Program Structure

Program: M.Sc. (Microbiology)

Program Code: SBR0413

Batch: 2020-22

Department of Life Sciences

School of Basic Science & Research

Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship

Core Values

- Integrity
- Leadership
- Diversity
- Community

Vision of the School

Achieving excellence in the realm of basic and applied sciences to address the global challenges of evolving society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- 3. To establish centre of excellence for ecologically and socially innovative research.
- 4. To strengthen interinstitutional and industrial collaboration for skill development and global employability.

Vision and Mission of Department of Life Sciences

Vision of Life Sciences Department

Strive to achieve excellence in teaching and research in the field of Microbiology and Biotechnology and to build human resource for solving contemporary problems.

Mission of Life Sciences Department

- Providing distinctive and relevant education in Life Sciences to students.

 Motivating young minds through innovative teaching methods, to acquire theoretical knowledge and practical skills in different disciplines of chemistry and empowering them with problem solving skills.
- Nurturing innovation by carrying out world class research and scholarly work
- Promoting interdisciplinary research in collaboration with national/international laboratories/Institutions.

PEO1: To create a foundation of various biological concepts and phenomena in the minds of students through theoretical and practical knowledge.

PEO2: To keep students upgraded with new discoveries in biological world and inculcate continuous learning and self-improvement so that students are motivated for higher studies and research.

PEO3: To teach the students various bio-techniques and application of these techniques for betterment of society and environment.

PEO4: To make students industry- or academia-ready by developing independent thinking, good communication and scientific skills and to acquaint them with professional ethics so that they can work well in an industrial or academic environment.

PEO5: To make students understand interdisciplinary nature of research in biotechnology by assigning them different research projects/ case studies/ presentations.

Map PEOs with Mission Statements:

PEO Statements	School Mission 1	School Mission 2	School Mission 3	School Mission 4
PEO1	3	2	-	-
PEO2	3	2	2	-
PEO3	3	3	2	1
PEO4	2	3	2	2
PEO5	3	2	2	2

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

Map PEOs with Department Mission Statements:

PEO Statements	Departmental Mission 1	Departmental Mission 2	Departmental Mission 3	Departmental Mission 4
PEO1	3	1	1	1
PEO2	3	3	2	2
PEO3	2	2	2	2
PEO4	3	-	2	3
PEO5	3	2	3	2

Program Outcomes (PO's)

PO1: Knowledge: Students will develop a sound understanding the biological systems and processes.

PO2: Skill Set Development: The student will be skilled in various biological techniques that will enhance the employability of the students.

PO3: Oral Communication and Scientific Writing: The students will be able to demonstrate good oral communication. Students will also be knowledgeable about writing technical (project report and reviews) content.

PO4: Environment and Sustainable Development: Student will be able to realize the effect of human malpractices on environment and the need and importance of sustainable development.

PO5: Ethics, Independent Thinking and Team Work: The students will develop professional ethics and also gain knowledge about various ethical issues associated with biotechnology.

Students will learn to think and analyze a problem independently while at the same time realizing the importance of team work in carrying out successful research/ projects/ presentations.

Mapping of Program Outcome Vs Program Educational Objectives

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	2	2	2	2
PO2	3	2	2	3	2
PO3	1	1	-	3	2
PO4	1	2	3	-	2
PO5	1	2	-	3	2

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

M.Sc.

in

Microbiology

COURSE STRUCTURE & SYLLABI

(Academic Session 2020-21 onwards)

Department of Life Science School of Basics Sciences and Research SHARDA UNIVERSITY

SUMMARY SHEET

Teaching Department: Life Science

School : School of Basic Sciences and Research

Name of Course : M.Sc. in Microbiology

Duration: Two Years

Total number of Credits : 90

Term I

C N.	Caldad Cala	Callada	Tea	Teaching Load		
S. No.	Subject Code	Subjects	L	T	P	Credits
THEORY S	SUBJECTS					
1	MMB101	Microbial Diversity	4	0	0	4
2	MMB102	Molecular Biology	4	0	0	4
3	MMB103	Microbial Metabolism	4	0	0	4
4	MMB104	Enzymology	4	0	0	4
5	MSB124	IPR	4	0	0	4
PRACTICA	ALS					
1	MMB153	Microbial Diversity Lab	0	0	3	2
2	MMB159	Enzymology Lab	0	0	3	2
3	MMB157	Molecular Biology lab	0	0	3	2
		TOTAL				26

Term II

C M-	Carles of Carle	Carlet and a		Teaching Load					
S. No.	Subject Code Subjects		L	T	P	Credits			
THEORY S	THEORY SUBJECTS								
1	MSB116	Bio-instruments	4	0	0	4			
2	MMB110	Mycology, Phycology and Virology	4	0	0	4			
3	MMB108	Recombinant-DNA Technology	4	0	0	4			
4	MMB107	Bacteriology	4	0	0	4			
5	MSB125	Bioinformatics	4	0	0	4			
PRACTICA	LS								
1	MSB160	Bioinstrumentation Lab	0	0	3	2			
2	MMB156	RDT Lab	0	0	3	2			
3 MMB160		Mycology, Phycology and Virology Lab		0	3	2			
		TOTAL				26			

Term III

S. No.	Subject Code	Subjects	Teaching Load			
			L	T	P	Credits
THEORY S	UBJECTS		•			
1	MMB201	Environmental Microbiology & Waste Management	4	0	0	4
2	MMB202	Infection, Immunity and Diagnostics	4	0	0	4
3	MSB207	Microbial Biotechnology	4	0	0	4
4	MMB207	Fermentation and downstream processes	4	0	0	4
5	MMB208	Food Microbiology	2	0	0	2
PRACTICA	LS					
1	MSB259	Microbial Biotechnology Lab	0	0	3	2
2	MMB255	Immunology lab	0	0	3	2
3	MMB260	Fermentation Technology Lab	0	0	3	2
4	CCU401	Community Connect	0	0	2	2
	•	TOTAL	•			26

Term IV

S. No.	Subject Code	Subjects		Teaching Load		
5. 110.	Subject Code			T	P	Credits
1	MSB261	Dissertation / Project work / Industrial Training	0	0	18	12

MMB101: Microbial Diversity

Scho	ool: SBSR	Batch: 2020 – 22	
	gram: M.Sc.	Current Academic Year: 2020-21	
Bra		Semester: 01	
Mic	robiology		
1	Course Code	MMB101	
2	Course Title	Microbial Diversity	
3	Credits	4	
4	Contact Hrs	4-0-0	
	(L-T-P)		
	Course Status	Compulsory/Elective/Open Elective	
5	Course	Diversity of Microbial World	
	Objective	2. Classification system of microorganisms	
		3. General characteristic features of archaea, eubacteri	a, algae and
		fungi	
		4. Mode of reproduction of eubacteria, algae and fungi	i
6	Course	After studying this course, students will be able to	
	Outcomes	CO1: Determine general characteristics of acellular	
		microorganisms, classification system as well as different	ence between
		prokaryotes and eukaryotes	
		CO2: Summarize the diversity, characteristic features and s	ignificance of
		archaea	
		CO3: Describe the diversity, characteristic features and s	ignificance of
		eubacteria	
		CO4: Determine the general characteristics, cellular struct	ure as well as
		potential applications of algae	
		CO5: Analyze the general characteristics, mode of reproduc	tion as well as
		mode of reproduction in fungi	1 4 1
		CO6: Compare the characteristic features, mode of repr	roduction and
7	C	significance of various microbial living systems	C 1'
7	Course	The course comprises of general and characteristic feature	
	Description	microbial living systems such as acellular and cellul	iar inicrobes,
8	Outline syllabu	archaebacteria, eubacteria, algae and fungi.	CO Mapping
0	Unit 1	Diversity of Microbial World and Microbial	CO mapping
		Classification	
	a	General characteristics of different groups: Acellular	CO1, CO6
	,	microorganisms (Viruses, Viroids, Prions) and cellular	,
		microorganisms (Bacteria, Algae, Fungi and Protozoa)	
	b	Systems of classification. Binomial Nomenclature,	CO1, CO6
		Whittaker's five kingdom and Carl Woese's three	,
		kingdom classification systems and their utility	

С	Difference microorganisi	-	okaryotic and	eukaryotic	CO1, CO6		
Unit 2	Archaea						
a	Occurrence, d	liversity			CO2, CO6		
b	Characteristic	features, signi	ficance		CO2, CO6		
c	(e.g. methan desulphurizat metals, enzyn	Potential applications of different groups of archaebacteria (e.g. methane generation, ultrafiltration membranes, desulphurization of coal and crude oil, bioleaching of metals, enzymes, compatible solutes and others)					
Unit 3	Bacteria						
a	Occurrence, d	liversity, chara	cteristic features		CO3, CO6		
b	Significance a of bacteria	and potential ap	pplications of va	rious groups	CO3, CO6		
c	Very precise	account of typi	cal eubacteria		CO3, CO6		
Unit 4	Algae						
a	General chara thallus organi		gae including oc	currence,	CO4, CO6		
b			gments, flagella, kual and sexual 1		CO4, CO6		
С	potential approduction	plications (e.gof algal pig nportant bioact	g. Importance ments, biofuel ive molecules, ro	of algae in s, hydrogen	CO4, CO6		
Unit 5	Fungi	,					
a	General chara	ecteristics of fu autritional requ	ngi including ha	bitat,	CO5, CO6		
b	fungal cell ult	ra- structure, t	hallus organizati acture and synthe		CO5, CO6		
c	asexual repro		xual reproduction		CO5, CO6		
Mode of examination	Theory						
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Textbook/s*	1. Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book Company.						
Other		1. Atlas RM. (1997). Principles of Microbiology. 2nd edition.					
References	2. Kuma	T. Brown Publi r HD. (1990 ated East West). Introductory	Phycology.	2nd edition.		
	3. Alexo	poulos CJ,	orn Press. Mims CW, ar gy. 4th edition.				

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	roi	ruz	103	FU4	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	2	1
CO4	1	1	1	3	2
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MMB102: Molecular Biology

Sch	ool: SBSR	Batch: 2020 – 22				
Pro	gram: M.Sc.	Current Academic Year: 2020-21				
Bra	inch:	Semester: 01				
Mic	crobiology					
1	Course Code	MMB102				
2	Course Title	MOLECULAR BIOLOGY				
3	Credits	4				
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course	Compulsory /Elective/Open Elective				
	Status					
5	Course	1. Understand DNA as genetic information carrier, its evolution	, structure,			
	Objective	synthesis and packaging.				
		2. Describe various mechanisms involved in gene expression at				
		transcriptional and translational levels.				
		3. Observe different perspectives of gene regulation for therape	utic			
		applications.				
6	Course	CO1: Understand DNA as genetic information carrier, its evoluti	on, structure,			
	Outcomes	synthesis and packaging.				
		CO2: Examine RNA structure, its types and significance of the	mechanisms			
		involved in its complete synthesis.				
		CO3: Describe key players in regulation of gene expression and post t	ranscriptional			
		modifications.	1			
		CO4: Elaborate protein synthesis, post translational modifications	s and protein			
		trafficking.				
		CO5: Identify the roles of oncogenes and tumour suppressor get				
		development and thus finding the therapeutic molecular mechanism treatment.	ils for cancer			
			processes of			
		CO6: Observe different perspectives of gene regulation in life molecular level inside cell.	processes at			
7	Course		ling "DNA og			
'	Course Description	This course will cover the major topics in Molecular Biology, included genetic information carrier, its evolution, structure, synthesis and	-			
	Description	"RNA structure, its types and significance of the mechanisms in				
		complete synthesis", "key players in regulation of gene express				
		transcriptional modifications", "Elaborate protein synthesis, post translational modifications and protein trafficking", "Identify the roles of oncogenes and tumour				
		suppressor genes in cancer development and thus finding the therapeu				
		mechanisms for cancer treatment".	selo illoloculul			
8	Outline syllab		CO			
	Summe symuo		Mapping			

Unit 1	Nucleic Acids as Ge	CO1, CO6	
A	Experimental evider	ce. DNA structure: historical aspects and	
	current concepts		
В	Melting of DNA, Rep	plication: general principles, various modes of	
	replication, isolation	and properties of DNA polymerases, proof	
	reading, continuous	and discontinuous synthesis, Asymmetric &	
	dimeric nature of D	NA polymerases, synthesis of leading and	
	lagging stands		
C	Superhelicity in DN	A, linking number, topological properties,	
	mechanism of action	of topoisomerases	
Unit 2	Transcription		CO2, CO6
A	General principles, b	pasic apparatus, types of RNA polymerases,	
	steps: initiation, elon	gation and termination	
В	Structural features of	RNA (rRNA, tRNA and mRNA) and relation	
	¥ •	ransferase activity of 23S tRNA. Polycistronic	
	and monocistronic R	NAs	
C		on by interaction between RNA polymerases	
		ns, use of alternate sigma factors, controlled	
		on and ant-termination	
Unit 3	Regulation of Gene		CO3, CO6
A		bolite repression instability of bacterial RNA,	
		regulation, inducers and co-repressors	
В		E. coli lac operon, positive regulation. E. coli	
	ara operon; his and tr		
C	<u>-</u>	cessing of RNA, methylation, cutting and	
	_	capping, polyadenylation and splicing of m	
		modification of tRNA degradation system.	
		I and group II, intron splicing RNase P	G0 4 G0 4
Unit 4	Translation		CO4, CO6
A		aryotic translation, mechanisms of initiation,	
		nation, regulation of translation	
В		difications of proteins	
C		synthesis of secretory and membrane proteins,	
		ation of different proteins	G0.5 G0.6
Unit 5		nor Suppressor Genes	CO5, CO6
A		nation, Holiday junction	
B	DNA repair mechani		
C	Oncogenes and Tu		
	oncogenes, tumor		
	mechanism of tumor		
3.4.1.0	*	rcinogens and other transforming agents	
Mode of	Theory/Jury/Practica	I/V1Va	
examination	GA 3.500	EME	
Weightage	CA MTE	ETE	
Distribution	30% 20%	50%	

Textbook/s*	Molecular biology of the Gene (4 th Edition),J .D. Watson, N. H.
	Hopkins, J. W. Roberts, J.A. Steitz and A.M.

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB103: Microbial Metabolism

Scho	ool: SBSR	Batch: 2020 – 22				
Prog	gram: M.Sc.	Current Academic Year: 2020-21				
Bra	nch:	Semester: 01				
Mic	robiology					
1	Course Code	MMB103				
2	Course Title	Microbial Metabolism				
3	Credits	4				
4	Contact Hrs	4-0-0				
	(L-T-P)					
	Course Status	Compulsory /Elective/Open Elective				
5	Course	1. Metabolic pathways in microorganisms, study of bi	oenergetics,			
	Objective	nature and significance of central metabolic pathwa	ys and also			
		their regulation.				
		2. Central metabolic pathways as the backbone of or	ther metabolic			
		events in the cell, such as metabolism of nucleoti	de, lipids and			
		protein.				
		3. Integration of all metabolic pathways.				
		4. Photosynthetic fixation of carbon and assimilation of some of the				
		vital inorganic metals such as phosphorous, sulphur and nitrogen.				
6	Course	After studying this course, students will be able to				
	Outcomes	CO1: Determine standard free energy, hydrolysis of ATP a	nd its role.			
		Further the significance of metabolic regulation				
		CO2: Evaluate metabolism of carbohydrates by different pa				
		CO3: Interpret the structure, functions and metabolism of c	lifferent types			
		of lipids				
		CO4: Differentiate between de novo and salvage pathways	for			
		biosynthesis of purines and pyrimidines				
		CO5: Determine photosynthetic fixation of carbon.	_			
		CO6: Analyze and study various metabolic pathways in mi				
7	Course	This course contains various metabolic pathways inside a r				
	Description	such as metabolism of carbohydrates, lipids, nucleic acids a				
		dioxide fixation. After studying course, students will be				
		various metabolic processes going inside the body of micro				
8	Outline syllabu		CO Mapping			
	Unit 1	Energy, Enzymes and Regulation				
	a	Energy and work, Laws of thermodynamics, Free energy	CO1, CO6			
		and reactions	G01 G01			
	b	Role of ATP in metabolism, Oxidation-reduction	CO1, CO6			
		reactions and electron carrier	G01 G01			
	С	Nature and significance of metabolic regulation,	CO1, CO6			
		Metabolic channelling				

Unit 2	Carbohydrat	Carbohydrate Metabolism				
a	Carbohydrates	s: Central path	ways of metabolism -	CO2, CO6		
	regulatory me	chanisms, Bio	energetics and significance	-		
	EMP and alter					
b HMP and oxidative pentose phosphate, TCA cycle,				CO2, CO6		
	Glyoxylate cy	Glyoxylate cycle				
c	Utilization	Utilization of sugars and polysaccharides,				
			intermediates / amino acid	ls /		
	acetyl-CoA; E	Electron Transp	oort Chain			
Unit 3	Lipid Metabo	olism				
a			e, properties; classification	of CO3, CO6		
	lipids, structu	re, properties, l	lipid composition of			
	microorganist					
b			f β-oxidation of fatty acids	, CO3, CO6		
	long chain fat					
c			fatty acids: saturated,	CO3, CO6		
	· ·	unsaturated, Biosynthesis of triglycerides, phospholipids,				
	sterols					
Unit 4	Nucleotide B					
a			dines and nucleotides	CO4, CO6		
b	•	•	line biosynthesis	CO4, CO6		
c	•	of nucleotide c	•	CO4, CO6		
Unit 5		y in Biosynthe				
a			O ₂ , Carboxylation phase,	CO5, CO6		
		ase, Regenerati	-			
b			saccharides, Assimilation of	of CO5, CO6		
	inorganic pho	sphorus, sulph	ur and nitrogen			
c		ion, Synthesis	of amino acids, Anapleroti	c CO5, CO6		
	reactions					
Mode of	Theory					
examination						
Weightage	CA	MTE				
Distribution	30%	20%	50%			
Textbook/s*	Nelson D.L., 0 2012.	Cox M. M., "P	rinciples of Biochemistry"	W. H. Freeman,		
Other	Stryer L., "Biochemistry", W. H. Freeman, 2010.					
References	Jain JL., "Prin	ciples of Bioc	hemistry", S. Chand Public	eations.		

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	103	FU4	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB104: Enzymology

Scho	ool: SBSR	Batch: 2020 – 22			
	gram: M.Sc.	Current Academic Year: 2020-21			
Bra		Semester: 1			
Microbiology					
1	Course Code	MMB 104			
2	Course Title	Enzymology			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course Status	Compulsory			
5	Course	With this Course the students			
	Objective	will acquire knowledge fundamental Knowledge of English	•		
		2. Will get useful exploitation of enzymes physical and kir	etic properties		
		3. Use Enzymes biocatalysts in the biotransformation			
		4. Know the Industrial, Research and Therapeutic a	pplications of		
		Enzymes.			
6	Course	After successfully completion of this course students will be able to:			
	Outcomes	CO1: Define and Classify Enzymes and its fundamentals propo			
		CO2: Examine Enzyme Kinetics, Perform and calculate enzyme specificity			
		and activity			
		CO3: Evaluate Enzyme Inhibition and its types, Competit	ive and Non-		
		competitive inhibition and its significance	1:6: 4:		
		CO4: Understand Allosteric Enzymes regulation, Covalent			
		Determine the role of co-enzymes, Enzyme constitution and in CO5: Evaluate Applications of Enzymes in industry, Enzyment			
		diagnostics. sensors for clinical processes and environment			
		analyses, Engineered Enzymes.	itai, Microbiai		
		CO6: To analyse Enzymes principles, properties, Kinetic	es Inhihition		
		Allosterism, Co-Enzymes, Engineered Enzymes, Application			
		various industries, research and therapeutic aspects	or Enzymes in		
7	Course	This course covers fundamentals to applications necessary for	the useful		
	Description	exploitation of enzymes both as tools for the enzymatic analysis			
	r	biocatalysts in the biotransformations on the unique structural-			
		properties of enzymes and its microbial industrial and research			
8	Outline syllabu		CO Mapping		
	Unit 1	Properties of Enzymes	CO1,6		
	A	Classification of enzymes, Structural conformations of	CO1,6		
		enzyme proteins			
	В	Enzymes as biocatalysts, Catalytic power, Activation energy	CO1,6		

С	Substrate specificity, Mechanisms of enzyme action, Ribozymes and abzymes.	CO1,6		
Unit 2	Enzyme Kinetics	CO2,6		
A	Factors affecting rates of enzymatic reactions (pH,	CO2,6		
	temperature, substrate concentration, enzyme concentration			
	and reaction time)			
В	Overview of Michaelis-Menten equation and its	CO2,6		
	transformation, Lineweaver-Burke plot			
С	Evaluation of kinetic parameters (K_M , V_{max}).	CO2,6		
Unit 3	Enzyme Inhibition	CO3,6		
A	Irreversible and reversible inhibition	CO3,6		
В	Competitive, non-competitive and un-competitive inhibition	CO3,6		
C	Enzyme inhibition kinetic studies, Determination of k_{cat} .	CO3,6		
Unit 4	Regulation of Enzyme Activity	CO4,6		
A	Allosterism, Kinetic analysis of allosteric enzymes	CO4,6		
В	Covalent modification, Feed-back inhibition, Membrane	CO4,6		
	bound enzymes			
C	Isoenzymes and marker enzymes, Constitutive and inducible	CO4,6		
	enzymes.			
Unit 5	Applications of Microbial Enzymes	CO5,6		
A	Microbial enzymes in textile, leather, wood industries and	CO5,6		
	detergents			
В	Enzymes in clinical diagnostics and Enzyme sensors for	CO5,6		
	clinical processes and environmental analyses			
С	Engineered enzymes, Enzymes as therapeutic agents.	CO5,6		
Mode of	Theory			
examination				
Weightage	CA MTE ETE			
Distribution	30% 20% 50%			
Textbook/s*	Palmer T., Bonner P. L., "Enzymes: Biochemistry,			
	Biotechnology, Clinical Chemistry", Woodhead Publishing,			
	2007.			
Other	1. Copeland R. A., "Enzymes: A Practical Introduction			
References	to Structure, Mechanism, and Data Analysis", Wiley,			
	2006.			
2. Guisán J. M., "Immobilization of Enzymes and Cells				
	(Methods in Biotechnology)", Humana Press, 2010.			

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	103	104	103
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	2	3	1
CO5	1	1	1	3	1
CO6	3	3	3	3	3

MSB124: IPR (Intellectual Property Rights)

Scho	ol : SBSR	Batch: 2020-22				
Prog	ram: M.Sc.	Current Academic Year: 2020-21				
Bran		Semester: 1				
Micr	obiology					
1	Course Code	MSB124				
2	Course Title	Intellectual Property Rights				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	To elucidate the ways of protection of intellectual property	and research with			
	Objective	the help of WIPO and its different treaties. To correlate dif				
	_	of IP protection and their enforcement in different countri	ies. To understand			
		different quality management issues related to biotechnology	gy			
6	Course	By the end of this course students will be able to:				
	Outcomes	CO1: Administer and follow the guidelines of WIPO.				
		CO2: Understand the patents, copyrights and trademarks.				
		CO3: Understand the character merchandising and franchis	sing.			
		CO4: Understand the utility of IPRs in biotechnology.				
		CO5: To correlate different instruments of IP protection and	l their enforcement			
		in different countries.				
		CO6: To elucidate the ways of protection of intellectual pro	perty and research			
		with the help of WIPO and its different treaties.				
7	Course	Intellectual property (IP) includes intangible creations of the				
	Description	and primarily encompasses copyrights, patents, and tra				
		includes other types of rights, such as trade secrets, publ				
		rights, and rights against unfair competition. Present	paper deals with			
		knowledge of types and protection of different IPRs.				
8	Outline syllabus	1	CO Mapping			
	Unit 1	Introduction to Intellectual Property Rights	CO1, CO4			
	A	The concept of intellectual property, Importance of IPR				
		in biotechnology				
	В	WIPO- history, mission and activities, structure,				
		administration.				
	С	Major International Instruments relating to the protection				
	77.4.4	of IP; Berne Convention; Paris Convention; TRIPS				
	Unit 2	Patents	G02 G02 G01			
	A	Patents-basic concepts; Non patentable inventions	CO2, CO3, CO4			
	В	Procedure for registration, Term of patent, Rights of				
		patentee				

С		Patent Infringement and its remedy; Compulsory licenses and Government use of patent			
Unit 3	Copyright	ts		CO2, CO3, CO4,	
A	Copyright	Copyright and related rights;			
В	Copyright	piracy and in	fringement; Remedies of		
	copyright 1	piracy and in	fringement		
C	Copyright	Issues in Dig	ital Environment		
Unit 4	Trademar	Trademarks			
A	Definitions	s, Signs whic	h serve as trademarks,		
В	Trademark	piracy, and	counterfeiting; Character		
	Merchandi	sing.			
C	Geographi	Geographical Indication; Difference between GI and			
	Trade Mar	Trade Marks			
Unit 5	IPR in ind	CO3, CO4,			
A		gies by differ	ent industries; E-Commerce and		
	IPR issues				
В			PR conflicts: Zara Vs Zara		
		Yahoo Vs Yal			
C			PR conflicts: AMUL Vs IMUL;		
	Paytm Vs	PayPal			
Mode of	Theory				
examination		T			
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	_	-	tual capital: organizational, stra	tegic and policy	
			v. press 2005 Teece, David J.		
Other	1	ues used in E	Bio product analysis, Butterworth H	einemann Ltd,	
References	2017.				
			ts, trademarks, copyright designs g		
	indications	s. Universal I	Law Publishing house by Wadehra,	B.L.	

Course Outcome	PO1	PO2	PO3	PO4	PO5
No					
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	2	1	3	1
CO5	1	1	1	1	3

CO6 3 3 3 3 3

MMB153: Microbial Diversity Lab

School: SBSR		Batch: 2020 – 22				
Pro	gram: M.Sc.	Current A	cademic Year	:: 2020-21		
Branch: Microbiology		Semester: 01				
1	Course Code	MMB153				
2	Course Title	Microbial	Diversity Lab			
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
	Course Status	Compulsor	ry/Elective			
5	Course Objective			solation from tissues and	determine enzyme	
				different proteins.		
6	Course Outcomes			of protein from the given		
				ment for the detection of from the given sample v		
		designed ex		e from the given sample v	with the help of	
				t the experiment.		
		_		by chromatographic techr	niques.	
				he experiment.		
7	Course	To Plan and carry out the experiment and to learn methods of cell				
	Description			determine enzyme activ	•	
		of different	proteins. Des	ign and conduct the expe	riment.	
8	Outline syllabus				CO Mapping	
	Unit 1			lls from mixed culture	CO4,CO6,CO8	
				shape and size of		
		microbial c	olonies			
	Unit 2	Gram Stain	Technique		CO1,CO8,CO6	
		Differential	and Cytologi	cal Staining	CO4,CO5,CO6	
	Unit 3	Acid Fast S	taining		CO2,CO5,CO6	
		Catalase Te	est		CO1,CO5,CO6	
	Unit 4	Carbohydra	nte Fermentati	on Test	CO4,CO5,CO6	
			rowth Curve			
Unit 5 Methylene Blue Reductase Test			se Test	CO7,CO5,CO6		
		Urease Tes	t		CO7,CO6	
	Mode of exam	Jury/Praction	cal/Viva			
	Weightage	CA	MTE	ETE		
	Distribution	60%	0%	40%		
_						

Textbook/s*	Practical manual of Biotechnology by Ritu	
	Mahajan, Jitendar Sharma, RK Mahajan, Vayu	
	Education of India	
Other References	Practical Microbiology by DK Maheshwari, S	
	Chand Publications.	

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB157: Molecular Biology Lab

Sc	hool: SBSR	Batch: 2020 – 22				
Pr	ogram: M.Sc.	Current Academic Year: 2020-21				
Br	anch:	Semester - 01				
M	icrobiology					
1	Course Code	MMB152				
2	Course Title	Molecular Biology Lab				
3	Credits	2				
4	Contact	0-0-3				
	Hours					
	(L-T-P)					
	Course Status	Compulsory				
5	Course Objective	1. To familiarize students with sterilization techniques and preparations etc.				
		2. To motivate students towards molecular techniques fo understanding.				
		3. To acquaint with principles, technical requirement, scientific and				
		commercial applications in molecular biology.				
		4. Design and manage techniques for understanding interplay amongst macromolecules.				
6	Course	CO1: Demonstrate safe laboratory practices and handle the equipment				
	Outcomes	safely.				
		CO2: Estimate the quality and quantity of nucleic acids.				
		CO3: Amalgamation of tools for plasmid vectors and DNA	uptake.			
		CO4: Perform in silico analysis for studying genome.				
		CO5: To design primers and carry out amplification of DN	A by PCR.			
		CO6: Complete acquaintance with principles, technic	al requirement,			
		scientific and commercial applications in molecular biology	у.			
7	Course	The aim of this course is to acquaint the students about the	e versatile tools			
	Description	and techniques employed in molecular biotechnology. The				
		provide students with a hands-on understanding of how				
		can be used to				
discover genetic differences and understand molecular fu			ction.			
8	Outline syllabu		CO Mapping			
	Unit 1	Practical based on introduction to molecular biology	CO1			
		lab				
	A	Good lab practices in molecular biology laboratory.				

B & C	Preparation of standard solutions for molecular biology				
	experiments				
Unit 2	Isolation of Nucleic acids and quantification	CO2			
A	Isolation of DNA from bacteria				
В	Isolation of RNA from bacteria				
С	Gel electrophoresis				
Unit 3	Practical related to preparation of plasmids and	CO3			
	transformations				
A	Plasmid isolation				
В	Preparation of competent cells				
С	Transformation of plasmid into competent cells				
Unit 4	Practical related to in silico analysis of genome	CO4			
A	Sequence similarity search with freely available tools				
В	Construction of phylogenetic tree				
С	Identification of motifs and domain in sequences				
Unit 5	Practical related to gene amplification	CO5			
A & B	Designing of primers for CDs and partial sequences				
С	Performing PCR reactions				
Mode of	Practical and/or Viva				
examination					
Weightage	CA MTE ETE				
Distribution	60% 0% 40%				
Textbook/s	Michael, R. G., Sambrook. J., "Molecular Cloning-A Labo	oratory Manual",			
	4th edition, Cold Spring Harbor Laboratory Press, 2012.				
Other	1. Davis, L. (2012). Basic methods in molecular biology. I	Elsevier.			
References	2. Chard, T., Work, T. S., & Work, E. (1987). Laborato	ry techniques in			
	biochemistry and molecular biology. Elsevier, Amsterdam				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB159: Enzymology Lab

L-T-P 0-0-3

Sch	ool: SBSR	Batch: 2020-	-22			
Pro	gram: M.Sc.	Current Academic Year: 2020-21				
	nch:	Semester: 01				
Mic	robiology					
1	Course Code	MMB159				
2	Course Title	Enzymology	Lab			
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
	Course Status	Compulsory				
5	Course			gh understanding of enzyme	es and enzyme	
	Objective	kinetics.			·	
		To make stud	lents learn the	working and operation of enz	ymes as well as	
		measurement	of enzyme act	ivity		
6	Course			de of action of salivary amyla		
	Outcomes			rd curve for calculation of enz		
				of industrially important ar	nylase enzyme	
			nitrosalicylic a			
				optima of amylase enzyme		
				perature optima of amylase en		
		_	students a tho	rough understanding of enzyn	nes and enzyme	
		kinetics.				
7	Course			to make students learn al		
	Description			vity in terms of IU and ka	ital as well as	
		•	g the kinetics of	of enzymes.	T ==	
8	Outline syllabus				CO Mapping	
	Unit 1	Salivary am			CO1	
			on of α-amylas		CO1	
	Unit 2		of Enzyme Ac	•	CO2	
		-	of standard cur		CO2	
	Unit 3	Assaying the	e activity of in	dustrially important	CO3	
		amylase			CO3	
			3'5'- Dinitrosalicylic acid method			
	Unit 4		pH optima			
				a of amylase enzyme	CO4	
	Unit 5	Temperatur			CO5	
			the temperatu	re optima of amylase	CO5	
		enzyme				
	Mode of exam	Jury/Practica		I		
	Weightage	CA	MTE	ETE		
	Distribution	60%	0%	40%		

Textbook/s*	
Other	
References	

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	POI	102	PO3	PO4	103
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	2	3	1
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MSB116: Bioinstruments

Scho	ol : SBSR	Batch : 2020–22	
Prog	ram: M.Sc.	Current Academic Year: 2020-21	
Bran	ch:	Semester: 02	
Biote	chnology		
1	Course Code	MSB116	
2	Course Title	Bioinstruments	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
5	Course Objective	Allow students to familiarize themselves with the requirements of biomedical instrumentation and biotechnolo for enabling their intended use for research and industrial app	gy tools
6	Course Outcomes	 Perform experiments based on electrophoresis for se proteins and nucleic acids. Purify compounds from a mixture using column, ion-exaffinity chromatography, HPLC, affinity and gas chromated. Illustrate organelle and protein localization by microscopy. Isolate cells by using fluorescence activated cell sorting (Famagnetic activated cell sorting (MACS) and compadisruption techniques. Conduct enzymatic and end-point assays using spectrophotography spectroscopy techniques to understand the structure biological material. To gain thorough knowledge on biomedical instrumentation futuristic research possibilities 	achange, ography. ACS) or are cell tometer, cture of
7	Outline syllabus		
7.01	Unit 1	Electrophoresis	
7.02	Unit 1a	Principle of electrophoresis	1
7.03	Unit 1b	Agarose gel and 2D-gel electrophoresis: Principle and applications,	CO1
7.04	Unit 1c	Capillary and Immunoelectrophoresis: Principle and applications	
7.05	Unit 2	Chromatography	
7.06	Unit 2a	Paper Chromatography, TLC]
7.07	Unit 2b	Column chromatography. Ion-exchange and Affinity chromatography	CO2
7.08	Unit 2c	Instrumentation and applications HPLC: Instrument setup and working	
7.09	Unit 3	Microscopy	
7.10	Unit 3a	Principle of microscope, Optical microscopy	CO3
7.11	Unit 3b	AFM and Fluorescence Microscopy,	

7.12	Unit 3c	Electron Microscopy	
7.13	Unit 4	Cell Separation Techniques and Centrifugation	
7.14	Unit 4a	Cell isolation and cell disruption techniques	
7.15	Unit 4b	FACS and MACS- Principle and applications; Preparative centrifugation	CO4
7.16	Unit 4c	Differential and density gradient centrifugation, Ultracentrifugation	
7.17	Unit 5	Spectrometry and Spectroscopy	
7.18	Unit 5a	Spectroscopy- Absorption and fluorescence, Atomic and Raman spectroscopy	CO5
7.19	Unit 5b	Mass spectrometry and NMR: Instrumentation and working	
7.20	Unit 5c	X-ray crystallography: crystal preparation, working and uses.	
8	Course Evaluati		
8.1	Course work: 30	-	
8.2	Attendance None		
8.3	Quizzes Three best quizzes out of Five 30-minutes quizzes in lecture hours; 10 percent		
8.4	Presentations	One: 10 percent	
8.5	Assignments	Three best out of five; 10 percent	
8.6	MST	One; 20 percent	
8.7	End-term exami	nation: 50 percent	
9	References	*	
9.1	Textbook	1. Wilson K. and Walker J., "Principles and Technic Biochemistry and Molecular Biology", Cambridge Un Press, 2010.	-
9.2	Other references 1. Ninfa A.J., Ballou D.P. and Benore M., "Fundamental Laboratory Approaches for Biochemistry and Biotechnology", Wiley, 2009. 2. Sheehan D., "Physical Biochemistry: Principles and Applications", Wiley, 2009		

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	1
CO6	3	3	3	3	3

MMB110: Mycology, Phycology and Virology

Scho	ool: SBSR	Batch: 2020 – 22				
Prog	gram: M.Sc.	Current Academic Year: 2020-21				
Brai		Semester: 02				
Mic	robiology					
1	Course Code	MMB110				
2	Course Title	Mycology, Phycology and Virology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	1. To prepare students with a basic understanding of algal, fu	ingal and viral			
	Objective	characteristics				
		2. To help the students understand the vegetative, asexual and s	_			
		life cycles in algae and fungi as well as lytic and lysog	genic mode of			
		reproduction in virus.				
		3. To impart knowledge to students about different types of viruses and their				
		applications				
	4. To explain the economic importance of algae and fungi in the ecosystem					
6	Course	After successfully completion of this course students will be able to:				
	Outcomes	CO1: To understand the basics of phycology, mycology and virology				
		CO2: To understand the mechanism of reproduction in algae, fungi and				
		viruses				
		CO3: Describe the life cycle of Animal Viruses, Bacterial and F				
		CO4: Detailed overview on Modes of diagnosis of viruses and t	their			
		applications				
		CO5: Economic Importance of Algae and fungi				
	~	CO6: Learn mechanical dissemination of plant viruses				
7	Course	The course gives an insight into the morphology, physiology an				
	Description	reproduction of selected algae, fungi and viruses as well as their				
		environment, agriculture, biotechnology, industry and disease.	-			
		foundation for careers in microbiology, food industry, environn	nent and			
0	0 41 11 1	biotechnology.	GO M :			
8	Outline syllabus		CO Mapping			
	Unit 1	Unit I: Introduction to Phycology, Mycology and virology				
	A	Introduction to Phycology: Occurrence and distribution,				
	D	physiology, pigment systems Introduction to Mysiology, Occurrence and distribution				
	В	Introduction to Mycology: Occurrence and distribution,	CO1			
	C	General characteristics, Nutrition				
	С	Introduction to Viruses: Properties of virus: morphology and				
		ultra-structure; Classification and nomenclature of viruses;				
		Concept of viroids, virusoids, and prions				

OIII	t 2	Reproduction in algae, fungi and viruses					
A		Reproduction in algae: Reproduction and life cycle of any three					
		representative species from the various classes of algae					
В		Reproduction in fungi: Generalized life cycle of any three					
		representative members from various classes of fungi	CO2				
C		Replication strategies in viruses: Concept of early and late					
		proteins; Mode of transmission in plants and animals; Cell to					
	cell transmission, Persistent and non-persistent mod						
		transmission					
Unit	t 3	Animal Viruses, Bacterial and Plant Viruses					
A		Animal Viruses: Lifecycle of DNA viruses (Adenoviruses,					
		Parvoviruses); Lifecycle of RNA viruses (Paramyxo, Toga,	CO3				
		Rota); Lifecycle of retroviruses; Oncogenic viruse, Viral					
		· · · · · · · · · · · · · · · · · · ·					
	. 4	· · · · · · · · · · · · · · · · · · ·					
	t 4						
			G 0 4				
B			CO4				
	t 5						
A							
D	B Role of cyanobacteria and selected microalgae in agriculture-						
В							
		CO5					
C							
		· · · · · · · · · · · · · · · · · · ·					
Mod	de of						
+		CA MTE ETE					
		•					
Othe	· · · · · · · · · · · · · · · · · · ·						
	References Press Pvt ltd., Delhi.						
Modexar Wei Dist Text	de of mination ghtage cribution tbook/s*	vaccines. Bacterial: Bacteriophages: lifecycle- Lytic and Lysogenic; Plant Viruses: Lifecycle of DNA viruses (Geminivirus); Lifecycle of RNA virus (Tobacco mosaic virus). Modes of diagnosis of viruses and their applications Methods of assay: Microscopy, Histopathological changes Infectivity assay (plague method, end point method); Serology based assay; Nucleic acid-based assay. Application of viral vectors in cloning and expression. Economic Importance of Algae and fungi Algae as pollution indicators, eutrophication agent and role in bioremediation; Role of algae in global warming and environmental sustainability Role of cyanobacteria and selected microalgae in agriculture-biofertilizer; Production of algal pigments, biofuels and hydrogen. Economic Importance of Fungi: Mycorrhiza: ecto-, endo-, ectendo-VAM; Fungi as insect symbionts, fungi as biocontrol agents; Potential application in Agriculture, environment, industry; Role of fungi in Biodeterioration of wood, paper, textile; Myxotoxins, Theory/Jury/Practical/Viva CA MTE ETE 30% 20% 50% 1. Alexopoulos, C.J. and C.W. Mims 1979. Introduction to Mycology (3rd Ed.) Wiley Eastern Ltd N.Delhi 2. Lee, R.E. 2008. Phycology, Fourth Edition, Cambridge University Press, USA. 3. Kumar, H.D. 1999. Introductory Phycology. Aff. East-west	CO3				

4.	Webster, J. and Weber, R. 2007 Introduction to Fungi. 3rd	
	edition, Cambridge University Press, Cambridge.	
5.	Carter J. and Saunders V., (2007) "Virology: Principles and	
	Applications", Wiley	

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	2	3	2	1	1
CO3	1	1	3	1	1
CO4	1	1	2	3	1
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MMB107: Bacteriology

Sch	ool: SBSR	Batch: 2020 – 22			
Pro	gram: M.Sc.	Current Academic Year: 2020-21			
Bra	nch:	Semester: 02			
Mic	robiology				
1	Course Code	MMB107			
2	Course Title	BACTERIOLOGY			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course Status	Compulsory /Elective/Open Elective			
5	Course	1. Understand the bacterial size, shape, arrangement ar	nd internal &		
	Objective	external structures, bacterial growth under optimized	d conditions and		
		its qualitative/ quantitate analysis,			
		2. Describe different modes of reproduction found in b			
		changes occurring in bacteria as evolutionary mecha			
		3. Identify the applications of beneficial bacteria and c	ontrol		
		overgrowth of harmful bacteria.	11		
6	Course	CO1: Identify bacteria on the basis of size, shape, arrangement	ent and internal &		
	Outcomes	external structures.	4		
		CO2: Demonstrate bacterial growth under optimized condi	tions and analyse		
		it on qualitative & quantitate parameters.	haatania		
		CO3: Understand different modes of reproduction found in			
		CO4: Examine the different possibilities of genetic cha bacteria as evolutionary mechanisms.	ilges occurred in		
		CO5: Analyse the application of beneficial bacteria and cont	rol overgrowth of		
		harmful bacteria.	ioi overgrowm or		
		CO6: Understand different aspects of bacterial life system	s and relate these		
		aspects with importance in live practices.	s una reluce these		
7	Course	This course will cover the major topics in bacteriology, in	ncluding bacterial		
	Description	size, shape, arrangement and internal & external structures	_		
	r	under optimized conditions and its qualitative/ quantitate a	_		
		modes of reproduction found in bacteria, genetic changes occ	•		
		as evolutionary mechanisms, the application of beneficial ba	\mathbf{c}		
		over growth of harmful bacteria.			
8	Outline syllabu	S	CO Mapping		
	Unit 1	Morphology and Fine structure of Bacteria	CO1, CO6		
	A	Size, shape and arrangement of bacterial cells			
	В	Structures external to the bacterial cell wall; cell wall			
		composition of Gram Positive and Gram-Negative Bacteria			
	C	Other organelles internal to cell wall; spore and cysts.			
	Unit 2	Growth and Nutrition of Bacteria	CO2, CO6		

A	Normal growth cycle (growth curve) of Bacteria; Factors		
	responsible for bacterial growth, synchronous growth;		
	Continuous culture, Chemostat.		
В	Quantitative measurement of bacterial growth (direct		
	microscopic, plate count method); Method of isolating pure		
	culture, pour plate and spread plate technique		
C	Nutritional requirements and types of bacteria.		
Unit 3	Reproduction	CO3, CO6	
A	Bacterial reproduction-asexual and sexual		
В	Modes of cell division; Binary fission; Budding,		
	fragmentation		
С	Formation of conidiophores; septum formation.		
Unit 4	Bacterial Genetics	CO4, CO6	
A	Phenotypic changes due to environmental Alterations;		
	Genotypic changes; Mutation Types; Bacterial		
	Recombination; Conjugation		
В	Molecular mechanism of gene transfer by conjugation; Hfr		
	strains, mapping bacterial genomes using Hfr strains;		
	Transduction; Bacterial Transformation, Natural		
	transformation and competence		
С	Ti plasmid transfer system and its application in creating		
	transgenics.		
Unit 5	Hypersensitivity and Autoimmunity	CO5, CO6	
A			
	industry)		
В	Physical and chemical methods of control of Bacteria		
C	Mode of action of Anti-microbial agents, factors		
	responsible for controlling microbes, Physical and		
	chemical agents.		
Mode of	Theory /Jury/Practical/Viva		
examination			
Weightage	CA MTE ETE		
Distribution	30% 20% 50%		
Textbook/s*	Pelezar, M.J. Reid, R.D. and E.C.S. Chan, (1986)		
	Microbiology - Tata Mc Graw Hill, New Delhi.		
Other	Mackie and McCartney (1996) Medical Microbiology,		
References	Churchill Livingstone		

CO1	2	1	2	2	1
CO2	1	3	2	3	2
CO3	2	2	3	1	3
CO4	2	2	1	3	2
CO5	1	2	3	2	3
CO6	3	3	3	3	3

MMB108: Recombinant DNA Technology

L-T-P: 4-0-0 Credit - 4

Sch	ool : SBSR	Batch: 2020 – 22			
Pro	gram: M.Sc.	Current Academic Year: 2020-21			
Bra	nch:	Semester: 02			
Mic	crobiology				
1	Course Code	MMB108			
2	Course Title	Recombinant DNA Technology			
3	Credits	4			
4	Contact Hours (L-T-P)	4-0-0			
	Course Status	Compulsory			
5	Course Objective	 To illustrate creative use of modern tools and techniques for manipulation and analysis of genomic sequences. To train students in strategizing research methodologies employing genetic engineering techniques. 			
6	Course Outcomes	 After successfully completion of this course students will be able to: CO1: Recognize the ability of restriction endonucleases and other modification enzymes for genetic engineering. CO2: Apply different types of cloning and expression vectors for genetic transformation. CO3: Categorize libraries for gene isolation and use different strategies for transformation of DNA. CO4: Reframe and screen constructed libraries for differentiating between transformants and non-transformants for estimating molecular changes. CO5: Perform gene amplification using polymerase chain reaction, demonstrate DNA sequencing methods and analyse the expression of gene using RAPD, RFLP, microarray and blotting techniques. CO6: Create and formulate experiments for integrating RDT techniques for analysing manipulations and expression. 			
7	Course Description	The aim of this core-course is to acquaint the students to versatile tools and techniques employed in genetic engineering and recombinant DNA technology. A sound knowledge on methodological repertoire allows students to innovatively apply these in basic and applied fields of biological research. This course provides theoretical bases to properties and applications of versatile DNA modifying enzymes, cloning strategies, vector types, host genotype specificities for selection and screening of recombinants and/or recombinant transformants. Students will also be introduced to prominent nucleic acid labeling techniques. Introduction to various types of vectors viz. cloning, transformation, expression; and also vectors for genomic and cDNA library and whole genome sequencing will be provided. A critical appraisal of methods for sequencing of cloned			

	1					
		genomic fragments will also be covered. This course may be deemed as a				
		platform for introduction of more advanced cutting-edge technologies that				
		essentially are an amalgamation of basic techniques combined in diverse				
		forms.				
8	Outline syllabus			CO Mapping		
	Unit 1	Enzymes in r-DNA Technolog	gv	CO1, CO6		
	A	Introduction to gene cloning,		CO1		
		ligases, alkaline phosophatase	Ź			
	В		rminal deoxynucleotidyl	CO1		
		transferase, S1 nuclease, DNA				
		DNA polymerase III, Klenow f				
	С	Taq DNA polymerase, RNas	-	CO1, CO6		
		transcriptase, poly (A) polymer				
	Unit 2	Vectors for Gene Cloning and	· ·	CO2, CO6		
	A	Essential requirements of c		CO2		
		Isolation of plasmid DNA; crite	_	JU2		
	В	_	on bacterial plasmids,	CO2		
		bacteriophage vector for E. Co.	·			
		insertion vectors, M13 bacterio	=			
	С	Phagemids and cosmid vector		CO2, CO6		
		plant cells-Ti Plasmid; shuttle		CO2, CO0		
	Unit 3	DNA Libraries	CO3, CO6			
	A Generation of sticky and blunt ends for cloning, Linkers			CO3		
		and adaptors, construction of genomic library				
	В	construction of cDNA librarie	CO3			
	B	labelling	CO3			
	С	Methods for gene transfer-e	CO3, CO6			
		microinjection, liposome media	203, 200			
	Unit 4	Screening and Selection	CO4			
	A Methods of selection and screening of recombinant DNA			CO4		
	В	Introduction to antisense	technology, Molecular	CO4		
		mechanism of anti-sense technology	0.0			
	С	Application of anti-sensing te		CO4, CO6		
		their significance in cloning	omiologi, 10002 ymos and	201, 200		
	Unit 5	Techniques in Genetic Engine	eering	CO5, CO6		
	A	Different types of blotting tech		CO5		
		and western	The second of th			
	В	RAPD, RFLP, micro array		CO5		
	C	Nucleic acid sequencing (Ma	CO5, CO6			
		Sanger's method), Polymerase	2 - 2 , 2 3 0			
		applications				
	Mode of	Theory				
	examination	- ,				
	Weightage	CA MTE E	ETE			
	Distribution		0%			
	Distribution	3070 2070 3	V /U			

Textbook/s*	S. B. Primrose (1994). Molecular Biotechnology (2nd
	Edn.), Blackwell Scientific Publishers, Oxford.
Other	1. J. A. Davies and W. S. Roznikolf (1992)
References	Milestones in Biotechnology. Classic papers on
	genetic Engineering, Butterworth-Helnemann,
	Boston.
	2. S. M. Kingsman and A. J. Kingsman (1998)
	Genetic Engineering. An Introduction to gene analysis and exploitation in eukaryotes, Blackwell
	Scientific Publications.Oxford.
	3. Bernard R. Glick, Jack J. Pasternak, Cheryl L.
	Patten (2010) Molecular Biotechnology Principles
	and Applications of Recombinant DNA, American
	Society for Microbiology.

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB125: BIOINFORMATICS

L-T-P: 4-0-0 Credit – 4

School: SBSR	Batch: 2020-22				
Program:	Current Academic Year: 2020-21				
M.Sc.					
Branch:	Semester: 02				
Microbiology					
1	Course Code				
2	Course Title	Bioinformatics			
3	Credits	4			
4	Contact Hours (L-T- P)	4-0-0			
5	Course Objective	To acquire an advanced knowledge of bioinformatics designing and analyzing <i>in silico</i> experiments a techniques used for molecular modeling.	and different		
6	Course Outcomes	techniques used for molecular modeling. After successfully completion of this course students will be able to: CO1: Understand about overview of bioinformatics scope and their disciplines. Generation of large-scale data in the field of molecular biology. CO2: Review of database source, database management system, Biological databases and their classification. Sequences databases and specialized databases.			
7	Outline syllabus:				
7.01	Unit A	Introduction to Bioinformatics			
7.02	Unit A Topic 1	Scope and importance			
7.03	Unit A Topic 2	Large scale generation of molecular biology data	CO1, CO6		
7.04	Unit A Topic 3	Different fields in bioinformatics			

7.05	Unit B	Biological Databases				
7.06	Unit B Topic	Introduction of Biological Databases				
7.00	Unit B Topic	CO2, C				
7.07	2	Structural and Sequence database	202, 200			
7.07	Unit B Topic	Specialized Genome databases and Structure				
7.08	3	databases				
7.09	Unit C	Data Storage and retrieval				
	Unit C Topic	Controlled vocabulary				
7.10	1	·				
		Introduction to Metadata; File Storage, File	CO3, CO6			
	Unit C Topic	Format (FASTA, GenBank, Swiss-Prot, DDBJ and	003, 000			
7.11	2	PDB)				
7.10	Unit C Topic	Boolean Search and Fuzzy Search				
7.12	3					
7.13	Unit D	Sequence-alignment Related Problems				
7 14	Unit D Topic	Sequence databases, Similarity matrices, pairwise				
7.14	I Init D Tonio	alignment and BLAST	CO4, CO6			
7 15	Unit D Topic 2	Sequence assembly and multiple sequence				
7.15	Unit D Topic	alignment Clustel and phylogenetics, distance based				
7.16	3	Clustal and phylogenetics, distance based approaches, parsimony				
7.10	3	Sequence pattern analysis & System-wide				
7.17	Unit E	Analysis				
7.17	Cint 12	Structure of Prokaryotic and Eukaryotic gene,				
		Basic and advanced sequencing (Maxam–Gilbert				
	Unit E Topic	sequencing, Sanger sequencing, NGS,				
7.18	1	Pyrosequencing)	G05 G06			
		Gene finding, composition-based finding,	CO5, CO6			
	Unit E Topic	sequence motif-based				
7.19	2	finding				
		Pattern Matching, Regular expression,				
	Unit E Topic	Transcriptomics, Microarray technology and				
7.20	3	expression profiles				
8	Course Evalua					
8.1	Course work:					
8.11	Attendance	None				
8.12	Homework	Three best out of 4 assignments: 20 marks				
8.13	Quizzes	Two 30-minutes surprise quizzes in lecture hours: 10 r	narks			
8.14	Projects	None				
8.15	Presentations					
8.16	Any other					
8.2		MTE One, 20 percent				
8.3	1	End-term examination: 50 percent				
9	References					

		Jin X., "Essential Bioinformatics", Cambridge University Press,
9.1	Text book	2006.
		1. Mount D.W., "Bioinformatics: Sequence and Genome Analysis",
9.2		Cold Spring Harbor Laboratory Press, 2004.
		2. Baxevanis A., Ouellette F.B.F., "Bioinformatics: A practical
	Other	guide to the analysis of genes and proteins", Wiley-Interscience,
	References	2004.
		3. Bourne P.E., Gu J., "Structural Bioinformatics", Wiley-
		Blackwell, 2009.

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB156: Recombinant DNA Technology Lab

L-T-P: 0-0-3 Credit - 2

Sch	nool: SBSR	Batch: 2020 – 22		
Pro	ogram: M.Sc.	Current Academic Year: 2020-21		
Bra	anch:	Semester: 2		
Mi	crobiology			
1	Course Code	MMB156		
2	Course Title	Recombinant DNA Technology Lab		
3	Credits	2		
4	Contact	0-0-3		
	Hours			
	(L-T-P)			
	Course	Compulsory		
	Status			
5	Course	1. To illustrate creative utility of modern tools and techniques for		
	Objective	manipulation of genomic sequences.		
		2. To expose students to application of recombinant DNA technology in		
		biotechnological research.3. To train students in strategizing research methodologies employing		
		genetic engineering techniques.		
		4. To acquaint the students for analysing modification carried out in		
		genomic sequences.		
6	Course	CO1: Development of an ability to design and conduct genetic engineering		
	Outcomes	experiments.		
		CO2: Development of an ability to analyse and interpret data of modified		
		genomic/proteomic nature.		
		CO3: Amalgamation of tools for creating diversification in genome.		
		CO4: Perform time course analysis of gene expression		
		CO5: Development of research aptitude and technical skills to secure a job		
		in genetic engineering.		
		CO6: To isolate RNA and make cDNA		
7	Course	The aim of this course is to acquaint the students about versatile tools and		
	Description	techniques employed in genetic engineering. A sound knowledge on		
		methodological repertoire allows students to innovatively apply these in		
		basic and applied fields of biological research. This course provides applied		
		part of the theory by utilizing DNA modifying enzymes, cloning strategies,		
		vector types, host genotype specificities for selection and screening of		
		recombinants and/or recombinant transformants. This course may be		

		deemed as a foundation course serving as a platform for more advanced cutting-edge technologies that esse			
		amalgamation of basic techniques combined in diverse form	ns and sequence.		
8	Outline syllab	us	CO Mapping		
	Unit 1	Practical based on introduction to genetic engineering lab	CO1		
	A	Aseptic conditions maintenance in laboratory			
	B & C	Conditions optimization for growth of bacterial culture for experiments			
	Unit 2	Practical related to preparation of plasmids and	CO2		
		transformations			
	A				
	В	Preparation of competent cells			
	С	Transformation of plasmid into competent cells			
	Unit 3	Practical related generation of cohesive and blunt ends	CO3		
	A & B	Restriction of plasmid with cohesive end and blunt cutters			
		a			
	С	Analysing the generated blunt/sticky ends using			
	77. 1. 4	electrophoresis	904		
	Unit 4	Practical related to in silico analysis of genome	CO4		
	A	Sequence similarity search with freely available tools	_		
	В	Construction of phylogenetic tree	_		
	C	Identification of motifs and domain in sequences			
	Unit 5	Practical related to PCR	CO5		
	A & B	Designing of primers for CDs and partial sequences			
	С	Performing PCR reactions			
	Mode of examination	Practical and/or Viva			
	Weightage	CA MTE ETE			
	Distribution	60% 0% 40%			
	Textbook/s	Michael, R. G., Sambrook. J., "Molecular Cloning-A			
		Laboratory Manual", 4th edition, Cold Spring Harbor Laboratory Press, 2012.			
	Other	Frederick. M., Ausubel., Brent R., Kingston. R. E., Moore	;		
	References	D.D., Seidman J. G., John A. Smith and Kevin Struhl "Current Protocols in Molecular Biology", John Wiley& Son, Inc., 2003.			

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	2	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB160: Bio-Instrumentation Lab

L-T-P: 0-0-3 Credit – 2

Scho	ool: SBSR	Batch: 2020-22				
Prog	gram: M.Sc.	Current Academic Year: 2020-21				
Brai	nch:	Semester: 02				
Mici	robiology					
1	Course Code	MSB160				
2	Course Title	Bio-Instrumentation Lab				
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
	Course Status	Compulsory/Elective				
5	Course	To give students a thorough understanding of tools and	techniques in			
	Objective	Biomedical and Biotechnology Laboratories.				
		To make students learn the working and operation of various				
		biotechnological instruments				
6	Course	CO1: Operate autoclave, Laminar Air flow and Hot air over	en and sterilize			
	Outcomes	glass and plasticwares.				
		CO2: Operate centrifuge and refrigerated centrifuge and separate cell				
		components.				
		CO3: Separate and visualize nucleic acids and prote	eins using gel			
		electrophoresis.				
		CO5: Separation of pigments, drugs, emine agids and h				
		CO5: Separation of pigments, drugs, amino acids and he chromatographic techniques.	ormones using			
		CO6 : Operation and working of different instruments and	d bioanalytical			
		techniques	a bibanaryticar			
7	Course	This course is designed to make students learn about various	ous instruments			
,	Description	and techniques of biomedical and biotechnology laborator				
		enable them to use and apply these techniques and equip	•			
		experimental problems.				
8	Outline syllabus	1	CO Mapping			
	Unit 1	Practical based on Sterilization	CO1			
		To learn the working of an autoclave.	CO1			
		To learn the working of a laminar air flow.				
		To sterilize glasswares using hot air oven.				
	Unit 2	Practical related to centrifuge	CO2			
		Using pH meter	CO2			
		Working and principle of incubator shaker				
		Working of refrigerated centrifuges				
	Unit 3	Practical related to gel electrophoresis	CO3			
I		Separation of DNA using AGE	CO3			

	Separation	of proteins usin	g PAGE			
Unit 4	Practical re	Practical related to spectrophotometer				
	Principle ar	Principle and working of a spectrophotometer				
	Measuring	concentration o	f protein using			
	spectrophot	ometer				
Unit 5	Practical re	Practical related to chromatography				
	Use of paper	Use of paper chromatography for separation of plant				
	pigments	pigments				
Mode of exam	Jury/Practica	Jury/Practical/Viva				
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Textbook/s*	Wilson K. a	nd Walker J., "	Principles and Techniques of	Biochemistry		
	and Molecul	and Molecular Biology", Cambridge Press, 2010.				
Other	1. Cottenil	1. Cottenil R.M.S., "Biophysics: An Introduction", John Wiley and				
References	Sons, 200	Sons, 2002.				
	2. Gupta A.,	, "Instrumentati	on and Bioanalytical Techniq	ues", Pragati		
	Prakashan, 2	009.				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB160: Mycology, Phycology and Virology Lab

L-T-P: 0-0-3 Credit – 2

Scho	ool: SBSR	Batch: 2020-2022				
Prog	ram: M.Sc	Current Academic Year: 2020-2021				
Brar	ich:	Semester: 2				
Micr	obiology					
1	Course Code	MMB160				
2	Course Title	Mycology, Phycology and Virology Lab				
3	Credits	2				
4	Contact Hours (L-T-P)	0-0-3				
	Course Status	Compulsory				
5	Course Objective	 To train the students in microscopy of thallus structure of algae To develop understanding of reproductive structures of algae To learn about stages of cellular processes and cell cycle To understand economic importance of algae and fungi To develop knowledge of various viruses infecting plants To give students a thorough understanding of various to detect viruses in infected plant tissues 	of fungi and			
6	Course Outcomes	CO1: Understand the morphological characteristics of algae under microscope CO2: Recollect the methods of algal and fungal culture and of bioactives CO3: Appreciate the industrial and social importance of fungal conditions and safety measures in Virology laboratory CO5: Understanding of various techniques to detect viruses plant tissues CO6: Learn mechanical dissemination of plant viruses	extraction gi and algae			
7	Course Description	The course gives an insight into the morphology and phaselected algae and fungi, their role in the environment, biotechnology, industry and disease. It provides a practical for careers in microbiology, food industry, envirous biotechnology. It also imparts knowledge of various virus plants and a thorough understanding of various technique viruses in infected plant tissues.	agriculture, I foundation nment and les infecting			
8	Outline syllabus		CO Mapping			
	Unit 1	Experiment related to fungal characteristics	CO1			
		To examine bread mould under the microscope				
		To compare morphological features (microscopic) of different classes of fungi				

Unit 2	Experin	nent related to	algal characteristics	CO1		
	To comp	are morphologi	cal features (microscopic) of			
	different	classes of algae				
Unit 3	Experin	Experiment explaining viral characteristics				
	Safety m	easures in virol	ogy lab			
	Detectin	g virus antigens	through ELISA/dot blots			
Unit 4	Experin	Experiment demonstrating virus infecting plants				
	Identific	ation of various	virus infected plant tissues			
	PCR to	detect DNA of	banana bunchy top DNA virus			
Unit 5	Experin	Experiment demonstrating economically important				
	fungi an	fungi and algae To examine edible mushroom under the microscope To inspect aquatic algae/extract economically important				
	To exam					
	To inspe					
	pigment	from algae				
Mode of	Practical	/Viva				
examination						
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text book/s*	1. Lee, R	.E. 2008. Phycolo	ogy, Fourth Edition, Cambridge			
	Universit	University Press, USA.				
	2. The E	lements of Plan	t Virology- Basic Concepts and			
	Practical	Class Exercise	s by S.J. Kolte and A.K. Tewari			
Other	Lab man	ual				
References						

LIST OF EXPERIMENTS

- 1. To examine bread mould under the microscope
- 2. To examine edible mushroom under the microscope
- 3. To compare morphological features (microscopic) of different classes of fungi
- 4. To compare morphological features (microscopic) of different classes of algae
- 5. To inspect aquatic algae/extract economically important pigment from algae
- 6. Safety measures in virology lab
- 7. Identification of various virus infected plant tissues
- 8. Detecting virus antigens through ELISA/dot blots
- 9. PCR to detect DNA of banana bunchy top DNA virus

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB201: Environmental Microbiology & Waste Management

L-T-P: 4-0-0 Credit: 4

	P: 4-U-U	Credit: 4			
Scho	ool: SBSR	Batch: 2020-22			
Prog	gram: M.Sc.	Current Academic Year: 2020-21			
Branch:		Semester: 3			
Microbiology					
1	Course Code	MMB201			
2	Course Title	Environmental Microbiology & Waste Management			
3	Credits	4			
4	Contact Hours (L-T-P)	4-0-0			
	Course Status	Compulsory			
5	Course Objective	 This course provides a comprehensive introduction to microbial ecology and fundamentals of microbial diversity. The course is designed to give students an up-to-date understanding of a wide array of applications of microorganisms in maintaining biogeochemical factors. This course also focuses on concepts of applied environmental microbiology and how microbes can be used for various industrial/ 			
		research applications. 4. The course also highlights the modern methods of waste management and significant role of microorganisms in waste and resources management.			
6	Course Outcomes	After the successful completion of this course students will be able to: CO1: Comprehend ecological interactions and role of microorganisms played in there and discuss microbial ecology concepts including methods of assessing microbial diversity and studying microbial populations. CO2: Analyze the role of microorganisms in biogeochemical cycles. CO3: Classify different methods of bioremediation and use of microorganisms and plasmids in bioremediation CO4: Explain the commercial application of microorganisms in extraction of metals, oil and in production of biogas. CO5: Identify different methods of waste management and how different microbial metabolic processes can assist in waste management. CO6: To provide a comprehensive introduction to microbial ecology and fundamentals of microbial diversity.			
7	Course Description	The 'Environmental Microbiology and Waste Management' is a course designed to give students knowledge about basic concepts of environment/ ecosystem and the role microorganisms play in maintaining the ecosystem balance. This course throws light on various unconventional uses of microorganisms in various industries and environmental benefits of use of the microorganisms. This course			

		also outlines various biological methods of waste manag	gement and				
8	Outling gylloby	application of microbes in bioremediation.	CO Monning				
®t	Outline syllabu Unit 1	Microbial Ecology	CO Mapping				
r	A						
1	Α	Ecological Concepts: Introduction to ecosystem; types of ecosystem; food chain and food web; biological					
		magnification and eutrophication					
	В	Microbial diversity: estimates of total number of species;	CO1				
	B	Shannon and Simpsons indices of microbial diversity,					
		Unculturable bacteria					
	С	Culture independent molecular methods for					
		understanding microbial community- Partial and whole					
		community analysis					
	Unit 2	Role of Microorganisms in Environment					
	A	Role of microbes in biogeochemical cycles: nitrogen					
		involved in different stages of nitrogen cycle	CO2				
	В	Carbon, Phosphorous and Sulphur cycle	CO2				
	C	Production of microbial bio-fertilizers, bio-pesticides,					
		soil conditioners to enhance crop yields.					
	Unit 3	Role of Microorganisms in Remediation					
	A	Bioremediation- in situ and ex situ techniques	4				
	В	Biodegradation of recalcitrant compounds-lignin,	CO2				
	~	pesticides; Bioaccumulation of metal and detoxification	CO3				
	С	Degradation of xenobiotics by microorganisms;					
	T T •	Degradative plasmids					
	Unit 4	Role of Microorganisms in Mining and Energy					
	A	Production Microbial technology in mining Biologching					
	A	Microbial technology in mining: Bioleaching; Biomining; Bio-beneficiation					
	В	Recovery of oil and MEOR; Bioconversions					
	С	Microbial technology for energy production- Concept of	CO4				
	C	microbial fuel cell- principle; types and applications,					
		Use of microorganisms in the production of biogas					
	Unit 5	Role of Microorganisms in Waste Management					
	A	Landfill- structure and types, involvement of microbes in					
		initial adjustment phase, transition phase, acid phase					
	В	Methane formation and maturation phase of a landfill					
		operation	CO5				
	С	Compositing- types; Design and operational					
		consideration of microbial composting					
	Mode of	Theory					
	examination						
		CA MTE ETE					

Weightage	30%	20%	50%			
Distribution						
Text book/s*	1. Environ	mental Science	e. Ahluwalia VK, Malhotra S.			
	Ane Boo	Ane Books India @2006. ISBN 81-8052-023-4.				
	2. Enviror	Environmental science. Miller GT, SpoolMan ES.				
	14 th Edi	4 th Edition. Brooks/Cole @2013. ISBN 13: 978-81-				
	315-247	315-2473-2.				
Other	1. Environ	mental Biotec	hnology. Fulekar MH. CRC			
References	Press @	2014. ISBN 978	-1-57808-528-8.			
	2. Fundan	entals of Ecolo	gy. Odum EPO and Barret W.			
	Brooks/	Cole @2005. IS	BN 0534420664.			

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB202: Infection, Immunity and Diagnostics

L-T-P: 4-0-0 Credit - 4

Sch	ool: SBSR	Batch: 2020-22				
Pro	gram: M.Sc.	Current Academic Year: 2020-21				
	nch: robiology	Semester: 03				
1	Course Code	MMB202				
2	Course Title	Infection, Immunity and Diagnostics				
3	Credits	4				
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course	Compulsory/Elective/Open Elective				
	Status					
5	Course	1. Understand the infection and cells and organs of the imi	nune system			
	Objective	2. Understand cell receptors and immune responses.				
		3. Understand the structure and function of antigens and a	ntibodies, Ag-			
		Ab reactions and Diagnostic Methods				
6	Course	CO1: To understand infectious diseases, host-parasite relationship and Immunity				
	Outcomes	and its types against infectious agents; To understand immune response and				
		complement system				
		CO2: To understand the process haematopoiesis and maturat	ion of cells and			
		organs of the immune system.				
		CO3: To understand the role of various cell receptors and activation	ation of B and T			
		lymphocytes; cell mediated cytotoxicity and Hypersensitivity.				
		CO4: the structure and functions of antigen and antibodies; Hyl	oridoma			
		technology and vaccines				
		CO5: To understand the Antigen-Antibody Reactions and Diag	nostic Methods			
		CO6: Understand the infection and cells and organs of the imm				
7	Course	The objectives for the course are to acquire a fundamental work				
	Description	of the basic principles of immunology; to begin to unders				
		principles apply to the process of immune function; and to deve	elop the ability to			
		solve problems in clinical immunology by making use of ex	kisting tools and			
		techniques				
8	Outline syllabi		CO Mapping			
	Unit 1	Infection and Immune System				
	A	Introduction to infectious diseases, host-parasite relationship,	CO1			
		epidemiology, Immunity to infectious agents Bacteria, inter-				
		cellular parasites, helminthes and viruses				
	В	First, second and third line of defense; Immunity-innate and	CO1			
		acquired immunity;				

С	Cell-mediated and humoral immunity; Phagocytosis;	CO1			
	Complement system and inflammatory responses				
Unit 2	Cells and Organs of the Immune System				
A	Haematopoesis and maturation of immune cells	CO2			
В	Organ and cells of the immune system-primary and secondary lymphoid organ	CO2			
С	B-lymphocytes, T-lymphocytes, macrophages, dendritic cells, langerhan cells, Natural killer cells, eiosinophils, basophils, neutrophils and mast cells	CO2			
Unit 3	Unit 3 Cell Receptors and Immune Responses				
A	BCR, TCR and MHC; Activation of B and T- lymphocytes; Generation of humoral cell and cell mediated immune responses	CO3			
В	Cell-mediated cytotoxicity; Antibody-dependent cell mediated cytotoxicity; Macrophage-mediated cytotoxicity;	CO3			
С					
Unit 4	Antigen and Antibody				
A	Nature, biology and types of antigens and super antigens; epitopes; adjuvants	CO4			
В	Antibody structure, types and functions; Hybridoma technology and monoclonal antibodies				
С	Vaccine and type of vaccines.	CO4			
Unit 5	Antigen-Antibody Reactions and Diagnostic Methods				
A	Antigen-antibody reactions-agglutination and precipitation	CO5			
В	Immunological methods-ELISA, RIA	CO5			
C	Immunodiffusion, Immunofluorescence, complement fixation	CO5			
36.1.0	test etc.				
Mode of	Theory/Jury/Practical/Viva				
examination					
Weightage	CA MTE ETE				
Distribution	30% 20% 50%				
Textbook/s*	Kindt T.J., Osborne B.A. and Goldsby R.A. (2006) Kuby Immunology, W. H. Freeman				
Other	1. Delves P.J, Martin S.J., Burton D.R. and Roitt I.M.,				
References	(2011) Roitt's Essential Immunology, Wiley				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	3	1	1	1	1
CO5	2	1	1	2	3
CO6	3	3	3	3	3

MSB207: Microbial Biotechnology

L-T-P: 4-0-0 Credit: 4

School: SBSR		Batch: 2020-22			
Pro	gram: M.Sc.	Current Academic Year: 2020-21			
	nch:	Semester: 3			
	robiology				
1	Course Code	MSB207			
2	Course Title	Microbial Biotechnology			
3	Credits	4			
4	Contact Hours (L-T-P)	4-0-0			
5	Course Status	Compulsory			
6	Course	Some Potential Sources of Components of Industrial	Media		
	Objective	2. Product recovery, Solids (Insolubles) Removal			
		3. Industrial production of organic acids			
		4. Role of microorganisms in hydrocarbon degradation			
7	Course	After studying this course, students will be able to			
	Outcomes	CO1: Determine Primary and Secondary screening, Production	on strains, and		
		Production media			
		CO2: Evaluate Filtration; Centrifugation; Coagulation and flo			
		CO3: Interpret the production of microbial insecticides, prod	uction		
		of Biopolymers, Biofuels			
		CO4: Analyze the role of microorganisms in hydrocarbon de			
		CO5: Determine Role of microorganism in Bioleaching and			
		CO6: Analyze types of microorganisms found on textile fibro			
8	Course	This course contains introductory part of industrial biotechno			
	Description	includes various useful microorganisms, their production, dif			
		fermentors, product recovery processes. After this course stu-			
		able to learn the role of microorganisms in textile industry an	nd marine		
-		environment.	00.16		
9	Outline syllabus		CO Mapping		
	Unit 1	Y . 1	CO1		
	A	Introduction and history, Isolation and screening, Primary			
		and Secondary screening, Production strains, Production			
	D	media, Pour Materials Head in Common dina Industrial Media			
	В	Raw Materials Used in Compounding Industrial Media,			
		Growth Factors, Water,			
	C	Some Potential Sources of Components of Industrial Media,			
		Inoculum preparation, Introduction to Fermenter, Industrial sterilization			
	Unit 2	Product recovery, Solids (Insolubles) Removal	CO2		
		Filtration; Centrifugation; Coagulation and flocculation;	CO2		
	A B	Foam fractionation; Whole-broth treatment; Primary Product			
	ם	· · · · · · · · · · · · · · · · · · ·			
		Isolation : Cell disruption;			

С	•	Liquid extraction; Dissociation extraction ;Ion-exchange			
	adsorption; pr	ecipitation			
Unit 3				CO3	
A	of streptomy	in	duction of penicillin, productio		
В	acid, lactic ac	id, amino acid	anic acids- production of citric ls such as L- glutamic acid, oteins, production of fermente		
С	Production of Biopolyme yeast and Bak		pial insecticides, production of Alcohol Yeasts, for		
Unit 4	Petroleum M	icrobiology		CO4	
A			roleum, products of compounds ms in hydrocarbon system		
В	Role of micro	organisms in	hydrocarbon degradation.		
С		Marine Microbiology: Characters of marine environment, characters of marine microorganisms, role of marine microorganisms			
Unit 5	J	Production of Vaccines -Production of virus vaccines; Production of bacterial toxoids; Production of killed bacterial vaccines; Role of microorganism in Bioleaching and Textile Industry: A. Bioleaching of elements – Microorganisms involved, chemistry of microbial leaching and beneficiationB Textile Industry – Types of microorganisms found on textile fibres, Prevention of growth of microorganisms.			
A	Production of				
В	A. Bioleachin				
С					
Mode of examination	Theory				
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s	Industrial mic 2. Demain, A.	Crueger & Crueger Biotechnology: A Text Book of Industrial microbiology 2nd edition Demain, A.L Biology of Industrial Microorganisms Hobbs, B.C. and Rioberts, D 1993 Food Poisoning and			
Other					
References	2. Hui Y H 20 Blackwell 5. J	Food Hygiene Edward Anold, London. 2. Hui Y H 2006 Food Biochemistry and Food Processing Blackwell 5. Joshi, V.K. Ashok Pondey 1999 Biotechnology and Food fermentation Vol. I & II.			
	3. Patel, A.H.				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB207: Fermentation and Downstream Processes

L-T-P: 4-0-0 Credit - 4

Scho	ool: SBSR	Batch: 2020-22				
Prog	gram: M.Sc.	Current Academic Year: 2020-21				
Brai	nch: robiology	Semester: 3	Semester: 3			
1	Course Code	MMB207				
2	Course Title	Fermentation and Downstream Processes				
3	Credits	4				
4	Contact Hrs (L-T-P)	4-0-0				
	Course Status	Compulsory				
5	Course Objective	 To enable students bridge the gap between theoretical corpractical aspects in fermentation technology. To provide knowledge about the different processes bein prepare various industrially important substances To enable students to understand the bioreactor designs. To provide insight of various downstream process. 	•			
6						
7	Course Description					
8	* L		CO Mapping			
	Unit 1		CO1			
		Fermentation, basic concept, submerged and solid state fermentation				
		Microbial growth kinetics, Microbial nutrient requirements,				
		Sterilization of media, air and equipments for fermentation				
	Unit 2		004 005			
	A	Batch, Continuous and Fed batch mode of operation	CO2, CO3			

В		_	tor- vessel, agitator, sparger,		
			STR, CSTR, Airlift fermenter,		
C	Fluidized bed re				
	cells and enzym	es bioreactor			
Unit 3				CO2, CO3, CO4	
A	Measurement, r and biological p		control of physical, chemical bioreactor		
В	Transport pheno	omena in biore	eactor		
С	Aeration and ag		eactors; pH and temperature		
Unit 4				CO2, CO3, CO4	
A Cell disruption methods for intracellular products-Osmotic and heat shock, Homogenization, Sonication, Freezing thawing, Enzyme digestion.					
В	Centrifugation:		les, design characteristics and		
	applications				
C	Membrane base	d separation p	rocesses,		
Unit 5				CO3, CO4	
A	Chromatograph	ic techniques			
В	Electrophoretic	separation			
C	Evaporation, dr	ying and crysta	allization techniques.		
Mode of examinatio	Theory/Jury/Pra	Theory/Jury/Practical/Viva			
Weightage	CA	MTE	ETE		
Distributio	30%	20%	50%		
n					
Textbook/s	 McNeil B. and Harvey L., "Practical Fermentation Technology", Wiley, 2008. Doran P.M., "Bioprocess Engineering Principles", 				
Other	2. Doran P.M	., "Bioprocess	Engineering Principles",		
References	Academic 1	Press, 2012.			
	3. Bioseparati	ons Principles	and Techniques, B.		
	Sivasankar	. Prentice hall	of India Pvt. Ltd., 2007.		

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB208: Food Microbiology

L-T-P: 2-0-0 Credit - 2

Scho	ool: SBSR	Batch: 2020-22					
Prog	gram: M.Sc.	Current Academic Year: 2020-21					
Bra		Semester: 03					
Mic	robiology						
1	Course Code	MMB208					
2	Course Title	Food Microbiology					
3	Credits	2					
4	Contact Hours	2-0-0					
	(L-T-P)						
	Course Status	Compulsory					
5	Course	The course is designed to prepare students with a basic	understanding				
	Objective	of the microbes involved in biological processes such a	s fermentation				
		and spoilage. The course provides a foundation f	or careers in				
		microbiology, food microbiology, or research in all bra	anches of food				
		sciences.					
6	Course	After the successful completion of this course students v	vill be able to:				
	Outcomes	CO1. Recognize and describe the characteristics of important					
		pathogens and spoilage microorganisms in foods.					
		CO2. Understand the role and significance of intrinsic and	nd extrinsic				
		factors on growth and response of microorganisms in fo	ods.				
		CO3. Identify ways to control microorganisms in foods.					
		CO4. Identify the conditions under which the important					
		spoilage microorganisms are commonly inactivated, k	tilled or made				
		harmless in foods.					
		CO5. Utilize laboratory techniques to detect, quantify, a	nd identify				
		microorganisms in foods.					
		CO6.Understand the role of fermentation and preservati	on in food				
		science.					
7	Course	The 'Food Microbiology' course outlines the basic					
	Description	Microbiology. This course also sheds light upon ferme					
		designed to make student learn the preservation of food	-				
		course also further encompasses the concept of ider	itification and				
	0 11 11 1	quantification of microorganisms in foods.	0016				
8	Outline syllab		CO Mapping				
	Unit 1	History development and microbes in food					
	A	Historical developments					
	В	Important of Microorganisms in food					
	C	Footone offerting anomals of misselves in feet	CO1 CO2				
		Factors affecting growth of microbes in food	CO1, CO2				
	Unit 2	Spoilage of Foods					
	Omt 2	phonage of Loons					

A	Spoilage of me	at			
В	Spoilage of Mi	lk and milk pro	oducts		
С	Spoilage and de	efects of ferme	ented food products	CO3, CO4	
Unit 3	Biological tran	nsformation o	f food		
A	Fermentation				
В	Production of f	Production of fermented products			
С	Importance of	fermentation		CO3, CO6	
Unit 4	Preservation	Preservation of food			
A	General princip	oles of food pro	eservation		
В	Chemical Prese	ervation of foo	d	COC	
С	Preservation of	food by radia	tion	CO6	
Unit 5	Food Borne D	Food Borne Diseases			
A	Bacterial and n	onbacterial inf	ection		
В	Food borne dis	CO4 CO5			
C Detection of Microbes in food				CO4,CO5, CO6	
Mode of	Theory	Theory			
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Textbook/s*			ood Microbiology (Sixth		
	Edition). Asper	n Publishers, In	nc. Gaithersburg, Maryland.		
Other	2.Adams, M.	R. and M	oss, M. O. (2005) Food		
References		C	ition). Royal Society of		
	Chemistry Pub		C		
	•		ntal food microbiology (Third		
	edition). CI				
	4. Frazier, W				
		Microbiology. Tata McGraw Hill			
	_	Company Ltd.			
		• •	sic Food Microbiology. AVI		
	publication	•			

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB259: Microbial Biotechnology Lab

L-T-P 0-0-3 Credit 2

School: SBSR		Batch: 2020-22				
Pro	gram: M.Sc.	Current Academic Year: 2020-21				
Bra	nch: BT	Semester: 3 rd				
1	Course Code	MSB259				
2	Course Title	Microbial Biotechnology Lab				
3	Credits	2				
4	Contact Hours (L-T-P)	0-0-2				
	Course Status	Compulsory/Elective				
5	Course Objective	 To develop practical knowledge of microorganism To teach students about fermentor; other instrum components To teach about microbial production of various bit 	ents and their			
6	Course Outcomes	CO1:Practical knowledge of fermentor other instruments components CO2: Isolation and screening of microorganisms CO3: Practical knowledge of solid state fermentation. CO4: Able to produce different biomolecules CO5: Cradle to grave knowledge of microbial process en CO6: Understanding of basic experimental set up, scale upractices of various microbial cultures in biomolecules pre	and their gineering. up process, and			
7	Course	Microbial Biotechnology, is a specialization of biotechr				
	Description	with the design and development of reactor and pro- manufacturing of products such as like enzymes, acids, bi This lab covers the design of bioreactor and its operations	cesses for the opolymers etc.			
8	Outline syllabu	S	CO Mapping			
	Unit 1	Isolation and screening of microorganism	CO1, CO5			
]]	Isolation and screening of microorganism producing proteases Isolation and screening of microorganism producing amylases				
		Isolation and screening of microorganism	CO2, CO5			
		Isolation of Nitrogen fixers from soil				
		Isolation of phosphate solubilizers from soil				
	Unit 3	Microbial Growth Kinetics	CO2, CO5			
		Estimation of effect of temperature on microbial growth				
		Estimation of effect of pH on microbial growth	CO4 CO5			
		Microbial fermentation	CO4, CO5			
		Fermentative production of Wine				

	Fermentative	Fermentative production of Beer				
Unit 5	Microbial fo		CO4, CO5			
	Fermentative	Fermentative production of Amylase				
Mode of	Practical/Viv	Practical/Viva				
examination						
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text	-					
book/s*						
Other						
References						

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB255: Immunology Lab

L-T-P 0-0-3 Credit 2

School: SBSR		Batch: 2020-22				
Pro	gram: M.Sc.	Current Academic Year: 2020-21				
Brai		Semester: 3rd				
Mici	robiology					
1	Course Code	MMB255				
2	Course Title	Immunology Lab				
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
5	Course Status	Compulsory				
6	Course	1) This course understanding provides a strong foundation				
	Objective	greater enthusiasm for and an improved understanding of the	complete immune			
		response.				
		2) The Work involving human samples is enticing to stud				
		interests, and further detailed protocols, and analysis g	guidance may be			
	~	appropriate for introductory immune response.				
7	Course	After successfully completion of this course students will be				
	Outcomes	CO1: understand basic laboratory techniques of blood groups				
		CO2: estimate the haemoglobin of its own blood				
		CO3: practical knowledge of antigen antibody interactions				
		CO4: isolate lymphocytes for further deep analysis				
		CO5: prepare suspension solutions of spleen and bone marrow CO6: understanding provides a strong foundation and can prompt a greater				
		enthusiasm for and an improved understanding of the complete immune				
			complete inimune			
8	Course	response. The aim of this course is to acquaint the students about the vo	ersatile tools and			
	Description	techniques employed in immunology. The course will also pr				
	Bescription	with a hands-on understanding of how immunology can be u				
		various processes used by animals and humans for their self defence				
	mechanism.					
9	Outline syllabus		CO Mapping			
	Unit 1		CO1			
	A	To study permanent slides of immune tissues and organs				
	В	To find the blood group of own blood				
	С	To find the Rh factor of own blood group				
	Unit 2		CO2			
	A	To estimate the amount of Hb present in human blood				
	В	To perform Rocket immunoelectrophoresis				
	C	To perform Separation of lymphocytes				
	Unit 3		CO3			
	A	To perform Sandwich enzyme linked immunosorbant assay				
	В	To perform DoT ELISA				
	С	To perform Haemagglutination test				
	Unit 4		CO4			

A	To perform Ou	uchlerlony's do	To perform Ouchlerlony's double immunodiffusion method.			
В	To perform Ra	dial Immunodi	ffusion			
С	To perform RI					
Unit 5						
A	Preparation of single cell suspension of spleen.					
В	Preparation of	single cell susp	ension of bone marrow.			
С						
Mode of	Practical/or Vi	Practical/or Viva				
examination						
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Text book/s*	Kindt, T. J., C	Goldsby, R. A.,	Osborne, B. A., Kuby, J.			
	(2006). VI Edi	tion. Immunolo	gy. W.H. Freeman and			
	Company.					
Other	Delves, P. J.,					
References	(2006). XI Edi					
	Publishing					

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	2
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB260: Fermentation Technology Lab

L-T-P 0-0-3 Credit 2

Schoo	l: SBSR	Batch: 2020-23				
Program: M.Sc.		Current Academic Year: 2020-21				
	h: Microbiology					
1	Course Code	MMB260				
2	Course Title	Fermentation Technology Lab				
3	Credits	2				
4	Contact Hours (L-T-P)	s 0-0-3				
	Course Status	atus Compulsory/Elective				
5	Course	To develop practical knowledge of microorganism	1			
	Objective	 To teach students about fermentor; other instrum components To teach about microbial production of various bi 	To teach students about fermentor; other instruments and their components			
6	Course	CO1:Practical knowledge of fermentor other instruments				
	Outcomes	components CO2: Isolation and screening of microorganisms CO3: Practical knowledge of solid state fermentation. CO4: Practical knowledge of submerged fermentation. CO5: Able to produce different biomolecules CO6: Cradle to grave knowledge of microbial process engineering.				
7	Course	Fermentation Technology , is a specialization of biotechnology, It deals				
	Description	cesses for the opolymers etc.				
8	Outline syllab	This lab covers the design of bioreactor and its operations yllabus				
	Unit 1	Isolation and screening of microorganism	CO Mapping			
		Isolation and screening of microorganism producing proteases				
		Isolation and screening of microorganism producing Citric Acid				
	Unit 2	Microbial Growth Kinetics	CO2, CO5			
		Estimation of effect of temperature on microbial growth				
		Estimation of effect of pH on microbial growth				
	Unit 3	Microbial fermentation and Purification	CO2, CO5			
		Fermentative production of Wine				
		Clarification and purification of Wine	1			
	Unit 4	Microbial fermentation and Purification	CO4, CO5			
		Fermentative production of Beer				
		Clarification and purification of Beer				
	Unit 5	Microbial fermentation and Purification	CO4, CO5			

	Fermentative pr	Fermentative production of Amylase			
	Purification of A	Purification of Amylase			
Mode of examination	Practical/Viva	Practical/Viva			
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Text	-				
book/s*					
Other					· · · · · · · · · · · · · · · · · · ·
References					

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	2
CO2	3	3	1	2	2
CO3	3	2	2	2	2
CO4	3	3	1	2	2
CO5	3	3	1	2	2
CO6	3	3	3	3	3