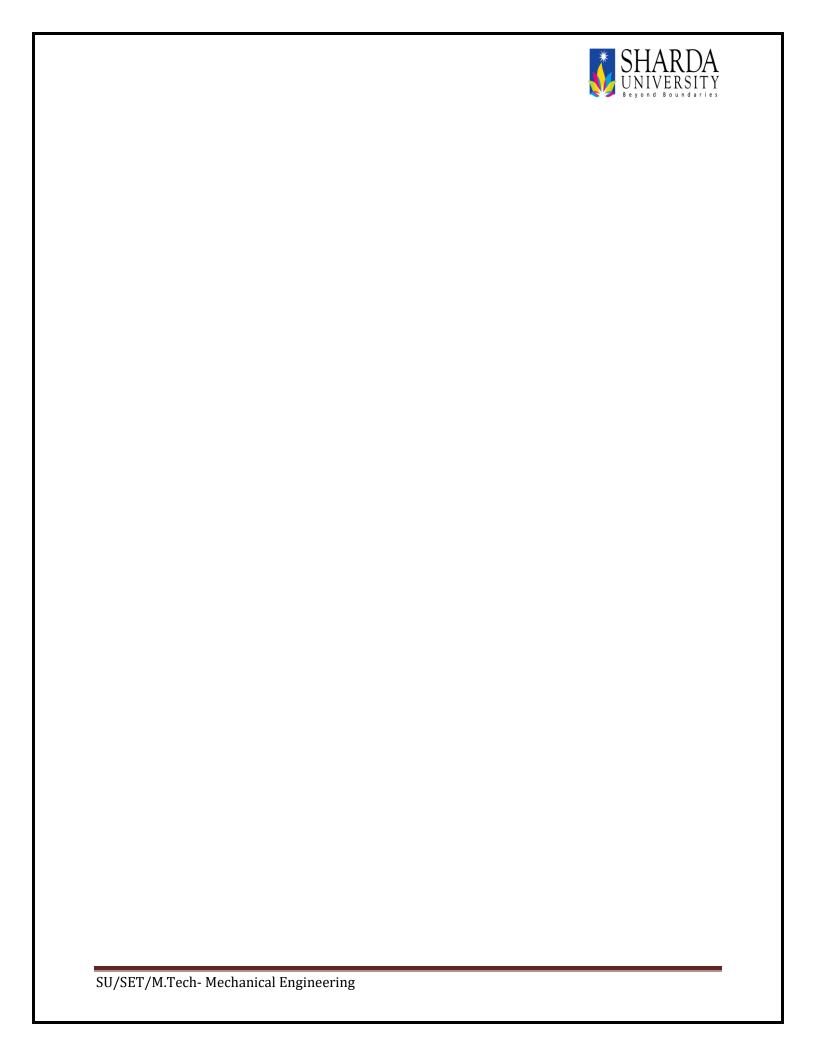
School: SET		Batch: 2018-2020
Pr	ogram:	Current Academic Year: 2018
M	.Tech	
Br	anch: ME	Semester: 1 st
1	Course Code	MME010
2	Course Title	Advance Power Plant Engineering
3	Credits	3
4	Contact Hours	3-0-0
	(L-T-P)	
	Course Status	
5	Course	To provide students an understanding of various energy resources, their
	Objective	economic implications, present Indian scenario, working of various
		conventional power plants and their analysis and nonconventional power
_	~	generation.
6	Course	On successful completion of this module students will be able to:
	Outcomes	CO1. Examine the Rankine Cycle and its various modifications.
		CO2. Model the hydroelectric power plant
		CO3. Analyse Gas Turbine plant
		CO4. Design Nuclear Power Plant
		CO5. Create the thermal energy storage systems
		CO6. Predict the suitability of a power generation system for different
		locations.
7	Course	This course focuses on the different methods of power generation, their
,	Description	merits, demerits and limitations. It also focuses on working and analysis of
		various renewable energy generation systems and future trends in power
		generation science.
	0 11 11 1	
8	Outline syllabus	
	Unit 1	Introduction and Steam Power Plant
	A	Load curves, Terms and definitions, Performance and operating
	D	characteristics of power plants, tariff methods of electrical energy
	В	Rankine cycle, rankine cycle with reheat and regeneration, Cogeneration of
	C	power and process heat,
	C	Binary vapour cycle, coupled cycle, Combined vapour cycle
	Unit 2	Hydroelectric Power Plant
	A	Introduction, Hydrological cycle, Hydrograph. Selection of site for
	D	hydroelectric power plant.
	В	Flow duration curve, storage capacity, optimization of hydro thermal mix,
	C	Layout of a hydroelectric power plant
	C	Elements of hydroelectric power plant, classification of hydroelectric power
	Unit 2	plant.
	Unit 3	Gas turbine power plant
	A	Simple gas turbine, assumptions of ideal cycle analysis, site selection, open

*	SHAR	DA
	UNIVER	

		cycle and close cycle arra	angements, cycle efficiency	Beyond Boundaries
	В	Basic requirements of the	working medium, propertie	es of various working
		medium, Brayton cycle, g	gas turbine with heat exchan	ger, intercooler
	С	Gas turbine with reheat a	nd regeneration Gas Turbine	fuels, gas turbine
		materials, Gas turbine-Ste	eam turbine plant	
	Unit 4	Nuclear Power Plant		
	A	Nuclear fuels, Nuclear en	nergy, Main components of	nuclear power plant
		layout, site selection		
	В	Nuclear reactors-types		
	C	Radiation shielding, Radi	o-active waste disposal, Saf	ety aspects.
	Unit 5		e and Solar Thermal Powe	
	A		on and Characteristics of Stor	rage Systems, Chemical
		Energy Storage, Sensible		
	В		ange Storage, Cool Thermal	.
		principle of solar thermal power generation, Solar Tower Power Station,		
		Parabolic trough Power Plants		
	С		lar Updraft Tower Power Pl	ants, Solar Pond Power
		Plants		
	Mode of	Theory		
	examination	~ .	[Т
	Weightage	CA	MTE	ETE
	Distribution	30%	20%	50%
Text book(s)* 1. Nag, P.K., Power Plant Engineering, Tata Mcgraw Hill Edu		graw Hill Education		
		Private Limited,2010		
Other References 1. <u>Elanchezhian</u> C., <u>Saravanakumar</u> L., <u>Vijaya Ramnath</u> Plant Engineering, I.K. International Publishing House Limited, 2007				
		ng, I.K. International Publish	ang House Pvt.,	
		· · · · · · · · · · · · · · · · · · ·	wer Plant Engineering, S. K	. Kataria & Sons, 2009
Download Intergraph software from http://intergraph.com				

School: SET		Batch: 2018-2020
Program: M.Tech		Current Academic Year: 2018
Branch: ME		Semester: I
1	Course Code	MME102
2	Course Title	Heat and Mass Transfer
3	Credits	4
4	Contact Hours	3-1-0
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	1. Students will understand the basic concepts of conduction, convection
	Ů	and radiation heat transfer.
		2. Students will understand how to formulate and be able to solve one and
		two dimensional conduction heat transfer problems. Solution
		techniques will include both closed form and numerical methods.
		Convection effects will be included as boundary conditions and
		applications of Numerical Methods
		3. Students will understand the fundamentals of the relationship between
		fluid flow, convection heat transfer and mass transfer.
		4. Students will apply empirical correlations for both forced and free
		convection to determine values for the convection heat transfer
		coefficient. They will then calculate heat transfer rates using the
		coefficients.
		5. Students will understand the basic concepts of radiation heat transfer to
		include both black body radiation and gray body radiation.
6	Course Outcomes	After the successful completion of course students will be able to:
		1. Formulate heat conduction equation for different modes of heat
		transfer
		2. Solve 2D and three-dimensional heat conduction problems
		3. Elaborate finite difference and finite volume methods.
		4. Analyze free and forced convection problems.
		5. Apply the concepts of radiation heat transfer for enclosure
		analysis.
7	C	6. Create mathematical model for mass transfer.
7	Course	A student achieving a passing grade in this course will be able to do basic
	Description	calculations involving heat and mass transfer as is typical for a mechanical engineer. This includes conduction, convection and radiation
8	heat transfer as well as heat exchanger design.	
0	Outline syllabus Unit 1	Basic heat transfer:
		eview of basic heat transfer: Introduction to Conduction, convection and
		diation heat transfer.
		-D Steady State Heat Conduction: Fins with variable cross-section,
		eneralized equation for fins, Fins of parabolic and triangular profiles,
		ransient in lumped systems.
	1	ransiem in fumpeu systems.

С	Multi-Dimensional Conduction: Analytical and graphical methods for		
	solving multidimensional problems		
Unit 2	Numerical Heat Transfer		
A	Finite Difference Method: Discretization, Backward, forward and Central		
	differencing schemes, application of FDM to 1-D and 2-D heat conduction,		
	Matrix inversion, Point by point iteration, line by line iterative method.		
В	FDM applications for convective diffusion problems, Upwind differencing		
	scheme, artificial diffusion, application of FDM to transient heat conduction,		
	Explicit, implicit and semi-implicit method, concepts of consistency,		
	stability and convergence analysis.		
C	Finite Volume Method: Basic concept, flux balance, FVM for solving heat		
	conduction problems, FVM formulation for convective diffusion,		
	Compressible flow modeling. Introduction to commercial software such as		
	ANSYS-Fluent.		
Unit 3	Convective Heat Transfer:		
A	Momentum and Energy Integral Equation, Thermal and hydrodynamic		
	boundary layer thickness, Heat transfer in a circular pipe in laminar flow		
	when constant heat flux and constant wall temperature to the wall of the pipe		
В	convection correlations for turbulent flow in tubes, Flow over cylinders and		
	spheres, Flow across tube bundles/banks		
С	,Natural convection, Heat transfer from a vertical plate using the Integral		
	method, Free convection in enclosed spaces, Mixed convection. Introduction		
	to Boiling and Condensation Heat Transfer		
Unit 4	Heat Exchangers and Thermal Radiation		
A	Review of basic concepts, Tubular and plate type heat exchanger, Overall		
	heat transfer coefficient, LMTD, correction factor,		
В	Effectiveness, Introduction to design of heat exchangers.		
С	Review of basics of surface radiation, non gray body, radiation shape factor,		
	Hottel's Crossed String Method for finding shape factor, Radiosity and		
	irradiation formulation, radiation shield and Gas radiation		
Unit 5	Mass Transfer		
A	Introduction, Fick's law, General equation of mass diffusion steady state		
В	diffusion through a plain membrane, diffusion of water vapour through		
	air, Mass transfer coefficient, convective mass transfer		
С	boundary layer governing equations, momentum heat & mass transfer		
	analogies, mass transfer correlations		
Mode of	Theory		
examinatio Weightage	n CA MTE ETE		
Weightage Distributio			
Text book/			
10At 600K	New Age Publishers		
<u> </u>			



	2. Heat and Mass Transfer by Y A Cengel and A J Ghajar, Mc Graw Hill.
Other	1. Heat and Mass Transfer by F P Incropera, John Wiley & Sons Pte Ltd
References	2. Analysis of Heat and mass Transfer by E R G Eckert and R M Drake, Mc
	Graw Hill Book Company.

School: SET		Batch: 2018-2020		
Prog	gram: M.Tech	Current Academic Year: 2018		
_	anch: ME	Semester: I		
1	Course Code	MME 108		
2	Course Title	Advanced mechanics of fluids		
3	Credits	3		
	Contact Hours	3-0-0		
	(L-T-P)			
	Course Status	Compulsory		
	Course	1. To provide students an understanding of the basic tools for the		
	Objective	analysis and solution of different types of flows, ranging from the		
		ideal to the viscous flow		
		2. To familiarize students with mathematical concepts of gradient, divergence, tensor and vorticity,		
		3. To teach students the basic properties normally attributed to fluids		
		such as density, compressibility and dynamic viscosity		
		4. To familiarize students the governing equations of fluid motion,		
		viscous flow, transient flow and potential flow		
6	Course	On successful completion of this module students will be able to		
	Outcomes	.1. Develop advance knowledge of the mechanics of fluids.		
	outcomes	2. Model the fluids motion		
		3. Formulate the potential flow mathematical equation for viscous		
		flow		
		4. Predict the behaviour of potential flows		
		5. Analyze the transient flow.		
		6. Apply the knowledge of fluid mechanics in complex fluid flow		
		system		
7	Course	This course is a survey of principal concepts and methods of fluid		
	Description	dynamics. Topics include mass conservation, momentum, and energy		
	-	equations for continua; Navier-Stokes equation for viscous flows;		
		Similarity and dimensional analysis; lubrication theory; boundary layers		
		and separation; circulation and vorticity theorems; potential flow;		
		introduction		
		to turbulence; lift and drag; surface tension and surface tension driven		
		flows.		
	Outline syllabus			
-	Unit 1	Basic Concepts and fundamental		
_	A	Definition and properties of fluids, Fluid as continuum		
	В	Langrangian and Eulerian description, Velocity and stress field		
	С	Fluid statics, Fluid Kinematics		
	Unit 2	Governing Equations of Fluid Motion		

*	SHARDA
	UNIVERSITY

	Beyond Boundarie			
A	Reynolds transport theorem, Integral and differential forms of			
	governing equations			
В	mass, momentum and energy conservation equations			
С	Navier-Stokes equations, Euler's equation, Bernoulli's Equation			
Unit 3	Viscous flow			
A	Exact solution; plane Poiseuille and Coutte flows; Hagan- Poiseuille			
	flow through pipes; flows with very small Reynold's numbers,			
	Creeping flows. Stokes flow around a			
D	sphere			
В	Flows with very large Reynold's numbers; elements of two			
	dimensional boundary layer theory; displacement thickness and			
	momentum thickness and energy thickness; skin friction			
C	Blausius solution for boundary layer on a flat plate with & without			
	pressure gradient; Von-Karman integral method. Drag on bodies; form			
	drag and skin friction drag; profile drag and its			
	measurement			
Unit 4	Potential Flows			
A	Revision of fluid kinematics, Stream and Velocity potential function, Circulation, Irrotational vortex, Basic plane potential			
	flows			
В	Uniform stream; Source and Sink; Vortex flow, Doublet,			
C	Superposition of basic plane potential flows,			
C	Flow past a circular cylinder, Magnus effect; Kutta-Joukowski lift theorem; Concept of lift and drag			
Unit 5	Transition flows			
A	Transition from laminar to turbulent flows, Reynold's			
	stresses, turbulent boundary layer over a flat plate			
В	transition for flat plate flow, Intensity of turbulence. Boundary layer			
	equations, Boundary layer thickness, Boundary layer on a			
	flat plate, similarity solutions			
C	Integral form of boundary layer equations, Approximate			
Mode of	Methods, Flow separation, Entry flow into a duct Theory			
examination	Theory			
Weightage	CA MTE ETE			
Distribution	30% 20% 50%			
Text book/s*	1. Introduction to fluid mechanics and Fluid Machines, S.K Som and			
	G.Biswas.McGraw Hill			
	2. Fluid Mechanics by Y A Cengel and M Cimbala, Mc Graw Hill			
	Education			
Other	1. Boundary Layer Theory by Schlichting, Mcgraw Hill			
References	2. Fluid Mechanics and its applications, Gupta and Gupta, Willey			
	Eastern			

School: SET		Batch: 2018-2020		
Program:		Current Academic Year: 2018		
M	.Tech			
Br	anch: ME	Semester: II		
1	Course Code	MME125		
2	Course Title	Gas Turbine and Compressor		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Program Elective		
5	Course Objective	 Familiarity with common types of gas turbines and compressors To develop knowledge of thermodynamic cycles of turbine and compressors To develop Working knowledge of the basic operations, design requirements and, performance analysis of gas turbines and compressors 		
6	Course Outcomes	On successful completion of this module students will be able to: 1. Explain the working principle of gas turbine and classify various gas turbine cycles. 2. Analyse gas turbine cycle with heat exchanger, intercooler, reheat and regeneration. 3. Design the gas turbine. 4. Recommed the centrifugal compressor 5. Predict the performance of axial flow compressor 6. Improve the performance parameters of gas turbine and compressors		
7	Course Description	This subject deals with the working and thermodynamics of gas turbine and compressors. This course covers ideal and actual cycle analysis of gas turbine, analysis of centrifugal and axial flow compressors.		
8	Outline syllabus	, y		
	Unit 1	Introduction		
	A	Simple gas turbine, assumptions of ideal cycle analysis, open cycle and close cycle arrangements, cycle efficiency		
	В	Basic requirements of the working medium, properties of various working medium,		
	С	its applications, Comparison of gas turbine with reciprocating engine		
	Unit 2	Gas Turbine: Ideal cycle and Their Analysis		
	A	Heat exchange cycle, reheat cycle, reheat and heat exchange cycle		
	В	Intercooled cycle, intercooled cycle with heat exchanger, intercooled with reheat cycle		
	С	Intercooled cycle with reheat and heat exchanger, regenerative cycle		
	Unit 3	Gas Turbine: Practical Cycle and Their Analysis		
	A	Assumptions, compressor and turbine efficiency, pressure and flow loses		

*	SHAR	JDA
	UNIVER	SITY

	В	Heat Exchanger Effectiveness, polytropic efficiency		
	C	Effect of variable specifi	ic heat, mechanical losses, l	oss due to incomplete
		combustion, performanc	e of actual cycle	
	Unit 4	Centrifugal Compressors		
	A	Essential parts of centrifugal compressor, principle of operation, ideal		
		energy transfer,		
	В	_	ty profile, analysis of flow t	hrough compressor,
		Losses in centrifugal con	1	
	С		ance parameters, compresso	or characteristics,
		Surging and choking		
	Unit 5	Axial Flow Compressor		
	A	Geometry and working principle, stage velocity triangle, work done factor		
	В	h-s diagram, compressor stage efficiency, performance coefficient, degree		
		of reaction		
	C	Flow through blade rows, flow losses, stage losses, performance		
			nparison between axial and centrifugal compressor	
	Mode of	Theory		
	examination			T
	Weightage	CA	MTE	ETE
	Distribution	30%	20%	50%
	Text book/s*	1. Ganesan, V., Gas Turbines, Tata McGraw-Hill		fill
	Other 1. Cohen, H., Rogers, G.E.C., and Saravanamuttoo, H.I.H., Gas		ttoo, H.I.H., Gas	
References Turbine Theory, Longman Yahya, S.H. Turbines, Compressors and Fans, Tata McG				
		McGraw-Hill		

Sc	hool: SET	Batch: 2018-2020		
Program: M.Tech		Current Academic Year: 2018		
Br	anch: Fluid &	Semester: 02		
Th	ermal			
En	gineering			
1	Course Code	MME126		
2	Course Title	Advance Thermodynamics		
3	Credits	4		
4	Contact Hours (L-T-P)	3-0-1		
	Course Status			
5	Course	This course introduces advance concepts in thermodynamics. It is an		
	Objective	extension to the introductory theory of energy analysis with strong		
		emphasis on the concepts of enthalpy, exergy, reactive system and vapour		
		power cycle.		
6	Course Outcomes	On completion of this course student should be able to: 1. Develop the concepts of basic thermodynamics.		
		2. Apply the basic knowledge to model the thermodynamic relations		
		3. Analyse the efficiency, entropy and exergy of thermodynamic systems.		
		4. Simplify the equations of reactive system and analyze second law of		
		thermodynamics		
		5. Design thermodynamic system for industry		
		6. Create the vapour and combined power system		
7	Course Description	Advance Thermodynamics provides knowledge about thermodynamics laws, relations, compressibility, exergy transfer, first & second law analysis of reactive systems and statistical thermodynamics. It also provides knowledge about vapour power cycles and cogeneration.		
8	Outline syllabus			
	Unit 1	Introduction		
	A	Introduction of thermodynamics, Review of basic definitions, Thermodynamic properties and their units,		
	В	Laws of thermodynamics, thermodynamic relations: Maxwell relations, Clapeyron equation, Joule-Thompson coefficient and Inversion curve,		
	С	Coefficient of volume expansion, Adiabatic & Isothermal compressibility.		
	Unit 2	Entropy &Exergy		
	A	Entropy as a property, Clausius inequality, principle of increase of entropy, change of entropy for an ideal gas and pure substance		
	В	work potential of energy, reversible work and irreversibility, second law		
	<u> </u>	work potential of chergy, reversione work and interestionity, second law		

		efficiency		Beyond Boundaries	
	С	exergy transfer by work	, heat and mass		
	Unit 3	Reactive System			
	A	Combustion, enthalpy of formation and enthalpy of combustion, enthalpy			
		and internal energy of s	ystem,	2.0	
	В	first Law analysis of rea	ctingsystems, Adiabatic Fla	ame temperature,	
			rd law of thermodynamics,		
	С	_	reacting systems, second la	w efficiency of	
		reactive system.			
	Unit 4	Gas Mixtures& Statist	· · · · · · · · · · · · · · · · · · ·		
	A		ture: mass and mole, p-v-T		
			mixtures: ideal & real gases, properties of gas mixtures: ideal & real		
	7	gases.		0 11	
	В		antum system applied to sy	stem of particles,	
	C	¥ .	icrostate and macro state.		
	Unit 5	Vapour and combine power cycle			
	A	Carnot vapour cycle, Rankine cycle: the ideal cycle for vapour power			
	D	cycles			
	В	deviation of actual vapour power cycle from idealized one, ideal reheat			
	С	rankine cycle, ideal regenerative rankine cycle, cogeneration, combine cycle: mercury water binary vapour cycle.			
		cogeneration, combine cycle: mercury water binary vapour cycle.			
	Mode of	Theory			
	examination	•			
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book(s)*	1. Thermodynamic	s an engineering approach b	y Yunus A. Cengel&	
		Michael A. Boels, Tata MacGraw Hill.			
	Other	1. Basic & applied thermodynamics by P.K Nag, Tata MacGraw			
	References	Hill.			
		2. Fundaments of engineering thermodynamics by Michael J. Moran			
			napiro, John Wily & sons.	,	
C Howard W. Shapiro, John Willy & Solis.					

School: SET		Batch: 2018-2020		
Program:		Current Academic Year: 2018		
M.Tech				
Br	anch: ME	Semester: II		
1	Course Code	MME 115		
2	Course Title	Refrigeration, Air Conditioning & Cryogenic System		
3	Credits	4		
4	Contact Hours	4-0-0		
	(L-T-P)			
	Course Status	Compulsory		
5	Course	1. To teach students the principles of refrigeration and air conditioning.		
	Objective	2. To teach students how to calculate the cooling load for different		
	J	applications.		
		3. To develop knowledge of different Refrigerants		
		4. To teach students different refrigeration & air conditioning equipment		
6	Course	On successful completion of this module students will be able to:		
	Outcomes	Classify different refrigeration system		
	Outcomes	2. Analyze the vapour absorption Refrigeration system		
		3. Appraise the low temperature Refrigeration System.		
		4. Estimate the Human comfort requirements in air conditioning		
		system.		
		5. Modify the refrigeration & air conditioning equipment's		
		6. Evaluate the COP of refrigeration and air conditioning systems		
7	Course	This course introduces the techniques and aspects of refrigeration and air		
	Description	conditioning as well the new alternative HFC s / HCs refrigerants, the		
		cooling and heating load calculations for different applications and also the		
		designing of refrigeration and air conditioning system for a particular		
		application		
8	Outline syllabus			
	Unit 1	Vapour Compression		
	A	Evolving Vapour Compression Cycle from Basic Carnot Cycle Analysis,		
	В	Multistage Vapour Compression Systems,		
	C	Classification of Refrigerants, Refrigerant Properties, Eco Friendly		
		Refrigerants		
	Unit 2	Absorption System and Steam Jet Refrigeration		
	A	Working Principal of vapour absorption refrigeration system, Comparison		
		between absorption & compression systems		
	B	Aqua Ammonia & LiBr Systems,		
	С	Steam Jet Refrigeration,		
	Unit 3	Low temperature Refrigeration (Cryogenics)		
	A	Introduction, Limitations of vapor compression refrigeration system for		

		production of low tempe	rature	Beyond Boundaries
	В	Cascade refrigeration sys	stem, solid carbon dioxide o	r dry ice
	С	liquefaction of gases, Linde system for liquefaction of air, Clande system for liquefaction of air, Liquefaction of hydrogen		
	I Init 1	1	raction of flydrogen	
Unit 4 Air Conditioning A Psychometric processes using chart. Solar heat gain, study of			aturder of requience	
	A			-
	В	sources of the internal and external heat gains, heat losses, etc.		
	Б	Internal heat gain, Sensible heat factor (SHF), By pass factor, Grand Sensible heat factor (GSHF), ESHF, Apparatus dew point (ADP), Thermal analysis of human body		
	С	Inside and outside design conditions. Requirement of ventilation air, various sources of infiltration air.		
	Unit 5	System Components an	d Accessories	
	A	Types of Evaporators, Compressors, Condensers, Expansion Devices.		
	В	Fundamentals of air flow in ducts, Pressure drop calculations, Design ducts by velocity reduction method, Equal friction method and static regain method, Duct materials and properties		
	С	Types of fans and performance curve.		
	Mode of examination	Theory		
	Weightage	CA	MTE	ETE
	Distribution	30%	20%	50%
	Text book/s*	1. C.P. Arora, Refrigerat	ion and Air Conditioning, T	MH
	Other	 Prasad Manohar, Refrigeration and Air Conditioning, New Age Publication. Stoecker, W.F.; Jones, J.W., Refrigeration and Air conditioning, McGraw-Hill Publishing Company, 1982. 		
	References			
3. Dossat, Roy J., Principles of Refrigeration, Prentice Hall F 2001.		rentice Hall Publishing,		

School: SET		Batch: 2018-2020	
Program: M.Tech		Current Academic Year: 2018	
Branch:	ME	Semester: II	
1	Course Code	MME125	
2	Course Title	Solar Energy Technology	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P) Course Status	Elective	
5	Course	This course enables the students	
	Objective	1. To Critically examine the technology of Solar energy systems that	
		will be acceptable in a world faced with global warming, local	
		pollution, and declining supplies of oil.	
		2.To Analyse both the devices and the overall systems	
		3. To facilitate the students a clear conceptual	
		understanding of technical and commercial aspects of	
		Solar Power Development and Management.	
		4.To enable the students to develop managerial skills to assess	
		feasibility of alternative approaches and derive strategies regarding	
		Solar Power Development and Management	
6	Course	On successful completion of this course the students will be able to	
	Outcomes	1.Appraise the global scenario of solar energy	
		2.Design the layout of a solar thermal power plant and predict its	
		performance	
		3. Evaluate the solar thermal conversion systems for high temperature	
		applications.	
		4. Create the Photovoltaic Energy Conversion Systems for real life	
		applications.	
		5. Select the suitable power plant on financial consideration.	

	1	Beyond Bour
		6. Comply the national and international policy for a solar power
		system.
8	Outling	a cyllohuc
8	Outilile	syllabus
	Unit 1	Introduction
	A	Global trend in solar energy; Relevance of
		solar thermal power generation
	В	Solar energy – source of energy, , quantum of
		energy
	С	Irradiance; Type of radiation –
	III ia O	beam, diffuse, Total;
	Unit 2	Solar thermal power plant
	A	Solar thermal system – solar thermal power
		plant (parabolic and solar tower);
	В	Solar thermal power plant layout
		and working principle;
		Components of solar thermal
	C	power plant Design and performance share staristics of
	С	Design and performance, characteristics of different solar concentrator types suitable for
		thermal power generation.
	Unit 3	Solar thermal conversion system for high
	Cint 5	temperature applications
	A	Types of solar thermal conversion system used
		in high temperature application, Tracking of
		solar concentrators
	В	performance characterization of solar
		concentrators both line focus and point focus,
		Comparative analysis of the both mode focus
		system
	C	Optical design and concentration
		characteristics of line and point focus based
	Unit 4	Solar Technology
		<u>. </u>
	A	Solar technology – solar PV, solar thermal
	В	Solar resource availability in India – opportunities and challenges
	С	Solar PV power systems – roof top
		system, Global solar PV power
		trend
	Unit 5	Solar power economics
	1	

A	Solar thermal p Global solar the Solar PV power		
В	Comparison bet and solar therm		
С	Issues of intermintegration; sola India (RPO, RE		
Mode of examination	Theory		
Weightage Distribution	CA	MTE	ETE
Text book/s*	Plants: Fun ISBN: 3540 2. Jordan P.G	20% , Sizmann R.L., Vant-Hull L.L. damentals, Technology, Systems, 0188975 (2013). Solar Energy Markets: ar Industry. Academic Press. ISBN	Economics. Springer. An Analysis of the
Other References	Photovoltai 2. Sukhatme S	, Rahman F., Xu W. (2016). Advace Power Plants. Springer. ISBN: S.P. (2008). Solar Energy: Principand Storage. Tata McGraw-Hill E8.	3662505193 les of Thermal

School: SET		Batch : 2018-2020	
Program: M.Tech		Current Academic Year: 2018	
Branch: ME		Semester: I	
1	Course Code	MME104	
2	Course Title	Advanced Material Engineering	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Compulsory	
5	Course Objective	To provide an understanding of the importance of materials in engineering	
		2. To develop knowledge of traditional and advanced materials used	
		in engineering industries.	
		3. To provide students an understanding of latest developments and	
		future directions in materials engineering	
		4. To develop knowledge of manufacturing methods of various	
		engineering materials	
		5. To develop an understanding of properties and applications of	
		various engineering materials.	
		6. Learn effectively for the purpose of continuing professional	
		development and in a wider context throughout their career	
6	Course Outcomes	On successful completion of this course the students will be able to Identify the various crystal structure and classify the advanced materials Discuss the characteristics and uses of polymers Analyze the unique properties and applications of ceramic materials Apply the principles of various mechanical testing on advanced engineering materials. Compile the list of composite materials for engineering applications based on the knowledge of its behaviour. Identify appropriate advanced materials for specific engineering applications	
7	Course	This course focuses on the understanding of different engineering	
	Description	materials, their significance in engineering, methods of manufacturing, properties and applications.	
8	Outline syllabus	properties and applications.	
	Unit 1	Introduction	
	A	Retrospective of materials science in Engineering; Classification and	

	importance of materi	als Traditional engin	peering materials	
В	Refresher of Miller in	Ţ	-	
C			materials, Biomaterials, Nano-	
	materials, Future ma		materials, Diomaterials, Ivano	
Unit 2	Polymers			
A	Definitions and types of polymers, Synthesis, processing and fabrication of polymers,			
В	Behaviour of polymers: Crystallization, melting, glass transition, Visco-			
	elastic.			
C	mechanisms of defor electrical and function		ening; Applications in structural,	
Unit 3	Ceramics			
A		s of ceramics, Traditi	onal and Advanced Ceramics,	
В	Synthesis, Processing			
С			, Applications in structural,	
	electrical and function		, 11	
Unit 4	Composites			
A	Elastic behaviour of	composites, anisotro	pic elasticity; orthotropic	
	elasticity			
В			ur of composites; Types of	
	matrices, reinforcement and interfaces;			
C	Types of composites: PMCs, MMCs, CMCs, IMCs, SMCs and Nano-			
	composites; Applications in natural, biological, structural and functional			
	systems.			
Unit 5	Applications of Advanced materials			
A	Application of polymer material in structural, electrical and functional domains			
В	Application of ceram domains	nics material in struct	ural, electrical and functional	
С		osite in natural, biolo	ogical, structural and functional	
	systems.	,	,	
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1. Callister'S M	aterials Science And	Engineering: Indian Adaptation	
	(W/Cd), by R	R.Balasubramaniam,	Wiley India	
	2. Material Science and Engineering: W. F Smith, Hashmi and			
	Ravi Prakasł	n, McGraw Hill.		
0/1	1 1 1 2 2 2	1 D1 . T . T	D. A.I. II CDC D	
Other	1. Introduction to Polymers, Robert J. Young, Peter A. Lovell, CRC Press.			
References	1. Introduction to Ceramics, W. David Kingery, H. K. Bowen, Donald R.			
	Uhlmann, John Wiley & Sons. 3. Composite Materials: Science and Engineering, Krishan Kumar			
	Chawla, Springer.			
	Chawia, Springer.			

4. Biomaterials Science: An Introduction to Materials in Medicine, Buddy
D. Ratner, Academic Press

School: SET		Batch: 2018-2020
Program: M.Tech		Current Academic Year: 2018
Branch:		Semester: I
Mechanical		
Engineering		
1	Course Code	MPI787
2	Course Title	Design and Modeling Tool Lab
3	Contact House	0-0-2
4	Contact Hours (L-T-P)	0-0-2
	Course Status	Compulsory
5	Course	This course is to impart fundamental knowledge to students on using
	Objective	Computer Aided Design and analysis software. Also to aware the students
		on how these tools are used in Industries in solving the real time
		problems.
6	Course	CO1: Construct basic 2D sketch and part model by using draw, modify
	Outcomes	and power tools in Solidworks.
		CO2: Construct assembly and drawing of machine elements using
		Solidworks.
		CO3: Analyse normal stress distribution in various mechanical
		components using Solidworks
		CO4: Analyse thermal stresses of a mechanical component using
		Solidworks
		CO5: Simulate a mechanical system using Solidworks software.
7	Course	The course provides an in-depth understanding and skill of constructing 2-
	Description	D drawings using well-known commercial CAD package, and integrating
		3-D solid modeling techniques into simulation, and analysis animation of
		new designs using commercial CAD software. The students will have
		hands-on experience to create and assemble the components, analyse
		Structure, by using several different software packages.
8	Outline syllabus	
	List of	
	Experiments	
	Experiment 1	Introduction to Solidworks and working with sketch mode

			S Beyond Boundaries	
Experiment 2	Working with creating features (Extrude & Revolve), Working Datum			
	Planes			
Experiment 3	Working with advanced modeling tools (Sweep, Blend, Variable section			
	Sweep, Swept Blend & Helical Sweep)			
Experiment 4	Creating Machine component by part modelling feature in solidworks			
Experiment 5	Creating assembly of er	ngine component in solidwo	orks	
Experiment 6	Creating exploded view	s and drawing of an assem	bly in solidworks	
Experiment 7	Creating assembly of fla	Creating assembly of flanged coupling in solidworks		
Experiment 8	Introduction about the various analysis features in solidworks.			
Experiment 9	Force analysis of a beam by in Solidworks			
Experiment 10	Thermal analysis of Pin-Fin in Solidworks			
Mode of	Practical			
examination				
Weightage	CA	MTE	ETE	
Distribution	60%	0%	40%	
Text book/s*	1. Thermal Analysis with SOLIDWORKS Simulation 2018 and Flow			
	Simulation 2018 by Paul Kurowski			
Software	Solidworks			

School: SET		Batch: 2018-2020
Program: M.Tech		Current Academic Year: 2018
_	anch:	Semester: II
Mechanical		
Engineering		
1	Course Code	MPI786
2	Course Title	Experimental Design and Analysis Lab
3	Credits	2
4	Contact Hours (L-T-P)	0-0-4
	Course Status	Compulsory
5 Course Objective The objective of this course is to impart students a holistic view of the fundamentals of experimental designs, analysis tools and techniques, interpretation, applications using experimental design and analysis		The objective of this course is to impart students a holistic view of the fundamentals of experimental designs, analysis tools and techniques, interpretation, applications using experimental design and analysis software.
6	Course Outcomes	On successful completion of the course, the student will be able to: CO1: Explain the fundamentals and applications of design of experiments. CO2: Utilize basic statistics including ANOVA and regression using Minitab/ DX7/R CO3: Apply the experimental designs such as RCBD, BIBD, Latin Square in practical problems using Minitab/DX7/R CO4: Apply factorial and fractional factorial designs in practical problems using Minitab/DX7/R software depending upon the availability of resources CO5: Construct statistical models, analyse the experimental data and results interpretation using Minitab/ DX7/R CO6: Analyze response of interest from an experimental data by using RSM/Taguchi using Minitab/ DX7/R
7	Course Description This course demonstrates the formal, structured method for conducting single and multifactor experiments, modelling and optimization of producting parameters. This course discusses about the integration of modern statistical software in real-world problems and case studies, and illustrative efficacy of different experimental designs across the industries.	
8	Outline syllabus	
	List of Experiments	
	Experiment 1	Perform a full DOE test matrix, in both randomized and blocked way. Build a model for the given exercise.
	Experiment 2	Exercise on multi-factor factorial design

			Beyond Boundaries	
	1. Two facto	r factorial design		
	2. Three factor factorial design			
Experiment 3	Exercise on general two factor factorial design and blocking in 2 ^k factorial			
_	design			
Experiment 4	Analyze and interpret the Taguchi's orthogonal designs and S/N ratio			
Experiment 5		t parameter design		
Experiment 6	Exercise on response surface design analysis			
_	1. CCD			
	2. BBD			
Mode of	Practical			
examination				
Weightage	CA	MTE	ETE	
Distribution	60%	0%	40%	
Softwares	DesignExpert, M	NITAB, MATLAB		
Text book/s*	1. Montgomery, D.C. (2009). Design and Analysis of Experiments.			
	2. Box, G.E.P., Hunter, J.S. and Hunter, W.G. (2005). Statistics for			
	Experimen	nters.		
	3. Myers, R.I	H., Montgomery, D.C	and Anderson-Cook,	
	C.M. (200	9). Response Surface		

School: SET		Batch: 2018-2020		
Program: M.Tech		Current Academic Year: 2018		
1	Course Number	CCU101		
2	Course Title	Community Connect		
3	Credits	2		
3.01	(L-T-P)	(0-0-2)		
4	Learning Hours			
		Contact Hours	60	
		Project/Field Work	40	
		Assessment	00	
		Guided Study	20	
		Total hours	60	
5	Course	1. To connect the students to the comm		
	Objectives	2. To conduct survey of community peo		
		and identify the issues faced by the com	_	
		3. To do detailed analysis of data collection		
		student will use their learning to propos	se suitable solution for	
		these issues.		
		4. To enhance skills of students on communication, data analysis		
		and report writing skills. 5.To conduct survey on general awareness.		
		3. To conduct survey on general awareness.		
6	Course	1. Understand and acquire knowledge on different issues faced by		
	Outcomes	the community in better way.	in different issues faced by	
		2. Analyze data and identify problems		
		3. Solve the complex problems efficient	tly	
		4. Construct documentation, data analysis and report on any		
		project.		
		5. Estimate the engineering and societal	values of the developed	
		solution for the problem		
		6. Utilize technology-based knowledge	to improvise the existing	
7	(TD)	solution for the problem		
7	Theme	Major Sub-themes for research:		
		1. Energy solutions, saving and manage	ement	
		2. Electronics solution in everyday life		
		3. Civil works like transportation, drainage, water, construction		
		etc. 4. Agriculture and irrigation, crop production		
		5. IoT and smart solutions		
		6. Medical and Healthcare issues		
		7. Environmental issues		
		8. Security and surveillance		
		9. Education and skills		
L	<u> </u>			

r	T	Beyond Boundaries
		10. Waste management
		11. Any other issues
8.1	Guidelines for Faculty	Any one of the sub-themes can be taken as survey topics
	Members	It will be a group assignment.
		There should be not more than 10 students in each group.
		The faculty guide will guide the students to complete the
		survey and help the student in preparing final report.
		The questionnaire should be well design by the school and it
		should carry at least 40 questions (Including demographic
		questions).
		The faculty will guide each group of students to prepare the
		PPT.
		Each group should submit the report to CCC-Coordinator
		signed by the faculty guide before one week of last date of
		instruction mentioned in the Academic Calendar.
		The students have to send the hard copy of the report and
		PPT , and then only they will be allowed for ETE.
8.2	Role of CCC-	The CCC Coordinator will supervise the whole process and
	Coordinator	assign students to faculty members.
8.3	Layout of the	Abstract (250 words)
	Report	Introduction
		Literature review(optional)
		Objective of the research
		Research Methodology
		Finding and discussion

*	SHAR	DA
	UNIVERS	SITY

		Conclusion and recommendation		
		• References		
		Note: Research report should base on primary data.		
8.4	Guideline for	Title Page: The following elements must be included:		
	Report Writing	 Title of the article; Name(s) and initial(s) of author(s), preferably with first names spelled out; Affiliation(s) of author(s); Name of the faculty guide and Co-guide Abstract: Each article is to be preceded by a succinct abstract, of up to 250 words, that highlights the objectives, methods, results, and conclusions of the paper. Text: Manuscripts should be submitted in Word. 		
		 Use a normal, plain font (e.g., 12-point Times Roman) for text. Use italics for emphasis. Use the automatic page numbering function to number the pages. Save your file in docx format (Word 2007 or higher) or 		
		doc format (older Word versions) Reference list:		
		The list of references should only include works that are cited in the text and that have been published or accepted for publication. The soft copy of final report should be submitted along with the hard copy signed by faculty / guide and countersigned by HoD / Dean.		
		The report will be subject to plagiarism check as per the guidelines given in the notification.		
8.5	Format:	The report should be Spiral / softbound		
		The Design of the Cover page to report will be given by the Coordinator- CCC Cover page Acknowledgement Content Project report Appendices		
8.6	Important Dates:	Students will complete their community survey before last instruction date of the running semester and submit the same to concern faculty member. (Each group should complete min 50 questionnaires). Faculty members should guide students for report writing. The students should submit the hard copy and soft copy of the report to CCC-Coordinator signed by the faculty guide. The students should submit the soft copy of the PPT to CCC-Coordinator signed by the faculty guide before 1 week of final		

		presentation. The final presentation and evaluation should be organised by the School before last instruction date.
8.7	ETE	The students will be evaluated by panel of internal faculty
		members on the basis of their presentation.
9	Course Evaluation	
9.01	Continuous Assessment	60%
	Noting responses to the questionnaire	20 Marks
	Data analysis and Report Writing	40 Marks
9.02	ETE (PPT presentation)	40%

School: SET		Batch: 2018-2020	
Program: M.Tech		Current Academic Year: 2018	
School: SET		Batch: 2018-2020	
Program:	Current	MPI 788	
M.Tech	Academic		
	Year: 2018		
School:	Batch:	Automation lab	
SET	2018-2020	1	
Program: Current 1 M.Tech Academic 1			
WI. I ech	Year: 2018		
School:	Batch :	0-0-2	
SET 2018-2020			
Program:	Current	Compulsory	
M.Tech	Academic		
	Year: 2018		
School:	Batch : 2018-2020	To understand the basic concepts of automation and robotics and	
SET		different industrial application of PLC, CNC and Robot. The	
		purpose of this laboratory is to train the students to be familiar	
		with the software and hardware of PLC so that they can gain	
		enough experiences to meet the demand of the automation era.	
Program: Current		CO1- Analyze the surface roughness using specific equipment	
M.Tech	Academic Year: 2018	CO2 - Study and analyze the CNC programming for different kind	
		of machining and operation	
		CO3 - Analyze the performance of Pick and Place robot by Teach	
		Pendant Method	
		CO4 – Demonstrate and Analyze different PLC application	
		CO 5 - Study and analyze the controller of DC motor.	
		CO6- Describe the working principles of various types of	
		transducers and image processing techniques.	
School:	Batch : 2018-2020	The objective of this laboratory enables the students to build a firm	
SET		background in PLC hardware as well as software. Students learn	
		about ladder logic programming, wiring different I/O's (analog and	
		digital) with PLC programming. They acquire the practical skills	
		sufficient to design and realize basic automation process.	

Program: M.Tech	Current Academic Year: 2018				
School:	Batch:				
SET	2018-2020				
Program:	gram: Current				
M.Tech	Academic Measurements of Surface roughness, Using Tally Surf /			Cally Surf /	
School:	Year: 2018	Mechanical Comparator			
SET	Batch:	Develop the CNC program for grooving, drilling and boring a job			
Program:	2018-2020	of given dimension according to the specified dimensions using			
M.Tech		CNC Lathe.			
School:	Current				
SET	Academic				
Program:	Year: 2018	Pick and place opera	tion of Robot in Teach P	endent method	
M.Tech	Batch:	•			
School:	2018-2020	PLC Application Tra	iner		
SET	Current	**			
Program:	Academic				
M.Tech	Year: 2018	PLC Controlled Material Handling System			
School:	Batch:	<u> </u>			
SET	2018-2020	Speed control of DC	Speed control of DC motor.		
	Current				
	Academic				
	Year: 2018	Study of various types of transducers.			
	Batch:	Study of image processing technique.			
	2018-2020				
Program:	Current				
M.Tech	Academic	Measurements of Surface roughness, Using Tally Surf /			
	Year: 2018	Mechanical Comparator			
School:	Batch:		ogram for grooving, drill		
SET	2018-2020	of given dimension according to the specified dimensions using			
		CNC Lathe.			
Program:	Current	Practical			
M.Tech	Academic				
	Year: 2018		1	_	
School:	Batch:	CA	MTE	ETE	
SET	2018-2020	60%	0%	40%	
Program:	Current				
M.Tech	Academic				
	Year: 2018	D 11	, D	10 11 77	
School:	Batch:	Book by A. K. Gupta, Jean Riescher Westcott, and Satish Kumar			
SET	2018-2020	Arora			
Program:	Current	Manuals provided in the lab			
M.Tech	Academic				
	Year: 2018				

	h	Current Academic Year: 2018 Semester: II
Brancl 1 Cou		Samester: II
1 Cou	h: ME	Somestor: II
		Demoster. H
- 2 Coi	ırse Code	MRM001
	irse Title	Research Methodology
3 Cre		2
	ntact	2-0-0
Hou		
	T-P) urse Status	Compulsory
5 Cou		 To develop understanding of the basic framework of research process.
	ective	
	,ceu ve	• To develop an understanding of various research designs and techniques.
		To identify various sources of information for literature review and data
		collection.
		• To develop an understanding of the ethical dimensions of conducting
		applied research.
		• Appreciate the components of scholarly writing and evaluate its quality.
6 Cou	ırse	CO1: Understand the mindset of a researcher
Out	tcomes	CO2: Design a research plan
		CO3: Apply different methods for data collection
		CO4: Analyze the collected data
		CO5: Compile relevant data and prepare a report
		CO6: Understand the process of research; right from inception of idea to
		execution and documentation.
		execution and documentation.
7 Cou		The course aims to develop a research orientation among the scholars and to
Des	scription	acquaint them with fundamentals of research methods. Specifically, the
		course aims at introducing them to the basic concepts used in research and to
		scientific social research methods and their approach. It includes discussions
		on sampling techniques, research designs and techniques of analysis.
8 Out		
Uni	it 1	Introduction
Α		Introduction to research – The role of research, research process overview
В		Philosophies and the language of research theory building – Science and its
		functions, What is theory?, and The meaning of methodology
С		Thinking like a researcher – Understanding Concepts, Constructs, Variables,
		and Definitions

	Unit 2 Research Problem and Hypotheses				
	A	Defining the research problem, The importance of problems			
	В	Formulation of the research hypotheses, The importance of hypothesis			
	C Experimental and Non-experimental research design				
	Unit 3	Data Collection			
	A	Field research, and Survey research			
	В	Methods of data collection – Secondary data collection methods			
	C	Methods of data collection- qualitative methods of data collection, and			
		Survey methods of data collection			
	Unit 4	Data Analysis			
A Attitude measurement and scaling – Types of measurement scal			rement scales;		
		Questionnaire designing – Reliability and Validity			
	В	Sampling techniques – The nature of sampling, Probability sampling design, Non-probability sampling design, Determination of sample Processing and analysis of data			
	С				
Unit 5 Report Writing					
	A		ssues in conducting research		
B Report generation and report writing					
	C		e, Abstract, Introduction, Me	thodology, Results,	
Discussion, References, and Appendices					
	Mode of				
	examination			T	
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*	• Chawla, Deepak & Sondhi, Neena (2011). Research methodology:			
		Concepts and cases, Vikas Publishing House Pvt. Ltd. Delhi			
		Bryman, Alan & Bell, Emma (2011). Business Research Methods (Third Edition), Oxford University Press.			
	Other				
	References				