Program Structure Program: M.Sc. (Biotechnology) Program Code: SBR0413 Batch: 2018-20 Department of Life Sciences School of Basic Science & Research

Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship

Core Values

- Integrity
- Leadership
- Diversity
- Community

Vision of the School

Achieving excellence in the realm of basic and applied sciences to address the global challenges of evolving society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- 3. To establish centre of excellence for ecologically and socially innovative research.
- 4. To strengthen interinstitutional and industrial collaboration for skill development and global employability.

Vision of Life Sciences Department

Strive to achieve excellence in teaching and research in the field of Microbiology and Biotechnology and to build human resource for solving contemporary problems.

Mission of Life Sciences Department

- Providing distinctive and relevant education in Life Sciences to students. Motivating young minds through innovative teaching methods, to acquire theoretical knowledge and practical skills in different disciplines of chemistry and empowering them with problem solving skills.
- Nurturing innovation by carrying out world class research and scholarly work
- Promoting interdisciplinary research in collaboration with national/international laboratories/Institutions.

Program Educational Objectives (PEO)

PEO1: To create a foundation of various biological concepts and phenomena in the minds of students through theoretical and practical knowledge.

PEO2: To keep students upgraded with new discoveries in biological world and inculcate continuous learning and self-improvement so that students are motivated for higher studies and research.

PEO3: To teach the students various bio-techniques and application of these techniques for betterment of society and environment.

PEO4: To make students industry- or academia-ready by developing independent thinking, good communication and scientific skills and to acquaint them with professional ethics so that they can work well in an industrial or academic environment.

PEO5: To make students understand interdisciplinary nature of research in biotechnology by assigning them different research projects/ case studies/ presentations.

Map PEOs with Mission Statements:

PEO Statements	School Mission 1	School Mission 2	School Mission 3	School Mission 4
PEO1	3	2	-	-
PEO2	3	2	2	-
PEO3	3	3	2	1
PEO4	2	3	2	2
PEO5	3	2	2	2

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

PEO Statements	Departmental Mission 1	Departmental Mission 2	Departmental Mission 3	Departmental Mission 4
PEO1	3	1	1	1
PEO2	3	3	2	2
PEO3	2	2	2	2
PEO4	3	-	2	3
PEO5	3	2	3	2

Map PEOs with Department Mission Statements:

Program Outcomes (PO's)

PO1: Knowledge: Students will develop a sound understanding the biological systems and processes.

PO2: Skill Set Development: The student will be skilled in various biological techniques that will enhance the employability of the students.

PO3: Oral Communication and Scientific Writing: The students will be able to demonstrate good oral communication. Students will also be knowledgeable about writing technical (project report and reviews) content.

PO4: Environment and Sustainable Development: Student will be able to realize the effect of human malpractices on environment and the need and importance of sustainable development.

PO5: Ethics, Independent Thinking and Team Work: The students will develop professional ethics and also gain knowledge about various ethical issues associated with biotechnology.

Students will learn to think and analyze a problem independently while at the same time realizing the importance of team work in carrying out successful research/ projects/ presentations.

Mapping of Program Outcome Vs Program Educational Objectives

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	2	2	2	2
PO2	3	2	2	3	2
PO3	1	1	-	3	2
PO4	1	2	3	-	2
PO5	1	2	-	3	2

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

M.Sc.

in Biotechnology

COURSE STRUCTURE & SYLLABI

(For Batch 2018-19 onwards)

Department of Life Science School of Basics Sciences and Research SHARDA UNIVERSITY

SUMMARY SHEET

Teaching Department	:	Life Science
School	:	School of Basic Sciences and Research
Name of Course	:	M.Sc. in Biotechnology
Duration	:	Two Years
Total number of Credits	:	86

Term I

Sr.	Course	Course Name	Category **	L	Т	Р	Credits
No	Code*		Note:***				
Some	astar I						
1	MSB114	Advanced Biochemistry	Core course	4	0	0	4
2	MSB122	Advanced Molecular Biology	Core course	4	0	0	4
2	MSB1122	Animal Cell Technology	Core course	4	0	0	4
4	MSB123	Advanced Genetic Engineering	Core course	4	0	0	4
5	MST111	Biostatistics	Generic Elective	0	0	3	2
6	MSB159	Genetic Engineering Lab	Practical	0	0	3	2
7	MSB155	Biochemistry Lab	Practical	0	0	3	2
8	MSB156	Molecular Biology Lab	Practical	0	0	3	2
			Semester I 7	Fotal I	Minim	um C	redits: 24
Seme	ester II						
1	MSB116	Bio instruments	Core course	4	0	0	4
2	MSB118	Advances in Plant Biotechnology	Core course	4	0	0	4
3	MSB117	Immunology and Immunotechnology	Core course	4	0	0	4
4	MSB121	Fermentation Technology	Core course	4	0	0	4
5	MSB120	Bioinformatics	(AEC/SEC)	2	0	0	2
6	MSB157	Immunotechnology Lab	Practical	0	0	3	2
7	MSB158	Plant Biotechnology Lab	Practical	0	0	3	2
8	MSB160	Bioinstrumentation Lab	Practical	0	0	3	2
	Semester II Total Minimum Credits:24						
Seme	ester III						
1	MMB201	Environmental Microbiology and waste management	'Discipline Specific' Electives	4	0	0	4
2	MSB204	Genomics	Core course	4	0	0	4
3	MSB206	Enzyme Technology	Core course	4	0	0	4
4	MSB203	Intellectual Property rights and ethical issues	Core course	4	0	0	4
5	MSP206	Enzyme Technology Lab	Practical	0	0	3	2
6	MSB256	Genomics & Bacterial Genetics Lab	Practical	0	0	3	2
7	MSB258	Dissertation Part 1	'Discipline Specific' Electives	0	0	4	4
			Semester III T	otal I	Minim	num C	redits:24
Seme	ester IV						
1	MSB259	Dissertation Part II	'Discipline Specific' Electives	0	0	6	6
2	MMB204	Food Microbiology	Core course	4	0	0	4
3	MSB205	Cancer Biology	Core course	4	0	0	4
			Semester IV T	otal I	Minim	um C	redits:14
Gran	Grand Total Minimum Credits for Programme: 86						

MSB114: Advanced Biochemistry L-T-P: 4-0-0

Scho	ool : SBSR	Batch : 2018-20			
Program: M.Sc.		Current Academic Year: 2018-19			
Brai	nch:	Semester: 1			
Biot	echnology				
1	Course Code	MSB114			
2	Course Title	Advanced Biochemistry			
3	Credits	4			
4	Contact Hours (L-T-P)	4-0-0			
6	Course	1. Structure of polysaccharides			
	Objective	2. Classification and structure of lipids			
		3. Protein-ligand interaction and modulation of protein	activity		
		4. Assimilation of inorganic phosphorus, sulfur and r	nitrogen, Nitrogen		
		fixation	0		
7	Course	After studying this course, students will be able to			
	Outcomes	CO1: Determine Classification and structure of carbohydrate	s		
		CO2: Evaluate Nucleic acid structure, nucleic acid chemis	stry, Functions of		
		Nucleotides			
		CO3: Interpret the Protein-ligand interaction and modulation	of protein activity		
		CO4: Analyse the Biosynthesis of polysaccharides and i	nterconversion of		
		sugars	atidaa		
		CO5: Determine Synthesis of purnes, pyrinitalities and nucle	vilation		
8	Course	This course contains various advanced biochemistry concent	s ranging from		
0	Description	structure and classification of carbohydrates proteins nuclei	c acids and		
	Description	nucleotides. After studying course, students will be able to le	arn chemistry of		
		biomolecules, and their metabolic pathways.			
9	Outline syllabus		CO Mapping		
	Unit 1	Carbohydrates	CO1		
	А	Classification and structure of carbohydrates, Structure of			
		polysaccharides			
	В	glycoproteins and peptidoglycans, Functions of			
		polysaccharides			
	С	glycoproteins and peptidoglycans.			
	Unit 2	Lipids Amino acids, Nucleic acids and Nucleotides	CO2		
	А	Classification and structure of lipids, Saturated and			
	2	unsaturated fatty acids, rancidity			
	B Classification, structure and functions of amino acids,				
		Peptide Bond, Kamachandran Plot, Primary, secondary and			
	C	Nucleic acid structure, nucleic acid chemistry, Euroticne of			
	C	Nucleotides			
	Unit 3	Chamistry of Riomalaculas Rialogical Mambranes and	CO3		
	Omt J	Transport			

А	Protein-ligand					
	protein sequen	protein sequencing				
В	Composition a	and architecture	of membranes			
С	membrane dyr	namics, solute tr	ransport across membranes			
Unit 4	Metabolic Pa	thways		CO4		
А	Glycolysis, Er	tner-Doudoroff	f, HMP and oxidative pentose			
	phosphate;Gly	oxylate cycle, 7	ГСА cycle, and oxidative			
	phosphorylatio	on,				
В	Biosynthesis	of polysaccha	rides and interconversion of			
	sugars Catab	olism: Bioener	getics of β -oxidation of fatty			
	acids,					
С	long chain fa	tty acids, Anal	bolism: Biosynthesis of fatty			
	acids: saturate	ed, unsaturated				
Unit 5	Nucleotide Bi	Nucleotide Biosynthesis and Use of Energy in				
	Biosynthesis					
А	Synthesis of p	urines, pyrimid	ines and nucleotides			
В	Photosynthesis	s and photophos	sphorylation, Photorespiration			
С	Assimilation of	of inorganic ph	osphorus, sulfur and nitrogen,			
	Nitrogen fixat	ion				
Mode of	Theory					
examination		•				
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	Nelson D.L. at	nd Cox M.M., "	Lehninger Principles of			
	Biochemistry", W.H. Freeman, 2009					
Other	Stryer L., "Bio	ochemistry", W	. H. Freeman, 2010.			
References	Wilson K. and	Walker J., "Pri	inciples and Techniques of			
	Biochemistry	and Molecular I	Biology", Cambridge			

Course Outcome

	PO1	PO2	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	1	1	1	1	1

MSB122: Advanced Molecular Biology

L-T-P:4-0-0

Sch	ool: SBSR	Batch: 2018-20				
Pro	gram: M.Sc.	Current Academic Year: 2018-19				
Bra	nch:	Semester: 01				
Bio	technology					
1	Course Code	MSB122				
2	Course Title	Advanced Molecular Biology				
3	Credits	4				
4	Contact H	4-0-0				
	(L-T-P)					
	Course	Compulsory/Elective/Open Elective				
	Status					
5	Course	1. Understand the structure and function of nucleic acid	s and genome			
	Objective	organization.				
		2. Understand the process of DNA replication and Tran	scription in			
		prokaryote and eukaryote.				
		3. Understand the process of Translation and regulation	of gene			
		expression.				
6	Course	CO1: To understand the structure and function of Nucleic acid, Chromatin				
	Outcomes	and Chromosome.				
		CO2: To understand the process of DNA replication in pr	rokaryotes and			
		eukaryotes.				
		CO3: To understand the process of transcription in prokaryo	tes.			
		CO4: To understand the process of transcription in eukaryote	es.			
		CO5: To understand the process of Translation and regu	lation of gene			
		expression				
		CO6: Observe different life processes happening at molecul	lar level inside			
	~	cell and perspectives on gene regulation.				
7	Course	The course covers the gene organization in prokaryotic and en	ukaryotic cells.			
	Description	Course will familiarise students with the process of	of replication,			
		transcription, post-transcriptional modifications and trans	lation in both			
	<u> </u>	prokaryotes and eukaryotes.				
8	Outline syllabi		CO Mapping			
	Unit 1	Genome Organization				
	А	Structure of DNA and RNA, Nucleoside and nucleotide,	COI			
	-	complementary base pairing				
	B	DNA melting and reassociation kinetics	COl			
	C	Structure of eukaryotic chromosomes, Euchromatin and	COI			
		heterochromatin.				
	Unit 2	DNA Replication				
	А	Replication process in prokaryotes	CO2			
	В	Replication process in eukaryotes	CO2			

С	Enzymes and accessory proteins in replication, Replication of ss-circular DNA			CO2	
Unit 3	Prokaryotic	Transcription)n		
А	Process of pr	rokaryotic trai	nscription	CO3	
В	Inducible and	d constitutive	promoters	CO3	
С	Operators an	d regulators in	n prokaryotic transcription	CO3	
Unit 4	Eukaryotic	Transcription	n		
А	Process of eu	ukaryotic tran	scription	CO4	
В	Eukaryotic	promoters a	nd enhancers, TATA binding	CO4	
	proteins and	associated fac	ctors, activators and repressors		
С	Post-transcri	ptional modif	ications	CO4	
Unit 5	Translation and Regulation of gene expression				
А	Translation	machinery, R	ibosome, degeneracy of codons	CO5	
	and terminat	ion codons			
В	Mechanism	of initiation, e	longation and termination	CO5	
С	Operon syste	em, Lac opero	n, Trp operon and Ara operon.	CO5	
Mode of	Theory/Jury	/Practical/Viv	<i>a</i>		
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Textbook/s*	Lewin B., "C	Gene IX", Jon	es and Barlett Publishers, 2007		
Other	1. Alber	rts B., Johns	on A., Lewis J. and Raff M.,		
References	"Mol	ecular Biolog	y of the Cell", Garland Science,		
	2002				
	2. Wats				
	and V	and Weiner A.M., "Molecular Biology of the Gene".			
	Benja 2007	amin Cummi	ngs Publishing Company Inc,		

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB123: ADVANCED GENETIC ENGINEERING

L-T-P: 4-0-0

Scho	ool: SBSR	Batch : 2018-20			
Prog	gram: M.Sc	Current Academic Year: 2018-19			
Brai	nch:	Semester: 1			
Biot	echnology				
1	Course Code	MSB123			
2	Course Title	Advanced Genetic Engineering			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To acquire knowledge of principle and techniques invol	ved in genetic		
	Objective	engineering.	-		
	-	2. To comprehend the basic strategies of cloning and how it	can be applied		
		for human benefit.			
		3. To learn the use of expression vectors and their role in	n recombinant		
		protein production.			
		4. To learn the production of transgenic plants and animals and	d their benefits		
		to human beings.			
6	Course	After the successful completion of this course students will b	e able to:		
	Outcomes	CO1: Recognize the molecular tools for genetic manipulation	1.		
		CO2: Analyze different vector types and their application in a	construction of		
		libraries.			
		CO3: Describe PCR process and its applications and	hybridization		
		techniques.			
		CO4: Explain the different types of expression vectors and t	heir use along		
		with methods of gene delivery.			
		CO5: Analyze different applications of genetic engineering in	various fields		
		such as gene therapy and transgenic organisms.			
		CO6: Describe gene transfer technologies and tools used for t	these methods,		
		creation of gene libraries and various application of genetic e	ngineering.		
7	Course	The 'Applied Genetic Engineering' course involves study of	molecular		
	Description	tools in genetic engineering. It encompasses detailed procedu	re of genetic		
		engineering including selection of host cells, vectors, express	ion vectors		
	etc. It also involves the use of genetic engineering for mankind, creation of				
transgenic plants and animals.					
8	Outline syllabu		CO Mapping		
	Unit 1	Genetic engineering tools and methods			
	А	Restriction Enzymes, DNA ligase, Klenow enzyme, T4	CO1, CO6		
		DNA polymerase			

В	Modifying En					
	important Nuc					
С	Cohesive and	blunt end ligati	on; Linkers, Adaptors;			
	Homopolyme	ic tailing				
Unit 2	Cloning	Cloning				
А	Cloning vecto	rs: Plasmids; P	UC19 and Bluescript vectors	CO2, CO6		
В	Bacteriophage	s; M13 mp vec	tors, Phagemids; Lambda			
	vectors; Insert					
	Artificial chro	Artificial chromosome vectors (YACs: BACs): Animal				
	Virus derived	vectors-SV-40	& retroviral vectors			
С	Cloning metho	odology and se	election: Insertion of foreign	_		
	DNA into vec	tors; Transform	nation; Selection, Construction			
	of libraries, cl	DNA and geno	mic libraries			
 Unit 3	In vitro DNA	Amplification				
А	Nucleic acid e	xtraction		CO3, CO6		
В	PCR, Types of	PCR – multipl	ex, nested, reverse			
	transcriptase,	real time PCR				
С	Labeling of D	NA: Nick trans	lation, Random priming,	_		
	Radioactive an	nd non-radioact	tive probes, Hybridization			
	techniques: So	outhern and Co	lony hybridization			
Unit 4	Expression					
А	Expression ve	ctors: His-tag a	and GST-tag based vectors	CO4, CO6		
В	Plant based v	ectors, Ti plas	smid based Co-integrated and	ļ		
	binary vectors	; Yeast vector	s, Shuttle vectors, Expression	L		
	cloning					
С	Methods gene	delivery, Scree	ening and analysis of gene			
	expression and	d Diagnosis of	gene expression			
Unit 5	Application					
А	Gene therapy			CO5, CO6		
В	Mutagenesis					
С	Transgenic or	ganisms				
Mode of	Theory					
 examination						
Weightage	CA	MTE	ETE			
 Distribution	30%	20%	50%			
Text book/s*	Brown T.A, "	Gene Cloning a	nd DNA Analysis:An			
	Introduction",	John Wiley &	Sons, 2010			
Other	1. Molecular	· Biotechn	ology. Principles and			
References	Applicatio	ons. 3 rd Editior	n. Glick BR and Pasternak JJ			
	ASM Pres	s @2003. ISBN	1-55581-224-4.			
	2. Gene cloni	ng and DNA A	nalysis- An Introduction. 6 th			
•						

Course Outcome	DO1	PO7	DO3		DO2
No	101	102	105	104	103
CO1	3	1	1	1	1
CO2	2	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MSB119: Animal Cell Technology

L-T-P: 4-0-0

School: SBSR		Batch : 2018-20			
Prog	gram: M.Sc.	Current Academic Year: 2018-19			
Bra	nch:	Semester: 1			
Biotechnology					
1	Course Code	MSB 119			
2	Course Title	Animal Cell Technology			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To acquire a fundamental knowledge of animal cell biology			
	Objective	2. To Study cell, tissue culture, media component			
		3. To Study Cell Cell Kinetics and Characteristic			
		4. To Study Animal cloning, cell genetics			
		5. To Study large scale industrial and medical applications of cell			
		engineering			
	clightering.				
6	Course Outcomes	 After successfully completion of this course students will be able to: Understand basics of Animal Cell and Tissue culture. Evaluate CO1 media and aseptic techniques of establishing primary and Secondary cell cultures. Establish a continuous cell line from cells of different origin and determine their nutrient and environment requirements CO2 Differentiate between adherent and non-adherent cell culture techniques, calculate growth kinetics parameters and apply cryopreservation technique for long-term storing of cells. CO3 Understanding Somatic and Germ Cell Genetics, Cell to Cell communication Scaling up of Cell cultures for industrial and medical applications. Understanding Cell cloning, Three-dimensional culture and Tissue Engineering CO5 Applications of Cell Culture, Hybridoma Technology and Antibody production, Stem cell technology CO6 Review the future perspectives, importance and ethical issues related with stem cell technology and transgenic animals. 			
7	Course Description	To acquire a fundamental and advanced knowledge of Animal Cell Culture Technology by studying cell, tissue culture, media component, Animal cloning, cell genetics and large scale industrial and medical applications of cell engineering.			

8	Outline syllabus				CO Mapping	
	Unit 1	Cell Cultu	re		CO1,2,3	
	А	Cell, Tissu	e and organ	culture, Culture procedures	CO1	
	В	Culture me	dia and grov	wth conditions, primary cultures	CO1,2	
	С	Establishm	ent and main	ntenance of cell lines and Risks in	CO2,3	
		a tissue cul	ture laborate	ory and safety.		
	Unit 2	Cell Kinet	CO3,4			
	А	Cell Killi	Cell Killing, Characterization of cultured cells-			
		morpholog				
	В	cell adhesi	cell adhesion, proliferation, differentiation, Kinetics involved in growth of cultured cells,			
		involved in				
	С	Cell viabili	ty, Methods	for testing cell viability,	CO4	
		Cytotoxicit	y assays			
	Unit 3	Cell Chara	CO5			
	А	Cell Adhes	CO5			
	В	cell-cell co	mmunicatio	n, Cell senescence	CO5	
	С	Somatic an	nd Germ cel	l genetics	CO5	
	Unit 4	Scaling-up	CO6,7			
	А	Animal cel	CO6			
		stirrer cultu	ire, continuo	ous flow culture, air-lift		
		fermentor of	fermentor culture			
	В	Scale up in	CO 6			
		multisurfac	e culture, m	ultiarray disks, spirals and tubes		
		monitoring	of cell grov	vth		
	С	Cell clonin	ng and mic	cromanipulation, Cell culture in	CO7	
		industrial	methods,	Three dimensional culture and		
		Tissue Eng	ineering			
	Unit 5	Applicatio	n of Anima	l Cell Culture Technology and	CO8 9	
	Ont 5	Ethics		i cen culture reenhology and	000,7	
	А	Hybridoma	technology	Antibody production	C08	
	B	Transgenic	animals A	polications of transgenic animals	C08.9	
	<u> </u>	Stem cells	Stem cell th	perany Ethical issues in cell	C09	
	C	culture	Stem cen u	ierapy, Eunear issues in een	005	
	Mode of	Theory				
	examination					
	Weightage	СА	MTE	ETE		
	Distribution	30%	20%	50%		
	Text book/s*	Butler M.	"Animal Ce	Il Culture and Technology".		
		Garland Sc	ience, 2008	· · · · · · · · · · · · · · · · · · ·		
	Other	1. Jen	kins N., "Ar	nimal Cell Biotechnology:		
	References	Methods an	nd Protocols	", Humana Press, 2006.		
		2. Fre	shney I.R., '	Culture of Animal Cells: A		
		Manual of	Basic Techr	nique", Wiley, 2005.		
		3. She	noy M., "A	nimal Biotechnology", Laxmi		
		Pub, 2007.				

Course Outcome	PO1	PO2	PO3	PO4	PO5
110					
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MST111: BIO-STATISTICS

L-T-P: 2-0-0

School: SBSR		Batch: 2018-20			
Progr	am: M.Sc.	Current Academic Year: 2018-19			
Branch	a: Biotechnology	Semester: 1			
1	Course Code.	MST111			
2	Course Title	BIO-STATISTICS			
3	Credits	2			
4	Contact Hours				
4	(L-T-P)	2-0-0			
	Course status	Compulsory			
	Course	To make students familiar with the concept of Pro	bability and Statistics		
5	Objectives	with emphasis on some standard probability distri	ibutions and sampling		
		distributions.			
		CO1: Describe the concept of Statistics and sta	tistical inference and		
	calculate find the measures of central tendency and dispers				
		(K1,K2,K3)			
		CO2: Explain the concept of probability and evaluation	uate the probability of		
	various events in a random experiment, theorem on pro-				
6	Course	conditional probability. (K2,K4,K5)			
0	Outcomes	CO3: Discuss the concept of random variable and its distributions for			
		evaluate relevant probabilities. (K1,K2,K5)			
		CO4: Discuss about confidence interval and	evaluate population		
		parameters from the statistics of samples.(K1,K2,	K5)		
		CO5: Explain and evaluate statistical hypothesis	using large and small		
		samples. (K2,K4,K5)			
		In this introductory statistics course we will explo	re the use of statistical		
7	Course	methodology in designing, analyzing, interpre	ting, and presenting		
,	Description	biological experiments and observations. We v	vill cover descriptive		
		statistics, probability, and hypothesis testing and	statistical inference.		
8	Outline syllabus:				
UNIT	Introduction an	d descriptive statistics.	CO Mapping		
1					
А	Representation o	f data: Frequency distribution, Measures of central	CO1		
	tendency, mean,	median, mode and mean of combined data.			
В	Dispersion: mean	n deviation, standard deviation	CO1		
С	Moments, Skewn	ness and Kurtosis.	CO1		

UNIT 2	Probability.					
А	Random experiment, sample space, events.CO2					
В	Mutually exc probability.	clusive even	vents, conditional	CO2		
С	Baye's theorem	m.			CO2	
UNIT 3	Random vari	ables and its	s Distribution.			
А	Random varia	bles, expecta	tion and variance of	a random variable.	CO3	
В	Binomial Dist	ribution.			CO3	
С	Normal Distri	bution			CO3	
UNIT 4	Sampling Dis	tribution				
А	Sampling dist	ribution of sa	ample mean (Small S	ample).	CO4	
В	Sampling distribution of difference of two sample means (Small CO4 Sample).					
С	Sampling distribution of sample means and difference of two CO4 sample means. (large samples.).					
UNIT 5	Testing of hypothesis.					
А	Testing of hyp	othesis: sing	le population mean f	or small sample.	CO5	
В	Testing of hypothesis: difference of two population means for CO5 small sample.					
С	Testing of hy two population	pothesis: sin n means for l	gle population mean arge sample.	and difference of	CO5	
	Mode of Exan	nination	Theory			
	Weightage die	tribution	CA	MTE	ETE	
	weightage uis	stribution	30%	20%	50%	
	1. Gupta,S.C and Kapoor,V.K, "Fundamental of Statistics".				Mathematical	
	Other references	er rences 1. Daniel,Wayne W.,"Biostatistics": Basic concept and Methodology for Health Science. 2. Grewal,B.S, "Higher Engineering Mathematics". 3. Probability and Statistics for Engineers and Scientists, Walpole R. E., Mayers R. H., S. I., Ye. K. 7 th Edition, Pearson, 2002.				

	4.	Statistics for Biologists, Campbell R. C., Cambridge University Press
		1988.
	5.	The Principles of Scientific Research, Freedman P., Pergamon Press,
		New York.

Course Outcome	DO1	DO1	DO3		DO5
No	POI	PO2	POS	PO4	POS
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	2	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	1	1	1	1	1

MSB159 Genetic Engineering Lab L-T-P: 0-0-3

Scho	ool: SBSR	Batch: 2018-20				
Prog	gram: M.Sc.	Current Aca	demic Year: 2	018-19		
Brai	nch:	Semester: 01	Semester: 01			
Biot	echnology					
1	Course Code	MSB159				
2	Course Title	Genetic Eng	ineering			
3	Credits	1				
4	Contact Hours (L-T-P)	0-0-2	0-0-2			
	Course Status	Compulsory	/Elective			
5	Course Objective	To give stude engineering to	ents a introduction echnique	on and hands on basic experim	ents of genetic	
6	Course Outcomes	 CO1: Perform experiments on DNA isolation from biological resource and understanding different methods for DNA isolation CO2: Perform experiments on RNA isolation. CO3: Validation of isolated DNA and RNA content. CO4: Amplification of particular gene of interest by PCR method. CO5: Validation of amplified gene by electrophoresis method. 				
7	Course Description	This course is designed to make students a thorough understanding of Database usage, tools and software for each bioinformatics applications				
8	Outline syllabus	CO Mapping				
	Unit 1	DNA isolatio	DNA isolation			
		Sub unit - a, l	b and c detailed	in Instructional Plan	CO1	
	Unit 2	RNA isolatio	n		CO2	
		Sub unit - a, l	b and c detailed	in Instructional Plan	CO2	
	Unit 3	Validation of	f isolated DNA	and RNA	CO3	
		Sub unit - a, b and c detailed in Instructional Plan			CO3	
	Unit 4	Amplificatio method	n of specific ge	ne of interest by PCR	CO4	
		Sub unit - a, l	b and c detailed	in Instructional Plan	CO4	
	Unit 5	Validation of	f amplified gen	e by electrophoresis	CO5	
		method				
		Sub unit - a, l	b and c detailed	in Instructional Plan	CO5	
	Mode of exam	Jury/Practical	l/Viva			
	Weightage	CA	MTE	ETE		
	Distribution	60%	0%	40%		
	Text book/s*	Brown T.A, "O Sons, 2010.	Gene Cloning and	d DNA Analysis: An Introduction	", John Wiley &	
	Other References	 Old R.W and Primrose S.B., "Principles of Gene Manipulation", Blackwell Scientific Publication, 2002. Dale W., von Schantz M. and Plant N., "From Genes to Genomes: Concepts and Applications of DNA Technology" John Wiley 2011 				

Course Outcome	DO1	PO7	PO3		DO2
No	101	102	105	104	103
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	2	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB156: Molecular Biology Lab

L-T-P: 0-0-3

School : SBSR		Batch : 2018-20					
Pr	ogram: M.Sc.	Current Academic Year: 2018-19					
Bı	ranch:	Semester: 01					
Bi	otechnology						
1	Course Code	MSB156					
2	Course Title	Molecular Biology Lab					
3	Credits	2					
4	Contact	0-0-3					
	Hours						
	(L-T-P)						
	Course Status	Compulsory					
5	Course	1. To familiarize students with sterilization techniques and	solution/media				
	Objective	preparations etc.	-				
		2. To motivate students towards molecular techniques for	better genome				
		understanding. 3 To acquaint with principles, technical requirement, scientific a	nd commercial				
		applications in molecular biology					
		4. Design and manage techniques for understanding inter	rplay amongst				
		macromolecules.					
6	Course	CO1: Demonstrate safe laboratory practices and handle the equipment safely.					
	Outcomes	CO2: Estimate the quality and quantity of nucleic acids.					
		CO3: Amalgamation of tools for plasmid vectors and DNA upta	ıke.				
		CO4: Perform <i>in silico</i> analysis for studying genome.					
		CO5: To design primers and carry out amplification of DNA by	PCR.				
		CO6: Complete acquaintance with principles, technical require	ment, scientific				
		and commercial applications in molecular biology.					
7	Course	The aim of this course is to acquaint the students about the ver	satile tools and				
	Description	techniques employed in molecular biotechnology. The course w	ill also provide				
		students with a hands-on understanding of how modern DI	NA-sequencing				
		technology, along with bioinformatics tools, can be used to d	iscover genetic				
		differences and understand molecular function.					
8	Outline syllabu	IS	CO Mapping				
	Unit 1	Practical based on introduction to molecular biology lab	CO1				
	Α	Good lab practices in molecular biology laboratory.					
	B & C	Preparation of standard solutions for molecular biology					
		experiments					
	Unit 2	Isolation of Nucleic acids and quantification	CO2				

A Isolation of DNA from bacteria								
	В	Isolatio	on of RI	NA from ba	cteria			
	С	Gel ele	ectropho	oresis				
	Unit 3	Practio	cal rela	ted to prep	aration of pl	asmids and		CO3
		transfe	ransformations					
	А	Plasmi	d isolat	ion				
	В	Prepara	ation of	competent	cells			
	С	Transfe	ormatio	n of plasmie	d into compet	ent cells		
	Unit 4	Practio	cal rela	ted to in sil	ico analysis (of genome		CO4
	А	Sequer	nce simi	larity searcl	n with freely a	available tools	5	
	В	Constr	uction of	of phylogene	etic tree			
	С	Identif	ication	of motifs an	d domain in s	sequences		
	Unit 5 Practical related to gene amplification				CO5			
	A & B	Design	ing of p	orimers for (CDs and parti	al sequences		
	С	Perform	Performing PCR reactions					
	Mode of	Practic	Practical and/or Viva					
	examination							
	Weightage	CA	MT	ETE				
	Distribution		Е					
		60%	0%	40%				
	Textbook/s	Michae	el, R. G	., Sambrook	. J., "Molecu	lar Cloning-A		
		Labora	tory Ma	anual", 4th e	edition, Cold	Spring Harbor	ſ	
		Labora	tory Pro	ess, 2012.				
	Other	1. Dav	vis, L.	(2012). Ba	sic methods	in molecular	biology.	
	References	Elsevie	er.					
		2. Cha	2. Chard, T., Work, T. S., & Work, E. (1987). Laboratory					
		techniques in biochemistry and molecular biology. Elsevier,						
		Amster	rdam.					
(Course Outcom	e Pa	01	PO2	PO3	P04	PO5	
	No	1	.	102	100	101	100	

140	,					
CO	1 3	3	1	1	1	1
CO	2 :	1	3	1	1	1
CO	3 2	1	1	3	1	1
CO	4 :	1	1	1	3	1
CO	5 2	1	1	1	1	3
CO	6 3	3	3	3	3	3

MSB155: Biochemistry Lab

L-T-P: 0-0-3

Scho	ool: SBSR	Batch: 2018-20			
Prog	gram: M.Sc.	Current Academic Year: 2018-19			
Brai	nch:	Semester: 01			
Biot	echnology				
1	Course Code	MSB155			
2	Course Title	Biochemistry Lab			
3	Credits	2			
4	Contact Hours	0-0-3			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To understand difference between types of biomolec	cules		
	Objective	2. To learn qualitative estimation of biomolecules			
		3. To learn the separation techniques for various biome	olecules		
		4. To understand the enzymatic parameters that in	ndicate proper		
		functioning of living systems			
6	Course	After finishing the course, the students will be able to			
	Outcomes	CO1: identify and distinguish between mono-, di-, and oligosaccharides			
		present in different samples			
		CO2: analyze individual compounds present in a particular	mixture/		
		extract and explain different chromatographic techniques	. 1 . 12		
		CO3: illustrate presence of starch and other plant secondary	⁷ metabolites		
		In real $CO4$, isolation and quantitation of DNA			
		CO5: illustrate metabolite/ enzymatic markers for particular	r organs		
		CO6: use biotechniques for identification separation and or	r analysis of		
		biomolecules and enzymatic markers in different samples	anarysis or		
7	Course	Biochemistry lab course is designed to make students learn	the estimation		
	Description	of carbohydrates, lipids, proteins and nucleic acids. The stud	lents also learn		
	1	various techniques such as various types of chromatogr	aphy used for		
		separation of amino acids and plant secondary metabolites	, estimation of		
		various plant secondary metabolites, estimation of biomark	ters for hepatic		
		and renal function etc.			
8	Outline syllabus		CO Mapping		
	Unit I	Practical based on estimation of carbohydrates			
		Subunit – a and b	CO1, CO6		
	Unit 2	Practical related to estimation and separation of			
		ammo acids Subunit a and b	CO2 CO6		
	Unit 2	Subuliit – a and D D reatical velocid to estimation of starsh	CO2, CO6		
	Unit S	rractical related to estimation of starch			

	Subunit - b a	nd c		CO3, CO6	
Unit 4	Practical rel	ated to isolatio	n and estimation of nucleic		
	acids	acids			
	Subunit - c			CO4, CO6	
Unit 5	Practical related to Practical related to study of				
	enzymes Subunit - b Practical/Viva				
				CO5, CO6	
Mode of					
examination					
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Textbook/s*	Sawhney S.K	. and Singh R.	Introductory Practical		
	Biochemistry.				
Other	NA				
References					

Course Outcome	DO1	DOJ	DO3		DO 5
No	POI	F02	P03	PU4	P05
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB116: Bioinstruments

L-T-P: 4-0-0

Credit - 4

School :	SBSR	Batch : 2018-20	
Program	n: M.Sc.	Current Academic Year: 2018-19	
Branch: Biotechnology		Semester: 02	
1	Course Code	MSB116	
2	Course Title	Bioinstruments	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
5	Course Objective	Allow students to familiarize themselves with the specific requi of biomedical instrumentation and biotechnology tools for enabli- intended use for research and industrial application.	rements ing their
6	Course Outcomes	 Perform experiments based on electrophoresis for seproteins and nucleic acids. Purify compounds from a mixture using column, ion-exaffinity chromatography, HPLC, affinity and chromatography. Illustrate organelle and protein localization by microscoption 4. Isolate cells by using fluorescence activated cell sorting or magnetic activated cell sorting (MACS) and comparison techniques. Conduct enzymatic and end-point assays spectrophotometer, apply spectroscopy techniques to und the structure of biological material. familiarize with the specific requirements of biological material. 	parating achange, d gas py. (FACS) bare cell using derstand medical
7	Outline syllabus	· · · · · · · · · · · · · · · · · · ·	
7.01	Unit 1	Electrophoresis	
7.02	Unit 1a	Principle of electrophoresis	
7.03	Unit 1b	Agarose gel and 2D-gel electrophoresis: Principle and applications,	CO1
7.04	Unit 1c	Capillary and Immunoelectrophoresis: Principle and applications	
7.05	Unit 2	Chromatography	
7.06	Unit 2a	Paper Chromatography, TLC	
7.07	Unit 2b	Column chromatography. Ion-exchange and Affinity chromatography	CO2
7.08	Unit 2c	Instrumentation and applications HPLC: Instrument setup and working	
7.09	Unit 3	Microscopy	
7.10	Unit 3a	Principle of microscope, Optical microscopy	CO3
7.11	Unit 3b	AFM and Fluorescence Microscopy,	

7.12	Unit 3c	Electron Microscopy		
7.13	Unit 4	Cell Separation Techniques and Centrifugation		
7.14	Unit 4a	Cell isolation and cell disruption techniques		
7.15	Unit 4b	FACS and MACS- Principle and applications; Preparative centrifugation	CO4	
7.16	Unit 4c	Differential and density gradient centrifugation, Ultracentrifugation		
7.17	Unit 5	Spectrometry and Spectroscopy		
7.18	Unit 5a	Spectroscopy- Absorption and fluorescence, Atomic and Raman spectroscopy	CO5	
7.19	Unit 5b	Mass spectrometry and NMR: Instrumentation and working		
7.20	Unit 5c	X-ray crystallography: crystal preparation, working and uses.		
8	Course Evaluation	on		
8.1	Course work: 30	marks		
8.2	Attendance	None		
8.3	Quizzes Three best quizzes out of Five 30-minutes quizzes in lecture hours; 10 percent			
8.4	Presentations	One: 10 percent		
8.5	Assignments	Three best out of five; 10 percent		
8.6	MST	One; 20 percent		
8.7	End-term examin	nation: 50 percent		
9	References			
9.1	Textbook1. Wilson K. and Walker J., "Principles and Techniques of Biochemistry and Molecular Biology", Cambridge University Press, 2010.			
9.2	Other references1. Ninfa A.J., Ballou D.P. and Benore M., "Fundamental Laboratory Approaches for Biochemistry and Biotechnology", Wiley, 2009.2. Sheehan D., "Physical Biochemistry: Principles and Applications", Wiley, 2009			

Course Outcome	DO1	PO2	PO3	PO 4	DO5
No	101	102	105	104	103
CO1	3	2	1	1	1
CO2	2	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB118: Advances in Plant Biotechnology

L-T-P: 4-0-0

School	: SBSR	Batch : 2018-20			
Progra	am: M.Sc.	Current Academic Year: 2018-19			
Branc	h:	Semester: 02			
Biotec	hnology				
1	Course Code	MSB 118			
2	Course Title	Advances in Plant Biotechnology			
3	Credits	4			
	Contact H				
4	(L-T-P)	4-0-0			
	Course				
5	Objective				
6	Course Outcomes	 After successfully completion of this course students will be able to: Will learn about tissue culture techniques applied in plant science Will comprehend genetically modified plants and Transgenic plants and their economic significance Will learn about the techniques for transferring gene by direct or indirect methods Will be able to classify different types of molecular markers, vectors, etc Will learn to apply the techniques in different field of science like ecology, environments, etc. Will comprehend recent advances in the field of plant biotechnology and their applications 			
7	Outline syllabus	s:			
7.01	Unit 1	Techniques in Plant Tissue Culture			
7.02	Unit 1a	Concept of totipotency, Production of Secondary metabolite			
7.03	Unit 1b	Haploid plant culture; Soma clonal variation, protoplast fusion and Hairy root culture			
7.04	Unit 1c	Elicitors, development of High yielding varieties			
7.05	Unit 2	Genetic Engineering of Plants			
7.06 7.07	Unit 2a Unit 2b	Biotic and abiotic stress, how to develop stress resistant plant like disease resistant plants Herbicide, pesticide resistant plant production, concept of vectors			
7.08	Unit 2c	tumefaciens			
7.09	Unit 3	Methods of Gene Transfer			
7.10	Unit 3a	General characteristics of gene transferring; Ti and Ri Plasmids their role.;			
7.11	Unit 3b	Physical & Chemical Method of gene transfer			
7.12	Unit 3c	Gene transfer technology; Advantage and disadvantage			
7.13	Unit 4	Molecular Markers			

7.14	Unit 4a	Unit 4a Concept of molecular markers, Examples of molecular markers				
7.15	Unit 4b	Application of molecular markers				
7.16	Unit 4c	Importance of molecular markers in crop improvements				
7.17	Unit 5	Application of Plant Biotechnology				
7.18	Unit 5a	Edible Vaccine; Concept of molecular and non-molecular farming				
7.19	Unit 5b	Production of antibiotics				
7.20	Unit 5c	Bioplastics				
7.17	Course Evaluat	ion				
8	Course work: 3	0 marks				
8.1	Attendance	None				
Three best quizzes out of Five 30-minutes quizzes in lecture hours						
8.11	percent					
8.12	Presentations	One: 10 percent				
8.13	Assignments	Three best out of five; 10 percent				
8.14	MST	One; 20 percent				
	End-term exam	ination: 50 percent				
8.15	None					
9	References					
	Textbook	1. Bhojwan S S Dantu Pk , Plant tissue culture: An Introductory Text				
9.1		Springer 2013				
	Other	CB Nirmala G. Rajalakshmi Chandra Kartik: Plant Biotechnology. MJP				
	references	publisher 2009				
9.2						
		Stewart CN Plant Biotechnology and Genetics: Techniques and				
9.3		Ap[plications Wiley Interscience 2008				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB125: Bioinformatics

L T P: 4-0-0

Schoo	I: SBSR	Batch: 2018-20			
Progr	am: M.Sc.	Current Academic Vear: 2018-19			
Brand	<u>uni. 101.50.</u>	Semester: 02			
Biotec	chnology				
1	Course Code	MSB125			
2	Course Title	Bioinformatics			
3	Credits	4			
4	Contact H (L- T-P)	4-0-0			
5 Course Objective To acquire an advanced knowledge of bioinformatics tools used and analyzing <i>in silico</i> experiments and different technic molecular modeling.			d for designing ques used for		
6	Course Outcomes	 After successfully completion of this course students will be a CO1: Understand about overview of bioinformatics scop disciplines. Generation of large-scale data in the field of biology. CO2: Review of database source, database management Biological databases and their classification. Sequences of specialized databases. CO3: To attain knowledge about data storage model/form of information and integration. CO4: Understanding about different sequence formats. F sequence alignment and phylogenetic prediction with diff tools/software with algorithm. CO5: To apply different techniques for gene prediction, and genome sequencing analysis. CO6: Basic knowledge of various bioinformatics concept database usage, tools and software used for each applicat their algorithms. 	able to: be and their molecular system, latabases and mat, retrieval Perform ferent motif search ots, scope, ion along with		
7	Outline syllabus		CO Mapping		
7.01	Unit A	Introduction to Bioinformatics			
7.02	Unit A Topic 1	Scope and importance	CO1 CO6		
7.03	Unit A Topic 2	Large scale generation of molecular biology data	01,000		
7.04	Unit A Topic 3	Different fields in bioinformatics			
7.05	Unit B	Biological Databases			
7.06	Unit B Topic 1	Introduction of Biological Databases			
7.07	Unit B Topic 2	Structural and Sequence database	102,006		
7.08	Unit B Topic 3	Specialized Genome databases and Structure databases	1		
7.09	Unit C	Data Storage and retrieval	CO2 CO2		
7.10	Unit C Topic 1	Controlled vocabulary	005,000		

		Introduction to Metadata; File Storage, File Format						
7.11	Unit C Topic 2	(FASTA, GenBank, Swiss-Prot, DDBJ and PDB)						
7.12	Unit C Topic 3	Boolean Search and Fuzzy Search						
7.13	Unit D	Sequence-alignment Related Problems						
		Sequence databases, Similarity matrices, pairwise						
7.14	Unit D Topic 1	alignment and BLAST	CO4, CO6					
7.15	Unit D Topic 2	Sequence assembly and multiple sequence alignment						
		Clustal and phylogenetics, distance based approaches,						
7.16	Unit D Topic 3	parsimony						
7.17	Unit E	Sequence pattern analysis & System-wide Analysis						
		Structure of Prokaryotic and Eukaryotic gene, Basic and						
		advanced sequencing (Maxam–Gilbert sequencing,						
7.18	Unit E Topic 1	Sanger sequencing, NGS, Pyrosequencing)						
		Gene finding, composition-based finding, sequence	CO5, CO6					
		motif-based						
7.19	Unit E Topic 2	finding						
		Pattern Matching, Regular expression, Transcriptomics,						
7.20	Unit E Topic 3	Microarray technology and expression profiles						
8	Course Evaluati	on						
8.1	Course work: 30)% marks						
8.11	Attendance	None						
8.12	Homework	Three best out of 4 assignments: 20 marks						
8.13	Quizzes	Two 30-minutes surprise quizzes in lecture hours: 10 marks						
8.14	Projects	None						
8.15	Presentations	None						
8.16	Any other	None						
8.2	MTE	One, 20 percent						
8.3	End-term exami	nation: 50 percent						
9	References							
9.1	Text book	Jin X., "Essential Bioinformatics", Cambridge University Pre	ss, 2006.					
		1. Mount D.W., "Bioinformatics: Sequence and Genome A	nalysis", Cold					
9.2	Other	Spring Harbor Laboratory Press, 2004.						
	References	2. Baxevanis A., Ouellette F.B.F., "Bioinformatics: A practic	al guide to the					
		analysis of genes and proteins", Wiley-Interscience, 2004.						
		3. Bourne P.E., Gu J., "Structural Bioinformatics", Wiley-Bla	Bourne P E Gu J "Structural Bioinformatics" Wiley-Blackwell 2009					

Course Outcome		DO1	DO 2		DO 5
No	POI	PO2	P03	P04	P05
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB121: Fermentation Technology

L T P: 4-0-0

School: SBSR		Batch: 2018-20			
Prog	gram: MSc	Current Academic Year: 2018-19			
Bra	nch:	Semester: 2			
Biot	echnology				
1	Course Code	MSB121			
2	Course Title	Fermentation Technology			
3	Credits	4			
4	Contact H	4-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To enable students bridge the gap between theore	tical concepts and		
	Objective	practical aspects in fermentation technology.			
		2. To provide knowledge about the different process	ses being used to		
		prepare various industrially important substances			
		3. To enable students to understand the bioreactor d	esigns.		
		4. To provide insight of various industrial fermentat	ion process.		
6	Course	After successfully completion of this course student	s will be able to:		
	Outcomes	CO1: Understand the history of fermentation tec	chnology and growth		
		kinetics of microorganisms.			
		CO2: Design bioreactors to achieve desired resul	ts (i.e. specified cell		
		concentration, production rates, etc).			
		CO3: Examine the mass transfer operation of	various biochemical		
		processes.			
		CO4: Apply scale-up methods for increasing yiel	d. Justify the use of		
		different biochemical strategies for the production of	f biologicals.		
		CO5: To learn the basics of downstream processing			
		CO6: Cradle to grave knowledge of microbial proces	ss engineering.		
7	Course				
	Description		-		
8	Outline syllabu	15	CO Mapping		
	Unit 1	Introduction to Fermentation Process	CO1		
	А	Microbial growth kinetics; Media for Industrial			
		fermentation;			
	В	Sterilization: Batch and continuous;			
	С	Heat sterilization of liquid media; Filter			
		sterilization of liquid media and air.			
	Unit 2	Bioreactors	CO2		
	А	Packed bed biorecators; Fluidized-bed bioreactors;			
	В	Air lift bioreactors; Bubble column bioreactors;			
	С	Immmobilized enzymes bioreactors.			

Unit 3	Bioreactor I	nstrumentatio	n	CO2,CO3	
А	Measurement	of physical a	nd chemical parameters		
	in bioreactors	;			
В	Measurement	Measurement of biological parameters in			
	bioreactors;				
С	Transport phe	enomenon in b	ioreactor		
Unit 4	Bioreactor C	Control		CO2, CO3	
А	Agitation an	d mixing; E	Effect of stirring and		
	sparging				
В	Monitoring an	nd control of d	lissolved oxygen, pH,		
С	Impeller spee	d and tempera	ture in stirred tank		
	fermenter.				
Unit 5	Downstream	Downstream Processing			
А	Isolation-phy	sical and chem	nical techniques for cell		
	separation and	d cell disruption	on.		
В	Chromatogra	phic and elect	cophoretic separation		
С	evaporation,	drying and cry	stallization techniques.		
Mode of	Theory/Jury/I	Practical/Viva		Theory	
 examination	<u><u>a</u> 1</u>		TAP		
Weightage	CA	MTE	ETE		
 Distribution	30%	20%	50%		
Text book/s*	1. Doran	P.M., "Biopro	ocess Engineering		
	Principles", Academic Press, 2012.				
Other	1. Katoh	S. and Yoshid	da F., "Biochemical		
References	Engin	eering", Wiley	y-VCH, 2009.		
	2. McNe	eil B. and Harv	vey L., "Practical		
	Ferme	entation Techn	ology", Wiley, 2008.		

Course Outcome

	PO1	PO2	PO3	PO4	PO5
No			100		100
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB117 Immunology and Immunotechnology

Sch	ool: SBSR	Batch: 2018-20				
Pro	gram: M.Sc.	Current Academic Year: 2018-19				
Bra	nch: BT	Semester: 02				
1	Course Code	MSB117				
2	Course Title	Immunology and Immunotechnology				
3	Credits	4				
4	Contact H	4-0-0				
	(L-T-P)					
	Course	Compulsory /Elective/Open Elective				
	Status					
5	Course	1. Understand immune system, immunity and var	ious immune			
	Objective	responses.				
	-	2. Discuss about the structure and function of antigen and antibodies;				
		Hypersensitivity and Autoimmunity.				
		3. Understand the principle behind Immunization and Vaccines; Ag-Ab				
		reactions and immune-techniques.				
6	Course	CO1: To understand Immune system, immunity and ir	CO1: To understand Immune system, immunity and immune responses			
	Outcomes	CO2:.Discuss about the structure and function of antig	gen and antibodies.			
		CO3: Discuss about Hypersensitivity and Autoimmun	ity.			
		CO4: Understand the principle behind Immunization a	and Vaccines			
		CO5: To understand the Antigen-antibody reactions and Immuno-techniques				
		CO6: To acquire a fundamental working knowledge of the basic principles of				
		immunology				
7	Course	The course will help students to acquire a fundamental	working knowledge of			
	Description	the basic principles of immunology; to begin to	understand how these			
		principles apply to the process of immune function; an	d to develop the ability			
		to solve problems in clinical immunology by making u	ise of existing tools and			
		techniques				
8	Outline syllabi	18	CO Mapping			
	Unit 1	Immune System and Immune responses				
	A	Immune system: cells and organs of the immune	COI			
		system; Hematopoesis; Immunity and its types; Innate				
		infinumity: Darriers of infinite infinumity; Complement				
	B	Acquired immunity: Cell-mediated and humoral	CO1			
	D	immunity: Activation of T-lymphocytes and B-	01			
		lymphocytes				
	С	Antibody-mediated and macrophage-mediated	CO1			
		cytotoxicity; Cytokine release and their role in immune				
		regulation;				
	Unit 2	Antigen and Antibody				

А	Antigen and Hapten, Immunogeni	Immunogen; Superantigen, city, Adjuvants	Properties of an antigen; , Antigenicity and s, Epitopes.	CO2
В	Structure an types	d function of	f immunoglobulin and its	CO2
С	Major Histoc	ompatability C	Complex, BCR and TCR	CO2
Unit 3	Hypersensit	ivity and Aut	oimmunity	
А	Hypersensiti Severe comb Acquired imr	vity and its ined immunoc nunodeficienc	types, Immunodeficiences: leficiency syndrome (SCID), y syndrome (AIDS)	CO3
В	Autoimmuni Hashimoto's Gravis	ty; Organ-Spec Thyroiditis G	cific Autoimmune Diseases: raves' Disease, Myasthenia	CO3
С	Systemic Au Erythematos Arthritis	ıtoimmune E us, Multiple	Diseases: Systemic Lupus Sclerosis, Rheumatoid	CO3
Unit 4	Immunizati	on and Vaccin		
А	Active and pa	assive immuni:	zation	CO4
В	Vaccine and i	ts properties		CO4
С	Types of Vac	cines		CO4
Unit 5	Antigen-ant techniques	ibody read	tions and Immuno-	
А	Antigen-antil precipitation	oody reactions	ons: Agglutination and	CO5
В	Immunodiffu of ELISA	sion, Immuno	fuorescence; RIA and types	CO5
C	Hybridoma to Polyclonal vs	echnology and . monoclonal a	monoclonal antibodies; antibodies	CO5
Mode of	Theory/Jury	/Practical/Viv	a	
 examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	Kindt T.J., C	Osborne B.A.	and Goldsby R.A. (2006)	
	Kuby Immur	nology, W. H.	Freeman	
Other	3. Delve	es P.J, Martin	S.J., Burton D.R. and	
References	Roitt	I.M., (2011) I	Roitt's Essential	
	Immu	unology, Wile	y	

Course Outcome	DO1	DO1	DO3		DO5
No	roi	F02	103	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	1	1	1	1	1

MSB157: Immunotechnology Lab

L-T-P 0-0-3

School : SBSR		Batch : 2018-20				
Program: M.Sc.		Current Academic Year: 2018-19				
Brai	nch:	Semester: 2				
Biot	echnology					
1	Course Code	MSB157				
2	Course Title	Immunotechnology Lab				
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
5	Course Status	Compulsory				
6	Course	1) This course understanding provides a strong foundation	and can prompt a			
	Objective	greater enthusiasm for and an improved understanding of the	complete immune			
		response.	-			
		2) The Work involving human samples is enticing to stud	lents with clinical			
		interests, and further detailed protocols, and analysis g	guidance may be			
		appropriate for introductory immune response.				
7	Course	After successfully completion of this course students will be	able to:			
	Outcomes	CO1: understand basic laboratory techniques of blood groups				
		CO2: estimate the haemoglobin of its own blood				
		CO3: practical knowledge of antigen antibody interactions				
		CO4: isolate lymphocytes for further deep analysis				
		CO5: prepare suspension solutions of spleen and bone marrow	N			
		CO6: understanding provides a strong foundation and can	prompt a greater			
		enthusiasm for and an improved understanding of the c	complete immune			
0	0	response.				
8	Course	The aim of this course is to acquaint the students about the ve	ersatile tools and			
	Description	techniques employed in immunology. The course will also pr	ovide students			
		with a hands-on understanding of now immunology can be us	sed to discover			
		warlous processes used by animals and numans for their self of	defence			
0	Outling gullabug	mechanism.	CO Mannina			
9	Unit 1					
		To study permanent slides of immune tissues and ensens				
	A D	To study permanent sides of minute tissues and organs				
	D C	To find the Dh factor of own blood group				
	Unit 2	To find the Kir factor of own blood group	C02			
		To actimate the amount of Hb present in human blood	02			
	A P	To estimate the amount of the present in numan blood				
	D C	To perform Separation of lumphosytes				
	Unit 3	To perform separation of tymphocytes	CO3			
		To perform Sandwich anzyma linked immunosorbant assay	005			
	л Р	To perform DoT ELISA				
	Б С	To perform Haemagglutination test				
	Unit 1		<u>CO4</u>			
		T C O 11 1 2 1 11 2 1 100 2 1 1	004			
	А	To perform Ouchlerlony's double immunodiffusion method.				

В	To perform Ra	To perform Radial Immunodiffusion			
С	To perform RI	To perform RIA			
Unit 5				CO5	
А	Preparation of	single cell susp	ension of spleen.		
В	Preparation of	single cell susp	ension of bone marrow.		
С					
Mode of	Practical/or Viva				
examination					
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Text book/s*	Kindt, T. J., C	Goldsby, R. A.,	Osborne, B. A., Kuby, J.		
	(2006). VI Edi	tion. Immunolo	gy. W.H. Freeman and		
	Company.				
Other	Delves, P. J., Martin, S. J., Burton, D. R., Roitt, I.M.				
References	(2006). XI Edi	tion. Roitt's Ess	sential Immunology, Blackwe	1	
	Publishing				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	2
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB158 Plant Biotechnology Lab

L-T-P: 0-0-3

Sch	ool: SBSR	Batch : 2018-20			
Pro	gram: M.Sc.	Current Academic Year: 2018-19			
Bra	inch:	Semester: 2			
Bio	technology				
1	Course Code	MSB158			
2	Course Title	Plant Biotechnology Lab			
3	Credits	3			
4	Contact H	0-0-3			
	(L-T-P)				
	Course	Compulsory			
	Status				
5	Course	1. To familiarize students with sterilization techniq	ues and media		
	Objective	preparations etc.			
	2. To motivate students towards plant cell and tissue culture for mass				
	propagation.				
	5. To acquaint with principles, technical requirement, scientific a				
	4 Develop and manage plant tissue culture techniques for crop improvement				
6	Course	CO1: Development of ability to design and conduct ex	periments under		
	Outcomes	controlled conditions.	•		
		CO2: Development of skills for application of tissue cultu	re techniques in		
		plant.			
		CO3: To Amalgamation tools for artificial germination of s	eeds.		
		CO4: Perform regeneration of plant under artificial condition	ons.		
		CO5: Develop transgenics and differentiate between trans	genics from wild		
		cultivars.			
		CO6: To familiarize students with sterilization technic	ques and media		
		preparations etc.			
7	Course	The aim of this course is to acquaint the students about the v	ersatile tools and		
	Description	techniques employed in plant biotechnology. Cell and tissue	culture of plants		
		offers avenues for enhancing crop production and utilizat	ion of molecular		
		tools in plant genome modification helps in creation of tran	sgenic plants for		
		combating food problems.			
8	Outline syllabu	15	CO Mapping		
	Unit 1	Practical based on introduction to plant biotechnology	CO1		
		lab			
	А				

B & C	Condition	ns optim	ization for growth of plant cell/tissue				
	under con	nditions					
Unit 2	nit 2Isolation of Nucleic acids from plants and						
	quantific	quantification					
A& B	Isolation	Isolation of DNA and RNA from plants					
С	Agarose	gel elect	rophoresis				
Unit 3	Seed ger	minatio	n on stratified media	CO3			
A & B	Preparati	on of M	S medium, Water Agar medium,				
	Gamborg	g mediun	n				
С	Sterilizat	ion of se	eeds and germination on stratified				
	medium						
 Unit 4	Plant reg	generati	on	CO4			
А	Callus cu						
В	Shoot reg	generatio	on				
С	Rooting	of <i>in vitr</i>	o raised plants				
Unit 5	Constru	Construct preparation and transgenics					
А	Restrictio	on of vec	ctor and gene for construct				
В	Agrobaci	terium co	onstruct for transformation				
С	PCR for	confirma	ation of transgene				
Mode of	Practical	and/or V	Viva				
examination							
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Text book/s	Michael,	R. G., S	ambrook. J., "Molecular Cloning-A				
	Laborato	ry Manu	al", 4th edition, Cold Spring Harbor				
	Laborato	Laboratory Press, 2012.					
Other	1. Giri,	С. С., а	and Archana Giri. Plant biotechnology:				
References	Practical	Manual	. IK International Pvt Ltd, 2013.				
	2. Aneja	a, K. R	. Experiments in microbiology, plant				
	patholog	y and b	biotechnology. New Age International,				
	2007.						

Course Outcome		DOJ	DO3		DO5
No	POI	PO2	POS	104	POS
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MSB160: Bio-instrumentation Lab

L T P: 0-0-3

Scho	ool: SBSR	Batch: 2018-20				
Prog	gram: M.Sc.	Current Academic Year: 2018-19				
Brai	nch:	Semester: 02				
Biot	echnology					
1	Course Code	MSB160				
2	Course Title	Bio-Instrumentation Lab				
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
	Course Status	Compulsory/Elective				
5	Course	To give students a thorough understanding of tools and	techniques in			
	Objective	Biomedical and Biotechnology Laboratories. To make stu-	dents learn the			
		working and operation of various biotechnological instrume	ents			
6	Course	CO1: Operate autoclave, Laminar Air flow and Hot air over	en and sterilize			
	Outcomes	glass and plasticwares.				
		CO2: Operate centrifuge and refrigerated centrifuge and	l separate cell			
		components.				
		CO3: Separate and visualize nucleic acids and prote	ins using gel			
		electrophoresis.				
		CO4: Operate spectrophotometer and perform absorbance a	issays.			
		CO5: Separation of pigments, drugs, amino acids and he	ormones using			
		chromatographic techniques.	1 1 . 1 . 1			
		CO6: Operation and working of different instruments and	d bioanalytical			
7	0		• • •			
/	Course	I his course is designed to make students learn about vario	us instruments			
	Description	and techniques of biomedical and biotechnology laborator	y and will also			
		enable them to use and apply these techniques and equip.	ments to solve			
0	Outline extlebue	experimental problems.	CO Monning			
0	Unit 1	Practical based on Starilization	CO Wapping			
		Tractical based on Stermization				
			COI			
		To learn the working of an autoclave.				
		To learn the working of a laminar air flow.				
		To sterilize glasswares using hot air oven.				
	Unit 2	Practical related to centrifuge	CO2			
			CO2			
		Using pH meter				
		Working and principle of incubator shaker				
		Working of refrigerated centrifuges				
	Unit 3	Practical related to gel electrophoresis	CO3			

				CO3			
	Separation of	of DNA using A	GE				
	Separation of						
Unit 4	Practical relation	Practical related to spectrophotometer					
	Principle an	d working of a	spectrophotometer				
	Measuring c	concentration of	protein using				
	spectrophoto	ometer					
Unit 5	Practical rel	Practical related to chromatography					
	Use of paper	Use of paper chromatography for separation of plant					
	pigments	pigments					
Mode of exam	Jury/Practical	l/Viva					
Weightage	CA	MTE	ETE				
Distribution	60%	0%	40%				
Textbook/s*	Wilson K. an	d Walker J., "P	rinciples and Techniques of Bio	ochemistry and			
	Molecular Bi	ology", Cambri	dge Press, 2010.				
Other	1. Cottenil R	M.S., "Biophy	sics: An Introduction", John W	viley and Sons,			
References	2002.						
	2. Gupta A.,	"Instrumentatio	on and Bioanalytical Technique	es", Pragati			
	Prakashan, 20)09.					

Course Outcome

	PO1	PO2	PO3	PO4	PO5
No	- 0-		2.00	101	200
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB201: Environmental Microbiology and Waste Management

L-T-P: 4-0-0

School : SBSR		Batch : 2018-20				
Prog	gram: M.Sc.	Current Academic Year: 2018-19				
Branch: Biotechnology		Semester: 3				
1	Course Code	MMB201				
2	Course Title	Environmental Microbiology & Waste Management				
3	Credits	4				
4	Contact Hours (L-T-P)	4-0-0				
	Course Status	Compulsory				
5	Course Objective	 This course provides a comprehensive introduction to microbial ecology and fundamentals of microbial diversity. The course is designed to give students an up-to-date understanding of a wide array of applications of microorganisms in maintaining biogeochemical factors. This course also focuses on concepts of applied environmental microbiology and how microbes can be used for various industrial/ 				
-		 research applications. 4. The course also highlights the modern methods of waste management and significant role of microorganisms in waste and resources management. 				
0	Outcomes	After the successful completion of this course students will be able to: CO1: Comprehend ecological interactions and role of microorganisms played in there and discuss microbial ecology concepts including methods of assessing microbial diversity and studying microbial populations. CO2: Analyze the role of microorganisms in biogeochemical cycles. CO3: Classify different methods of bioremediation and use of microorganisms and plasmids in bioremediation CO4: Explain the commercial application of microorganisms in extraction of metals, oil and in production of biogas. CO5: Identify different methods of waste management and how different microbial metabolic processes can assist in waste management. CO6: To provide a comprehensive introduction to microbial ecology and fundamentals of microbial diversity.				
7	Course Description	The 'Environmental Microbiology and Waste Management' is a course designed to give students knowledge about basic concepts of environment/ ecosystem and the role microorganisms play in maintaining the ecosystem balance. This course throws light on various unconventional uses of microorganisms in various industries and				

		environmental benefits of use of the microorganisms. This course also					
		outlines various biological methods of waste management and					
		application	of microbes in	bioremediation.			
8	Outline syllabu	s			CO Mapping		
®t	Unit 1	Microbial Ec	cology				
r	А	Ecological Co	oncepts: Introd	uction to ecosystem; types of			
		ecosystem; fo	od chain and f	ood web; biological			
		magnification	and eutrophic	ation			
	В	Microbial div	ersity: estimate	es of total number of species;	CO1		
		Shannon and	001				
		Unculturable					
	С	Culture indep	endent molecu	lar methods for understanding			
		microbial con	nmunity- Partia	al and whole community			
		analysis					
	Unit 2	Role of Micr	Role of Microorganisms in Environment				
	А	Role of micro	bes in biogeoc	hemical cycles: nitrogen			
		cycle: differe	nt phases of nit	trogen cycle, microbes			
		involved in d	ifferent stages	of nitrogen cycle	CO2		
	BCarbon, Phosphorous and Sulphur cycleCProduction of microbial bio-fertilizers, bio-pesticides, soil						
		conditioners t	o enhance crop	oyields.			
	Unit 3	Role of Micr	oorganisms in	Remediation			
	А	Bioremediatio	on- <i>in situ</i> and	ex situ techniques			
	В	Biodegradatio					
		pesticides; Bi	oaccumulation	of metal and detoxification	CO3		
	С	Degradation	of xenobi	otics by microorganisms;			
		Degradative p	olasmids				
	Unit 4	Role of Micr	oorganisms in	Mining and Energy			
		Production					
	А	Microbial tec	hnology in mir	ning: Bioleaching; Biomining;			
		Bio-beneficia	tion				
	В	Recovery of o	oil and MEOR;	Bioconversions	CO4		
	С	Microbial tec	hnology for en	ergy production- Concept of	001		
		microbial fue	l cell- principle	e; types and applications, Use			
		of microorga	nisms in the pro	oduction of biogas			
	Unit 5	Role of Micr	oorganisms in	Waste Management			
	А	Landfill- stru	cture and types	, involvement of microbes in			
	_	initial adjustn	nent phase, trai	nsition phase, acid phase			
	В	Methane form	nation and mat	uration phase of a landfill			
		operation	CO5				
	С	Compositing-					
		of microbial of	composting				
	Mode of	Theory					
	examination			PAP			
		CA	MIE	EIE			

Weightage	30	%	20%	50%		
Distribution						
Text book/s*	1.	Environm				
		Ane Books				
	2.	Environm				
		Edition. B				
		2473-2.				
Other		1. Enviror	nmental B	iotechnology.	Fulekar MH. CRC	
References	Press @20	14. ISBN 9	78-1-57808-528	3-8.		
	2.	Fundamentals of Ecology. Odum EPO and Barret W.				
		Brooks/Cole @2005. ISBN 0534420664.				

Course Outcome	PO1	PO?	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	2	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB 204: Genomics

L-T-P: 4-0-0

Sch	ool : SBSR	Batch : 2018-20				
Pro	gram: M.Sc.	Current Academic Year: 2018-19				
Bra	nch:	Semester: 3				
Biot	technology					
1	Course Code	MSB 204				
2	Course Title	Genomics				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Core				
5	Course	1. To comprehend the basic principles of genomics, so that	at may use it for			
	Objectives	understanding biological functions and apply for human	benefit			
		2. To acquire knowledge of techniques and strategie	es involved in			
		understanding a genome				
6	Course	After successfully completion of this course students will b	e able to:			
	Outcomes		: 1 (DNA			
		COI. Comprehend the fundamentals of genomics and princ	cipies of DNA			
		sequencing and analysing tools.				
		CO2. Identify the advantages and disadvantages of	various DINA			
		sequencing methods and choose the appropriate genome and its	uysis pipeline.			
		CO3. Apply the concept of molecular markers and its	application in			
		genome analysis and mapping	anomics and			
		comparative genomics and apply it to solve problems	genomics and			
		CO5 Appreciate the power of microbial genome analysis at	nd its			
		application in industry, agriculture and medicine for human	welfare			
		CO6 Be familiar with the different techniques used in geno	me analysis			
		and choose rationally the appropriate methodology for solvi	ng problems			
7	Course	This course provides a window to the methods and	1 applications			
	Description	of genomics in the study of genomics. It gives a glimpse of	of the amazing			
	1	world microbes that are so diverse at genome level and	consequently			
		express unique characters. It will explore how the technique	s and genomic			
		data in general have been used to understand biology. It wi	ll also indicate			
		how this diversity can be exploited for various industries.				
8	Outline syllabus		CO Mapping			
	Unit 1	Genomic Diversity				
	А	Concept of Genome	CO1			
	В	Principles of DNA sequencing techniques, Automated	CO1, CO6			
		DNA sequencing, Pyrosequencing, New generation				
		Sequencing methods				

С	Primary, derivative and composite biological database	ses	CO1, CO6
Unit 2	Whole Genome Sequencing		
А	Whole genome sequencing methods	CO2, CO6	
В	Genome assembly and annotation		CO2, CO6
С	Analysis of sequence data (gene prediction, cons	erved	CO2, CO6
	domain prediction, motifs), Metagenomics		
Unit 3	Mapping techniques		
А	Types of genome maps,		CO3 , CO6
В	Introduction to molecular markers (RFLP, AFLP, ES STS, SNP)	ST,	CO3, CO6
С	Application of markers in mapping technic Significance of markers in sequencing projects	CO3, CO6	
Unit 4	Genomics		
А	Functional genomics, Concept of forward and rever genomics	CO4	
В	Investigation ofgene function byreverse genomic too mutagenesis	CO4, CO6	
С	Comparative Genomics, application in Func genomics	tional	CO4, CO6
Unit 5	Application of Genomics		
А	Pharmaco-genomics and its application with special reference to SNP and SNP databases	CO5, CO6	
В	Genomics and its application in agriculture and indu	stry	CO5, CO6
С	Reverse vaccines, Human genome project	-	CO5, CO6
Mode of	Theory		
examination			
Weightage	CA MTE ETE		
Distribution	30% 20% 50%		
Text book/s*	1.Brown T.A., Genomes, 3 rd Edition. Wiley-Liss (20	06).	
Other	1. Bioinformatics and Functional genomics by Jonathan		
References	Pevsner, 2nd edition, John Wiley and Sons (2008)		
	2. Introduction to genomics by Arthus M. Lesk, C University Press (2007)	Jxford	

Course Outcome	DO1	DO1	DO3		DO5
No	FUI	F02	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB206: Enzyme Technology

L-T-P: 4-0-0

Credit – 4

Scho	ool: SBSR	Batch: 2018–20				
Prog	gram: M.Sc.	Current Academic Year: 2018-19				
Brai	nch:	Semester: 3				
Biot	echnology					
1	Course Code	MSB206				
2	Course Title	Enzyme Technology				
3	Credits	4				
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course Status	Compulsory				
5	Course	With this Course the students				
	Objective	1. will acquire knowledge fundamental Knowledge of En	zymes			
		2. Will get useful exploitation of enzymes physical and kin	etic properties			
		3. Use Enzymes biocatalysts in the biotransformation				
		4. Know the Industrial, Research and Therapeutic applications o				
	9	Enzymes				
6	Course	After successfully completion of this course students will be able to:				
	Outcomes	CO1. Define and Classify Enzymes and its fundamentals properties				
		CO2. Examine Enzyme Kinetics, Perform and calculate enzyme specificity				
		and activity	ive and Non			
		competitive inhibition and its significance	ive and Non-			
		COA Understand Allosteric Enzymes regulation Covalent	modification			
		Determine the role of co-enzymes Enzyme constitution and in	mobilization,			
		CO5 Evaluate Applications of Enzymes in industry Enzymes in clinical				
		diagnostics sensors for clinical processes and environmental Microbial				
		analyses. Engineered Enzymes.	,			
		CO6. To analyse Enzymes principles, properties, Kinetic	cs, Inhibition,			
		Allosterism, Co-Enzymes, Engineered Enzymes, Application	of Enzymes in			
		various industries, research and therapeutic aspects	-			
7	Course	This course covers fundamentals to applications necessary for	the useful			
	Description	exploitation of enzymes both as tools for the enzymatic analyse	es and as			
		biocatalysts in the biotransformation on the unique structural-f	unctional			
		properties of enzymes and its microbial industrial and research	utilization.			
8	Outline syllabu	IS	CO Mapping			
	Unit 1	Properties of Enzymes	CO1,6			
	А	Classification of enzymes, Structural conformations of	CO1,6			
		enzyme proteins				
	B	Enzymes as biocatalysts, Catalytic power, Activation energy	CO1,6			
	C	Substrate specificity, Mechanisms of enzyme action,	CO1,6			
		Ribozymes and abzymes				

Unit 2	Enzyme K	inetics		CO2,6	
А	Factors affe	ecting rates of	of enzymatic reactions (pH,	CO2,6	
	temperature	e, substrate c	concentration, enzyme concentration		
	and reaction				
В	Overview of	of Michaelis-	Menten equation and its	CO2,6	
	transformat	tion, Linewe	aver-Burke plot		
С	Evaluation	of kinetic pa	rameters (K_M, V_{max})	CO2,6	
Unit 3	Enzyme In	hibition		CO3,6	
А	Irreversible	and reversil	ble inhibition	CO3,6	
В	Competitiv	e, non-comp	etitive and un-competitive inhibition	CO3,6	
С	Enzyme inl	nibition kine	tic studies, Determination of k_{cat} .	CO3,6	
Unit 4	Regulation	CO4,6			
А	Allosterism	, Kinetic and	alysis of allosteric enzymes	CO4,6	
В	Covalent m	odification,	Feed-back inhibition, Membrane	CO4,6	
	bound enzy	vmes			
С	Isoenzymes	CO4,6			
	enzymes				
Unit 5	Applicatio	CO5,6			
А	Microbial e	Microbial enzymes in textile, leather, wood industries and			
	detergents	detergents			
В	Enzymes i	n clinical d	liagnostics and Enzyme sensors for	CO5,6	
	clinical pro	cesses and e	nvironmental analyses		
С	Engineered	enzymes, E	nzymes as therapeutic agents	CO5,6	
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Textbook/s*	Palmer T.,	Bonner P. L.	, "Enzymes: Biochemistry,		
	Biotechnol				
	2007.				
Other	1. Cop				
References	to S 200				
	2. Gui (Me	sán J. M., "I ethods in Bio	mmobilization of Enzymes and Cells (technology)", Humana Press, 2010.		

Course Outcome		DO1	DO 2		DO 5
No	POI	PO2	P03	P04	P05
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB203: Intellectual Property rights and ethical issues

L-T-P 4-0-0

Sch	ool: SBSR	Batch : 2018-20					
Prog	gram: MSc	Current Academic Year: 2018-19					
Bra	nch:	Semester: 3					
Biot	echnology						
1	Course Code	MSB203					
2	Course Title	IPR and Industrial Ethics					
3	Credits	4					
4	Contact Hours	4-0-0					
	(L-T-P)						
	Course Status	Compulsory					
5	Course	To elucidate the ways of protection of intellectual property and research					
	Objective	with the help of WIPO and its different treaties. To co	with the help of WIPO and its different treaties. To correlate different				
		instruments of IP protection and their enforcement in dis	instruments of IP protection and their enforcement in different countries.				
		To understand different quality management iss	ues related to				
		biotechnology					
6	Course	By the end of this course students will be able to:					
	Outcomes	CO1: Administer and follow the guidelines of WIPO.	CO1: Administer and follow the guidelines of WIPO.				
		CO2: Understand the patents, copyrights and trademark	s.				
		CO3: Understand the character merchandising and franc	chising.				
		CO4: Understand the utility of IPRs in biotechnology.					
		CO5: Understand about quality standards.					
		CO6: Learn the quality assurance.					
7	Course	Intellectual property (IP) includes intangible creation	s of the human				
	Description	intellect, and primarily encompasses copyrights, patents,	, and trademarks.				
		It also includes other types of rights, such as trade secrets	, publicity rights,				
		moral rights, and rights against unfair competition. Pre-	esent paper deals				
		with knowledge of types and protection of different IPR	s.				
8	Outline syllabu	S	CO Mapping				
	Unit 1	Introduction to Intellectual Property Rights	CO1, CO6				
	А	The concept of intellectual property,					
	В	WIPO- history, mission and activities, structure,					
		administration.					
	С	Importance of IPR in biotechnology					
	Unit 2	Patents & Copyrights					
	А	Patents-basic concepts	CO2, CO3,				
			CO6				
	В	Infringement, compulsory licenses.					
	С	Copyright and related rights; piracy and infringement					
	Unit 3	Trademarks	CO2, CO3,				
			CO4, CO6				

А	Definitions, S				
В	Trademark pi	iracy, and cour	nterfeiting		
С	Character Me				
Unit 4	Work ethics	Work ethics			
А	Work ethic –	Self learning,	self egoism		
В	Accountabilit	ty			
С	Management	of staff and in	ventory		
Unit 5	Ethics in ind	CO3, CO4, CO6			
А	Risk-Benefit	Analysis			
В	Team work, V	Working with	colleagues and sharing of		
	work, work f	low related dif	ficulties		
С	Minimum inp	put and maxim	um output; proactive ness.		
Mode of examination	Theory				
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1. Managing intellectual capital: organizational, strategic and policy dimensions Oxford Univ. press 2005 Teece, David J.				
Other	2. Technique	s used in Bio p	product analysis,		
References	Butterworth I	Heinemann Lte	d, 2017.		
	3. Law relating	ng to patents, t	rademarks, copyright		
	designs geog	raphical indica	tions. Universal Law		
	Publishing ho	ouse by Wadeł	nra, B.L.		

Course Outcome

	PO1	PO2	PO3	PO4	PO5
No	101	10-	1.00	101	100
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	2
CO4	2	2	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSP206: Enzyme Technology Lab L-T-P: 0-0-3

School: SBSR		Batch: 2018-20				
Program: M.Sc.		Current Academic Year: 2018-19				
Brar	nch:	Semester: 03				
Biot	echnology					
1	Course Code	MSP206				
2	Course Title	Enzyme Tec	hnology Lab			
3	Credits	2				
4	Contact Hours (L-T-P)	0-0-3				
	Course Status	Compulsory	/Elective			
5	Course Objective	To give stude To make stu measurement	To give students a thorough understanding of enzymes and enzyme kinetics. To make students learn the working and operation of enzymes as well as measurement of enzyme activity			
6	Course Outcomes	CO1: To und CO2: Prepara CO3: Assayir Dinitrosalicy CO4: To dete CO5: To dete CO6: To giv kinetics.	 CO1: To understand the mode of action of salivary amylase CO2: Preparation of standard curve for calculation of enzyme activity. CO3: Assaying the activity of industrially important amylase enzyme using 3,5-Dinitrosalicylic acid method. CO4: To determine the pH optima of amylase enzyme CO5: To determine the temperature optima of amylase enzyme CO6: To give students a thorough understanding of enzymes and enzyme 			
7	Course Description	This course is their activity enzymes.	This course is designed to make students learn about enzymes, measurement of their activity in terms of IU and katal as well as understanding the kinetics of enzymes			
8	Outline syllabus	CO Mappin				CO Mapping
	Unit 1	Salivary amy	ylase			CO1
		Mode of action	on of α -amylase	on starch		CO1
	Unit 2	Calculation	of Enzyme Act	ivity		CO2
		Preparation o	f standard curve	e		CO2
	Unit 3	Assaying the	activity of ind	ustrially im	portant amylase	CO3
		3'5'- Dinitros	salicylic acid m	ethod	s <u> </u>	CO3
	Unit 4	pH optima				CO4
		To determine	the pH optima	of amylase e	enzyme	CO4
	Unit 5	Temperatur	e optima		•	CO5
		To determine	the temperature	e optima of a	mylase enzyme	CO5
	Mode of exam	Jury/Practical	/Viva			
	Weightage	CA	MTE	ETE		
	Distribution	60%	0%	40%		
	Textbook/s*	1. Palmer T., Chemistry", V	Bonner P. L., " Woodhead Publ	Enzymes: Bi ishing, 2007.	ochemistry, Biotech	nology, Clinical
	Other	2. Copeland I	R. A., "Enzyme	s: A Practica	l Introduction to Stru	ucture,
	References	Mechanism, and Data Analysis", Wiley, 2006.				

	3. Guisán J. M., "Immobilization of Enzymes and Cells (Methods in
	Biotechnology)", Humana Press, 2010.

Course Outcome	DO1	DO1	DO3		DO5
No	POI	PO2	P03	104	P05
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	2
CO4	2	2	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB256: Genomics and Bacterial Genetics Lab L-T-P 0-0-3

Scho	ool: SBSR	Batch:2018-20						
Prog	gram: M.Sc.	Current A	Academic Year	:: 2018-19				
Bra	nch:	Semester	: 3					
Biot	echnology							
1	Course Code	MSB256						
2	Course Title	Genomics	and Bacterial (Genetics Lab				
3	Credits	2	2					
4	Contact Hours	0-0-3						
	(L-T-P)							
	Course Status	Compulso	ory					
5	Course Objective	To learn n	nethods of gene	prediction, annotation and s	equence analysis			
	_	and Micro	bial genetics.					
		Understan	d how gene exp	pression is controlled.				
6	Course Outcomes	After finis	shing the course	the students will be able to				
		CO1: Lean	rn about variou	s biological databases and the	eir operations.			
		CO2: See	quence retrieva	al and sequence alignmen	t using various			
		softwares.						
		CO3: Iden	tify the various	ORFs in an unknown seque	nce.			
		CO4: Find	d out if any pro	tein is being encoded by the	sequence and its			
		characteri	stics.					
		CO5: Wil	ll be able to i	solate plasmid from the ba	cterial cells and			
		perform re	estriction digres	sion studies on it.				
		CO6: Do	esign experim	ents, analyse experiment	al results and			
		communic	cate data throug	h writing				
7	Course	The cours	e aims to appra	ise the students to basic and	high throughput			
	Description	techniques	s in Genomics a	nd Bacterial genetics and the	eir applications.			
8	Outline syllabus	1			CO Mapping			
	Unit 1	Practical	related to Biol	ogical Databases				
		Sub unit –	- a ,b, c		CO1, CO6			
	Unit 2	Practical	related to alig	nment				
		Sub unit –	-c		CO2, CO6			
	Unit 3	Practical	based to Micr	obial strain				
		Sub unit-	a		CO3, CO6			
	Unit 4	Practical	related to Mic	robial genetics				
		Sub unit –	- c		CO4, CO6			
	Unit 5	Practical	based upon M	icrobial Genome Analysis				
		Sub unit -	а		CO5, CO6			
	Mode of	Practical/	Viva					
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	60%	0%	40%				

List of Practical's:

Week	Unit 1	Practical based on			
1					
Week	а	Lab expt.1	Find out the major data bases dealing with primary data		
1-2			along with their home server address.		
Week 3		Lab expt.2	Align all the nucleotide sequences provided using		
			bioedit. Translate one of them into amino acid in all six		
			frames. Give the graphic view and mark the conserved		
			regions.		
	Unit 2	Practical related to study			
Week 4	b	Lab expt.3	Perform BLAST nucleotide for the nucleotide sequence		
			provided and predict the gene. Report the most similar		
			accession number and give its detail.		
		Lab expt.4	To perform ORF scan on the given sequence and find		
			out the viable ORFs.		
	Unit 3	Practical based upon			
Week 5	а	Lab expt.5	Perform BLAST and find out the conserved domain		
			number and protein family number for it.		
Week 6	b	Lab expt.6	Prepare a pure culture of a bacterial strain.		
Week 7	Mid term	1			
	Unit 4	Practical based up	on study		
Week 8	а	Lab expt.7	Isolate plasmid from bacterial cells.		
Week	b	Lab expt.8	Perform Restriction digestion of isolated plasmids		
9-10					
	Unit 5	Practical related			
Week	a, b and		Conduct PCR for specific Genes in Bacteria		
11-14	с	Lab expt.9			
		Lab expt.10	Quantify and Analysis Bacterial Genome		

Text book/s*	Genomics And Proteomics Principles	
	Technologies And Applications by Taylor &	
	Francis June 2017 ISBN 9781771881142	
Other References	Practical Microbiology by CKJ Panker, Orient	
	Longman. 2017	

Course Outcome No	DO1	PO2	PO3	PO4	DO5
	101				103
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	2	3	2
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB204: Food Microbiology

L-T-P: 4-0-0

Credit - 4

School : SBSR		Batch : 2018-20				
Program: M.Sc.		Current Academic Year: 2018-19				
Branch:		Semester: 04				
Biot	echnology					
1	Course Code	MMB204				
2	Course Title	Food Microbiology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	The course is designed to prepare students with a basic un	derstanding of			
	Objective	the microbes involved in biological processes such as fer	mentation and			
		spoilage. The course provides a foundation for careers in	microbiology,			
		food microbiology, or research in all branches of food scie	ences.			
6	Course	After the successful completion of this course students will	l be able to:			
	Outcomes	CO1. Recognize and describe the characteristics of import	ant pathogens			
		and spoilage microorganisms in foods.				
		CO2. Understand the role and significance of intrinsic and	extrinsic			
		factors on growth and response of microorganisms in foods.				
		CO3. Identify ways to control microorganisms in foods.				
		CO4. Identify the conditions under which the important	CO4. Identify the conditions under which the important pathogens and			
		spoilage microorganisms are commonly inactivated, k	illed or made			
		harmless in foods.				
		CO5. Utilize laboratory techniques to detect, quantify, and	identify			
		microorganisms in foods.				
		CO6.Understand the role of fermentation and preservation	in food			
_	~	science.				
1	Course	The Food Microbiology course outlines the basic	isic principles of			
	Description Microbiology. This course also sheds light upor		ntation and is			
		designed to make student learn the preservation of food	products. The			
		course also further encompasses the concept of ider	itification and			
0		quantification of microorganisms in foods.				
8	Outline syllab		CO Mapping			
	Unit I	History development and microbes in food	001 002			
	A	Historical developments	CO1, CO2			
	B	Important of Microorganisms in food				
	U V	Factors affecting growth of microbes in food				
	Unit 2	Spoilage of Foods				
	A	Spoilage of meat				
	В	Spoilage of Milk and milk products	GOD SS S			
	C	Spoilage and defects of fermented food products CO3, CO4				

Unit 3	Biological tran				
А	Fermentation				
В	Production of f				
С	Importance of f	ermentation		CO3, CO6	
Unit 4	Preservation	of food			
А	General princip	les of food pre	servation		
В	Chemical Prese	rvation of food	l	CO6	
С	Preservation of	food by radiati	on	006	
Unit 5	Food Borne Di				
А	Bacterial and ne	Bacterial and nonbacterial infection			
В	Food borne dise	eases: Salmone	llosis, Botulism, Listeriosis		
С	Detection of M	004,003,000			
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Textbook/s*	1. Jay, J.M. (2008) Modern Food Microbiology (Sixth Edition). Aspen				
	Publishers, Inc. Gaithersburg, Maryland.				
Other	2. Adams, M. R. and Moss, M. O. (2005) Food Microbiology (Second				
References	edition). Royal Society of Chemistry Publication, Cambridge.				
	3. Ray, B. (2005) Fundamental food microbiology (Third edition). CRC				
	Press, New York, Washington D.C.				
	4. Frazier, W. C. and West off, D. C. (2007) Food Microbiology. Tata				
	McGraw Hill				
	Publishing Company Ltd. New Delhi.				
	5. Banwart G J. (1989). Basic Food Microbiology. AVI publication.				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	2	1
CO4	1	1	1	3	2
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MSB205: CANCER BIOLOGY

L-T-P 4-0-0

Sch	ool: SBSR	Batch : 2018-20			
Program: MSc		Current Academic Year: 2018-19			
Bra	nch: BT	Semester: 04			
1	Course Code	MSB205			
2	Course Title	CANCER BIOLOGY			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course	Elective			
	Status				
5	Course	1. Understanding about types of cancer and carcinog	gens		
	Objectives	2. Acquire enough knowledge about different	models and		
	-	strategies of cancer research.			
		3. Develop the concept of various genes involved in	metastasis of		
		cancer and their signalling pathways, which in	turn help in		
		designing different therapies for it.			
		4. Analyse the impact of angiogenesis on cancer	growth and		
		metastasis.			
6	Course	CO1: Identify type and stage of tumours and identify	genetic/non-		
	Outcomes	genetic factors involved			
		CO2: Analyze the impact of angiogenesis	and tumour		
		microenvironment on cancer growth and metastasis			
		CO3: Comprehend the effect of cell death in death	fence against		
		cancer			
		CO4: Assemble the several modes through which cellular			
		environment triggers cancer and elicits immune response			
		CO5: Evaluate the effectiveness of study models and existing			
		screening and treatment options, identify new drug t	argets		
		CO6: Understand the progression of cancer, as	sociated risk		
	~	factors, molecular mechanisms, prevention and treat	iment		
7	Course	Cancer Biology is course about the detailed introduc	ction on types		
	Description	of cancer, agents causing cancer. It also helps in understanding			
		about the molecular mechanisms of cancer establish	hment and its		
		progression by the process of metastasis and angiogenesis. This			
		course also describes about the various model system which an			
0	O	used to study cancer and its treatment.			
ð	Outline syllabi	us	CO Monning		
<u> </u>	TT . •4 1		Mapping		
	Unit I	Introduction to Cancer Biology			

А	Definition and c	CO1, CO6		
В	Cellular Oncoge			
С	Tumour Suppres			
Unit 2	Unit 2 Characteristics of Tumour			
А	Invasion-metasta	asis-molec	ular mechanism	
В	Angiogenesis-process			CO1, CO6
С	Hypoxia and VEGF			
Unit 3	Autophagy and	CO3, CO6		
А	Autophagy-type	s		
В	Apoptosis-intrin	sic and ext	trinsic pathways	
С	Crosstalk betwee			
Unit 4	Microenvironm	CO4, CO6		
А	Stroma interaction	on		
В	Tumour immuno			
С	Cancer stem cell	ls		
Unit 5	Cancer prevention and treatment Mouse models of cancers			CO5, CO6
А				
В	Drug resistance			
С	Therapeutic app			
Mode of	Theory			
examination				
Weightage	CA M	TE	ETE	
Distribution	30% 20)%	50%	
Text book/s*	Weinberg R.A.,	"The Biol	ogy of Cancer", Garland	
	Science, 2006.			
Other	1. Pecorino L., "Molecular Biology of Cancer: Mechanisms, Targets and Therapeutics", Oxford University Press, 2012.			
References				
	2. Ruddon R.V			
	University Pr			

Course Outcome No	PO1	PO2	DO3	PO4	DO5
			105		105
CO1	3	1	1	1	1
CO2	2	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	2	2	2	3
CO6	3	3	3	3	3