Program Structure Program: M.Sc. Biotechnology Program Code: SBR0413 Batch: 2020-22 Department of Life Sciences School of Basic Science & Research

M.Sc. in Biotechnology

COURSE STRUCTURE & SYLLABI

(For Batch 2020-21 onwards)

Department of Life Science School of Basics Sciences and Research SHARDA UNIVERSITY

Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship

Core Values

- Integrity
- Leadership
- Diversity
- Community

Vision of the School

Achieving excellence in the realm of basic and applied sciences to address the global challenges of evolving society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- 3. To establish centre of excellence for ecologically and socially innovative research.
- 4. To strengthen interinstitutional and industrial collaboration for skill development and global employability.

Vision of Life Sciences Department

Strive to achieve excellence in teaching and research in the field of Microbiology and Biotechnology and to build human resource for solving contemporary problems.

Mission of Life Sciences Department

- Providing distinctive and relevant education in Life Sciences to students. Motivating young minds through innovative teaching methods, to acquire theoretical knowledge and practical skills in different disciplines of chemistry and empowering them with problem solving skills.
- Nurturing innovation by carrying out world class research and scholarly work
- Promoting interdisciplinary research in collaboration with national/international laboratories/Institutions.

Program Educational Objectives (PEO)

PEO1: To create a foundation of various biological concepts and phenomena in the minds of students through theoretical and practical knowledge.

PEO2: To keep students upgraded with new discoveries in biological world and inculcate continuous learning and self-improvement so that students are motivated for higher studies and research.

PEO3: To teach the students various bio-techniques and application of these techniques for betterment of society and environment.

PEO4: To make students industry- or academia-ready by developing independent thinking, good communication and scientific skills and to acquaint them with professional ethics so that they can work well in an industrial or academic environment.

PEO5: To make students understand interdisciplinary nature of research in biotechnology by assigning them different research projects/ case studies/ presentations.

Map PEOs with Mission Statements:

PEO Statements	School Mission 1	School Mission 2	School Mission 3	School Mission 4
PEO1	3	2	-	-
PEO2	3	2	2	-
PEO3	3	3	2	1
PEO4	2	3	2	2
PEO5	3	2	2	2

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

PEO Statements	Departmental Mission 1	Departmental Mission 2	Departmental Mission 3	Departmental Mission 4
PEO1	3	1	1	1
PEO2	3	3	2	2
PEO3	2	2	2	2
PEO4	3	-	2	3
PEO5	3	2	3	2

Map PEOs with Department Mission Statements:

Program Outcomes (PO's)

PO1: Knowledge: Students will develop a sound understanding the biological systems and processes.

PO2: Skill Set Development: The student will be skilled in various biological techniques that will enhance the employability of the students.

PO3: Oral Communication and Scientific Writing: The students will be able to demonstrate good oral communication. Students will also be knowledgeable about writing technical (project report and reviews) content.

PO4: Environment and Sustainable Development: Student will be able to realize the effect of human malpractices on environment and the need and importance of sustainable development.

PO5: Ethics, Independent Thinking and Team Work: The students will develop professional ethics and also gain knowledge about various ethical issues associated with biotechnology.

Students will learn to think and analyze a problem independently while at the same time realizing the importance of team work in carrying out successful research/ projects/ presentations.

Mapping of Program Outcome Vs Program Educational Objectives

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	2	2	2	2
PO2	3	2	2	3	2
PO3	1	1	-	3	2
PO4	1	2	3	-	2
PO5	1	2	-	3	2

1. Slight (Low) 2. Moderate (Medium) 3. Substantial (High)

SUMMARY SHEET

Teaching Department	:	Life Science
School	:	School of Basic Sciences and Research
Name of Course	:	M.Sc. in Biotechnology
Duration	:	Two Years
Total number of Credits	:	90

Term I

SN	Subject	Subjects	Te			Credits			
511	Code	Subjects	L	Т	Р	Creatis			
THEOF	THEORY SUBJECTS								
1.	MSB114	Advanced Biochemistry	4	0	0	4			
2.	MSB122	Advanced Molecular Biology	4	0	0	4			
3.	MSB202	Medical Biotechnology	4	0	0	4			
4.	MSB206	Enzyme Technology	4	0	0	4			
5.	MSB124	IPR	4	0	0	4			
Practica	ul/Viva-Voc	e/Jury							
6.	MSP206	Enzyme Technology Lab	0	0	3	2			
7.	MSB155	Biochemistry Lab 0		0	3	2			
8.	MSB156	5Molecular Biology Lab003				2			
	TOTAL CREDITS								

Term II

S. No.	Subject	Subjects		ching l	Load	Credits			
5. 110.	Code	Subjects	L	Т	Р	Creats			
THEORY	THEORY SUBJECTS								
1.	MSB116	Bio instruments	4	0	0	4			
2.	MSB118	Advances in Plant Biotechnology	4	0	0	4			
3.	MSB123	Advanced Genetic Engineering	4	0	0	4			
4.	MSB119	Animal Cell Technology	4	0	0	4			
5.	MSB125	Bioinformatics	4	0	0	4			
Practical/V	/iva-Voce/J	Iury							
6.	MSB159	Genetic Engineering Lab	0	0	3	2			
7.	MSB158	Plant Biotechnology Lab	0	0	3	2			
8. MSB160 Bioinstrumentation Lab		0	0	3	2				
	TOTAL CREDITS								

Term III

C No	Subject	Subjects	Teac	hing I	load	Creadita			
S. No.	Code	Code Subjects		Т	Р	Credits			
THEOR	THEORY SUBJECTS								
1	MMB201	Environment Microbiology and waste management	4	0	0	4			
2	MSB204	Genomics	4	0	0	4			
3	MSB207 /MSB117	Microbial Biotechnology / Immunology and Immunotechnology		0	0	4			
4	MSB209	Bioprocess technology and Quality Control	4	0	0	4			
5	MSB208	Cancer Biology	2	0	0	2			
Practica	l/Viva-Voce	e/Jury							
6.	MSB256	Genomics & Bacterial Genetics Lab	0	0	3	2			
7.	7. MSB259 Microbial Biotech Lab /MSB157 /Immunotechnology Lab		0	0	3	2			
8.	MSB260	Bioprocess technology Lab003		3	2				
9.	CCU401	Community Connect 0		0	2	2			
	TOTAL CREDITS 26								

Term IV

Practic	Practical/Viva-Voce/Jury						
1.	MSB261	Project / Dissertation / Industrial Training	0	0	18	12	
	TOTAL CREDITS						

MSB114 : Advanced Biochemistry L-T-P: 4-0-0

Sch	ool : SBSR	Batch : 2020-2022	
Pro	gram: M.Sc.	Current Academic Year: 2020-21	
Bra	nch:	Semester: 1	
Bio	technology		
1	Course Code	MSB114	
2	Course Title	Advanced Biochemistry	
3	Credits	4	
4	Contact Hours	4-0-0	
	(L-T-P)		
6	Course	1. Structure of polysaccharides	
	Objective	2. Classification and structure of lipids	
		3. Protein-ligand interaction and modulation of protein	
		4. Assimilation of inorganic phosphorus, sulfur and r	nitrogen, Nitrogen
		fixation	
7	Course	After studying this course, students will be able to	
	Outcomes	CO1: Determine Classification and structure of carbohydrate	
		CO2: Evaluate Nucleic acid structure, nucleic acid chemis	stry, Functions of
		Nucleotides	of motoin optivity
		CO3: Interpret the Protein-ligand interaction and modulation CO4: Analyse the Biosynthesis of polysaccharides and i	
		sugars	increoiversion of
		CO5: Determine Synthesis of purines, pyrimidines and nucle	otides
		CO6 : Analyze and study Photosynthesis and photophosphor	
8	Course	This course contains various advanced biochemistry concepts	
Ŭ	Description	structure and classification of carbohydrates, proteins, nuclei	00
		nucleotides. After studying course, students will be able to le	
		biomolecules, and their metabolic pathways.	5
9	Outline syllabus		CO Mapping
	Unit 1	Carbohydrates	CO1
	А	Classification and structure of carbohydrates, Structure of	
		polysaccharides	
	В	glycoproteins and peptidoglycans, Functions of	
		polysaccharides	
	С	glycoproteins and peptidoglycans.	
	Unit 2	Lipids Amino acids, Nucleic acids and Nucleotides	CO2
	А	Classification and structure of lipids, Saturated and	
		unsaturated fatty acids, rancidity	
	В	Classification, structure and functions of amino acids,	
		Peptide Bond, Ramachandran Plot, Primary, secondary and	
		Tertiary structure of Proteins	
	С	Nucleic acid structure, nucleic acid chemistry, Functions of	
		Nucleotides	
	Unit 3	Chemistry of Biomolecules, Biological Membranes and	CO3
		Transport	
	Α	Protein-ligand interaction and modulation of protein activity,	
		protein sequencing	

В	Composition a	nd architecture	of membranes	
С	membrane dyr	amics, solute t	ransport across membranes	
Unit 4	Metabolic Pa	thways		CO4
А		oxylate cycle,	f, HMP and oxidative pentose ΓCA cycle, and oxidative	
В			rides and interconversion of getics of β -oxidation of fatty	
С	long chain fa acids: saturate	•	bolism: Biosynthesis of fatty	
Unit 5	Nucleotide Bi Biosynthesis	osynthesis and	Use of Energy in	CO5
А	Synthesis of p	urines, pyrimid	ines and nucleotides	
В	Photosynthesis	s and photopho	sphorylation, Photorespiration	
С	Assimilation of Nitrogen fixat		osphorus, sulfur and nitrogen,	
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	Nelson D.L. and Cox M.M., "Lehninger Principles of Biochemistry", W.H. Freeman, 2009			
Other	Stryer L., "Biochemistry", W. H. Freeman, 2010.			
References	Wilson K. and Biochemistry a University Pre			

Course Outcome	PO1	PO2	PO3	PO4	PO5	
No	101	102	105	104	105	
CO1	3	1	1	1	1	
CO2	1	3	1	1	1	
CO3	1	1	3	1	1	
CO4	1	1	1	3	1	
CO5	1	1	1	1	3	
CO6	1	1	1	1	1	

MSB122: Advanced Molecular Biology

L-T-P:4-0-0

Sch	ool: SBSR	Batch: 2020-2022		
Pro	gram: M.Sc.	Current Academic Year: 2020-21		
	inch:	Semester: 01		
Bio	technology			
1	Course Code	MSB122		
2	Course Title	Advanced Molecular Biology		
3	Credits	4		
4	Contact	4-0-0		
	Hours			
	(L-T-P)			
	Course	Compulsory/Elective/Open Elective		
	Status			
5	Course	1. Understand the structure and function of nucleic acid	s and genome	
	Objective	organization.		
		2. Understand the process of DNA replication and Tran	scription in	
		prokaryote and eukaryote.		
		3. Understand the process of Translation and regulation	of gene	
		expression.		
6	Course	CO1: To understand the structure and function of Nucleic ad	cid, Chromatin	
	Outcomes	and Chromosome.		
		CO2: To understand the process of DNA replication in process	rokaryotes and	
		eukaryotes.		
		CO3: To understand the process of transcription in prokaryo		
		CO4: To understand the process of transcription in eukaryote		
		CO5: To understand the process of Translation and regu	lation of gene	
		expression		
		CO6: Observe different life processes happening at molecul	lar level inside	
-		cell and perspectives on gene regulation.	1	
7	Course	The course covers the gene organization in prokaryotic and en		
	Description	Course will familiarise students with the process of		
		transcription, post-transcriptional modifications and trans	lation in both	
0	Quellin a avillabi	prokaryotes and eukaryotes.	CO Manning	
8	Outline syllabi		CO Mapping	
	Unit 1	Genome Organization	CO1	
	Α	Structure of DNA and RNA, Nucleoside and nucleotide, CO1		
	D	complementary base pairing	CO1	
	BDNA melting and reassociation kineticsCStructure of eukarvotic chromosomes, Euchromatin and		C01	
		Structure of eukaryotic chromosomes, Euchromatin and heterochromatin.	COI	
	Unit 2			
		DNA Replication Replication process in prokaryotes	CO2	
	A			
	BReplication process in eukaryotesCO2			

С	Enzymes and	accessory pr	roteins in replication, Replication	CO2
	of ss-circular			
Unit 3	Prokaryotic	Transcriptio)n	
А	Process of pro	okaryotic trai	nscription	CO3
В	Inducible and	constitutive	promoters	CO3
С	Operators and	l regulators i	n prokaryotic transcription	CO3
Unit 4	Eukaryotic 7			
А	Process of eu	karyotic tran	scription	CO4
В	Eukaryotic p	promoters a	nd enhancers, TATA binding ctors, activators and repressors	CO4
С	Post-transcrip	tional modif	ications	CO4
Unit 5	Translation a	and Regulat	ion of gene expression	
А	Translation n	nachinery, R	ibosome, degeneracy of codons	CO5
	and termination	on codons		
В	Mechanism o	f initiation, e	longation and termination	CO5
С	Operon system	m, Lac opero	n, Trp operon and Ara operon.	CO5
Mode of	Theory/Jury/	Practical/Viv	/a	
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Textbook/s*	Lewin B., "G	ene IX", Jon	es and Barlett Publishers, 2007	
Other	1. Albert	ts B., Johns	on A., Lewis J. and Raff M.,	
References	"Mole			
	2002.			
		· •	ins N.H., Roberts J.W., Seitz J.A.	
		,	"Molecular Biology of the Gene",	
	Benja 2007	min Cummi	ings Publishing Company Inc,	

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB202: Medical Biotechnology

L-T-P: 4-0-0

School: SBSR		Batch : 2020-2022				
	gram: MSc	Current Academic Year: 2020-21				
	nch: BT	Semester: 01				
1	Course Code	MSB202				
2	Course Title	MEDICAL BIOTECHNOLOGY				
3	Credits	4				
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course	Compulsory				
	Status					
5	Course	1.Students will be able to understand complete mechanis	m of infection,			
	Objective	diseases transmission and host parasite relationship.				
		2.Correlate between emerging and resurgent infectious d	iseases and the			
		importance of new therapeutic strategies.				
		3.Evaluate the efficacy of different chemicals and antin				
		and determine the mechanism of resistance to antibiotics				
		4.Students will understand concept of vaccines and new	strategies that			
		can be used for vaccine development.				
6	Course	CO1: Describe different types of microbial infections	and causative			
	Outcomes	agents				
		CO2: Classify different pathogenic organisms based o	n nucleic acid			
		properties	-1			
		CO3: Comprehend concepts of sterilization, anti-bacter	ial, anti-fungal			
		and anti-viral vaccines and drugs. CO4: Assess the methods of prevention of infection,	and the basic			
		concepts of identification of causative agents	and the basic			
		CO5: Describe the advanced methods of diagnostics	of infectious			
		diseases and cancer	of infectious			
		CO6: Compare the different causes of infection, the	ir methods of			
		detection, prevention and therapy	in methods of			
7	Course	Medical Biotechnology course is to develop the concept	of host parasite			
-	Description	relationship, epidemiology of different diseases. To u				
	1	mode of action of different antimicrobial drugs and				
		understand the treatment mechanism of different bacter				
		fungal pathogens.				
8	Outline syllabi		CO Mapping			
	Unit 1	Microbial diseases	CO1, CO6			
	А	Bacteria: Representative diseases to be studied in detail				
		- tetanus, diphtheria, cholera, typhoid. Infections				
		caused by anaerobic bacteria: chlamydia, rickettsiae.				

D		
В	Viruses: Representative diseases to be studied in detail	
	are - viral hepatitis, influenza, rabies, polio and AIDS.	
C	Fungi: Diseases to be taken up in following categories:	
	superficial, subcutaneous, systemic and opportunistic	
	mycoses.	
	Protozoa: Diseases to be discussed are - amoebiasis,	
	toxoplasmosis, trichomoniasis & leishmaniasis	
Unit 2	Epidemiology, microbial assays, microbial DNA replication	CO2, CO6
A	Disease burden: microbial, viral, fungal and parasitic.	
2 x	Investigation of epidemics	
В	Methods of culturing and assaying: bacterial, viral and	
D	parasitic.	
С	Classification: fungal, protozoal, helminthic, bacterial	
C		
	and viral replication of DNA, RNA+ve and RNA-ve	
TT • 4 0	viruses, retroviruses	
Unit 3	Vaccines, drugs and therapy	CO3, CO6
А	Sterilization techniques: biohazard hoods; containment	
	facilities, BSL 2, 3, 4; Bacterial and viral vectors;	
	Biological warfare agents	
В	Mode of action of antibiotics and antiviral: molecular	
	mechanism of drug resistance (MDR)	
C	Viral vaccines: conventional: killed/attenuated; DNA;	
	peptide; recombinant proteins; Anti-viral	
	chemotherapy. Anti-fungal chemotherapy	
Unit 4	Nosocomial infections, prevention of infection,	CO4, CO6
	basics of diagnostic approaches	
Α	Hospital-acquired infections (nosocomial), immune	
	compromised states	
В	Water and waste management for water-borne diseases	
С	Modern approaches for diagnosis of infectious	
	diseases: Basic concepts of gene probes, dot	
	hybridization and PCR assays	
Unit 5	Advanced diagnostic techniques	CO5, CO6
А	DNA diagnostics: PCR based diagnostics; ligation	
	chain reaction, southern blot diagnostics, array-based	
	diagnostics. G-banding, in situ hybridization (FISH and	
	on-FISH), and comparative genomic hybridization	
	(CGH).	
В	Cancer cytogenetics: spectral karyotyping.	
	Immunodiagnostics: diagnosis of infectious diseases,	
	respiratory diseases (influenza, etc.)Viral diseases-HIV	
	etc., bacterial diseases, enteric diseases, parasitic	
C	diseases and mycobacterium diseases.	
С	Phage display, immunoarrays, FACs.	

Mode of examination	Theory						
Weightage	СА	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*		erwood L., W		, "Prescott's			
	Microbiolog	y", McGraw-	Hill, 2010.				
Other	1. Colli	1. Collier L., Balows A., Sussman M., "Topley and					
References	Wilse	Wilson's Text Book on principles of					
	Bacte	eriology, Vi	rology and	Immunology",			
	Hold	Holder Education Publication, 1998.					
	2. Black	2. Black J.G., "Microbiology: Principles and					
	Expl	Explorations", Wiley, 2012.					
	3. Pong	racz J.,	Keen N	1., "Medical			
	Biote	chnology", E	lsevier Health	Sciences, 2009.			

Course Outcome	DO1	DOJ	DO2		DO5
No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	2	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MSB206: Enzyme Technology

L-T-P: 4-0-0

Credits 4

School: SBSR		Batch: 2020 – 22				
Pro	gram: M.Sc.	Current Academic Year: 2020-21				
Bra	nch:	Semester: 1				
Bio	technology					
1	Course Code	MSB206				
2	Course Title	Enzyme Technology				
3	Credits	4				
4	Contact	4-0-0				
	Hours					
	(L-T-P)					
	Course Status	Compulsory				
5	Course	With this Course the students				
	Objective	1. will acquire knowledge fundamental Knowledge of En	•			
		2. Will get useful exploitation of enzymes physical and kin	netic properties			
		3. Use Enzymes biocatalysts in the biotransformation				
		4. Know the Industrial, Research and Therapeutic a	pplications of			
		Enzymes				
6	Course	After successfully completion of this course students will be a				
	Outcomes	CO1. Define and Classify Enzymes and its fundamentals prop				
		CO2. Examine Enzyme Kinetics, Perform and calculate enzy	me specificity			
		and activity				
		CO3. Evaluate Enzyme Inhibition and its types, Competit	tive and Non-			
		competitive inhibition and its significance				
		CO4. Understand Allosteric Enzymes regulation, Covalent				
		Determine the role of co-enzymes, Enzyme constitution and ir				
		CO5. Evaluate Applications of Enzymes in industry, Enzyr				
		diagnostics. sensors for clinical processes and environmer	ital, Microbial			
		analyses, Engineered Enzymes.	a. Inhihitian			
		CO6. To analyse Enzymes principles, properties, Kineti				
		Allosterism, Co-Enzymes, Engineered Enzymes, Application various industries, research and therapeutic aspects	of Enzymes in			
7	Course	This course covers fundamentals to applications necessary for	the useful			
/	Course Description	exploitation of enzymes both as tools for the enzymatic analys				
		biocatalysts in the biotransformation on the unique structural-f				
		properties of enzymes and its microbial industrial and research				
8	Outline syllabu		CO Mapping			
0	Unit 1	Properties of Enzymes	CO1,6			
	A	Classification of enzymes, Structural conformations of	CO1,6			
		enzyme proteins	001,0			
	В	Enzyme as biocatalysts, Catalytic power, Activation energy	CO1,6			
	ם	Enzymes as biocatarysis, Catarytic power, Activation energy	001,0			

	С	-	•	Mechanisms of enzyme action,	CO1,6			
		Ribozymes an	-	·S				
	Unit 2	Enzyme Kine			CO2,6			
	А		0	of enzymatic reactions (pH,	CO2,6			
		-	temperature, substrate concentration, enzyme concentration					
		and reaction ti	,					
	В			Menten equation and its	CO2,6			
				aver-Burke plot				
	С			rameters (K_M, V_{max})	CO2,6			
	Unit 3	Enzyme Inhil			CO3,6			
	А	Irreversible an	d reversit	ole inhibition	CO3,6			
	В	Competitive, r	non-comp	etitive and un-competitive inhibition	CO3,6			
	С	Enzyme inhib	ition kine	tic studies, Determination of k_{cat} .	CO3,6			
	Unit 4	Regulation of	[°] Enzyme	Activity	CO4,6			
	А			alysis of allosteric enzymes	CO4,6			
	В			Feed-back inhibition, Membrane	CO4,6			
		bound enzyme	es					
	С	Isoenzymes an	nd marker	enzymes, Constitutive and inducible	CO4,6			
		enzymes						
	Unit 5	Applications	of Micro	bial Enzymes	CO5,6			
	А	Microbial enz	ymes in te	extile, leather, wood industries and	CO5,6			
		detergents						
	В	Enzymes in o	clinical d	iagnostics and Enzyme sensors for	CO5,6			
		clinical proces	sses and e	nvironmental analyses				
	С	_		nzymes as therapeutic agents	CO5,6			
	Mode of	Theory	, 					
	examination	i neor y						
	Weightage	CA M	ITE	ETE				
	Distribution	-	0%	50%				
	Textbook/s*			, "Enzymes: Biochemistry,				
	1 CALUUUK/ S			Chemistry", Woodhead Publishing,				
1 1		DIORCHINDIOGY						
	Other	2007.	and R A	"Enzymes: A Practical Introduction				
	Other	2007. 1. Copela		"Enzymes: A Practical Introduction				
	Other References	2007. 1. Copela		"Enzymes: A Practical Introduction echanism, and Data Analysis", Wiley,				
		2007. 1. Copela to Stru 2006.	cture, Me					

Course Outcome	PO1	PO2	PO3	PO4	PO5
No					
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB124: Intellectual Property Rights

L-T-P: 4-0-0

Credit – 4

Sch	ool : SBSR	Batch : 2020–22						
Pro	gram: M.Sc.	Current Academic Year: 2020-21						
	nch:	Semester: 1						
Bio	technology							
1	Course Code	MSB124						
2	Course Title	Intellectual Property Rights						
3	Credits	4						
4	Contact Hours	4-0-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	To elucidate the ways of protection of intellectual property	and research with					
	Objective	the help of WIPO and its different treaties. To correlate different treaties.	fferent instruments					
	-	of IP protection and their enforcement in different countr	ies. To understand					
		different quality management issues related to biotechnolog	gy					
6	Course	By the end of this course students will be able to:						
	Outcomes	CO1: Administer and follow the guidelines of WIPO.						
		CO2: Understand the patents, copyrights and trademarks.						
		CO3: Understand the character merchandising and franchis	sing.					
		CO4: Understand the utility of IPRs in biotechnology.						
		CO5: To correlate different instruments of IP protection and their e						
		in different countries.						
			6: To elucidate the ways of protection of intellectual property and research					
		with the help of WIPO and its different treaties.						
7	Course	Intellectual property (IP) includes intangible creations of the						
	Description	and primarily encompasses copyrights, patents, and tr						
		includes other types of rights, such as trade secrets, publ						
		rights, and rights against unfair competition. Present	paper deals with					
0		knowledge of types and protection of different IPRs.	CON					
8	Outline syllabus		CO Mapping					
	Unit 1	Introduction to Intellectual Property Rights	CO1, CO4					
	Α	The concept of intellectual property, Importance of IPR						
	D	in biotechnology						
	В	WIPO- history, mission and activities, structure,						
	0	administration.						
	C	Major International Instruments relating to the protection						
	IIn:t 2	of IP; Berne Convention; Paris Convention; TRIPS						
	Unit 2	Patents						
	A	Patents-basic concepts; Non patentable inventions	CO2, CO3, CO4					
	В	Procedure for registration, Term of patent, Rights of						
		patentee						

С	Patent Infring	ement and its	s remedy;	Compulsory licenses		
	and Governm		•	1 5		
Unit 3	Copyrights	*			CO2, CO3, CO4	
А	Copyright and	l related right	ts;			
В	Copyright pir	Copyright piracy and infringement; Remedies of				
	copyright pira	cy and infrin	igement			
С	Copyright Iss	Copyright Issues in Digital Environment				
Unit 4	Trademarks				CO2, CO3, CO4	
А	Definitions, S	igns which se	erve as trad	demarks,		
В	Trademark pize Merchandisin	•	Interfeiting	; Character		
С	Geographical Trade Marks	Indication; I	Difference	between GI and		
Unit 5	IPR in indus	IPR in industries				
А	Ū.	by different	industries	; E-Commerce and		
	IPR issues					
В	Case studies of	•		Zara Vs Zara		
	fashions; Yah					
C	Case studies of Paytm Vs Pay	•	conflicts:	AMUL Vs IMUL;		
Mode of examination	Theory					
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*		1. Managing intellectual capital: organizational, stra dimensions Oxford Univ. press 2005 Teece, David J.				
Other References	2. Techniques 2017.	used in Bio	product an	alysis, Butterworth H	einemann Ltd,	
				s, copyright designs g g house by Wadehra,		

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	2	1	3	1
CO5	1	1	1	1	3
CO6	3	1	1	1	1

MSP206: Enzyme Technology Lab L-T-P: 0-0-3

School: SBSR		Batch: 2020-22				
Program: M.Sc.		Current Academic Year: 2020-21				
Bra	nch:	Semester: 01				
Biot	echnology					
1	Course Code	MSP206				
2	Course Title	Enzyme Technology Lab				
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
	Course Status	Compulsory/Elective				
5	Course	To give students a thorough understanding of enzymes and enzymes				
	Objective	To make students learn the working and operation of enzyr	nes as well as			
		measurement of enzyme activity				
6	Course	CO1: To understand the mode of action of salivary amylase				
	Outcomes	CO2: Preparation of standard curve for calculation of enzyme a				
		CO3: Assaying the activity of industrially important amylase enz	zyme using 3,5-			
		Dinitrosalicylic acid method.				
		CO4: To determine the pH optima of amylase enzyme				
		CO5: To determine the temperature optima of amylase enzyme				
		CO6: To give students a thorough understanding of enzyme	es and enzyme			
7	Course	kinetics.				
/	Course	This course is designed to make students learn about enzymes, r				
	Description	their activity in terms of IU and katal as well as understanding enzymes.	the kinetics of			
8	Outline syllabus		CO Mapping			
0	Unit 1	Salivary amylase	CO Mapping CO1			
		Mode of action of α -amylase on starch	C01			
	Unit 2	Calculation of Enzyme Activity	CO2			
		Preparation of standard curve	CO2			
	Unit 3	Assaying the activity of industrially important amylase	CO3			
	Unit 4					
	Unit 5					
	Mode of exam					
	0 0					
			ology, Clinical			
			0, ,			
	Other		ture,			
			- 2			
	Unit 4 Unit 5 Mode of exam Weightage Distribution Textbook/s* Other References	3'5'- Dinitrosalicylic acid method pH optima To determine the pH optima of amylase enzyme Temperature optima To determine the temperature optima of amylase enzyme Jury/Practical/Viva CA MTE ETE 60% 0% 40% 1. Palmer T., Bonner P. L., "Enzymes: Biochemistry, Biotechnon Chemistry", Woodhead Publishing, 2007. 2. Copeland R. A., "Enzymes: A Practical Introduction to Struct Mechanism, and Data Analysis", Wiley, 2006.				

Credits 2

3. Guisán J. M., "Immobilization of Enzymes and Cells (Methods in
Biotechnology)", Humana Press, 2010.

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	roi	r02	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	2
CO4	2	2	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB156: Molecular Biology Lab

L-T-P: 0-0-3

Sc	hool : SBSR	Batch : 2020 – 22				
Pr	ogram: M.Sc.	Current Academic Year: 2020-21				
Br	anch:	Semester: 01				
Bi	otechnology					
1	Course Code	MSB156				
2	Course Title	olecular Biology Lab				
3	Credits	2				
4	Contact H	0-0-3				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	1. To familiarize students with sterilization techniques and	solution/media			
	Objective	preparations etc.	-			
		2. To motivate students towards molecular techniques for	better genome			
		understanding. 3. To acquaint with principles, technical requirement,	scientific and			
		commercial applications in molecular biology.	serentifie una			
		4. Design and manage techniques for understanding interplay amongst				
		macromolecules.				
6	Course	CO1: Demonstrate safe laboratory practices and handle	the equipment			
	Outcomes	safely.				
		CO2: Estimate the quality and quantity of nucleic acids.				
		CO3: Amalgamation of tools for plasmid vectors and DNA	uptake.			
		CO4: Perform <i>in silico</i> analysis for studying genome.				
		CO5: To design primers and carry out amplification of DNA	•			
		CO6: Complete acquaintance with principles, technica	-			
_		scientific and commercial applications in molecular biology.				
7	Course	The aim of this course is to acquaint the students about the				
	Description	and techniques employed in molecular biotechnology. The c				
		provide students with a hands-on understanding of how				
		sequencing technology, along with bioinformatics tools, of				
0	Outline11, 1	discover genetic differences and understand molecular funct				
8	Outline syllabu		CO Mapping			
	Unit 1	Practical based on introduction to molecular biology	CO1			
	•	lab				
	A	Good lab practices in molecular biology laboratory.				
	B & C	Preparation of standard solutions for molecular biology				
		experiments				

Unit	2	Isolat	tion of l	Nucleic acids and quantification	CO2	
А		Isolati	ion of D	NA from bacteria		
В	B Isolation of RNA from bacteria					
С		Gel el	ectroph	oresis		
Unit	3	Pract	ical rel	ated to preparation of plasmids and	CO3	
		trans	formati	ions		
А		Plasm	id isola	tion		
В		Prepa	ration o	f competent cells		
С		Trans	formati	on of plasmid into competent cells		
Unit	4	Pract	ical rel	ated to in silico analysis of genome	CO4	
А		Seque	ence sim	ilarity search with freely available tools		
В		Construction of phylogenetic tree				
С		Identi	fication	of motifs and domain in sequences		
Unit	5	Pract	ical rel	ated to gene amplification	CO5	
A & I	В	Desig	ning of	primers for CDs and partial sequences		
С		Perfor	Performing PCR reactions			
Mode	e of	Practi	cal and	/or Viva		
exam	ination					
Weig	htage	CA	MTE	ETE		
Distri	bution	60%	0%	40%		
Textb	ook/s	Micha	ael, R. C	G., Sambrook. J., "Molecular Cloning-A		
		Labor	atory M	Ianual", 4th edition, Cold Spring Harbor		
		Labor	Laboratory Press, 2012.			
Other	•	1. Da	1. Davis, L. (2012). Basic methods in molecular biology.			
Refer	rences	Elsevi	ier.			
		2. Ch	ard, T.,	Work, T. S., & Work, E. (1987). Laboratory		
		techni	iques in	biochemistry and molecular biology. Elsevier,		
		Amste	erdam.			

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB155: Biochemistry Lab

L-T-P: 0-0-3

Credits 2

Sch	ool: SBSR	Batch: 2020-2022				
Program: M.Sc.		Current Academic Year: 2020-2021				
Branch:		Semester: 01				
Bio	technology					
1	Course Code	MSB155				
2	Course Title	Biochemistry Lab				
3	Credits	2				
4	Contact Hours	0-0-3				
	(L-T-P)					
	Course Status	Compulsory				
5	Course	1. To understand difference between types of biomo	olecules			
	Objective	2. To learn qualitative estimation of biomolecules				
		3. To learn the separation techniques for various bio	omolecules			
		4. To understand the enzymatic parameters that	indicate proper			
		functioning of living systems				
6	Course	After finishing the course, the students will be able to				
	Outcomes	CO1: identify and distinguish between mono-, di-, and o	ligosaccharides			
		present in different samples				
		CO2: analyse individual compounds present in a particular mixture/				
		extract and explain different chromatographic techniques				
		CO3: illustrate presence of starch and other plant second	ary metabolites			
		in leaf				
		CO4: isolation and quantitation of DNA	1			
		CO5: illustrate metabolite/ enzymatic markers for partice				
		CO6: use biotechniques for identification, separation and biomoloculos and anyumatic markers in different semple				
7	Course	biomolecules and enzymatic markers in different sample Biochemistry lab course is designed to make stud				
/	Description	estimation of carbohydrates, lipids, proteins and nuc				
	Description	students also learn various techniques such as various				
		chromatography used for separation of amino acids and				
		metabolites, estimation of various plant secondar				
		estimation of biomarkers for hepatic and renal function e				
8	Outline syllabus		CO Mapping			
	Unit 1	Practical based on estimation of carbohydrates				
		Subunit – a and b	CO1, CO6			
	Unit 2	Practical related to estimation and separation of	,			
		amino acids				
		Subunit – a and b	CO2, CO6			
	Unit 3	Practical related to estimation of starch	· · · · · · · · · · · · · · · · · · ·			
		Subunit - b and c	CO3, CO6			
	Unit 4	Practical related to isolation and estimation of	· · · · · · · · · · · · · · · · · · ·			
		nucleic acids				

	Subunit - c			CO4, CO6	
Unit 5	Practical rel	Practical related to Practical related to study of			
	enzymes				
	Subunit - b			CO5, CO6	
Mode of	Practical/Viv	Practical/Viva			
examination					
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Textbook/s*	Sawhney S.K	. and Singh R.	Introductory Practical		
	Biochemistry.				
Other	NA				
References					

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB116: Bioinstruments

L-T-P: 4-0-0

Credit - 4

Scho	ol : SBSR	Batch : 2020–22	
Program: M.Sc.		Current Academic Year: 2020-21	
Bran	ch:	Semester: 02	
Biotechnology			
1	Course Code	MSB116	
2	Course Title	Bioinstruments	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
5	Course Objective	Allow students to familiarize themselves with the requirements of biomedical instrumentation and biotechnolo for enabling their intended use for research and industrial app	gy tools lication.
6	Course Outcomes	 Perform experiments based on electrophoresis for seproteins and nucleic acids. Purify compounds from a mixture using colum exchange, affinity chromatography, HPLC, affinity chromatography. Illustrate organelle and protein localization by microsof. Isolate cells by using fluorescence activated cell (FACS) or magnetic activated cell sorting (MAC compare cell disruption techniques. Conduct enzymatic and end-point assays spectrophotometer, apply spectroscopy techniq understand the structure of biological material. Familiarize with the specific requirements of biological material. 	nn, ion- and gas copy. sorting CS) and using ues to
7	Outline syllabus		
7.01	Unit 1	Electrophoresis	
7.02	Unit 1a	Principle of electrophoresis	
7.03	Unit 1b	Agarose gel and 2D-gel electrophoresis: Principle and applications,	CO1
7.04	Unit 1c	Capillary and Immunoelectrophoresis: Principle and applications	
7.05	Unit 2	Chromatography	
7.06	Unit 2a	Paper Chromatography, TLC	
7.07	Unit 2b	Column chromatography. Ion-exchange and Affinity chromatography	CO2
7.08	Unit 2c	Instrumentation and applications HPLC: Instrument setup and working	
7.09	Unit 3	Microscopy	CO^2
7.10	Unit 3a	Principle of microscope, Optical microscopy	CO3

7.11	Unit 3b	AFM and Fluorescence Microscopy,	
7.12	Unit 3c	Electron Microscopy	
7.13	Unit 4	Cell Separation Techniques and Centrifugation	
7.14	Unit 4a	Cell isolation and cell disruption techniques	
7.15	Unit 4b	FACS and MACS- Principle and applications; Preparative centrifugation	CO4
7.16	Unit 4c	Differential and density gradient centrifugation, Ultracentrifugation	
7.17	Unit 5	Spectrometry and Spectroscopy	
7.18	Unit 5a	Spectroscopy- Absorption and fluorescence, Atomic and Raman spectroscopy	CO5
7.19	Unit 5b	Mass spectrometry and NMR: Instrumentation and working	
7.20	Unit 5c	X-ray crystallography: crystal preparation, working and uses.	
8	Course Evaluati		
8.1	Course work: 30) marks	
8.2	Attendance	None	
8.3	Quizzes	Three best quizzes out of Five 30-minutes quizzes in lecture he percent	ours; 10
8.4	Presentations	One: 10 percent	
8.5	Assignments	Three best out of five; 10 percent	
8.6	MST	One; 20 percent	
8.7	End-term examin	nation: 50 percent	
9	References		
9.1	Textbook	1. Wilson K. and Walker J., "Principles and Technic Biochemistry and Molecular Biology", Cambridge Un Press, 2010.	
9.2	Other references	 Ninfa A.J., Ballou D.P. and Benore M., "Fundamental Lal Approaches for Biochemistry and Biotechnology", Wiley, Sheehan D., "Physical Biochemistry: Principles and Applic Wiley, 2009 	2009.

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	1
CO2	2	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB118: Advances in Plant Biotechnology

L-T-P: 4-0-0

Credit: 4

School : SBSR		Batch : 2020 – 22			
Program: M.Sc.		Current Academic Year: 2020-21			
Branch:		Semester: 02			
Biotechnology					
1	Course Code	MSB 118			
2	Course Title	Advances in Plant Biotechnology			
3	Credits	4			
	Contact Hours				
4	(L-T-P)	4-0-0			
	Course				
5	Objective				
6	Course Outcomes	 After successfully completion of this course students will be able to: Will learn about tissue culture techniques applied in plant science Will comprehend genetically modified plants and Transgenic plants and their economic significance Will learn about the techniques for transferring gene by direct or indirect methods Will be able to classify different types of molecular markers, vectors, etc Will learn to apply the techniques in different field of science like ecology, environments, etc Will comprehend recent advances in the field of plant biotechnology and their applications 			
7	Outline syllabus	S:			
7.01	Unit 1	Techniques in Plant Tissue Culture			
7.02	Unit 1a	Concept of totipotency, Production of Secondary metabolite			
		Haploid plant culture; Soma clonal variation, protoplast fusion and Hairy			
7.03	Unit 1b	root culture			
7.04	Unit 1c	Elicitors, development of High yielding varieties			
7.05	Unit 2	Genetic Engineering of Plants			
7.04	11: A O -	Biotic and abiotic stress, how to develop stress resistant plant like disease			
7.06	Unit 2a	resistant plants			
7.07	Unit 2b	Herbicide, pesticide resistant plant production, concept of vectors			
7 08	Unit 2c	Concept of vectors and their role in genetic Engineering, role of A tumefaciens			
7.08	Unit 3	Methods of Gene Transfer			
7.10	Unit 3a	General characteristics of gene transferring; Ti and Ri Plasmids their role.;			
7.10	Unit 3b	Physical & Chemical Method of gene transfer			
7.12	Unit 3c	Gene transfer technology; Advantage and disadvantage			
7.12					

7.14	Unit 4a	Concept of molecular markers, Examples of molecular markers			
7.15	Unit 4b	Application of molecular markers			
7.16	Unit 4c	Importance of molecular markers in crop improvements			
7.17	Unit 5	Application of Plant Biotechnology			
7.18	Unit 5a	Edible Vaccine; Concept of molecular and non-molecular farming			
7.19	Unit 5b	Production of antibiotics			
7.20	Unit 5c	Bioplastics			
7.17	Course Evaluat	ion			
8	Course work: 3	0 marks			
8.1	Attendance	None			
	Quizzes	Three best quizzes out of Five 30-minutes quizzes in lecture hours; 10			
8.11	Quizzes	percent			
8.12	Presentations	One: 10 percent			
8.13	Assignments	Three best out of five; 10 percent			
8.14	MST	One; 20 percent			
	End-term examination: 50 percent				
8.15	None				
9	References				
	Textbook	1. Bhojwan S S Dantu Pk , Plant tissue culture: An Introductory Text			
9.1		Springer 2013			
	Other	CB Nirmala G. Rajalakshmi Chandra Kartik: Plant Biotechnology. MJP			
	references	publisher 2009			
9.2					
		Stewart CN Plant Biotechnology and Genetics: Techniques and Ap[plications			
9.3		Wiley Interscience 2008			

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB123: ADVANCED GENETIC ENGINEERING

L-T-P: 4-0-0

Credit: 4

Program: M.Sc Current Academic Year: 2020-21 Branch: Semester: 2 Biotechnology Semester: 2 2 Course Code MSB123 2 Course Title Advanced Genetic Engineering 3 Credits 4 4 Contact H 4-0-0 (L-T-P) Course Status Compulsory 5 Course 1.To acquire knowledge of principle and techniques involved in genetic engineering. 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4.To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of this course students will be able to: 6 Course Outcomes CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and vools used for these methods, creation of gene libraries and various application of genetic engineering incl	School: SBSR		Batch : 2020-22				
Branch: Biotechnology Semester: 2 1 Course Code MSB123 2 Course Title Advanced Genetic Engineering 3 Credits 4 4 Contract H 4-0-0 (L-T-P) Course Status Compulsory 5 Course 1.To acquire knowledge of principle and techniques involved in genetic engineering. 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 Course After the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO3: Describe PCR process and its applications and hybridization techniques. CO3: Describe PCR process and its applications and hybridization techniques. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering for mankind, creation of genetic engineering in various application of genet	Program: M.Sc						
1 Course Tile Advanced Genetic Engineering 3 Credits 4 4 Contact H 4-0-0 (L-T-P) Course Status Compulsory 5 Course Status Compulsory 5 Course Objective 1.To acquire knowledge of principle and techniques involved in genetic engineering. 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. Col: Recognize the molecular tools for genetic manipulation. 6 Course After the successful completion of this course students will be able to: CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompases detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors et.	Branch:		Semester: 2				
2 Course Title Advanced Genetic Engineering 3 Credits 4 4 Contact H 4-0-0 (L-T-P) Course Status Compulsory 5 Course Status Compulsory 5 Course Status Comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 Course After the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping	Biotechnology						
3 Credits 4 4 Contact H 4-0-0 (L.T.P) Course Status Compulsory 5 Course 1.To acquire knowledge of principle and techniques involved in genetic engineering. 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 Course Outcomes CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO6: Describe PCR process and its applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course 7 Course 8 Outline syllabus CO Genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of gen	1 Course Code MSB123						
4 Contact H (L-T-P) 4-0-0 5 Course Status Compulsory 5 Course Objective 1.To acquire knowledge of principle and techniques involved in genetic engineering. 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the use of expression vectors and their role in recombinant protein production of transgenic plants and animals and their benefits to human beings. 6 Course Outcomes After the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course Description The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping CO Mapping Unit 1	2	Course Title	Advanced Genetic Engineering				
(L-T-P) Course Status Compulsory 5 Course 1.To acquire knowledge of principle and techniques involved in genetic engineering. 6 Course 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 7 Course After the successful completion of genetic engineering. 7 Course Course of considered in genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering in various application of genetic engineering in cools in genetic engineering. 8 Outline syllabut Co Mapping 8 Outline syllabut Contapplication Enzymes, DNA ligase, Klenow enzyme, T4 CO1 Genetic engineering tools and methods Contapplication Enzymes, DNA ligase, Klenow enzyme, T4	3	Credits	4				
Course Status Compulsory 5 Course Objective 1.To acquire knowledge of principle and techniques involved in genetic engineering. 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 6 Course After the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO3: Describe PCR process and its applications and hybridization techniques. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. 77 Course Description The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping CO1, CO6	4	Contact H	4-0-0				
5 Course Objective 1.To acquire knowledge of principle and techniques involved in genetic engineering. 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 Course Outcomes 7 Course Description 7 Course Description 7 Course Description 7 Course Description 7 Course Description 7 Course Description 8 Outline syllabus 8 Outline syllabus		(L-T-P)					
Objective engineering. 2. To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 Course Outcomes After the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course Description The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping 4 Genetic engineering tools and methods CO 8 Outline syllabus CO Mapping		Course Status	Compulsory				
7 Course 2.To comprehend the basic strategies of cloning and how it can be applied for human benefit. 3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 Course After the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering in coust in cols used for these methods, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping 4 Genetic engineering tools and methods CO Mapping 4 A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6	5	Course	1.To acquire knowledge of principle and techniques invo	lved in genetic			
6 Course After the successful completion of transgenic plants and animals and their benefits to human beings. 6 Course After the successful completion of this course students will be able to: C01: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping 4 Genetic engineering tools and methods CO Mapping		Objective	engineering.	_			
3. To learn the use of expression vectors and their role in recombinant protein production. 4. To learn the production of transgenic plants and animals and their benefits to human beings. 6 Course After the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering in looks in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping 4 Genetic engineering tools and methods CO Mapping A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6			2.To comprehend the basic strategies of cloning and how it	can be applied			
6 Course After the successful completion of this course students will be able to: 6 Course After the successful completion of this course students will be able to: Outcomes CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course 7 Course 8 Outline syllabut 8 Outline syllabut 8 Outline syllabut 8 Outline syllabut A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6			for human benefit.				
4. To learn the production of transgenic plants and animals and their benefits to human beings.6Course OutcomesAfter the successful completion of this course students will be able to: CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering.7Course DescriptionThe 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals.8Outline syllabusCO Mapping4Unit 1Genetic engineering tools and methodsCO1, CO6			3. To learn the use of expression vectors and their role	in recombinant			
6 Course After the successful completion of this course students will be able to: 6 Course CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping 4 A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6							
6 Course After the successful completion of this course students will be able to: Outcomes CO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course Description The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping Mather A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6							
OutcomesCO1: Recognize the molecular tools for genetic manipulation. CO2: Analyze different vector types and their application in construction of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals.CO Mapping8Outline syllabusCO MappingARestriction Enzymes, DNA ligase, Klenow enzyme, T4CO1, CO6							
8 Outline syllabus Co2: Analyze different vector types and their application in construction of libraries. 8 Outline syllabus Co3: Describe PCR process and its applications and hybridization techniques. 8 Outline syllabus Co4: Engineering tools and animals. 8 Outline syllabus Co4: Co4: Co4: Engineering tools and methods A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6	6						
of libraries. CO3: Describe PCR process and its applications and hybridization techniques. CO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO4: Explain the different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping 4 Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6		Outcomes					
Image: Note of the syllaw sy				in construction			
8 Outline syllabus CO Mapping 8 Outline syllabus CO Mapping 4 A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6							
8Outline syllabusCO4: Explain the different types of expression vectors and their use along with methods of gene delivery. CO5: Analyze different applications of genetic engineering in various fields such as gene therapy and transgenic organisms. CO6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering.7Course DescriptionThe 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals.8Outline syllabusCO MappingARestriction Enzymes, DNA ligase, Klenow enzyme, T4CO1, CO6				hybridization			
8 Outline syllabus CO Mapping 8 Outline syllabus CO Mapping 4 Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6			1	.1 · 1			
8 Outline syllabus CO fenetic engineering tools and animals. 8 Outline syllabus Genetic engineering tools and animals. A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6				their use along			
8 Outline syllabus Genetic engineering tools and animals. 8 Outline syllabus CO Agenetic engineering tools and methods A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6							
8 Outline syllabus CO 6: Describe gene transfer technologies and tools used for these methods, creation of gene libraries and various application of genetic engineering. 7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6				ing in various			
methods, creation of gene libraries and various application of genetic engineering. regimeering.				used for these			
engineering. 7 Course Description The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping Unit 1 Genetic engineering tools and methods CO1, CO6							
7 Course The 'Applied Genetic Engineering' course involves study of molecular tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping Unit 1 Genetic engineering tools and methods CO1, CO6							
Description tools in genetic engineering. It encompasses detailed procedure of genetic engineering including selection of host cells, vectors, expression vectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping Unit 1 Genetic engineering tools and methods CO1, CO6	7	Course		of molecular			
8 Outline syllabus Genetic engineering tools and methods A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6	/						
wectors etc. It also involves the use of genetic engineering for mankind, creation of transgenic plants and animals. 8 Outline syllabus CO Mapping Unit 1 Genetic engineering tools and methods CO1, CO6 A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6		Description					
8 Outline syllabus CO Mapping Vnit 1 Genetic engineering tools and methods CO1, CO6 A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6							
8 Outline syllabus CO Mapping Unit 1 Genetic engineering tools and methods CO1, CO6 A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6							
Unit 1Genetic engineering tools and methodsARestriction Enzymes, DNA ligase, Klenow enzyme, T4CO1, CO6	8	Outline svllabr					
A Restriction Enzymes, DNA ligase, Klenow enzyme, T4 CO1, CO6							
				CO1, CO6			
			DNA polymerase	,			

В	Modifying En	zymes Rever	se transcriptase. Other		
D	B Modifying Enzymes, Reverse transcriptase, Other important Nucleases				
С	-		tion; Linkers, Adaptors;	_	
C	Homopolyme	tion, Emkers, Adaptors,			
Unit 2	Cloning				
A A		rs. Plasmids.	PUC19 and Bluescript vectors	CO2, CO6	
B	Cloning vectors: Plasmids; PUC19 and Bluescript vectors Bacteriophages; M13 mp vectors, Phagemids; Lambda			5 002,000	
D			cement vectors; Cosmids;		
	Artificial chro				
С	Virus derived vectors-SV-40 & retroviral vectorsCloning methodology and selection: Insertion of foreign				
C			mation; Selection,		
			DNA and genomic libraries		
Unit 3					
	In vitro DNA Nucleic acid e		11	CO2 CO6	
A			-1	CO3, CO6	
В			plex, nested, reverse		
C	transcriptase,			_	
C			slation, Random priming,		
			ctive probes, Hybridization		
TT	techniques: So				
Unit 4	Expression				
A	Expression vectors: His-tag and GST-tag based vectors			CO4, CO6	
В			smid based Co-integrated and		
		s; Yeast vector	east vectors, Shuttle vectors, Expression		
~	cloning	_			
С	Methods gene				
	expression and Diagnosis of gene expression				
Unit 5	Application				
Α	Gene therapy			CO5, CO6	
В	Mutagenesis				
С	Transgenic or				
Mode of	Theory				
examination	examination				
Weightage	ETE				
Distribution	30%	20%	50%		
Text book/s*	Brown T.A, "Gene Cloning and DNA Analysis:An				
	Introduction",				
Other	1. Molecular Biotechnology. Principles and Applications. 3rd				
References	Glick BR and Pasternak JJ. ASM Press @2003. ISBN 1-55581-224-				
	4.				
	2. Gene cloni	ng and DNA	Analysis- An Introduction.	5 th Edition.	
		vell. Brown TA			

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	1	1	1	1
CO2	2	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MSB119: Animal Cell Technology

L-T-P: 4-0-0

Credit: 4

School: SBSR		Batch : 2020-2022			
Program: M.Sc.		Current Academic Year: 2020-21			
Branch:		Semester: 2			
Biotechnology					
1 Course Code MSB 119					
2	Course Title	Animal Cell Technology			
3	Credits	4			
4	Contact Hours	4-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course	1. To acquire a fundamental knowledge of animal cell bio	ology		
	Objective	2. To Study cell, tissue culture, media component	25		
	5	3. To Study Cell Cell Kinetics and Characteristic			
		4. To Study Animal cloning, cell genetics			
		5. To Study large scale industrial and medical appl	lications of cell		
		engineering.			
6	Course	After successfully completion of this course students will	be able to:		
	Outcomes	Understand basics of Animal Cell and Tissue cu			
		CO1 media and aseptic techniques of establishing primary and			
		Secondary cell cultures.			
		Establish a continuous cell line from cells of different origin			
		and determine their nutrient and environment requirements			
		CO2 Differentiate between adherent and non-adheren	t cell culture		
		techniques, calculate growth kinetics parameters and apply			
		cryopreservation technique for long-term storing			
		Understanding Somatic and Germ Cell Genetics	, Cell to Cell		
		CO3 communication			
		Scaling up of Cell cultures for industrial and me	dical		
CO4 applications. Understanding Cell cloning					
		culture and Tissue Engineering			
		Applications of Cell Culture Hybridoma Technology and			
		CO5 Applications of Cell Culture, Hybridonia Technology and Antibody production, Stem cell technology			
		Review the future perspectives, importance and ethical issues			
		CO6 related with stem cell technology and transgenic animals.			
7	Course	To acquire a fundamental and advanced knowledge of An	imal Cell Culture		
	Description	Technology by studying cell, tissue culture, media component, Animal			
		cloning, cell genetics and large scale industrial and medical applications of			
	cell engineering.				
8	Outline syllabus	s	CO Mapping		
	Unit 1	Cell Culture	CO1,2,3		
	А	Cell, Tissue and organ culture, Culture procedures	CO1		

В	Culture media and growth conditions, primary cultures	CO1,2	
C	Establishment and maintenance of cell lines and Risks in	CO2,3	
- C	a tissue culture laboratory and safety.	002,0	
Unit 2	Cell Kinetics and Viability	CO3,4	
А	Cell Killing, Characterization of cultured cells-	CO3	
	morphology of cells		
В	cell adhesion, proliferation, differentiation, Kinetics	CO4	
	involved in growth of cultured cells,		
С	Cell viability, Methods for testing cell viability,	CO4	
	Cytotoxicity assays		
Unit 3	Cell Characteristics	CO5	
А	Cell Adhesion and Signalling	CO5	
В	cell-cell communication, Cell senescence	CO5	
С	Somatic and Germ cell genetics	CO5	
Unit 4	Scaling-up of cell cultures	CO6,7	
А	Animal cell culture scale up, Scale up in suspension -	CO6	
	stirrer culture, continuous flow culture, air-lift		
	fermentor culture		
В	Scale up in monolayer-Roller bottle culture,	CO 6	
	multisurface culture, multiarray disks, spirals and tubes		
	monitoring of cell growth		
C	Cell cloning and micromanipulation, Cell culture in	CO7	
	industrial methods, Three dimensional culture and		
	Tissue Engineering		
Unit 5	Application of Animal Cell Culture Technology and	CO8,9	
Chit S	Ethics	000,7	
А	Hybridoma technology, Antibody production	CO8	
В	Transgenic animals, Applications of transgenic animals,	CO8,9	
С	Stem cells, Stem cell therapy, Ethical issues in cell	CO9	
	culture		
Mode of	Theory		
examination			
Weightage	CA MTE ETE		
Distribution	30% 20% 50%		
Text book/s*	Butler M., "Animal Cell Culture and Technology",		
	Garland Science, 2008.		
Other	1. Jenkins N., "Animal Cell Biotechnology:		
References	Methods and Protocols", Humana Press, 2006.		
	2. Freshney I.R., "Culture of Animal Cells: A		
	Manual of Basic Technique", Wiley, 2005.		
	3. Shenoy M., "Animal Biotechnology", Laxmi		
	Pub, 2007.		

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB125: Bioinformatics

L T P: 4-0-0

School: SBSR	Batch: 2020-2	22				
Program:	Current Academic Year: 2020-21					
M.Sc.						
Branch:	Semester: 02					
Biotechnology						
1	Course Code	MSB125				
2	Course Title	Bioinformatics				
3	Credits	4				
4	Contact Hours (L-T- P)	4-0-0				
5	Course Objective	To acquire an advanced knowledge of bioinformatics designing and analyzing <i>in silico</i> experiments a techniques used for molecular modeling.	and different			
6	Course Outcomes	 After successfully completion of this course students to: CO1: Understand about overview of bioinformat their disciplines. Generation of large-scale data in molecular biology. CO2: Review of database source, database mana system, Biological databases and their classifications Sequences databases and specialized databases. CO3: To attain knowledge about data storage more trieval of information and integration. CO4: Understanding about different sequence for Perform sequence alignment and phylogenetic predifferent tools/software with algorithm. CO5: To apply different techniques for gene predisearch and genome sequencing analysis. CO6: Basic knowledge of various bioinformatices scope, database usage, tools and software used for application along with their algorithms. 	ics scope and a the field of gement ion. odel/format, rmats. ediction with diction, motif s concepts, r each			
7	Outline syllab		CO Mapping			
7.01	Unit A	Introduction to Bioinformatics				
7.02	Unit A Topic 1	Scope and importance				
7.03	Unit A Topic 2	Large scale generation of molecular biology data	CO1, CO6			
7.04	Unit A Topic 3	Different fields in bioinformatics				
7.05	Unit B	Biological Databases	CO2, CO6			

7.06	Unit B Topic 1	Introduction of Biological Databases	
7.07	Unit B Topic 2	Structural and Sequence database	
7.08	Unit B Topic 3	Specialized Genome databases and Structure databases	
7.09	Unit C	Data Storage and retrieval	
7.10	Unit C Topic 1	Controlled vocabulary	
7.11	Unit C Topic 2	Introduction to Metadata; File Storage, File Format (FASTA, GenBank, Swiss-Prot, DDBJ and PDB)	CO3, CO6
7.12	Unit C Topic 3	Boolean Search and Fuzzy Search	
7.13	Unit D	Sequence-alignment Related Problems	
7.14	Unit D Topic 1	Sequence databases, Similarity matrices, pairwise alignment and BLAST	
7.15	Unit D Topic 2	Sequence assembly and multiple sequence alignment	CO4, CO6
	Unit D Topic	Clustal and phylogenetics, distance based	
7.16	3	approaches, parsimony	
7.17	Unit E	Sequence pattern analysis & System-wide Analysis	
7.18	Unit E Topic	Structure of Prokaryotic and Eukaryotic gene, Basic and advanced sequencing (Maxam–Gilbert sequencing, Sanger sequencing, NGS, Pyrosequencing)	
7.19	Unit E Topic 2	Gene finding, composition-based finding, sequence motif-based finding	CO5, CO6
7.20	Unit E Topic 3	Pattern Matching, Regular expression, Transcriptomics, Microarray technology and expression profiles	
8	Course Evalua		
8.1	Course work:		
8.11		None	
8.12	Homework	Three best out of 4 assignments: 20 marks	
8.13	Quizzes	Two 30-minutes surprise quizzes in lecture hours: 10 r	narks
8.14	Projects	None	
8.15		None	
8.16	Any other	None	
8.2	MTE	One, 20 percent	
8.3		nination: 50 percent	
9	References		

		Jin X., "Essential Bioinformatics", Cambridge University Press,
9.1	Text book	2006.
		1. Mount D.W., "Bioinformatics: Sequence and Genome Analysis",
9.2		Cold Spring Harbor Laboratory Press, 2004.
		2. Baxevanis A., Ouellette F.B.F., "Bioinformatics: A practical
	Other	guide to the analysis of genes and proteins", Wiley-Interscience,
	References	2004.
		3. Bourne P.E., Gu J., "Structural Bioinformatics", Wiley-
		Blackwell, 2009.

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB158 Plant Biotechnology Lab

L-T-P: 0-0-3

Sch	ool: SBSR	Batch : 2020-22	
Pro	gram: M. Sc.	Current Academic Year: 2020-21	
Bra	anch:	Semester:2	
Bio	technology		
1	Course Code	MSB158	
2	Course Title	Plant Biotechnology Lab	
3	Credits	3	
4	Contact Hr	0-0-3	
	(L-T-P)		
	Course	Compulsory	
	Status		
5	Course	1. To familiarize students with sterilization techniq	ues and media
	Objective	preparations etc.	1. 0
		2. To motivate students towards plant cell and tissue of	culture for mass
		propagation. 3. To acquaint with principles, technical requirement	scientific and
		commercial applications in Plant Biotechnology.	, selentific and
		4. Develop and manage plant tissue culture techniques for cr	op improvement.
6	Course	CO1: Development of ability to design and conduct ex	
	Outcomes	controlled conditions.	
		CO2: Development of skills for application of tissue cultu	re techniques in
		plant.	
		CO3: To Amalgamation tools for artificial germination of s	eeds.
		CO4: Perform regeneration of plant under artificial condition	ons.
		CO5: Develop transgenics and differentiate between trans	genics from wild
		cultivars.	
		CO6: To familiarize students with sterilization technic	ques and media
		preparations etc.	
7	Course	The aim of this course is to acquaint the students about the v	
	Description	techniques employed in plant biotechnology. Cell and tissue	-
		offers avenues for enhancing crop production and utilizat	
		tools in plant genome modification helps in creation of tran	sgenic plants for
		combating food problems.	
8	Outline syllab		CO Mapping
	Unit 1	Practical based on introduction to plant biotechnology	CO1
		lab	
	А	Aspetic conditions maintenance in laboratory	

B & C	Conditions optimization for growth of plant cell/tissue			
	under conditions			
Unit 2	Isolation of Nucleic acids from plants and	CO2		
	quantification			
A& B	Isolation of DNA and RNA from plants			
С	Agarose gel electrophoresis			
Unit 3	Seed germination on stratified media	CO3		
A & B	Preparation of MS medium, Water Agar medium,			
	Gamborg medium			
С	Sterilization of seeds and germination on stratified			
	medium			
Unit 4	Plant regeneration	CO4		
А	Callus culture			
В	Shoot regeneration			
С	Rooting of <i>in vitro</i> raised plants			
Unit 5	Construct preparation and transgenics	CO5		
А	Restriction of vector and gene for construct			
В	Agrobacterium construct for transformation			
С	PCR for confirmation of transgene			
Mode of	Practical and/or Viva			
examination				
Weightage	CA MTE ETE			
Distribution	60% 0% 40%			
Text book/s	Michael, R. G., Sambrook. J., "Molecular Cloning-A			
	Laboratory Manual", 4th edition, Cold Spring Harbor			
	Laboratory Press, 2012.			
Other	1. Giri, C. C., and Archana Giri. Plant biotechnology:			
References	Practical Manual. IK International Pvt Ltd, 2013.			
	2. Aneja, K. R. Experiments in microbiology, plant			
	pathology and biotechnology. New Age International,	,		
	2007.			

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	2	3
CO6	3	3	3	3	3

MSB159 Genetic Engineering Lab L-T-P: 0-0-3

Sch	ool: SBSR	Batch: 2020-22		
Pro	gram: M.Sc.	Current Academic Year: 2020-21		
Bra	inch:	Semester: 02		
Bio	technology			
1	Course Code	MSB159		
2	Course Title	Genetic Engineering		
3	Credits	1		
4	Contact Hours (L-T-P)	0-0-2		
	Course Status	Compulsory/Elective		
5	Course Objective	To give students a introduction and hands on basic experiments of genetic engineering technique		
6	Course Outcomes	 CO1: Perform experiments on DNA isolation from biological resource and understanding different methods for DNA isolation CO2: Perform experiments on RNA isolation. CO3: Validation of isolated DNA and RNA content. CO4: Amplification of particular gene of interest by PCR method. CO5: Validation of amplified gene by electrophoresis method. 		
7	Course	CO6: Performing basic experiments of Genetic engineering technique. This course is designed to make students a thorough understanding of		
,	Description	Database usage, tools and software for each bioinformatics applications		
8	Outline syllabus			
0	Unit 1	DNA isolation CO1		
		Sub unit - a, b and c detailed in Instructional PlanCO1		
	Unit 2	RNA isolation CO2		
		Sub unit - a, b and c detailed in Instructional PlanCO2		
	Unit 3	Validation of isolated DNA and RNA CO3		
		Sub unit - a, b and c detailed in Instructional Plan CO3		
	Unit 4	Amplification of specific gene of interest by PCRCO4method		
		Sub unit - a, b and c detailed in Instructional PlanCO4		
	Unit 5	Validation of amplified gene by electrophoresisCO5method		
		Sub unit - a, b and c detailed in Instructional PlanCO5		
	Mode of exam	Jury/Practical/Viva		
	Weightage	CA MTE ETE		
	Distribution	60% 0% 40%		
	Text book/s*	Brown T.A, "Gene Cloning and DNA Analysis:An Introduction", John Wiley & Sons, 2010.		
	Other References	ner 1. Old R.W and Primrose S.B., "Principles of Gene Manipulation", Blackw		

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	F02	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	2	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB160: Bio-instrumentation Lab

L T P: 0-0-3

Biotechnology MSB160 1 Course Code MSB160 2 Course Title Bio-Instrumentation Lab 3 Credits 2 4 Contact Hours (L-T-P) 0-0-3 (L-T-P) 5 Course Status Compulsory/Elective 5 Course To give students a thorough understanding of tools and technic Objective 6 Course CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioara techniques 7 Course This course is designed to make students learn about various instru- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M 7 Init 1 Practical based on Sterilization CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. 8 Unit 2 Practical related to centrifuge CO	Current Academic Year: 2020-21			
1 Course Code MSB160 2 Course Title Bio-Instrumentation Lab 3 Credits 2 4 Contact Hours (L-T-P) 0-0-3 Course Status Compulsory/Elective 5 Course To give students a thorough understanding of tools and technic Objective 6 Course CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. 6 Courses CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. 7 Course This course is designed to make students learn about various instru- experimental problems. 8 Outline syllabus CO M 8 Outline syllabus CO M 8 Outline syllabus CO M 7 To learn the working of an autoclave. CO 8 Outline syllabus CO M 9 To learn the working of a laminar air flow. CO 10 To caurse is designed to centrifuge CO 8 Outlin 1 Practical based on Sterilization <td< th=""><th colspan="3"></th></td<>				
2 Course Title Bio-Instrumentation Lab 3 Credits 2 4 Contact Hours (L-T-P) 0-0-3 5 Course Status Compulsory/Elective 5 Course Ourse Status Compulsory/Elective 6 Course To give students a thorough understanding of tools and technic Biomedical and Biotechnology Laboratories. To make students le working and operation of various biotechnological instruments 6 Course CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormoner chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course This course is designed to make students learn about various instri- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M 10 Practical based on Sterilization CO CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. 8 Outling PH meter CO				
3 Credits 2 4 Contact Hours (L-T-P) 0-0-3 5 Course Status Compulsory/Elective 5 Course To give students a thorough understanding of tools and technic Biomedical and Biotechnology Laboratories. To make students le working and operation of various biotechnological instruments 6 Course COI: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. 6 Course CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormoner chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course This course is designed to make students learn about various instru- mate chniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M To learn the working of a laminar air flow. To to sterilize glasswares using hot air oven. 4 Unit 2 Practical related to centrifuge CO				
4 Contact Hours (L-T-P) 0-0-3 5 Course Status Compulsory/Elective 5 Course Objective To give students a thorough understanding of tools and technic Biomedical and Biotechnology Laboratories. To make students le working and operation of various biotechnological instruments 6 Course Outcomes CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instru- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M 4 To learn the working of a nautoclave. To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO 8 Unit 2 Practical related to centrifuge CO 9 Using pH meter CO				
(L-T-P) Course Status Compulsory/Elective 5 Course To give students a thorough understanding of tools and technic Biomedical and Biotechnology Laboratories. To make students le working and operation of various biotechnological instruments 6 Course CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. 6 Course CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO3: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. 7 Course This course is designed to make students learn about various instru- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO4 4 To learn the working of a nautoclave. CO 7 Io learn the working of a laminar air flow. CO 8 Outline syllabus CO m 4 To learn the working of a laminar air flow. CO 7 Io learn the working of a laminar air flow. CO 9 Unit 1 Practical related to centrifuge CO 9 Unit 2 Practical related to centrifuge CO				
Course Status Compulsory/Elective 5 Course Objective To give students a thorough understanding of tools and technic Biomedical and Biotechnology Laboratories. To make students le working and operation of various biotechnological instruments 6 Course Outcomes CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormoner chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instru- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M 7 Itil 1 Practical based on Sterilization CO CO CO 8 Outline syllabus CO M 4 To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO CO 4 Practical related to centrifuge CO 5 Using pH meter CO				
5 Course Objective To give students a thorough understanding of tools and technid Biomedical and Biotechnology Laboratories. To make students le working and operation of various biotechnological instruments 6 Course Outcomes CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instru- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M 10 To learn the working of an autoclave. To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO 10 Practical related to centrifuge CC 10 Unit 2 Practical related to centrifuge CC				
Objective Biomedical and Biotechnology Laboratories. To make students lee working and operation of various biotechnological instruments 6 Course CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. Outcomes glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioara techniques 7 Course This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Vinit 1 Practical based on Sterilization CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO				
6 Course Outcomes CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instru- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M 1 Practical based on Sterilization CO CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. 8 Unit 2 Practical related to centrifuge CO CO				
6 Course Outcomes CO1: Operate autoclave, Laminar Air flow and Hot air oven and s glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separa components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays CO5: Separation of pigments, drugs, amino acids and hormoner chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instru- and techniques of biomedical and biotechnology laboratory and w enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M 1 Practical based on Sterilization CO CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. 8 Unit 2 Practical related to centrifuge CO CO	arn the			
Outcomes glass and plasticwares. CO2: Operate centrifuge and refrigerated centrifuge and separal components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Image: Construct the working of an autoclave. CO Image: Construct the working of a laminar air flow. To learn the working of a laminar air flow. Image: Construct the working of a laminar air flow. To sterilize glasswares using hot air oven.				
CO2: Operate centrifuge and refrigerated centrifuge and separation components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioanatechniques 7 Course Description This course is designed to make students learn about various instruants to experimental problems. 8 Outline syllabus CO M Munit 1 Practical based on Sterilization CO To learn the working of a laminar air flow. To learn the working of a laminar air flow. CO To sterilize glasswares using hot air oven. CO CO Unit 2 Practical related to centrifuge CO	terilize			
i components. CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M To learn the working of an autoclave. CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. Unit 2 Practical related to centrifuge CO	to coll			
CO3: Separate and visualize nucleic acids and proteins usi electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioara techniques 7 Course Description This course is designed to make students learn about various instruant techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of an autoclave. CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO CO	le cen			
electrophoresis. CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioara techniques 7 Course This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO CO	no oel			
CO4: Operate spectrophotometer and perform absorbance assays. CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioara techniques 7 Course Description This course is designed to make students learn about various instruant techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO CO	15 501			
CO5: Separation of pigments, drugs, amino acids and hormones chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course Description This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO CO				
chromatographic techniques. CO6: Operation and working of different instruments and bioana techniques 7 Course This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of an autoclave. CO To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO				
7 Course Description This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of an autoclave. CO To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO CO	U			
7 Course Description This course is designed to make students learn about various instruand techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of an autoclave. CO CO To sterilize glasswares using hot air oven. CO CO Unit 2 Practical related to centrifuge CO Using pH meter CO CO	lytical			
Description and techniques of biomedical and biotechnology laboratory and we enable them to use and apply these techniques and equipments to experimental problems. 8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO To learn the working of an autoclave. CO To learn the working of a laminar air flow. CO To sterilize glasswares using hot air oven. CO Unit 2 Practical related to centrifuge CO Using pH meter CO				
8 Outline syllabus CO M Vnit 1 Practical based on Sterilization CO Image: To learn the working of an autoclave. CO To learn the working of a laminar air flow. CO To sterilize glasswares using hot air oven. CO Image: Unit 2 Practical related to centrifuge CO Using pH meter CO				
8 Outline syllabus CO M 4 Unit 1 Practical based on Sterilization CO 5 Unit 1 Practical based on Sterilization CO 6 To learn the working of an autoclave. CO 7 To learn the working of a laminar air flow. CO 7 To sterilize glasswares using hot air oven. CO 9 Unit 2 Practical related to centrifuge CO 0 Using pH meter CO CO				
8 Outline syllabus CO M Unit 1 Practical based on Sterilization CO Image: To learn the working of an autoclave. CO Image: To learn the working of a laminar air flow. CO Image: To sterilize glasswares using hot air oven. CO Image: Unit 2 Practical related to centrifuge CO Image: Using pH meter CO	o solve			
Unit 1 Practical based on Sterilization Comparison To learn the working of an autoclave. To learn the working of a laminar air flow. Comparison To sterilize glasswares using hot air oven. To sterilize glasswares using hot air oven. Comparison Unit 2 Practical related to centrifuge Comparison Using pH meter Comparison Comparison	•			
Image: Constraint of the strength of the strengt of the strength of the strength of the strengt				
To learn the working of a laminar air flow. To sterilize glasswares using hot air oven. Unit 2 Practical related to centrifuge Colored Using pH meter Colored				
Image: Top Sterilize glasswares using hot air oven. Top Sterilize glasswares using hot air oven. Image: Unit 2 Practical related to centrifuge Control of	Л			
Unit 2 Practical related to centrifuge Control Using pH meter Control				
Using pH meter Co				
	52			
Working and principle of incubator shaker	02			
to orking and principle of incubitor blacker				
Working of refrigerated centrifuges				
Unit 3Practical related to gel electrophoresisControl	03			
	03			
Separation of proteins using PAGE				

Unit 4	Practical rel	ated to spectro	ophotometer	CO4		
	Principle an	Principle and working of a spectrophotometer				
	Measuring of	concentration o	f protein using	-		
	spectrophot	ometer				
Unit 5	Practical rel	ated to chrom	atography	CO5		
	Use of paper	Use of paper chromatography for separation of plant				
	pigments					
Mode of exam	Jury/Practica	l/Viva				
Weightage	CA	MTE	ETE			
Distribution	60%	0%	40%			
Textbook/s*	Wilson K. ar	nd Walker J., "	Principles and Techniques of	f Biochemistry		
	and Molecular Biology", Cambridge Press, 2010.					
Other	1. Cottenil R.M.S., "Biophysics: An Introduction", John Wiley and					
References	Sons, 2002.					
	2. Gupta A.,	"Instrumentati	on and Bioanalytical Techniq	ues", Pragati		
	Prakashan, 2	009.		-		

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MMB201: Environmental Microbiology and Waste Management

L-T-P: 4-0-0

Sch	ool : SBSR	Batch : 2020 – 22				
Pro	gram: M.Sc.	Current Academic Year: 2020-21				
Bra Biot	nch: echnology	Semester: 3				
1	Course Code	MMB201				
2	Course Title	Environmental Microbiology & Waste Management				
3	Credits	4				
4	Contact Hours (L-T-P)	4-0-0				
	Course Status	Compulsory				
5	Course Objective	 This course provides a comprehensive introduction to microbial ecology and fundamentals of microbial diversity. The course is designed to give students an up-to-date understanding of a wide array of applications of microorganisms in maintaining biogeochemical factors. This course also focuses on concepts of applied environmental microbiology and how microbes can be used for various industrial/research applications. The course also highlights the modern methods of waste 				
6	Course	 4. The course also highlights the modern methods of waste management and significant role of microorganisms in waste and resources management. After the successful completion of this course students will be able to: 				
	Outcomes	 CO1: Comprehend ecological interactions and role of microorganisms played in there and discuss microbial ecology concepts including methods of assessing microbial diversity and studying microbial populations. CO2: Analyze the role of microorganisms in biogeochemical cycles. CO3: Classify different methods of bioremediation and use of microorganisms and plasmids in bioremediation CO4: Explain the commercial application of microorganisms in extraction of metals, oil and in production of biogas. CO5: Identify different methods of waste management and how different microbial metabolic processes can assist in waste management. CO6: To provide a comprehensive introduction to microbial ecology and fundamentals of microbial diversity. 				
7	Course Description	The 'Environmental Microbiology and Waste Management' is a course designed to give students knowledge about basic concepts of environment/ ecosystem and the role microorganisms play in maintaining the ecosystem balance. This course throws light on various unconventional uses of microorganisms in various industries				

		and environmental benefits of use of the microorganisms also outlines various biological methods of waste manag				
		application of microbes in bioremediation.				
	Outline syllabu		CO Mapping			
	Unit 1	Microbial Ecology				
r	А	Ecological Concepts: Introduction to ecosystem; types				
		of ecosystem; food chain and food web; biological				
		magnification and eutrophication				
	В	Microbial diversity: estimates of total number of species;	CO1			
		Shannon and Simpsons indices of microbial diversity,	001			
_		Unculturable bacteria				
	С	Culture independent molecular methods for				
		understanding microbial community- Partial and whole				
		community analysis				
	Unit 2	Role of Microorganisms in Environment				
	А	Role of microbes in biogeochemical cycles: nitrogen				
		cycle: different phases of nitrogen cycle, microbes				
		involved in different stages of nitrogen cycle	CO^{2}			
	В	Carbon, Phosphorous and Sulphur cycle	CO2			
	С	Production of microbial bio-fertilizers, bio-pesticides,				
		soil conditioners to enhance cropyields.				
	Unit 3	Role of Microorganisms in Remediation				
	А	Bioremediation- in situ and ex situ techniques				
	В	Biodegradation of recalcitrant compounds-lignin,	CO3			
		pesticides; Bioaccumulation of metal and detoxification				
	С	Degradation of xenobiotics by microorganisms;				
		Degradative plasmids				
	Unit 4	Role of Microorganisms in Mining and Energy				
		Production				
	A	Microbial technology in mining: Bioleaching;				
		Biomining; Bio-beneficiation				
	В	Recovery of oil and MEOR; Bioconversions	CO4			
	С	Microbial technology for energy production- Concept of	CO4			
		microbial fuel cell- principle; types and applications,				
		Use of microorganisms in the production of biogas				
	Unit 5	Role of Microorganisms in Waste Management				
	А	Landfill- structure and types, involvement of microbes in				
		initial adjustment phase, transition phase, acid phase				
	В	Methane formation and maturation phase of a landfill				
		operation	CO5			
	С	Compositing- types; Design and operational				
		consideration of microbial composting				
-+	Mode of	Theory				
	examination					
		CA MTE ETE				

Weightage	30)%	20%	50%				
Distribution								
Text book/s*	1.	Environm						
		Ane Book	s India @2006	. ISBN 81-8052-023-4.				
	2.	Environm						
		14 th Editio						
		315-2473-	315-2473-2.					
Other		1. Enviro						
References		Press @20						
	2.	Fundame						
		Brooks/Co	le @2005. ISE	3N 0534420664.				

5
PO5

MSB204: Genomics

L-T-P: 4-0-0

School : SBSR		Batch : 2020-22				
Prog	gram: M.Sc.	Current Academic Year: 2020-21				
Bra Biot	nch: echnology	Semester: 3				
1	Course Code	MSB 204				
2	Course Title	Genomics				
3	Credits	4				
4	Contact Hours (L-T-P)	4-0-0				
	Course Status	Core				
5	Course Objectives	 To comprehend the basic principles of genomics, so that understanding biological functions and apply for human To acquire knowledge of techniques and strategies understanding a genome 	benefit			
6	Course Outcomes	After successfully completion of this course students will b CO1. Comprehend the fundamentals of genomics and prine sequencing and analysing tools. CO2. Identify the advantages and disadvantages of sequencing methods and choose the appropriate genome ana CO3. Apply the concept of molecular markers and its genome analysis and mapping CO4. Comprehend the fundamentals of functional g comparative genomics and apply it to solve problems CO5. Appreciate the power of microbial genome analysis ar application in industry, agriculture and medicine for human CO6. Be familiar with the different techniques used in geno and choose rationally the appropriate methodology for solvi	ciples of DNA various DNA alysis pipeline. application in genomics and nd its welfare. me analysis			
7	Course Description	This course provides a window to the methods and of genomics in the study of genomics. It gives a glimpse of world microbes that are so diverse at genome level and express unique characters. It will explore how the technique data in general have been used to understand biology. It wi how this diversity can be exploited for various industries.	d applications of the amazing consequently and genomic ll also indicate			
8	Outline syllabus		CO Mapping			
	Unit 1	Genomic Diversity				
	Α	Concept of Genome	CO1			
	В	Principles of DNA sequencing techniques, Automated DNA sequencing, Pyrosequencing, New generation Sequencing methods	CO1, CO6			
	С	Primary, derivative and composite biological databases	CO1, CO6			

Unit 2	Whole Genor	ne Sequencin	g			
A	Whole genom	e sequencing	methods	CO2, CO6		
В	Genome asser			CO2, CO6		
С		Analysis of sequence data (gene prediction, conserved domain prediction, motifs), Metagenomics				
Unit 3	Mapping tecl	nniques				
А	Types of gend	ome maps,		CO3 , CO6		
В			arkers (RFLP, AFLP, EST,	CO3, CO6		
С	Application of markers in mapping techniques, Significance of markers in sequencing projects					
Unit 4	Genomics					
А	Functional gen genomics	CO4				
В	Investigation mutagenesis	CO4, CO6				
С	Comparative genomics					
Unit 5	Application of					
А		nomics and its	application with special latabases	CO5, CO6		
В	Genomics and	l its applicatio	n in agriculture and industry	CO5, CO6		
С			enome project	CO5, CO6		
Mode of examination	Theory					
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	1.Brown T.A.	, Genomes, 3 rd	^d Edition. Wiley-Liss (2006).			
Other	1. Bioinformati	cs and Function	nal genomics by Jonathan			
References						

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB207: Microbial Biotechnology

L-T-P: 4-0-0

Sch	ool : SBSR	Batch : 2020-2022				
	gram: M.Sc.	Current Academic Year: 2020-21				
	nch:	Semester: 3rd				
Bio	technology					
1	Course Code	MSB207				
2	Course Title	Microbial Biotechnology				
3	Credits	4				
4	Contact Hours	4-0-0				
	(L-T-P)					
5	Course Status	Compulsory				
6	Course	1. Some Potential Sources of Components of Industrial Me	edia			
	Objective	2. Product recovery, Solids (Insolubles) Removal				
		3. Industrial production of organic acids				
		4. Role of microorganisms in hydrocarbon degradation				
7	Course	After studying this course, students will be able to				
	Outcomes	CO1: Determine Primary and Secondary screening, Production s	strains, and			
		Production media	1.4			
		CO2: Evaluate Filtration; Centrifugation; Coagulation and flocc CO3: Interpret the production of microbial insecticides, production				
		of Biopolymers, Biofuels	ion			
		CO4: Analyze the role of microorganisms in hydrocarbon degrae	dation			
		CO5: Determine Role of microorganisms in Bioleaching and Tex				
		CO6: This course contains introductory part of industrial biotech				
		includes various useful microorganisms, their production, differen				
		fermentors, product recovery processes.	ent types of			
8	Course	This course contains introductory part of industrial biotechnolog	v which			
	Description	includes various useful microorganisms, their production, different				
	•	fermentors, product recovery processes. After this course study s				
		able to learn the role of microorganisms in textile industry and n	narine			
		environment.				
9	Outline syllabus		CO Mapping			
	Unit 1		CO1			
	А	Introduction and history, Isolation and screening, Primary and				
		Secondary screening, Production strains, Production media,				
	В	Raw Materials Used in Compounding Industrial Media, Growth				
		Factors, Water,				
	С	Some Potential Sources of Components of Industrial Media,				
		Inoculum preparation, Introduction to Fermenter, Industrial				
	II. 4 0	sterilization				
	Unit 2	Product recovery, Solids (Insolubles) Removal	CO2			
	A B	Filtration; Centrifugation; Coagulation and flocculation;				
	D	Foam fractionation; Whole-broth treatment; Primary Product				
	С	Isolation : Cell disruption; Liquid extraction; Dissociation extraction; Ion-exchange				
	C	adsorption; precipitation				
		ausorption, precipitation				

Unit 3				CO3			
А	Introduction, In of streptomycin	·	ction of penicillin, production				
В	lactic acid, amin of single cell pr	Industrial production of organic acids- production of citric acid, lactic acid, amino acids such as L- glutamic acid, production of single cell proteins, production of fermented foods,					
С	C Production of microbial insecticides, production of Biopolymers, Biofuels, Production of Alcohol Yeasts, food yeast and Baker's Yeast.						
Unit 4	Petroleum Mic	robiology		CO4			
А			eum, products of compounds in hydrocarbon system				
В	Role of microor	ganisms in hy	drocarbon degradation.				
С		Marine Microbiology: Characters of marine environment, characters of marine microorganisms, role of marine					
Unit 5		·		CO5			
A		Production of Vaccines -Production of virus vaccines; Production of bacterial toxoids; Production of killed bacterial					
В	Role of microorganism in Bioleaching and Textile Industry : A. Bioleaching of elements – Microorganisms involved, chemistry of microbial leaching and beneficiation B						
С			icroorganisms found on textile f microorganisms.				
Mode of examination	Theory	2					
Weightage		MTE	ETE				
Distribution		20%	50%				
Text book/s*	microbiology 2r	nd edition	ology: A Text Book of Industrial dustrial Microorganisms				
Other			0 1993 Food Poisoning and Food				
References	 Hygiene Edward Anold, London. 2. Hui Y H 2006 Food Biochemistry and Food Processing Blackwell 5. Joshi, V.K. Ashok Pondey 1999 Biotechnology and Food fermentation Vol. I & II. 						
	3. Patel, A.H. In						

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	FOI	102	105	104	105
CO1	3	2	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB117 Immunology and Immunotechnology

L-T-P: 4-0-0

11	-P: 4-0-0		realt: 4					
Sch	ool: SBSR	Batch: 2020-22						
Pro	gram: M.Sc.	Current Academic Year: 2020-21						
Bra	inch: BT	Semester: 03						
1	Course Code	MSB117						
2	Course Title	Immunology and Immunotechnology						
3	Credits	4						
4	Contact H	4-0-0						
	(L-T-P)							
	Course	Compulsory /Elective/Open Elective						
	Status							
5	Course	1. Understand immune system, immunity and var	rious immune					
	Objective	responses.						
		2. Discuss about the structure and function of ant	igen and antibodies;					
		Hypersensitivity and Autoimmunity.						
		3. Understand the principle behind Immunization	and Vaccines; Ag-Ab					
		reactions and immune-techniques.						
6	Course	CO1: To understand Immune system, immunity and in						
	Outcomes		CO2:.Discuss about the structure and function of antigen and antibodies.					
		CO3:Discuss about Hypersensitivity and Autoimmunity.						
		CO4: Understand the principle behind Immunization and Vaccines						
		CO5: To understand the Antigen-antibody reactions and						
		CO6: To acquire a fundamental working knowledge o	f the basic principles of					
_	-	immunology						
7	Course	The course will help students to acquire a fundamental						
	Description	the basic principles of immunology; to begin to						
		principles apply to the process of immune function; an						
		to solve problems in clinical immunology by making u	ise of existing tools and					
0		techniques	COM :					
8	Outline syllabi		CO Mapping					
	Unit 1	Immune System and Immune responses	CO1					
	А	Immune system: cells and organs of the immune	CO1					
		system; Hematopoesis; Immunity and its types; Innate immunity: barriers of innate immunity; Complement						
		system, inflammatory responses and phagocytosis						
	В	Acquired immunity; Cell-mediated and humoral	CO1					
		immunity; Activation of T-lymphocytes and B-						
		lymphocytes						
	С	Antibody-mediated and macrophage-mediated	CO1					
		cytotoxicity; Cytokine release and their role in immune						
		regulation;						
	Unit 2	Antigen and Antibody						

А	Hapten,	Immunogen; Superantigen, city, Adjuvants	•	en; CO2 and
В			f immunoglobulin and	its CO2
С	Major Histoc	ompatability (Complex, BCR and TCR	CO2
Unit 3	Hypersensit	ivity and Aut	oimmunity	
А	Severe comb	ined immunoc	types, Immunodeficienc leficiency syndrome (SCI y syndrome (AIDS)	
В			cific Autoimmune Diseas raves' Disease, Myasthe	
С	Systemic Au Erythematos Arthritis		Diseases: Systemic Luj Sclerosis, Rheumat	
Unit 4	Immunizatio	on and Vaccin	ies	
А	Active and pa	ssive immuni	zation	CO4
В	Vaccine and i	ts properties		CO4
С	Types of Vaco	cines		CO4
Unit 5	Antigen-anti techniques	body read	tions and Immu	no-
А	Antigen-antil precipitation	•	and CO5	
В	Immunodiffu of ELISA	sion, Immuno	fuorescence; RIA and typ	pes CO5
C		echnology and . monoclonal a	CO5	
Mode of	Theory/Jury	/Practical/Viv	a	
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*			and Goldsby R.A. (20	06)
		ology, W. H.		
Other			S.J., Burton D.R. and	
References			Roitt's Essential	
	Immı	inology, Wile	У	

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB209: Bioprocess Technology and quality control

L-T-	P: 4-0-0	Cr	edit: 4
Scho	ool: SBSR	Batch: 2020-22	
Prog	gram: M.Sc.	Current Academic Year: 2020-21	
Brai		Semester: 3	
	echnology		
1	Course Code	MSB209	
2	Course Title	Bioprocess Technology and quality control	
3	Credits	4	
4	Contact Hours (L-T-P)	4-0-0	
5	Course Status	Compulsory	
6	Course Objective	 Historical developments in Fermentation Microbial substrates and Media formulation Different mode of bioreactor operation Downstream processing Quality control of the fermentation Product 	technology and
7	Course Outcomes	After studying this course, students will be able to CO1: Understands basics of fermentation CO2: Describe the mode of operation of the bioreactors CO3: Understands Control in Fermentor and transport p CO4: Summarize the Downstream Processing CO5: Determine the quality of the fermentation Produc CO6: It includes various fermentation processes, an variant antibiotics.	phenomena t
8	Course Description	The course comprises of general features of diverse ind microbial organisms, their microbial substrates and med It includes various fermentation processes, and product antibiotics.	dia formulation.
9	Outline syllabu		CO Mapping
T	Unit 1	Basics of fermentation	
-	А	Basic principle in bioprocess technology. Upstream: Media formulation, Inoculum development and aseptic transfers.	CO1
	В	History of fermentation, submerged and solid state fermentation, Nutrient requirements for microbial growth, Growth kinetics of microbes,	
	С	Sterilization of media and equipments for fermentation	
	Unit 2	Different mode of bioreactor operation	
	А	Batch, Continuous and Fed batch mode of operation,	CO2
	В	Operational design of Bioreactor- vessel, agitator, sparger, baffles, types of Bioreactors- STR,CSTR	
-	С	CSTR, Airlift fermenter, Fluidized bed reactor, Packed bed reactor, Immobilized cells and enzymes bioreactor	
	Unit 3	Control in Fermentor and transport phenomena	CO3

	1.4	, •, •	1 1 1 1 1	[]
А			and control of physical,	
		• •	rameters in a bioreactor.	
В			oreactor, Aeration and	
	agitation in b			
С	pH and temp	erature contro	l in bioreactor.	CO4
Unit 4	Downstream	Processing		
А	Solids (Insolu	ubles) Remova	al: Filtration;	
	Centrifugatio	n; Coagulatio	n and flocculation; Foam	
	fractionation	; Whole-broth	treatment;	
В	Primary Pro	duct Isolation	n: Cell disruption; Liquid	
	extraction; D	issociation ex	traction;	
С	Ion-exchange	e adsorption; p	precipitation;	
Unit 5	Quality assurance (QA) of fermentation product			CO5
А	a. Detection a			
	physicochem	ical, biologica	ll and enzymatic methods,	
В	b. Sterility te	sting, c. Pyrog	gen testing – Endotoxin	
	detection,		-	
С	d. Ames test	and modified	Ames test, e. Toxicity	
	testing, f. She	elf life determ	ination	
Mode of	Theory			
examination	-			
Weightage	СА	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1. Principles	of fermentation	on technology, Stanbury P.F.	et al,
		th-Heinemann		
			biology by Casida	
Other		Microbiology	<u>.</u>	
References		obiology by F		
 1				

Course Outcome

ourse outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB208: CANCER BIOLOGY

L-T	с-Р 2-0-0	Credits 2	
Sch	nool: SBSR	Batch: 2020-22	
Pro	ogram: M.Sc.	Current Academic Year: 2020-21	
Bra	anch: BT	Semester: 03	
1	Course Code	MSB205	
2	Course Title	CANCER BIOLOGY	
3	Credits	2	
4	Contact	2-0-0	
	Hours		
	(L-T-P)		
	Course	Elective	
	Status		
5	Course	1. Understanding about types of cancer and carcinogens	1
	Objectives	2. Acquire enough knowledge about different models cancer research.	and strategies of
		3. Develop the concept of various genes involved in metas	stagic of concor and
		their signalling pathways, which in turn help in designing	
		for it.	different therapies
		4. Analyse the impact of angiogenesis on cancer growth a	and metastasis.
6	Course	CO1: Identify type and stage of tumours and identify g	genetic/non-genetic
	Outcomes	factors involved	, C
		CO2: Analyze the impact of angiogenesis and tumour mid	croenvironment on
		cancer growth and metastasis	
		CO3: Comprehend the effect of cell death in defence aga	
		CO4: Assemble the several modes through which cel	llular environment
		triggers cancer and elicits immune response	
		CO5: Evaluate the effectiveness of study models and exist	sting screening and
		treatment options, identify new drug targets CO6: Understand the progression of cancer, associ	ated rick factors
		molecular mechanisms, prevention and treatment	aleu IISK Taelois,
7	Course	Cancer Biology is course about the detailed introduction	on types of cancer.
,	Description	agents causing cancer. It also helps in understanding at	
	I	mechanisms of cancer establishment and its progression	
		metastasis and angiogenesis. This course also describes	• 1
		model system which are used to study cancer and its treat	tment.
8	Outline syllab	us	CO Mapping
	Unit 1	Introduction to Cancer Biology	
	А	Definition and classification	CO1, CO6
	B	Cellular Oncogenes	
	С	Tumour Suppressor genes	
	Unit 2	Characteristics of Tumour	
	A	Invasion-metastasis-molecular mechanism	
	В	Angiogenesis-process	CO1, CO6

С	Hypoxia and	VEGF				
Unit 3 Autophagy and Apoptosis				CO3, CO6		
А	Autophagy-t	ypes				
В	Apoptosis-in	trinsic and ex	trinsic pathways			
С	Crosstalk bet	tween autopha	agy and apoptosis			
Unit 4	Microenviro	onment of tu	mour cells	CO4, CO6		
А	Stroma intera	action				
В	Tumour imm	unology				
С	Cancer stem	cells				
Unit 5	Cancer prev	vention and t	reatment	CO5, CO6		
А	Mouse mode					
В	Drug resistar					
С	Therapeutic	approaches				
Mode of	Theory					
examination						
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*	•		ogy of Cancer", Garland			
	Science, 200					
Other			cular Biology of Cancer:			
References		Mechanisms, Targets and Therapeutics", Oxford				
	•	Press, 2012.				
			Biology", Oxford University			
	Press, 200	7.				

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	FOI	102	105	104	105
CO1	3	1	1	1	1
CO2	2	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	2	2	2	3
CO6	3	3	3	3	3

MSB157: Immunotechnology Lab

L-T-P 0-0-3

Sch	ool : SBSR	Batch: 2020-22	
Pro	gram: M.Sc.	Current Academic Year: 2020-21	
Bra	nch:	Semester: 3rd	
Biot	technology		
1	Course Code	MSB157	
2	Course Title	Immunotechnology Lab	
3	Credits	2	
4	Contact Hours	0-0-3	
	(L-T-P)		
5	Course Status	Compulsory	
6	Course	1) This course understanding provides a strong foundation	
	Objective	greater enthusiasm for and an improved understanding of the	e complete immune
		response.	
		2) The Work involving human samples is enticing to stud	
		interests, and further detailed protocols, and analysis	guidance may be
7	0	appropriate for introductory immune response.	11 /
7	Course	After successfully completion of this course students will be	
	Outcomes	CO1: understand basic laboratory techniques of blood groups CO2: estimate the haemoglobin of its own blood	5
		CO2: estimate the haemogroun of its own blood CO3: practical knowledge of antigen antibody interactions	
		CO4: isolate lymphocytes for further deep analysis	
		CO5: prepare suspension solutions of spleen and bone marro	W
		CO6: understanding provides a strong foundation and can	
		enthusiasm for and an improved understanding of the	
		response.	1
8	Course	The aim of this course is to acquaint the students about the v	ersatile tools and
	Description	techniques employed in immunology. The course will also p	rovide students
		with a hands-on understanding of how immunology can be u	
		various processes used by animals and humans for their self	defence
		mechanism.	
9	Outline syllabus		CO Mapping
	Unit 1		CO1
	Α	To study permanent slides of immune tissues and organs	
	B	To find the blood group of own blood	
	C	To find the Rh factor of own blood group	
	Unit 2		CO2
	A	To estimate the amount of Hb present in human blood	
	B C	To perform Rocket immunoelectrophoresis	
		To perform Separation of lymphocytes	<u> </u>
	Unit 3	To perform Sondwich on rum linked immunogenhant agent	CO3
	A	To perform Sandwich enzyme linked immunosorbant assay	
	B C	To perform DoT ELISA To perform Haemagglutination test	
	Unit 4	ro performi macinaggiutination test	CO4
		To perform Queblarlany's double immune diffusion and at	
	А	To perform Ouchlerlony's double immunodiffusion method.	

В	To perform Ra	dial Immunodi	ffusion		
С	To perform RI	To perform RIA			
Unit 5				CO5	
А	Preparation of	single cell susp	ension of spleen.		
В	Preparation of	single cell susp	ension of bone marrow.		
С					
Mode of	Practical/or Vi				
examination					
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Text book/s*	Kindt, T. J., G	oldsby, R. A.,	Osborne, B. A., Kuby, J.		
	(2006). VI Edi	tion. Immunolo	gy. W.H. Freeman and		
	Company.				
Other	Delves, P. J., Martin, S. J., Burton, D. R., Roitt, I.M.				
References		tion. Roitt's Ess	sential Immunology, Blackwell		
	Publishing				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	2
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB259: Microbial Biotechnology Lab

L-T-P 0-0-3

Scł	nool: SBSR	Batch: 2020-22	
Pro	ogram: M.Sc.	Current Academic Year: 2020-21	
	anch: BT	Semester: 3 rd	
1	Course Code	MSB259	
2	Course Title	Microbial Biotechnology Lab	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	Compulsory/Elective	
5	Course	To develop practical knowledge of microorganism	m
	Objective	 To teach students about fermentor; other instrum components To teach shout microhial and duction of various h 	
6	Comme	To teach about microbial production of various b	
6	Course	CO1:Practical knowledge of fermentor other instruments	s and their
	Outcomes	components	
		CO2: Isolation and screening of microorganisms CO3: Practical knowledge of solid state fermentation.	
		CO4: Able to produce different biomolecules	ainaanina
		CO5: Cradle to grave knowledge of microbial process en	
		CO6: Understanding of basic experimental set up, scale	
7	0	practices of various microbial cultures in biomolecules p	
7	Course	Microbial Biotechnology , is a specialization of <u>biotech</u>	
	Description	with the design and development of reactor and pro	
		manufacturing of products such as like enzymes, acids, b	
0		This lab covers the design of bioreactor and its operation	
8	Outline syllabu		CO Mapping
		Isolation and screening of microorganism	CO1, CO5
		Isolation and screening of microorganism producing	
		proteases	_
		Isolation and screening of microorganism producing amylases	
		Isolation and screening of microorganism	CO2, CO5
		Isolation of Nitrogen fixers from soil	
		Isolation of phosphate solubilizers from soil	
		Microbial Growth Kinetics	CO2, CO5
		Estimation of effect of temperature on microbial growth	
		Estimation of effect of pH on microbial growth	
	Unit 4 Microbial fermentation		CO4, CO5
		Fermentative production of Wine	
		Fermentative production of Beer	
		1	

Unit 5	Microbial ferm	CO4, CO5			
	Fermentative pr	Fermentative production of Amylase			
Mode of examination	Practical/Viva				
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Text	ext -				
book/s*	ook/s*				
Other					
References					

Course Outcome	PO1	PO2	PO3	PO4	PO5
No	101	102	105	104	105
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	1	3	1
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB256: Genomics and Bacterial Genetics Lab L-T-P 0-0-3

Credits 2

School: SBSR		Batch: 202	0-22					
Pro	gram: M.Sc.	Current Academic Year: 2020-21						
	nch:	Semester: 3						
Bio	technology							
1	Course Code	MSB256	MSB256					
2	Course Title	Genomics a	Genomics and Bacterial Genetics Lab					
3	Credits	2						
4	Contact Hours (L-T-P)	0-0-3	0-0-3					
	Course Status	Compulsory						
5	Course Objective	analysis and	l Microbial g	gene prediction enetics. pression is cont		and sequence		
6	Course Outcomes	CO1: Learn CO2: Sequ softwares. CO3: Identi CO4: Find of characterist CO5: Will perform res CO6: Des	After finishing the course the students will be able to CO1: Learn about various biological databases and their operations. CO2: Sequence retrieval and sequence alignment using variou softwares. CO3: Identify the various ORFs in an unknown sequence. CO4: Find out if any protein is being encoded by the sequence and it characteristics. CO5: Will be able to isolate plasmid from the bacterial cells and perform restriction digression studies on it. CO6: Design experiments, analyse experimental results and communicate data through writing					
7	Course Description		The course aims to appraise the students to basic and high t techniques in Genomics and Bacterial genetics and their ap					
8	Outline syllabus	teeninques i	ii Genomies a	ind Dacterial ge	neties and the	CO Mapping		
0	Unit 1	Practical r	elated to Bio	ogical Databas				
		Sub unit – a		9 2 		CO1, CO6		
	Unit 2		elated to alig	nment				
		Sub unit –c	0			CO2, CO6		
	Unit 3		ased to Mici	obial strain		,		
		Sub unit- a				CO3, CO6		
	Unit 4	Practical r	elated to Mic	robial genetics		,		
			Practical related to Microbial geneticsSub unit - cPractical based upon Microbial Genome Analysis					
	Unit 5							
		Sub unit - a	-			CO5, CO6		
	Mode of examination		Practical/Viva			,		
	Weightage	CA 1	MTE	ETE				
						1		

List of Practical's:

Week	Unit 1	Practical based on					
1							
Week	a	Lab expt.1	Find out the major data bases dealing with primary data				
1-2			along with their home server address.				
Week 3		Lab expt.2	Align all the nucleotide sequences provided using				
			bioedit . Translate one of them into amino acid in all				
			six frames. Give the graphic view and mark the				
			conserved regions.				
	Unit 2	Practical related					
Week 4	b	Lab expt.3	Perform BLAST nucleotide for the nucleotide				
			sequence provided and predict the gene. Report the				
	_		most similar accession number and give its detail.				
		Lab expt.4	To perform ORF scan on the given sequence and find				
			out the viable ORFs.				
Unit 3 Practical based upon		-					
Week 5 a Lab expt.5		Lab expt.5	Perform BLAST and find out the conserved domain				
			number and protein family number for it.				
Week 6	b	Lab expt.6	Prepare a pure culture of a bacterial strain.				
Week 7	Mid tern	n					
	Unit 4	Practical based up	Practical based upon study				
Week 8	a	Lab expt.7	Isolate plasmid from bacterial cells.				
Week	b	Lab expt.8	Perform Restriction digestion of isolated plasmids				
9-10							
	Unit 5	Practical related					
Week	a, b		Conduct PCR for specific Genes in Bacteria				
11-14	and c	Lab expt.9					
		Lab expt.10	Quantify and Analysis Bacterial Genome				
Te	xt book/s* Genomics Ar		nd Proteomics Principles				
			And Applications by Taylor &				
	D C		2017 ISBN 9781771881142				
Oth			crobiology by CKJ Panker, Orient				
		Longman. 20	1/				

Course Outcome	PO1	PO2	PO3	PO4	PO5
No					
CO1	3	1	1	1	1
CO2	1	3	1	1	1
CO3	1	1	3	1	1
CO4	1	1	2	3	2
CO5	1	1	1	1	3
CO6	3	3	3	3	3

MSB260: Bioprocess Technology Lab

L-T-P 0-0-3

School: SBSR		Batch: 2020-22					
Pro	ogram: M.Sc.	Current Academic Year: 2020-21					
Bra	anch:	Semester: 3 rd					
Bio	otechnology						
1	Course Code	MSB260					
2	Course Title	Bioprocess Technology Lab					
3	Credits	2					
4	Contact Hour (L-T-P)						
	Course Status	Compulsory/Elective					
5	Course	To develop practical knowledge of microorgani	sm				
	Objective	• To teach students about fermentor; other instru components					
		To teach about microbial production of various					
6	Course	CO1:Practical knowledge of fermentor other instrumen	ts and their				
	Outcomes	components					
		CO2: Isolation and screening of microorganisms					
		CO3: Practical knowledge of solid state fermentation.					
		CO4: Able to produce different biomolecules					
		CO5: Cradle to grave knowledge of microbial process e CO6: Understanding of basic experimental set up, scale					
		practices of various microbial cultures in biomolecules	*				
7	Course	Microbial Biotechnology, is a specialization of biotec					
	Description		with the design and development of reactor and processes for the				
		manufacturing of products such as like enzymes, acids,					
		This lab covers the design of bioreactor and its operation					
8	Outline syllab		CO Mapping				
	Unit 1	Isolation and screening of microorganism	CO1, CO5				
		Isolation and screening of microorganism producing					
		proteases					
		Isolation and screening of microorganism producing					
		amylases					
	Unit 2	Isolation and screening of microorganism	CO2, CO5				
		Isolation of Nitrogen fixers from soil					
		Isolation of phosphate solubilizers from soil					
	Unit 3	Microbial Growth Kinetics	CO2, CO5				
		Estimation of effect of temperature on microbial growth					
		Estimation of effect of pH on microbial growth					
	Unit 4	Microbial fermentation	CO4, CO5				
		Fermentative production of Wine					

	Fermentativ				
Unit 5	Microbial fermentation			CO4, CO5	
	Fermentativ	Fermentative production of Amylase			
Mode of	Practical/Vi				
examination					
Weightage	CA	MTE	ETE		
Distribution	60%	0%	40%		
Text	-				
book/s*					
Other					
References	References				

Course Outcome No	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	2	1
CO2	2	3	1	1	1
CO3	1	1	3	2	2
CO4	1	1	1	3	1
CO5	1	2	2	2	3
CO6	3	3	3	3	3