

Program and Course Structure

School of Engineering Technology

M. Tech – Biotechnology Program code: SET0203 Batch: 2021-23

1. Standard Structure of the Program at University Level

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- **3.** Develop research, support disruptive innovations and accelerate entrepreneurship
- 4. Seeking beyond boundaries

Core Values

- Integrity
- Leadership
- Diversity
- Community

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship to provide sustainable solution to the needs of the society

Mission of the School

- 1. To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conducive and enriching learning environment.
- 2. To produce technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities and uphold ethical values.
- **3.** To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- 4. To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

Vision of the Department

To serve the society by being a global centre of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship to cater to the needs of biotechnology in health, agriculture and environment sectors.

Mission of the Department

- M1: To conduct cutting edge multidisciplinary original research in plant, animal, medical, industrial and environmental biotechnology.
- M2: To train and transform students into thinking bioengineers, and scientists who are able to integrate theoretical knowledge with practical applications in diverse areas of Biotechnology
- M3: To adapt and update with rapidly changing technologies through self improvement with continuous learning and education, without compromising with moral and professional ethics.
- M4: To provide opportunities for collaborative learning beyond classrooms, in the broader community across the diverse spectrum of disciplines.

1.3 Program Educational Objectives (PEO)

1.3.1 Writing Program Educational Objectives (PEO)

The Educational Objectives of PG Program in Animal Biotechnology are:

- PEO1: Post Graduates will be able to integrate the biological sciences with engineering principles for the study of biological systems and medical health related problems.
- PEO2: Post Graduates will demonstrate the applications of bioengineering principles through development of industrial designs and processes that are of societal and industrial importance.
- PEO3: Post Graduates will update their knowledge and skill set with recent discoveries through self improvement, research experience and continuous learning to create engineering solutions for society and environment.
- PEO4: Post Graduates will develop communication skills and demonstrate independent thinking, analytical and problem solving skills, self management and function effectively in team oriented and open ended activities in an industrial or academic environment.
- PEO5: Post Graduates will develop leadership skills at levels appropriate to their experience and perform ethically and professionally in business, academia, industry and society.

Methods of Forming PEO's

- STEP 1: The needs of the Nation and society are identified through scientific publications, industry interaction and media.
- STEP 2. Taking the above into consideration, the PEOs are established by the Coordination Committee of the department.
- STEP 3. The PEOs are communicated to the alumni and their suggestions are obtained.
- STEP 4. The PEOs are communicated to all the faculty members of the department and their feedback is obtained.
- STEP 5. The PEOs are then put to the Board of Studies of the department for final approval.

1.3.3 Program Outcomes (PO's)

- PO1: **Engineering knowledge**: Apply the knowledge of engineering fundamentals, biological and physical sciences to the solution of complex engineering problems.
- PO2: **Problem analysis**: Identify and analyze complex engineering problems, formulate research solutions and reach substantiated conclusions using principles of basic and applied sciences and related technologies.
- PO3: **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4: **Conduct investigations of complex problems**: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5: **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and bioinformatics tools including prediction and modelling to study complex biological systems with an understanding of the limitations.
- PO6: **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7: **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8: **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9: **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10: **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11: **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12: Lifelong learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

- PSO1: Acquire practical knowledge of animal system and related techniques to study life processes and apply the knowledge for research and industrial applications.
- PSO2: Ability to unravel metabolic and molecular pathways in animal cells and harness or manipulate them for human health and industrial products.
- PSO3: Develop understanding of recent research events through self learning and awareness in biotechnology and apply the acquired concepts for industrial purpose.
- PSO4: Conduct safe research and learn sustainable product development without compromising environmental safety and ethics.

School of Engineering and Technology M. Tech in Biotechnology Batch: 2021-2023 TERM: I

S.	Course	Course	Т	eaching	Load	Credits	
No.	Code	Code L T P		Р	Creuits		
THE	ORY CLASSE	ES					
1.	BTY601	Analytical Instruments for	3	1	0	4	
		Biotechnology					
2.		Elective1	3	0	0	3	
3.		Elective2	3	0	0	3	
4.		Elective3	3	1	0	4	
5.	BTY605	Molecular Cell Biology300		3			
PRAC	PRACTICALS						
6.	BTP615	Enzyme & Genetic Engineering Lab	0	0	4	2	
7.	BTP605	Molecular Cell Biology Lab.	0	0	4	2	
	1	TOTAL CREDITS				21	

Prepared by Department of Biotechnology

Page 8

School of Engineering and Technology M Tech in Biotechnology Batch: 2021-2023 TERM: II

S.		Subjects	Tea	ching Load				
No.	Subject		L	Т	Р	Credits		
	Code							
THE	THEORY CLASSES							
1	BTY613	TY613Biological database and their management30		0	3			
2		Elective4	3	1	0	4		
3		Elective5	3	1	0	4		
4		Elective6	3	0	0	3		
5		Elective7	3	0	0	3		
6	MRM001	Research Methodology (MOOC)	2	0	0	2		
PRAG	PRACTICALS							
7	BTP606	Applied Bioinformatics Lab.	0	0	2	1		
8	BTP630	Cell and Tissue Engineering Lab.	0	0	2	1		
9	9 CCU101 Community Connect		0	0	4	2		
				Τ	OTAL	23		

School of Engineering and Technology M Tech in Biotechnology Batch: 2021-2023 TERM: III

S.	Subject	Subjects	Tea	Credits		
No.	Code		L	Т	Р	Creans
PRA	PRACTICALS					
1	BTP618	Seminar	0	0	4	2
2	BTP620	Dissertation I	0	0	20	10
				Т	OTAL	12
				-		

Page 10

School of Engineering and Technology M Tech in Biotechnology Batch: 2021-2023 TERM: IV

S.	0 0		Teaching Load			Credits
No.	Code		L	Т	Р	Creans
PRA	PRACTICALS					
1	BTP621	Dissertation II	0	0	32	16
				Г	OTAL	16

Prepared by Department of Biotechnology

Page 11

Syllabus

Core

BTY601 Analytical Instruments for Biotechnology

Scl	hool: SET	Batch : 2021-2023				
Pro	ogram: M	Current Academic Year: 2021-22				
Te	ch					
Br	anch:	Semester: 01				
Bio	otechnology					
1	Course Code	BTY601				
2	Course Title	Analytical Instruments for Biotechnology				
3	Credits	4				
4	Contact	310				
	Hours					
	(LTP)					
	Course Status	Compulsory				
5	Course	To develop and understanding of the principle, instrumentation, operation				
	Objective	and applications of different analytical, separation and diagnostic				
		techniques used in the fields of Biochemistry, Molecular Biology and				
		Biotechnology.				
6	Course	CO1: Perform experiments based on electrophoretic techniques for				
	Outcomes	separating proteins and nucleic acids.				
		CO2: Purify compounds from a mixture using column, ionexchange,				
		affinity chromatography, HPLC, affinity and gas chromatography.				
		CO3: Apply the spectroscopy techniques (Absorption and fluorescence,				
		atomic and circular dichroism) to characterize physiochemical				
		properties of biological molecules. Determine structure and mass of				
		organic compounds and proteins by nuclear magnetic resonance (NMR),				
		mass spectrometry and Xray crystallography.				
		CO4: Review imaging techniques for disease diagnosis.				
		CO5: Illustrate organelle and protein localization by microscopy. Isolate				
		cells by using fluorescence activated cell sorting (FACS) and magnetic				
		activated cell sorting (MACS). Purify proteins by ultrafiltration and				
		dialysis for enzymatic reactions and protein blotting.				
		CO6: Relate the basic instrumentation techniques with practical				
7	Course	applications for Biotechnology.				
/	Course	This course will cover the major topics on electrophoretic techniques for separating proteins and nucleic acids, purify compounds from a mixture				
		using column, ionexchange, affinity chromatography, HPLC, affinity and				
		gas chromatography, spectroscopy techniques (Absorption and fluorescence, atomic and circular dichroism) to characterize physiochemical				
		inderescence, atomic and circular dichroisin) to characterize physiochemical				

		properties of biological molecules, determine structure and mass of organic compounds and proteins by nuclear magnetic resonance (NMR), mass spectrometry and Xray crystallography, imaging techniques for disease diagnosis, microscopy, Isolate cells by using fluorescence activated cell sorting (FACS) and magnetic activated cell sorting (MACS), purify proteins by ultrafiltration and dialysis for enzymatic reactions and protein blotting, relate the basic instrumentation techniques with practical applications for Biotechnology.				
8	Outline syllabu					
	Unit 1	Electrophoresis				
	А	Principle of electrophoresis (Southern, Northern and Western blotting)				
	В	Capillary and Immunoelectrophoresis: Principle and applications				
	С	2Dgel electrophoresis: Principle and applications				
	Unit 2	Chromatography				
	А	Column and ionexchange chromatography				
	В	Affinity and Gas chromatography: Instrumentation and applications				
	С	HPLC: Instrument setup and working				
	Unit 3	Spectroscopy				
	А	Raman spectroscopy and NMR: Instrumentation and working				
	В	Spectrophotometer, ELISA: Instrumentation and working				
	С	Spectroscopy (Absorption and fluorescence, Atomic spectroscopy), Xray				
		crystallography: crystal preparation, working and uses				
	Unit 4	Medical Imaging and Spectrometry				
	А	Magnetic Resonance Imaging				
	В	CT, SPECT and PET				
	С	Instrumentation and working of mass spectrometry				
	Unit 5	Techniques in Cell Biology				
	А	Optical, AFM, Fluorescence and Electron Microscopy				
	В	Ultracentrifugation, Instrument setup and working of FACS				
	С	Ultrafiltration and Dialysis				
	Mode of	Theory/Jury/Practical/Viva				
	examination					
	Weightage	CA MTE ETE				
	Distribution	30% 20% 50%				
	Text book/s*	Wilson K. and Walker J., "Principles and Techniques of Biochemistry and Molecular Biology", Cambridge University Press, 2010.				
	Other	1. Ninfa A.J., Ballou D.P. and Benore M., "Fundamental Laboratory				
	References	 Approaches for Biochemistry and Biotechnology", Wiley, 2009. Sheehan D., "Physical Biochemistry: Principles and Applications", Wiley, 2009. 				

BTY 605: Molecular Cell Biology

Sal	nool: SET	Batch : 2021-2023		
	ogram: M.Tech	Current Academic Year: 2021-22		
	anch:	Semester: 1		
	otechnology	Semester. 1		
1	Course Code	BTY 605		
2	Course Title			
2	Course Thie	Molecular Cell Biology		
3	Credits	3		
4	Contact Hours (LTP)	300		
	Course Status	Compulsory		
5	Course Objective	On successful completion of this module students will be able to:		
		1. Determine the role of different types of channels associated with trafficking of the molecules.		
		2. Predict the translocation of biomolecules between different cell organelles		
		3. Visualize cells and cellular organelles using microscopy.		
		4. Analyze metabolic activities of a cell and the production of		
		metabolic energy in form of ATP		
		5. Characterize the functions of nucleus		
6	Course	After the successful completion of this course students will be able to:		
	Outcomes	CO1: Determine different types of cell membrane and their function like translocation of biomolecules thru' membrane.		
		CO2: Determine the types of organelles and their specific function		
		CO3: Analyse the metabolic activity of the cell and protein transdport		
		process.		
		CO4: Explanation and analysis of bioenergetics and metabolic process		
		CO5: Characterize the functions of Nucleus and its activities thru'		
		cellular organelles		
		CO6: Explanation of the structure and function of cell organelles		
7	Course	Molecular cell biology is a unifying discipline that describes the		
	Description	structure and function of cells in all their genetic, biochemical,		
developmental, physiological and patho		developmental, physiological and pathophysiological aspects		
8	Outline syllabus	-		
	Unit 1	Molecular Composition of Cell Membrane		
	А	Lipid structure and fatty acids, phospholipids forming lipid vesicles,		
		membrane proteins, carbohydrate, bacterial outer membrane		
	В	Transport across Cell Membranes ;Ion channels and transport of small		

		*	<u>s</u> , <u>carrier proteins</u> ; active and passive transport		
~	of molecues	· · · · · · · · · · · · · · · · · · ·			
С		Endocytosis: Phagocytosis, Receptor mediated Endocytosis			
Unit 2	ER & Prot				
А			argeting protein to ER; Overview of protein		
	-	ation of rough			
В	Protein fold	ing and proces	sing in ER		
С	Lysosomes				
Unit 3	Protein Tra	ansport			
А	GPI anchor	8			
В	Golgi Appa	ratus, structure	& function		
С	Protein sort	ing and export	from Golgi, Vesicular transport		
Unit 4	Bioenerget	ics and Metab	olism		
А	Metabolism in the matrix of Mitochondria: organization and function;				
	Import of mitochondrial matrix protein				
В	Chloroplast &plastids protein import into chloroplast stroma; import of				
	proteins into	o thyllakoid me	embrane of chloroplasts;; Electron flow		
	through pho	oto system I and	1 II		
С	Peroxisome	s functions			
Unit 5	Internal or	ganization of 1	Nucleus		
А	Structure of	the nuclear en	velop; Nuclear Pore complex		
В	Protein tran	sport to and fro	om Nucleus; functional domain within the		
	nucleus				
С	Cajal bodies	s ;Nucleolus			
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	Gerald K., '	Cell and Mole	cular Biology", John Wiley and Sons, 2006.		
Other	1. Cooper C	G.M., "The Cell	l: A Molecular Approach", Sinaner Associates,		
References	2004.2. Verma P.S. and Agarwal, V.K., "Cell Biology, Genetics, Molecular Biology Evolution and Ecology", S. Chand and Company, 2004.				

BTY613:Biological database and their management

Sc	hool: SET	Batch : 2021-2023				
Pr	ogram:	Current Academic Year: 2021-22				
Μ	.Tech					
Br	anch:	Semester: 02				
Bi	otechnology					
1	Course Code	BTY613				
2	Course Title	Biological database and their management				
3	Credits	3				
4	Contact Hours (LTP)	300				
	Course Status	Compulsory /Elective/Open Elective				
5	Course Objective	 This course surveys a wide range of biological databases and their access tools and enables students to develop proficiency in their use. The course also focuses on the design of biological databases and examines issues related to heterogeneity, interoperability, complex data structures, object orientation and tool integration. 				
6	Course Outcomes	 CO1: Review different biological databases and webbased programming tools to make biological databases accessible. CO2: Develop databases that store biological information (genome sequence database, protein 3D structure database, gene expression profile database, molecular interaction database, etc). CO3: Develop computing tools for analyzing various kinds of biological and experimental data, data mining from databases, computer simulation of living systems and so on. CO4: Develop ontologies necessary for data and knowledge description of databases storing biological functions and integration of the basic databases. CO5: Retrieve and interpret the data from different databanks (nucleotide, cDNA, rRNA, protein sequence, signal peptide and AIDS virus databanks). CO6: Normalize database design and perform experiments using SQL for specifying, authorization, viewing, encryption, structure indexing and hashing. Design and distribute query processing recovery and operate multidatabase and parallel databases systems. 				
7	Course Description	To understand how the database is created and the ways to manage it. Exploring the databases which contains the biological data. It also clears the database design issues and also makes understand the way to protect data				

8	Outline syllabus						
	Unit 1	Introduction	n to Database	es			
	А	Data abstract	tion, Data mo	dels, Basic concept of databases, Data			
		independenc	e				
	В	DML, DCL,	DDL and stru	cture of database management system			
	С	Entity relation	onship diagram	m: Basic and advance concept, Application of ER			
		diagram in d	esigning data	base system			
	Unit 2	Biological D	atabasesI				
	А	Nucleic acid	sequence dat	a banks, Genbank, EMBL, DDBJ			
	В	GenPept, nuc	cleiotide sequ	ence databank			
	С	cDNA databa	ank				
	Unit 3	Biological D	atabasesII				
	А	AIDS virus sequence data bank					
	В	rRNA data b	rRNA data bank				
	С	Protein sequence data banks, Signal peptide data bank, NBRFPIR,					
		SWISSPRO	Г				
	Unit 4	Database Do	esign Issues				
	А	Normalizatio	on INF, 2NF,	3NF, 4NF, BCNF and 5NF			
	В		0 1	, Security and integrity			
	С	Use of SQL	for specifying	, authorization, view, encryption, Storage structure			
		indexing and	indexing and hashing, Different types of file organization				
	Unit 5	Distributed Database Structure					
	А			autonomy, Distributed query processing recovery			
	В			c handling, Multidatabase system			
	С	Parallel data	base concept a	and related issues, Web interface to database			
	Mode of	Theory/Jury	/Practical/Viv	'a			
	examination						
	Weightage	CA	MTE	ETE			
	Distribution	30%	20%	50%			
	Text book/s*	Cohn R. and	Russell J., "I	Biological Databases", VSD Publications, 2012.			
	Other	1. Chen	J.Y. and Lor	ardi S., "Biological Data Mining", Chapman and			
1	References	Hall, 2009.					
				A.S., "Biological Database Modeling", Artech			
		House, 2007.					

Electives

Elective1

BTY604 Advances in Bioprocess Engineering

Sch	nool: SET	Batch : 2021-2023			
	ogram: M.	Current Academic Year: 2021-22			
Tee					
Bra	anch: BT	Semester: I (Odd semester)			
1	Course Code	BTY604			
2	Course Title	Advances in Bioprocess Engineering			
3	Credits	3			
4	Contact Hours (LTP)	300			
	Course Status	Compulsory/Elective/Open Elective			
5	Course Objective	1. To enable students bridge the gap between theoretical concepts and practical aspects in industrial settings			
		2. Indepth knowledge and handson laboratory/industrial skills required for employment or for creation of employment in bioprocess engineering.			
		3. To enable students about nutritional values and increase yield of products by modifying microorganisms.			
		4. Knowledge to produce antibiotics, vitamins, vaccines and organic solvents using a bioreactor.			
6	Course Outcomes	After successful completion of the course students will be able to			
	Outcomes	CO1: Apply mathematical models for calculating substrate uptake, product formation and cell kinetics.			
		CO2: Design strategies for using bioreactors to address different needs of the industry and to conduct scaleup methods for designing bioreactors			
		CO3: Apply the models and mathematical equations to study about the working principles of Bioreactor.CO4: Understand and apply different strategies for the downstream			
		processing to biomolecules at industrial level.			

		CO5: Understand the industrial production of antibiotics, vitamins, and vaccines.CO6: Understand and apply different bioprocess engineering methods and					
		models for the production and optimization of important microbial products.					
7	Course Description	The course concentrates on bioprocess engineering and bioreactor operation. A considerable part is devoted to the growth analysis using process analytical technology and the evaluation of process data in connection to the generally used cultivation principles.					
8	Outline syllabu	15					
-	Unit 1	Microbial Growth					
	А	Unstructured and structured models for reactor process					
	В	Mathematical models for substrate uptake and product formation					
	С	Kinetics of cell growth, plasmid stability					
	Unit 2	Design of Bioreactors					
	А	Types of microbial and enzyme bioreactors					
	В	Batch, fed batch and continuous processes					
	С	Scaleup of reactor					
	Unit 3	Working of Bioreactor					
	А	Heat transfer and design equations for CSTR fermentor					
	В	Monod model					
	С	Rheology					
	Unit 4	Downstream Processing					
	А	Cell disruption and solvent extraction					
	В	Product recovery					
	С	Sedimentation, floatation, adsorption and chromatography					
	Unit 5	Industrial Applications					
	А	Industrial production of alcohol, citric acid, amino acids, enzymes,					
		antibiotics and steroids					
	В	Microbiology of fermented milk					
	С	Tea, coffee and vinegar fermentation					
	Mode of	Theory/Jury/Practical/Viva					
	examination						
	Weightage	CA MTE ETE					
	Distribution	30% 20% 50%					
	Text book/s*	Doran P.M., "Bioprocess Engineering Principles" Academic Press, 2012.					
	Other References	1. Shuler M.L., "Bioprocess Engineering: Basic Concepts", Pearson Education, 2012.					
		2. Najafpour G.D., "Biochemical Engineering and Biotechnology",					

Elsevier, 2007.	

Elective2

BTY603Applied Genetic Engineering

Sch	nool: SET	Batch : 2021-2023		
	ogram:	Current Academic Year: 2021-22		
	Tech			
	anch:	Semester: 01		
	otechnology			
1	Course Code	BTY603		
2	Course Title	Applied Genetic Engineering		
3	Credits	3		
4	Contact	300		
	Hours			
	(LTP)			
	Course Status	Compulsory/Elective/Open Elective		
5	Course	1. To acquire knowledge of principle and techniques involved in genetic		
	Objective	engineering.		
		2. To comprehend the basic strategies of cloning and expression so that may		
		use it for changing the constitution of an organism for human benefit.		
		3. To know about applications of genetic engineering in industry and health		
		sector		
6	Course	CO1: Know and apply the molecular tools, vectors, hosts for genetic		
	Outcomes	manipulation		
		CO2: Comprehend the basic principle of cloning and rDNA technology.		
		CO3: Learn the optimization and technique of DNA amplification by PCR		
		CO4: Analyze gene and protein expression patterns		
		CO5: Create transgenic organisms with desired characteristics using genetic		
		engineering		
		CO6: Understand the basic methods of creating recombinant genes,		
		amplifying the same, creating libraries, engineering proteins and finally		
		apply the knowledge in creating transgenic products with gene delivery		
7	Course	tools The course course fundamentals of constitutions in a that loads to enacifie		
7	Course	The course covers fundamentals of genetic engineering that leads to specific		
0	Description	advanced applications for the benefit of mankind		
8	Outline syllabu			
	Unit 1	Tools of Genetic Engineering		
	A	Genetic engineering and molecular tools		
	B	Enzymes involved in manipulation of genetic material		
	С	Vectors and host for cloning and cloning process		

Unit 2	Cloning				
А	Cloning and (Construction of	f recombinant DNA		
В	Cloning inter	acting genes			
С	Library const	ruction and scr	eening		
Unit 3	In vitro Amp	lification of D	NA		
А	Polymerase c	hain reaction a	nd its types		
В	Cloning of ge	enes by PCR			
С	Optimization	of PCR			
Unit 4	Expression				
А	Expression st	rategies			
В	Vector and he	ost engineering			
С	Protein engin	eering and gen	e tagging		
Unit 5	Applications				
А	Strategies of	Strategies of gene delivery			
В	Methods for §	gene expression	n analysis		
С	Transgenic or	rganisms			
Mode of	Theory/Quiz				
examinati	on				
Weightag	e CA	MTE	ETE		
Distributi	on 30%	20%	50%		
Text book	/s* Brown T.A,	"Gene Cloning	g and DNA Analysis: An Introduction", John		
	Wiley & Son	s, 2010			
Other			se S.B., "Principles of Gene Manipulation",		
Reference			lication, 2002.		
	2. Dale W.,	von Schantz	M. and Plant N., "From Genes to Genomes:		
	Concepts	and Applicatio	ns of DNA Technology", John Wiley, 2011.		

Elective3

BTY602 Enzyme Technology

Scl	hool: SET	Batch : 2021-2023			
Pre	ogram:	Current Academic Year: 2021-22			
	Tech				
	anch:	Semester: Odd (1 st)			
-	otechnology				
1	Course Code	BTY 602			
2	Course Title	Enzyme Technology			
3	Credits	3			
4	Contact	300			
	Hours				
	(LTP)				
~	Course Status	Compulsory /Elective/Open Elective			
5	Course	With this Course the students			
	Objective	1. Will acquire knowledge fundamental Knowledge of Enzymes			
		2. Will get useful exploitation of enzymes physical and kinetic			
		properties			
		3. Use Enzymes biocatalysts in the biotransformations			
		4. Know the Industrial, Research and Therapeutic applications of			
		Enzymes.			
6	Course	After successfully completion of this course students will be able to:			
	Outcomes	CO1: Basics of Enzymes and its Classification			
		CO2: Evaluate the role of substrates and cofactors in enzyme			
		kinetics.			
		CO3: Predict type of enzyme inhibition by using Lineweaver Burk			
		plot method.			
		CO4: Optimize enzyme catalyzed reactions and compare rate of			
		reactions of enzyme catalyzed and noncatalyzed reactions. CO5: Perform and analyze enzymatic assays using			
		CO5: Perform and analyze enzymatic assays using spectrophotometer and microtiter plate reader.			
		CO6: Purify proteins by precipitation and determine protein-protein			
		interaction by coimmunoprecipitation.			
		CO7: Purify native enzymes and compare catalytic activity with			
		engineered enzymes.			
		CO8: Implement the use of enzymes for industrial applications.			
7	Course	This course covers fundamentals to applications necessary for the useful			
	Description	exploitation of enzymes both as tools for the enzymatic analyses and as			

		•		ansformations on the unique structuralfunctional nd its industrial and research utilization.
8	Outline syllabu			
	Unit 1	Enzymes Classification of enzymes		
	А			
	В	Properties of	of enzymes	
	С	Factors affe	ecting enzym	natic activity
	Unit 2	Kinetics of	Enzyme Ca	atalyzed Reaction
	А	Enzymesub	strate compl	ex
	В	Enzyme inh	nibition	
	С	Modulation	and regulat	ion of enzyme activity
	Unit 3	Mechanisn	n of Enzyme	ecatalyzed Reaction
	А	Mechanism	of enzyme	action
	В	Coenzymes	and cofacto	rs
	С	Organizatio	on of enzyme	es
	Unit 4	Immobiliza	ation of Enz	ymes
	A Principle and kinetics of enzyme immobilization			f enzyme immobilization
	В	Multienzyn	ne system	
	С	Industrial processes, utilization and regeneration of cofactors		
	Unit 5 Industrial Uses of Enzymes			
	А			es of enzymes
	В	Impact of g	enetic engin	eering on enzyme production
	С	Engineered	enzymes	
	Mode of	Theory		
	examination			
	Weightage	CA	MTE	ETE
	Distribution	30%	20%	50%
	Text book/s*			, "Enzymes: Biochemistry, Biotechnology, Clinical
		Chemistry"	, Woodhead	Publishing, 2007.
	Other	1. Copela	and R. A., "I	Enzymes: A Practical Introduction to Structure,
	References	-		Data Analysis", Wiley, 2006.
		2. Gui	sán J. M "I	mmobilization of Enzymes and Cells (Methods in
				', Humana Press, 2010.
L				

Elective4

BTY631Molecular Signaling

School: SET		Batch : 2021-2023		
Progra	m: M.Tech	Current Academic Year: 2021-22 Semester: 02		
Brancl	h: Biotechnology			
1	Course Code	BTY631		
2	Course Title	Molecular Signaling		
3	Credits	4		
4	Contact Hours (LTP) Course	310 Compulsory / Elective /Open Elective		
	Status			
5	Course Objective	 To understand how communication takes place between different cells in the body. To elucidate the signal transduction pathways involved in several diseases which is important to define the new target for drug development. 		
6	Course Outcomes	 CO1: Determine the types of communication between cells and correlate deregulation of extracellular matrix with occurrence of different diseases. CO2: Analyse the progression of signals inside the cell by identify the role of secondary messengers in signalling pathways. CO3: Perform covalent modification (phosphorylation) by using serine/threonine and tyrosine protein kinases thus understand pathways in cells during different types of stress/ signalling. CO4: Understand the neuronal signalling in correlation with its regulatory pathways. CO5: Demonstrate the role played by tumour suppressor genes and oncogenes thus recognize the roles played by proapoptotic, antiapoptotic proteins and caspases in apoptosis. CO6: To identify the possibilities, efficacy and potency of therapeutic drugs in cell signalling pathways for disease treatments. 		
7	Course Description	To understand how communication takes place between different cells in the body. To elucidate the signal transduction pathways involved in several diseases which is important to define the new target for drug development.		

8	Outline syllab	us						
	Unit 1	Cellular Co	mmunication	l				
	А	Introduction to cell signalling.						
	В	Intercellular communication and its types						
	С	Extracellular	matrix, Neur	otransmitte	rs and Ne	eurohormo	ones	
	Unit 2	Signal Tran	sduction					
	А	Receptors an	Receptors and its types.					
	В		pled receptor					
	С	Modulation of	of different sig	gnalling by	secondar	y messeng	gers.	
	Unit 3	Protein Kin	ases and thei	r pathways	5			
	А	Classification	n and regu	lation of	protein	kinases.	Role of	
			and inhibitor					
	В	Protein Kina	se A pathway	and Regula	ation of P	PI3K/Akt p	oathway.	
	С	MAPK casca						
	Unit 4	Siganling in Plants						
	А	Phytohormones and signaling mechanisms						
	В	Phytochromes and Cryptochrome						
	С	Memory rete	Memory retention in plants.					
	Unit 5	Signalling ir						
	А	Oncogenes and tumour suppressor genes.						
	В	Cancer progr	ression and m	etastasis.				
	С	Apoptosis and therapeutic intervention for treating cancer.						
	Mode of	Theory/Jury/Practical/Viva						
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text book/s*	Text book/s* Krauss G., "Biochemistry of Signal Transduction and Regu				egulation",		
		WileyVCH, 2008.						
	Other		ock J.T., "Cel	ll Signalling	g", Oxfor	d Univers	ity Press,	
	References	2010.						
		 Gomperts B.D., Kramer I.M. and Tatham P.E.R., "Signal Transduction", Academic Press, 2009. 						

Elective5

BTY630 Cell and Tissue Engineering

Scł	nool: SET	Batch : 2021-2023		
Pro	ogram:	Current Academic Year: 2021-22		
М.	Tech			
Bio	otechnology	Semester: Even(2 nd)		
1	Course Code	BTY630		
2	Course Title	Cell and Tissue Engineering		
3	Credits	4		
4	Contact	310		
	Hours			
	(LTP)			
	Course Status	Compulsory / Elective / Open Elective		
5	Course	1. To Study cell, tissue culture, media component		
	Objective	2. To Study Cell Viability and Kinetics		
		3. To Study Cell cloning, cell genetics		
		4. To Study industrial medical and agricultural applications of cell and		
		tissue engineering.		
6	Course	After successfully completion of this course students will be able to:		
	Outcomes			
		CO1: Understand basics of Cell and Tissue culture, evaluate media and		
		aseptic techniques of establishing primary and Secondary cell cultures.		
		CO2: Understand the concepts and Mechanism of Cell Viability		
		adherence, calculate growth kinetics parameters and apply		
		cryopreservation technique for long term storing of cells.		
		CO3: Evaluate Cell Characteristics, Cell Signaling, genetics, establish a		
		continuous cell line from cells of different origin and determine their nutrient and environment requirements		
		CO4: Understanding Cell Cloning for Tissue Engineering and Stem Cell		
		Therarpy, Biomaterials for Cells		
		CO5: Understand Applications of Cell and Tissue Engineering for		
		Industrial, Agriculture medical applications		
		CO6: Acquiring Aquaintence of Cell Culture Technology by studying		
		cell, tissue culture, media component, cloning, cell genetics and large		
		scale industrial, agriculture and medical applications of cell and tissue		
		engineering.		
7	Course	To acquire a fundamental and advanced knowledge of Cell and Tissue		
,	Description	Culture Technology by studying cell, tissue culture, media component,		
	2 comption	cloning, cell genetics and large scale industrial, agriculture and medical		
	I			

		application	s of cell and	tissue engineering.		
8	Outline syllabu					
0	Unit 1		Introduction to Cell and Tissue Culture			
	A		History of Cell Culture, Cell, Tissue and organ culture, Culture procedures			
	B					
	C		Culture media and growth conditions, primary and Secondary cultures Establishment and maintenance of cell lines and Risks in a tissue culture			
	C	laboratory a		includice of cell lines and Risks in a tissue culture		
	Unit 2		ics and Viab	ility		
	А			, Characterization of cultured cells morphology of		
	В		-	ion, differentiation, Kinetics involved in growth of		
	С		,	for testing cell viability, Cytotoxicity assays		
	Unit 3		and Cell Cl			
	А			ells and its Types		
	В	Methods of	Cloning of	Stem Cells		
	С		Application			
	Unit 4			e Engineering		
	А			s Of Biomaterials ,Surface, Bulk, Mechanical And		
		Biological	Properties			
	В	Types Of B	iomaterials,	Biological And Synthetic Materials, Biopolymers		
	С	Application	ns Of			
		Biomateria	ls, Modificat	ions Of Biomaterials, Role Of Nanotechnology.		
	Unit 5	Application	ns of Cell ar	nd Tissue Engineering		
	А			of Cell and Tissue Engineering		
	В			cations of Cell and Tissue Engineering		
	С	Food and A	griculture In	dustrial applications of Cell and Tissue Engineering		
	Mode of	Theory				
	examination					
	Weightage	CA	MTE	ETE		
	Distribution	30%	20%	50%		
	Text book/s*			l Culture and Technology", Garland Science, 2008.		
			-	.K., "Plant Tissue Culture: An Introductory Text",		
		Springer, 2				
	Other			ll Biotechnology: Methods and Protocols", Humana		
	References	Press, 2006				
		-		of Animal Cells: A Manual of Basic Technique",		
		Wiley, 2003	5.			

Elective6

BTY606 Applied Bioinformatics

Sc	hool: SET	Batch : 2021-2023			
Pr	ogram: .Tech	Current Academic Year: 2021-22			
Br	anch:	Semester: 02			
Bi	otechnology				
1	Course Code	BTY606			
2	Course Title	Applied bioinformatics			
3	Credits	3			
4	Contact Hours (LTP)	300			
	Course Status	Compulsory /Elective/Open Elective			
5	Course Objective	 To acquire an advanced knowledge of bioinformatics tools used for designing and analyzing in silico experiments and different techniques. To attain knowledge about data storage model, retrieval of information and integration. To learn the procedure of sequence alignment and phylogenetic analysis by using different online and offline tool along with their algorithms. 			
		3. To understand about gene organization, genome sequencing, gene prediction methods and motif search methods. To have a clear cut idea about bioinformatics scope, concepts and major databases/tools/softwares with their algorithms used for various application			
6	Course Outcomes	 CO1: Analyze sequence similarity search using BLAST. CO2: Examine phyolgenetic relationship using clustal and parsimony. CO3: Assess motif consensus by Markov model. CO4: Identify regulatory sequence by Meme. CO5: Determine structure of biomolecules by software (Pymol, Rasmol) and database. CO6: Compute structure of biomolecules using modeling and docking. Perform microarray and protein array analysis for drug target identification and gene prediction. 			
7	Course Description	To acquire a fundamental knowledge of basic computational biology by studying, designing and analyzing <i>insilico</i> experiments. To learn the			

		3. Bourne P.E., Gu J., "Structural Bioinformatics" , WileyBlackwell, 2009.			
		the analysis of genes and proteins", WileyInterscience, 2004.			
		2. Baxevanis A., Ouellette F.B.F., "Bioinformatics: A practical guide to			
	References	Spring Harbor Laboratory Press, 2004.			
	Other	1. Mount D.W., "Bioinformatics: Sequence and Genome Analysis", Cold			
	Text book/s*	Jin X., "Essential Bioinformatics", Cambridge University Press, 2006.			
	Distribution	30% 20% 50%			
	Weightage	CA MTE ETE			
	examination				
	Mode of	Theory/Jury/Practical/Viva			
	C	Protein arrays, Metabolomics: ¹³ C NMR based metabolic flux analysis			
	B	Microarray technology, expression profiles, data analysis, SAGE			
	A	Transcriptomics			
	Unit 5	Systemwide Analysis			
		identification), QSAR			
	С	Proteinligand docking, Computeraided drug design (pharmacophore			
		modelling, threading)			
	В	Protein structure prediction by comparative modeling approaches (homology			
		by Monte Carlo approaches			
	А	Ab initio structure prediction: force fields, backbone conformer generation			
	Unit 4	Structurerelated ProblemsII			
		Structure databases			
	C	Experimental determination of structures (Xray crystallography, NMR),			
	В	Visualization software (Pymol, Rasmol)			
	1	structures, domains and motifs			
	A	Representation of molecular structures (DNA, mRNA, protein), secondary			
	Unit 3	Structurerelated ProblemsI			
	C C	Gene finding: composition based finding, sequence motifbased finding			
	B	Regulatory sequence identification using Meme			
	A A	Motif representation: consensus, regular expressions, Markov model			
	Unit 2	Clustal, phylogenetics: distance based approaches, parsimony Pattern Analysis in Sequences			
	B C	Sequence assembly, multiple sequence alignment			
	A	Sequence databases, Similarity matrices, pairwise alignment, BLAST			
	Unit 1	Sequencealignment Related Problems			
8	Outline syllabu				
2		and creation of biological databases.			
		phylogenetics. To understand different techniques used for gene prediction			
		procedure of sequence alignment and its application in molecular			

Elective7

BTY607 Immunotechnology

Sc	chool: SET	Batch: 2021-2023			
Pı	rogram:	Current Academic Year: 2021-22			
Μ	.Tech.				
Bı	ranch:	Semester: 02			
Bi	otechnology				
1	Course	BTY607			
	Code				
2	Course	Immunotechnology			
	Title				
3	Credits	3			
4	Contact	300			
	Hours				
	(LTP)				
	Course	Compulsory /Elective/Open Elective			
	Status				
5	Course	1. Understand anatomy of immune system, immunity and molecular			
	Objective	basis of various immune responses.			
		2. Discuss about the structure and function of antibody and MHC.			
		3. Understand and discuss the various immunotechniques, immunization			
		and vaccines.			
6	Course	CO1: Describe immune system, immunity and immune responses			
	Outcomes	CO2: Explain structure and function of antibodies, BCR, TCR and MHC			
		AgAb reaction			
		CO3: Discuss about the molecular basis of immune response.			
		CO4: Explain various techniques in immunology.			
		CO5: Demonstrate the principle behind the immnunization; vaccine and its			
		types.			
		CO6: Explain the organization and functioning immune system, immunity			
		vaccine, vaccination and immunological techniques.			
7	Course	The course will help students to acquire a fundamental working knowledge o			
	Description	the basic principles of immunology; to begin to understand how these			
		principles apply to the process of immune function; and to develop the ability			
		to solve problems in clinical immunology by making use of existing tools and			
		techniques			
0					
8	Outline syllal	bus			

	Unit 1	Anatomy of Immune System				
	А	Cellmediated and humoral immunity; Innate and acquired immunity				
	В	Complement and inflammatory responses				
	С	Hematopoesis and origin of primary and secondary lymphoid organs				
	Unit 2	Antibody and MHC				
	А	Structure and function of immunoglobulins				
	В	Major histocompatability complex and Complement system				
	С	BCR, TCR and antigenantibody reaction				
	Unit 3	Molecular Basis of Immune Response				
	А	Activation of Tlymphocytes and Blymphocytes				
	В	Cellmediated, antibodymediated and macrophagemediated cytotoxicity				
	С	Cytokine release and their role in immune regulation				
	Unit 4	Techniques in Immunology				
	А	RIA and types of ELISA				
	В	Immunofluorescence and immunoelectron microscopy				
	С	CMI Techniques				
	Unit 5	Vaccinology				
	А	Vaccination and types of vaccines				
	В	Recombinant DNA and protein based vaccines, peptide and conjugate				
	0					
-		gene librarie	ngineering, catalytic antibody and generation of immunoglobulin es			
	Mode of	Theory/Jury/Practical/Viva		va		
	examination					
	Weightage	CA	MTE	ETE		
	Distribution	30%	20%	50%		
	Text	Kindt T.J., Osborne B.A. and Goldsby R.A. (2006) Kuby Immunology, W. H				
	book/s*	Freeman				
	Other					
	References					

	nool: SET	Batch : 2021-2023		
Program: M Tech		Current Academic Year: 2021-22		
Bra	anch: Genetic	Semester: II		
Eng	gineering			
1	Course Code	BTY 632		
2	Course Title	Computer Aided Drug Design		
3	Credits	3		
4	Contact Hours	3-0-0		
	(L-T-P)			
	Course Status	DE		
5	Course	Upon completion of this syllabus, the student can able to understand		
	Objective	1. Role of Bioinformatics/Chemo-informatics in drug designing and		
	_	discovery process.		
		2. Different CADD techniques and their importance and applications.		
		3. Various strategies to design and develop the drug-like/lead-like molecules.		
6	Course	CO1: To understand the basics of bioinformatics, chemo-informatics and		
	Outcomes	how useful for drug designing and discovery process.		
		CO2: Acquire the knowledge about protein structure prediction methods,		
		structure visualizations and their importance.		
		CO3: Understand the principle, types and various applications of		
		computer aided drug designing and discovery process.		
		CO4: Explore the concept and SAR, QSAR and their importance in ligand		
		optimization.		
		CO5: Understand the principle and applications of molecular dynamics		
		simulation.		
		CO6: Overall understanding the concept and applications for computer		
	~	aided drug designing and discovery process.		
7	Course	This syllabus covers the various components of computer aided drug		
	Description	designing and discovery process namely protein structure preparation,		
		ligand structure preparation, structural databases, virtual screening		
		techniques, SAR/QSAR, molecular mechanics and molecular dynamics		
-		simulation.		
8 Outline syllabus				
	Unit 1	Introduction		
	А	History of drug design, Stages of drug discovery and development; Drug		
		properties, likeness; Role of Bioinformatics and Chemo-informatics;		
	В	Classification of Protein Structures - Primary, Secondary, Super-		
		secondary, Tertiary and Quaternary; Active Sites; Allosteric Sites;		
		Domains; Fold; Motif;		
	C	Structural databases- PDB, PDBSUM, SCOP, CATH; Chemical and Drug		

BTY 632 Computer Aided Drug Design

	Molecule Databases – PubChem, Zinc and DrugBank				
Unit 2	Preparation of Protein Structure				
А	Introduction t	o <i>in silico</i> and	experimental protein structure determination		
	methods;				
В	In silico Stru	on - Homology Modeling; Threading; Fold			
	Recognition.	Ab initio mode	ling;		
С	Model refinement and validation; Prediction of Binding site; S				
	Visualization	and Analysis to	pols.		
Unit 3	High throughput Virtual Screening and Molecular Docking				
А	Types of Virtual Screening methods; Structure Based Virtual Screening				
	Ligand Based	Virtual Screen	ing		
В	Library design	n; Concept of	pharmacophore mapping and pharmacophore		
	based Screeni	ng;			
С	Molecular Docking: Rigid and Flexible docking; Analysis of Prote				
	Ligand interac	ctions.			
Unit 4	Quantitative Structure Activity Relationship (QSAR)				
А	SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters,				
В	experimental and theoretical approaches for the determination of				
	physicochemical parameters such as Partition coefficient, Hammet's				
	substituent constant and Tafts steric constant.				
С	Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like				
	COMFA and COMSIA.				
Unit 5	Molecular Mechanics and Molecular Dynamics Simulations				
А	General features of molecular mechanics; Energy Minimization - local				
	and global energy minima, saddle point, applications.				
В	Molecular dynamics simulation				
С	Understanding the structural stability of protein and protein-ligand				
	complex.				
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*		· /	gies for Organic Drug Discovery Synthesis		
	and Design"; Wiley International Publishers.Andrew R. Leach (2001). Molecular Modeling – Principles and Applications. Second Edition, Prentice Hall, USA				
Other					
References					

	nool: SET	Batch : 2021-2023		
Program: M Tech		Current Academic Year: 2021-22		
Branch: Genetic		Semester: II		
Engineering				
1	Course Code BTY 633			
2	Course Title	Animal cell Technology		
3	Credits	3		
4 Contact Hours 3-0-0		3-0-0		
	(L-T-P)			
	Course Status	DE		
5	Course	This course will result in understanding of		
	Objective	1. Students will understand gene transfer technologies for animals and animal		
		cell lines		
		2. To impart the knowledge on basic tissue culture techniques;		
		3. To apply the state of art knowledge of subject for the production of		
		transgenic animals and production modern drug delivery or vaccination		
methods.6CourseAfter successfully completion of this course		After successfully completion of this course students will be able to:		
0	Outcomes	CO1: Demonstrate foundational knowledge of Cell culture techniques and		
	Outcomes	competence in laboratory techniques		
		CO2: Understand various types of media and supplements required for		
		animal cell culture.		
		CO3: Familiarize with basic concept of cell lines, immobilization and		
		maintenance of cell culture.		
		CO4: Understand basic concept of scale up of animal cell culture.		
		CO5: Acquire knowledge in tissue engineering and its applications by		
		various methods		
		CO6: Acquire adequate knowledge in the animal cell culture, genetically		
		modified organisms and their beneficial uses		
7	Course	This course provides a brief understanding about the animal cell		
	Description	techniques, their set up requirements, scale up and their applications in		
	various fields.			
8	Outline syllabus			
	Unit 1	Animal Cell Culture		
	А	Introduction, importance, history of cell culture development, different tissue		
		culture techniques including primary and secondary culture, continuous cell		
	В	lines, suspension culture. Advantages and limitations of animal cell culture, genetic engineering of animal		
	U U	cells and their applications.		
		Risks in a tissue culture laboratory and safety and biohazards.		
L				

BTY 633 Animal Cell Technology

U	nit 2	Animal Cell Culture Requirements				
Α		Facilities for animal cell culture, infrastructure, equipment, culture vessels.				
В		Different types of cell culture media, growth supplements, serum fi				
				ll culture reagents		
C		Biology and characterization of cultured cells, cell adhesion, prolifera				
		differentiation, morphology of cells and identification.				
	nit 3	Primary cell culture techniques				
A		Mechanical disaggregation, enzymatic disaggregation, separation				
		viable and non-viable cells. Mass culture of cells, manip				
				maintenance of cell lines		
В		immobilization of cells and its application, synchronizati				
	cultures and cell division, production of secondary			n, production of secondary metabolites,		
		biotransformation,				
C		Induction of cell line mutants and mutations, cryopreservation, germplas				
		conservation and establishment of gene banks.				
U	nit 4	Animal Cell Culture Scale-up				
Α		Scale up in suspension, stirrer culture, continuous flow culture, air-lift				
		fermenter culture				
В		Scale up in monolayer using Roller bottle culture, multi-surface culture,				
		multi-array disks, spirals and tubes				
C		Monitoring of cell growth and cell death.				
U	nit 5	Tissue engineering and its applications				
A		Design and engineering of tissues, tissue modeling. Embryonic stem cell				
		engineering, ES cell culture to produce differential cells.				
В		Human embryonic stem cell research and embryo micromanipulation				
С		Transgenic animals, and xenotransplantation				
Μ	lode of	Theory				
ex	amination					
	Veightage	CA	MTE	ETE		
D	istribution	30%	20%	50%		
Τe	ext book/s*	Freshney I. Culture of Animal Cells: A Manual of Basic Technique, 5th Edition Publisher: Wiley-Liss, 2005 ISBN: 0471453293				
O	ther	Nigel Jen, Animal Cell Biotechnology: Methods and protocols, Humana				
References Press						