

School of Basic Sciences and Research

Department of Chemistry and Biochemistry

Programme and Course Structure AY: 2018-20

MSc. in Chemistry

Program Code: SBR0101

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship

Core Values

- Integrity
- Leadership
- Diversity
- Community

1.2 Vision and Mission of the School

Vision of the School Achieving excellence in the realm of science to address the challenges of evolving society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- 3. To establish center of excellence for ecologically and socially innovative research.
- 4. To strengthen interinstitutional and industrial collaboration for skill development and global employability.

1.3 Vision and Mission of Department of Chemistry & Biochemistry

Vision of Chemistry & Biochemistry

Strive to achieve excellence in teaching and research in the field of Chemistry and Biochemistry and to build human resource for solving contemporary problems.

Mission of Chemistry & Biochemistry

- Providing distinctive and relevant education in Chemistry and Biochemistry to students.
- Motivating young minds through innovative teaching methods, to acquire theoretical knowledge and practical skills in different disciplines of chemistry and empowering them with problem solving skills.
- Nurturing innovation by carrying out world class research and scholarly work
- Promoting interdisciplinary research in collaboration with national/international laboratories/Institutions.

1.3 Programme Educational Objectives (PEO)

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing Post graduates to achieve.

- **PEO 1:** To prepare students for advanced studies in Chemistry and its allied fields.
- **PEO2:** To help students understand the value of advanced characterization techniques by gaining the knowledge of spectroscopy, chromatography and chemistry of natural products.
- **PEO 3:** To expose the students to the practical aspects of chemistry by means of qualitative, quantitative and advance instrumental methods.
- **PEO 4:** To develop the ability to communicate scientific information in written and oral formats.

1.3.3 Program Outcomes (PO's)

PO1: Gained knowledge, abilities and insight in well-defined area of research within Chemistry.

PO2: Competency to work effectively and safely in a laboratory environment.

PO3: Developed communication skills, both written and oral, for specific for specialized audiences.

PO4: Acquired the skills of planning and conducting advanced chemical experiments and applying structural-chemical characterization techniques.

PSO1: Global level research opportunities to pursue Ph.D. programme and target the CSIR – NET examination.

PSO2: Explain the properties of metal Complexes and Transition Elements.

PSO3: Use spectrophotometer to find out the allowedness and analysis of known and unknown organic, inorganic and natural compounds through UV, IR NMR and Mass data.

PSO4: The broad education necessary to understand the impact of chemical solutions in a global and societal context.

Program Structure School of Basic Sciences & Research M. Sc. Chemistry Batch: 2018-2020

TERM: I

S.	Subject	Subjects		t Subjects Teaching Load			Pre-Requisite/Co	
No.	Code			Т	P	Credits	Requisite	
		THEORY SUB	JECT	S				
1.	MCH131	Inorganic Chemistry-I	4	0	0	4	Core	
2.	MCH132	Organic Chemistry-I	4	0	0	4	Core	
3.	MCH133	Physical Chemistry-I	4	0	0	4	Core	
4.	MCH134	Analytical Chemistry-I		0	0	4	Core	
5.	5. MMT129 Introduction to MATLAB & its application		3	0	0	3	GE	
	1	PRACTIC	AL		•			
6.	MCH171	Inorganic Chemistry Lab-I	0	0	3	2	Core	
7.	MCH172	Organic Chemistry Lab-I	0	0	3	2	Core	
8.	MCH173	Physical Chemistry Lab-I	0	0	3	2	Core	
	TOTAL CREDITS							

Program Structure School of Basic Sciences & Research M. Sc. Chemistry Batch: 2018-2020

TERM: II

S.	Course	Course		Teaching Load		C 124	Core/Elective		
No.	Code		L	T	P	Credits			
	THEORY SUBJECTS								
1.	MCH135	Inorganic Chemistry-II	4	0	0	4	Core		
2.	MCH136	Organic Chemistry-II	4	0	0	4	Core		
3.	MCH137	Physical Chemistry-II	4	0	0	4	Core		
4.	MCH138	Analytical Chemistry-II	4	0	0	4	Core		
5.	MPH115	Renewable Energy Sources: Solar And Hydrogen Energy	4	0	0	4	GE		
		PRACTIO	CAL	-					
6.	MCH174	Inorganic Chemistry Lab-II	0	0	3	2	Core		
7.	MCH175	Organic Chemistry Lab-II	0	0	3	2	Core		
8.	MCH176	Physical Chemistry Lab-II	0	0	3	2	Core		
		TOTAL CREDITS				26			

Program Structure Template School of Basic Sciences & Research

M. Sc. Chemistry Batch: 2018-2020 TERM: III

S.	Course			eaching	Load	Cradita	Core/Elective
No.	Code			T	P	Credits	
THE	ORY SUBJE						
1.	MCH231	Molecular Spectroscopy	4	0	0	4	Core
2.	MCH232/ MCH233/ MCH234	Inorganic Chemistry-III/ Physical Chemistry-III/ Organic Chemistry-III	4	0	0	4	Core
3.	MCH235/ MCH236/ MCH237	Inorganic Chemistry-IV/ Physical Chemistry-IV/ Organic Chemistry-IV	4	0	0	4	Core
4.	MCE201/ MCE 202	Environmental Chemistry / Polymer Science and Technology	4	0	0	4	DSE
		PRACTICAL					
5.	MCH271/ MCH272/ MCH 273	Organic Chemistry Lab-III/ Physical Chemistry Lab-III/ Inorganic Chemistry Lab-III	0	0	4	2	Core
6.	MCH274	Dissertation-Part-A	0	0	6	4	Core
	TOTAL CREDITS 22						

Program Structure Template School of Basic Sciences & Research

M. Sc. Chemistry Batch: 2018-2020 TERM: IV

S.	Course	Course Course Teaching Load		Load	Credits	Core/Elective		
No.	Code		L	T	P	Credits		
THEC	THEORY SUBJECTS							
	MCH238/	Inorganic Chemistry-V/ Physical					Core	
1.	MCH239/	Chemistry-V/ Organic Chemistry-V	4	0	0	4		
	MCH240		7	0	U	-		
	MCH241/	Inorganic Chemistry-VI/ Physical					Core	
2.	MCH242/	Chemistry-VI/ Organic Chemistry-VI	4	0	0	4		
	MCH243		7	O	U	T		
3.	MCE203/	Medicinal Chemistry/ Chemistry of	4	0	0	4	DSE	
	MCE204	Nanomaterials						
	PRACTICAL							
4.	MCH275	Dissertation-Part-B	0	0	12	6	Core	
		18						

C. Course

- Theory Subject
- Practical Subjects
- Projects/Dissertations

2.1 Template A1: Inorganic Chemistry-I (MCH131)

Sch	ool: SBSR	Batch 2018-20
Pro	gram: M.Sc.	Current Academic Year : 2018
	nch:	Semester I
Che	emistry	
1	Course	MCH131
	Code	
2	Course	Inorganic Chemistry I
	Title	
3	Credits	4
4	Contact	4-0-0
	hours	
	Course	Compulsory
	Status	
		1.To provide an insight into bonding and structure of coordination
		compounds.
		2.To explain the spectral and magnetic behaviour of coordination
		compounds.
5	Course	3.To provide a thorough knowledge about the chemistry and application
	Objectives	of inner transition metals.
		4.To discuss about various spectroscopic methods for structure
		elucidation of inorganic compounds.
		5.To explain the basics of radioactivity as well as various radio analytical
		techniques.
		6.To impart knowledge about structure, bonding and application of
		inorganic compounds and radio chemistry. CO: Explain the various theories of metal –ligand bonding
		CO2: Explain the electronic spectra and magnetic properties of transition
		metal complexes.
	Course	CO3: Interpret the EPR and Mossbauer spectra
6	Outcome	CO4: Illustrate the chemistry and uses of inner transition metals
U	Outcome	CO5: Know about various radio-analytical techniques
		CO6: Gain knowledge about of various aspects of modern inorganic
		chemistry
	Course	This course includes basic concepts of metal –ligand bonding, magnetic
7	Description	and electronic properties of coordination compounds and their
	1	characterization techniques. Chemistry of inner transition metals and
		nuclear chemistry are also discussed in this course.
8		Outline Syllabus
	Unit 1	Metal-ligand Bonding
	A	Overview of crystal field and ligand field theories of 4-, 5-and 6-
		coordinated complexes, d-orbitals splitting in linear, trigonal, octahedral,
		square planar, tetrahedral, square pyramidal, trigonal-bipyramidal and
		cubic complexes

			Beyond Boundaries				
В	measurement of CFSE (d ¹		ong ligand fields,				
~	JahnTeller distortion, nephe						
C	Molecular orbital theory (M						
	of ligand group orbitals, mo	03	,				
	tetrahedral, square planar	complexes including	both s and p bonding,				
	angular overlap model.						
Unit 2		Electronic Spectra and Magnetic Properties of Transition Metal					
	Complexes						
A	Interpretation of electronic						
	diagrams for transition meta	al complexes (d¹ - d³ s	states), calculations of				
	Dq, B and β parameters.						
В	charge transfer spectra, spec	-	_				
	configuration in optically ac	ctive metal chelates an	nd their stereochemical				
	information.		11				
С	anomalous magnetic mome						
	independent paramagnetism		1				
TT 1.0	phenomenon. Effect of temperature on their magnetic properties.						
Unit 3	Chemistry of Inner Trans		1 1 .				
A	General discussion on the p	-	k elements.				
В	Redox, Spectral and Magnetic properties. Use of Lanthanide compounds as shift reagents. Photophysical properties						
С	-	nds as shift reagents. I	Photophysical properties				
of Lanthanide complexes.							
Unit 4	Characterization Techniq		1:				
A	EPR spectroscopy-basic pri						
D	anisotropy, g values, applic						
Б	B Mossbauer Spectroscopy-Gamma ray emission and absorption by nuclei Mossbauer effect — conditions, Doppler effect, instrumentation,						
	chemical shift examples, qu		mstrumentation,				
С	Use of Mössbauer spectra in		vnical spectra of iron and				
C	tin compounds. Optical rotat						
	(CD).	iory dispersion (ORD)	and chedial diemoism				
Unit 5	Nuclear Chemistry						
A	Nuclear structures and nucle	ear stability. Nuclear i	models : radioactivity				
<u></u>	and nuclear reactions. Detec						
	techniques.	modernion					
В	Study of chemical reactions	, isotope exchange rea	actions, kinetic isotope				
_	effect, nuclear activation an						
	detector, ionization chambe						
С	Radioactive Techniques: D	· 1 1					
-	ionization and proportion						
	dilution analysis, age detern		•				
	their applications. Radiation		•				
Mode of	Theory/Jury/Practical/Viva	•					
examination							
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				

Text	1.Inorganic Chemistry, J.E. Huhey, Harper & Row.
book/s*	
Other	1.Concise Inorganic Chemistry, J. D. Lee, Elbs with Chapman
References	and Hall, London.
	2.The Chemical bond, J.N.Murre l, SFA Kettle and JM.
	Tedder, Wiley, New York.
	Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson,
	John Wiley.

2.1 Template A1: Organic Chemistry-I (MCH132)

School: SBSR		Batch 2018-20
Prog	gram: M.Sc.	Current Academic Year : 2018
Bra	nch:	Semester I
Che	mistry	
1	Course No.	MCH132
2	Course Title	Organic Chemistry 1
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course status	Compulsory
5	Course Objective	 To enhance the analytical ability of students about the basic and modern concepts of conjugation, resonance and aromaticity. To impart knowledge of mechanistic, kinetic and thermodynamic aspects of nucleophilic and electrophilic substitution. ii. Reaction conditions, products formation and mechanisms of some named reactions. iii. addition reactions of C=C and C=O bonds and elimination reactions. To teach the concepts and critical bond forming reactions and reaction intermediates in organic synthesis and molecular rearrangements To make the student conversant with - the basic concepts in stereochemistry. To discuss the Conformational analysis, reactivity, chirality, interconversion, resolution and asymmetric synthesis.
6.	Course Outcomes	The students will acquire the knowledge and analytical ability to CO1. Rationalize the concept of Aromaticity, nonaromaticity and antiaromaticity in carbocyclic and heterocyclic compounds CO 2. Solve the reactions and analyze the conditions, products formation and mechanisms of different reactions. CO3. Recognize the correct reaction intermediate formation and different aspects of their stability and reactivity. CO4. Critically examine the chirality/prochirality in the molecules and understand the enentio and diastereospecific/selective reactions. CO5. Conformational analysis of cycloalkanes, reactivity, chirality, interconversion, resolution and asymmetric synthesis, CO6. The students will be able to acquire the skills for recognizing the reaction, rationalizing their mechanism, kinetic vs. thermodynamic considerations critical analysis of intermediates and correct stereochemical assignment and interpretation in rather simple organic molecules and reactions.
7	Course	This course tends to the build the foundation of Organic Chemistry that
	Description	provides the insight of different aspects of organic reactions in terms of

		energy considerations, stereochemical implications, mechanistic
		approach and involvement of intermediates.
8	Outling avillabus	11
0	Outline syllabus	
	Unit 1	Nature of Bonding in Organic Molecules
	A	Delocalized chemical bonding: conjugation, cross conjugation,
		resonance, hyperconjugation, tautomerism
	В	Criteria for aromaticity: Huckel's 4n+2 electron rule for benzenoid and
		non benzenoid aromatic compounds; Application in carbocyclic and
		heterocyclic systems, n-annulenes, heteroannulene, fullerenes, C-60,
		cryptates, azulenes
	C	Current concepts of aromaticity: Anti-aromatic, non-aromatic and
		homoaromatic compounds, Effect of tautomerism and hyperconjugation
		on aromaticity.
	Unit 2	Reaction Mechanism - Structure and Reactivity
	A	Types of reaction mechanisms- substitutions, eliminations, additions,
		rearrangements, thermodynamic and kinetic requirements
	В	Hammond postulate, Curtin-Hammett principle, transition states and
		intermediates, catalysis: electrophilic catalysis, acid and base catalysis
	С	Libido rule; methods of determination of reaction mechanism methods
		of determining mechanisms, isotopic effects.
	Unit 3	Reaction Intermediates
	A	Classical and non classical carbocations, phenonium ions, norbornyl
		system, common carbocation rearrangement (Wagner Meerwein
		rearrangement, Demjonove rearrangement and Pinacol-pinacolone
		rearrangement)
	В	Carbanions: ambident ions and their reactions. HSAB principle and its
	Б	applications;
	С	Free radicals: cage effects. Radical Cations and Radical Anions;
		Carbene: Synthesis, structure and reactions of singlet and triplet carbene,
		nitrenes, Benzyne.
	Unit 4	Stereochemistry I
	A	Elements of symmetry, chirality (centre, axis and plane), molecules
	11	with more than one chiral center, threo and erythro isomers, optical
		purity
	В	Topicity of ligand and faces and their nomenclature, stereogenecity,
	D	chirogenicity and pseudosymmetry, stereospecific and stereoselective
		reactions
	С	Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric
	C	induction – substrate, reagent and catalyst controlled reactions;
		determination of enantiomeric and diastereomeric excess; enantio-
	TT24 E	discrimination. Resolution – optical and kinetic
	Unit 5	Stereochemistry II
	A	Conformational analysis of cyclic systems: Cyclohexane and its
		derivatives (mono-,and di- substituted), fused (decalins) and bridged
		bicyclic systems, effect of conformation on the reduction of cyclic
		ketones,

В	nucleophilic addition to carbo Cieplak effect), nucleophilic s cyclohexane epoxide formatio	nyl group (Cram, Frank ubstitution on cyclohex	
С	elimination reactions of cy aminocyclohexanols, elimina neighboring group participa molecules.	ation vs substitution	competition and
Mode of examination	Theory/Jury/Practical/Viva		
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text Book	1.Stereochemistry, P. S. Kalsi	, New Age International	
	2.Organic Chemistry, R. T. M	orrison and R. N. Boyd	, Prentice-Hall.
	3. Reaction Mechanism in Org	ganic Chemistry, S. M. 1	Mukherji and S.
	P. Singh, Macmillan.		
Other	1. Advanced Organic Chemis	try Reactions, Mechani	sm and Structure,
references	Jerry March, John Wiley.		
	2.Stereochemistry of Organic	c Compounds By Erne	est Ludwig Eleil,
	Samual H. Wilen.		
	3.Stereochemistry of Organic	Compounds: Principles	and Applications
	by D. Nasipuri		

2.1 Template A1: Physical Chemistry-I (MCH133)

Program:M.Sc. Current Academic Year: 2018	els of
Course Code MCH133	els of
2 Course Title 3 Credits 4 Contact Hours (L-T-P) Course Status 1. To provide the understanding of physical states of matter and practical applications. To define how the initially primitive mod real gases in physical chemistry are elaborated to take into account detailed observations. 2. To understand the concept of partial molar quantities and their variation with temperature and pressure. 3. The concept of ensembles, partition function and their application studying gaseous molecules. 4. To understand the concept and different theories of ions and electinteractions. 5. To discuss the theoretical aspects of chemical kinetics and importance of rate equations and different theories for studying the keep of complex reactions. 6. To provide an in-depth analysis of various phenomenon, law applications of States of Matter, Thermodynamics, Electrochem Phase Equilibrium and Chemical Kinetics. CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamic and the concept of third law of thermodynamics.	els of
Credits 4 Contact Hours (L-T-P)	els of
4 Contact Hours (L-T-P) Course Status Compulsory 1. To provide the understanding of physical states of matter and practical applications. To define how the initially primitive moderate gases in physical chemistry are elaborated to take into account detailed observations. 2. To understand the concept of partial molar quantities and their variation with temperature and pressure. 3. The concept of ensembles, partition function and their application studying gaseous molecules. 4. To understand the concept and different theories of ions and electinteractions. 5. To discuss the theoretical aspects of chemical kinetics and importance of rate equations and different theories for studying the k of complex reactions. 6. To provide an in-depth analysis of various phenomenon, law applications of States of Matter, Thermodynamics, Electrochem Phase Equilibrium and Chemical Kinetics. CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamic and the concept of third law of thermodynamics.	els of
Hours (L-T-P) Course Status Compulsory 1. To provide the understanding of physical states of matter and practical applications. To define how the initially primitive mode real gases in physical chemistry are elaborated to take into account detailed observations. 2. To understand the concept of partial molar quantities and their variation with temperature and pressure. 3. The concept of ensembles, partition function and their application studying gaseous molecules. 4. To understand the concept and different theories of ions and electinteractions. 5. To discuss the theoretical aspects of chemical kinetics and importance of rate equations and different theories for studying the k of complex reactions. 6. To provide an in-depth analysis of various phenomenon, law applications of States of Matter, Thermodynamics, Electrochem Phase Equilibrium and Chemical Kinetics. CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamic and the concept of third law of thermodynamics.	els of
Course Status Compulsory 1. To provide the understanding of physical states of matter and practical applications. To define how the initially primitive moderal gases in physical chemistry are elaborated to take into account detailed observations. 2. To understand the concept of partial molar quantities and their variation with temperature and pressure. 3. The concept of ensembles, partition function and their application studying gaseous molecules. 4. To understand the concept and different theories of ions and electinteractions. 5. To discuss the theoretical aspects of chemical kinetics and importance of rate equations and different theories for studying the k of complex reactions. 6. To provide an in-depth analysis of various phenomenon, law applications of States of Matter, Thermodynamics, Electrochem Phase Equilibrium and Chemical Kinetics. CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamic and the concept of third law of thermodynamics.	els of
Course Status Compulsory 1. To provide the understanding of physical states of matter and practical applications. To define how the initially primitive moderate gases in physical chemistry are elaborated to take into account detailed observations. 2. To understand the concept of partial molar quantities and their variation with temperature and pressure. 3. The concept of ensembles, partition function and their application studying gaseous molecules. 4. To understand the concept and different theories of ions and electinteractions. 5. To discuss the theoretical aspects of chemical kinetics and importance of rate equations and different theories for studying the k of complex reactions. 6. To provide an in-depth analysis of various phenomenon, law applications of States of Matter, Thermodynamics, Electrochem Phase Equilibrium and Chemical Kinetics. CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamic and the concept of third law of thermodynamics.	els of
1. To provide the understanding of physical states of matter and practical applications. To define how the initially primitive moderal gases in physical chemistry are elaborated to take into account detailed observations. 2. To understand the concept of partial molar quantities and their variation with temperature and pressure. 3. The concept of ensembles, partition function and their application studying gaseous molecules. 4. To understand the concept and different theories of ions and electinteractions. 5. To discuss the theoretical aspects of chemical kinetics and importance of rate equations and different theories for studying the k of complex reactions. 6. To provide an in-depth analysis of various phenomenon, law applications of States of Matter, Thermodynamics, Electrochem Phase Equilibrium and Chemical Kinetics. CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynami and the concept of third law of thermodynamics.	els of
practical applications. To define how the initially primitive moderal gases in physical chemistry are elaborated to take into account detailed observations. 2. To understand the concept of partial molar quantities and their variation with temperature and pressure. 3. The concept of ensembles, partition function and their application studying gaseous molecules. 4. To understand the concept and different theories of ions and electinteractions. 5. To discuss the theoretical aspects of chemical kinetics and importance of rate equations and different theories for studying the k of complex reactions. 6. To provide an in-depth analysis of various phenomenon, law applications of States of Matter, Thermodynamics, Electrochem Phase Equilibrium and Chemical Kinetics. CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamic and the concept of third law of thermodynamics.	els of
CO1: Understand the detailed concept of liquid and gaseous state and the structural features of solid state material by having complete knowledge of X-ray diffraction and its analysis. CO2: Understand the application of second law of thermodynamic and the concept of third law of thermodynamics.	rolyte d the netics s and
in understanding the thermodynamics of molecules. CO4: Understand the concept of electrical double layer at the electrolyte interface by studying different proposed models of it. CO5: Understand the detailed concepts of kinetics and its applicated Influence of physical and chemical parameters on reaction rates in solutions. CO6: Do the in-depth analysis of various phenomenon and laws of States of Matter, applications of Thermodynamics, Electrochemist and Chemical Kinetics and different functions of statistical thermodynamics.	istics ode ions,
7 Course The course is framed to give broad view of states of matter, chem	
Description potential, concepts of electrical double layer in solutions and variety	cal

		models to explain it. Concept of existence of different phases in the
		form of phase diagrams and their existence with changing variables.
8	Outline syllabus	
	Unit 1	States of Matter
	A	(a) Gaseous State : Maxwell–Boltzmann distribution of molecular
		velocities of gases (b) Liquid State: Structure of liquids, Radial
		distribution functions.
	В	Monte-Carlo method, Molecular dynamics.(c) Solid State: Types of
		solids, Debye- Scherrer method of X-ray structure analysis of crystals,
		indexing of reflections,
	С	structure of simple lattice and X-Ray intensities, structure factor and its
		relation to intensity and electron density, Rietveld analysis, particle size
		of crystallites.
	Unit 2	Thermodynamics
	A	Essentials of thermodynamics, fugacity, standard state of real gases, the
		relation between fugacity and pressure, Partial molar quantities,
		chemical potential and Gibbs-Duhem equation,
	В	Classius - Clayperon equation; law of mass action and its
		thermodynamic derivation, variation of chemical potential with
		temperature and pressure, chemical potential for an ideal gas,
		determination of partial molar volume.
	С	thermodynamic functions of mixing (free energy, entropy, volume and
		enthalpy), third law of thermodynamics, residual entropy, meaning and
		scope of irreversible thermodynamics.
	Unit 3	Statistical Thermodynamics
	A	Concept of distribution, Thermodynamic probability and most probable
		distribution. Ensembles, Canonical, grand canonical and microcanonical
		ensembles.
	В	Partition function - Translational, Rotational, Vibrational and Electronic
		partition functions, calculation of thermodynamic properties in terms of
		partition function. Applications of partition functions.
	С	Heat capacity behaviour of solids - Chemical equilibria and equilibrium
		constant in terms of partition functions, Fermi-Dirac statistics,
		distribution law, Bose-Einstein statistics - distribution law, Evaluation
		of Lagrange's undetermined multipliers.
	Unit 4	Electrochemistry
	A	Debye-Huckel theory of ion- ion interactions, Debye-Huckel limiting
		law of activity coefficients and its limitations,
	В	Debye - Huckel -Onsager treatment for aqueous solutions and its
		limitations, Wein effect, Debye – Falkenhagen effect.
	С	The electrode-electrolyte interface: The electrical double layer -The
		Helmholtz-Perrin parallel plate model, the Gouy-Chapman diffuse-
		charge model and the Stern model, excess function.
	Unit 5	Chemical Kinetics

				🤝 🥟 Beyond Boundaries	
	A	Simple collision theory of	· ·	•	
		activated complex theory (ACT), thermodynamic treatment, chain			
		reactions (hydrogen-halog	gen reactions) decomp	osition of N ₂ O _{5.}	
	В	Theory of unimolecular re	eactions: Lindemann -	- Hinshelwood	
		mechanism of unimolecu	lar reactions, RRKM a	and Slater treatment,.	
	С	Factors affecting rate of c	hemical reactions in se	olution Effect of solvent	
		and ionic strength (Prima	ry salt effect) on rate o	constants, secondary salt	
		effect.			
	Mode of	Theory/Jury/Practical/Viva			
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
		1.Physical Chemistry, P.	W. Atkins, Oxford	University Press, New	
		York.			
	Text book/s*	2.Textbook of Physical C	hemistry by K. L. Kap	poor (Volume 1)	
		3.Textbook of Physical C	hemistry by K. L. Kar	poor (Volume 3)	
		4.Textbook of Physical C	hemistry by K. L. Kar	poor (Volume 5)	
		1. Physical Chemistry, I.	N. Levine, Tata McG	raw Hill Pub. Co. Ltd.,	
New Delhi.					
	Other 2. Comprehensive Physical Chemistry by N.B.Singh, N.S.Gajbhiye a				
	References	S.S.Das, New Age publis	shers, New Delhi	_	
		3. Chemical Kinetics, K. J. Laidler, Harper & Row, New York.			
		4. Physical Chemistry by	D.A.McQuarrie and J	.D.Simon	

2.1 Template A1: Analytical Chemistry-I (MCH134)

Sch	ool: SBSR	Batch: 2018-2020	
Program: M.Sc		Current Academic Year: 2018	
Branch:		Semester: I	
Che	emistry		
1	Course Code	MCH134	
2	Course Title	Analytical Chemistry I	
3	Credits	4	
4	Contact	4-0-0	
	Hours		
	(L-T-P)		
	Course	Compulsory	
	Status		
5	Course Objective	 1.Provide and enrich the students to analytical techniques, various types of errors knowingly/ unknowingly introduced, accuracy and confidence limit in analytical process. 2.Provide detailed insight of chemical equilibrium and its effect in chemical analysis of analyte. 3.Provide detailed technical knowledge of various chromatogaraphic separation techniques based on physical state, contact and separation mechanism. 4.Provide detailed technical knowledge of gas, thin layer chromatographic, integrated LC-MS and GC-MS separation techniques for qualitative and quantitative analysis. 5.Enable the students to study the thermal behaviour of different compounds and study temperature dependent decomposition process and structural elucidation of unknown analyte. CO6:Estimate the temperature dependent weight loss in compound and model and optimize suitable temperature condition for further chemical processing. 	
6	Course Outcomes	CO1: Apply the knowledge of analytical techniques to minimize the error and report the outcomes of analysis with high precision and accuracy. CO2: Understand the role of different analytical techniques used for the separation of compounds present in very small quantity. CO3:Understand the role of chemical equilibrium in chemical analysis, CO4: Segregate and select the suitable indicator for measurement of pH, CO5: Purify the various compounds for their further detailed structural elucidation and molecular mass analysis,. CO6. To learn analytical tools involving Chromatographic methods and thermo-analytical instruments of a lab for the identification of equilibrium process.	
7	Course Description	Analytical chemistry I emphasizes on various factors as - types of errors, accuracy and precision in chemical analysis, concepts of chemical equilibrium and its effects on qualitative and quantitative estimation, Chromatographic separation and Thermal analysis.	

8	Outline syllab	Beyond Boundaries
0	Unit 1	Introduction to Analytical Chemistry
	A	Scope & objectives of Analytical chemistry and chemical analysis,
	11	Classification of analytical methods. Errors in chemical analyses-
		Accuracy and precision
	В	Types of error-determinant, indeterminate and gross. Nature of random
		errors, statistical treatment of random errors, standard deviation of
		calculated results, reporting of calculated data
	С	ways of expressing accuracy and precision. variance and confidence limit.
		Comparison of mean with true values, regression analysis (least-square
		method for linear plots)
	Unit 2	Concept of Equilibrium
	A	General treatment of equilibria in aqueous medium involving monoprotic
	11	weak acid and weak base, and salts of weak acids and weak bases
	В	Activity and activity coefficient; Effect of electrolytes on chemical
	В	equilibria, Calculation of pH
	С	Constructing titration curves from charge balance and mass balance
		equations, Acid-base titrations and theory of pH indicators.
	Unit 3	Chromatographic Methods-I
	A	General principle, classification of chromatographic methods based on
	11	physical state, contact and separation mechanism
	В	Nature of partition forces. Chromatographic behavior of solutes.
		Chromatographic resolution, selectivity factor and column efficiency.
	С	Column chromatography: Nature of column materials, Preparation of the
		column, Solvent systems, detection methods and applications.
	Unit 4	Chromatographic Methods-II
	A	Gas chromatography- principle, experimental technique, carrier gas,
		sample injection, column, detector and application
	В	High Performance Liquid Chromatography (HPLC): instrumentation-
	_	solvent and reservoirs, pumping system, sample injection, Column,
		detectors
	С	Thin layer chromatography: coating of materials, preparation of TLC,
		Solvents, methods of detection and applications. Theory and application
		of LC-MS, Pyrolysis GC-MS, Thermal Desorption GC-MS.
	Unit 5	Thermal Analysis
	A	Principle, different methods of thermal analysis, i) Thermo gravimetric
		methods of analysis(TG/DTG): Instrumentation, thermogram and
		information from thermogram, factors affecting thermogram,
		applications TGA for quantitative analysis (TG analysis of CaC ₂ O ₄ .H ₂ O,
		CuSO ₄ .5H ₂ O, dolomite ore, etc.)
	В	Problems based TGA, ii) Differential Thermal Analysis (DTA):
		Instrumentation, general principles, differential thermogram, DTA and
		TG curve together, Applications (DTA analysis of mixture of polymers,
		DTA of CaC ₂ O ₄ H ₂ O, DTA of CuSO ₄ 5H ₂ O).
	С	Differential Scanning Calorimetry (DSC): Principle, Instrumentation, and
		Applications (DSC curve of polyethylene terphthalate, DSC curve for
	•	- · · · · · · · · · · · · · · · · · · ·

	isothermal crystallizatio thermometric titrations, E		SC of phenacetein),
Mode of	Theory		
examination			
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	1. Analytical Chemistry-A	An Introduction, 7th Edition	on,D. A. Skoog, D.M.
	West, F.J. Holler, S.R. Crouch, Saunders College Publishing,		
	Philadelphia, London.		
	1. Modern Methods of Chemical Analysis, 2 nd Edition,R. L. Pecsok, L. D.		
Other	Shields, T. Cairns and L.		
References	2. Analytical Chemistry, 5 th Edition,G. D. Christian, John Wiley & Sons,		
	New York.		
	3. Analytical Chemistry: Principles, 2 nd Edition, J. H. Kennedy, Saunders		
	Holt, London.		

2.1 Template A1: INTRODUCTION TO MATLAB AND ITS APPLICATIONS (MMT129)

School: SBSR		Batch : 2018- 2020
Program: M.Sc.		Current Academic Year: 2018
Branch:		Semester: I
Mat	hematics	
1	Course Code	MMT-129
2	Course Title	INTRODUCTION TO MATLAB AND ITS APPLICATIONS
3	Credits	3
4	Contact Hours	3-0-0
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	The goal of this course is to introduce the necessary mathematical concepts for MATLAB and cover the syntax and semantics of MATLAB including control structures, comments, variables, functions etc. Once the foundations of the language have been established students will explore different types of scientific programming problems including curve fitting, ODE solving etc.
6	Course Outcomes	CO1: Describe the fundamentals of MATLAB and use MATLAB for interactive computations. (K2, K3) CO2: Demonstrate with strings and matrices and their uses. (K2, K3) CO3: Illustrate basic flow controls (if-else, for, while). (K3) CO4: Create plots and export this for use in reports and presentations. (K3, K5) CO5: Develop program scripts and functions using the MATLAB development environment. (K4, K5) CO6: Write the program for evaluates linear system of equations, ordinary differential equations in MATLAB. (K5, K6)
7	Course Description	The course will give the fundamental knowledge and practical abilities in MATLAB required to effectively utilize this tool in technical numerical computations and visualisation in other courses. Syntax and interactive computations, programming in MATLAB using scripts and functions, rudimentary algebra and analysis. One- and two-dimensional graphical presentations. Examples on engineering applications.
8	Outline syllabus	Introduction to MATLAB
	Unit 1	Introduction
	A	Vector and matrix generation, Subscripting and the colon notation.
	В	Matrix and array operations and their manipulations.
	С	Introduction to some inbuilt functions.
	Unit 2	Relational and Logical Operators

A	Flow control using various statement and loops including If-End statement, If-Else –End statement				
В	Nested If-Else-End Statement,				
С	For – End and While-End loops with break commands.				
Unit 3	m-files				
A	Scripts and functions				
В	concept of local and g	concept of local and global variable			
С	Few examples of in-built functions, editing, saving m-files.				
Unit 4	Two dimensional Graphics				
A	Basic Plots, Change in axes and annotation in a figure				
В	multiple plots in a fig	ure			
С	saving and printing figures				
Unit 5	Applications of MATLAB				
A	Solving a linear system of equations,				
В	Curve fitting with polynomials using inbuilt function such as polyfit,				
	solving equations in one variable,				
С	Solving ordinary differential equations using inbuilt functions				
Mode of	Theory				
examination			1		
Weightage	CA	MTE	ETE		
Distribution	2004	200/	5 00/		
	30%	20%	50%		
Text book	ok An introduction to MATLAB : Amos Gilat				
Other	* *	Numerical Methods with	Č Č		
References	and Scientists by stevenchapra, Mcgraw Hill. 2. Getting started with Matlab: RudraPratap				

2.1 Template A1: Inorganic Chemistry-II (MCH135)

School: SBSR		Batch: 2018-20
Progran	n: M.Sc.	Current Academic Year: 2019
Branch:	Chemistry	Semester: 2 nd
1	Course Code	MCH135
2	Course Title	Inorganic Chemistry II
3	Credits	4
4	Contact Hours (L-T-P)	4-0-0
	Course Status	Compulsory
5	Course Objective	1.To introduce the basics concept of molecular symmetry and group theory 2.To demonstrate the various application of group theory in spectroscopy 3.To provide an introduction to basic concepts of organometallic chemistry 4.To explain to the student the various application of organometallic chemistry in industry 5.To provide information various industrially important organometallic compounds. 6.To provide structure, bonding and reactivity of transition metal carbonyls, nitrosyls and phosphin complexes.
6	Course Outcomes	CO1: Understand the various basics concept of molecular symmetry and group theory. CO2: Apply their knowledge of group theory to understand the principles of spectroscopy. CO3: Know the basic concepts of organometallic chemistry and its application in industry. CO4: Explain the structure and reactivity of transition metal alkyl, aryl, alkene, alkynes, allyls, dienyl and arene and carbine complexes. CO5: Gain insight about transition metal carbonyls, nitrosyls and phosphin complexes. CO6: Gain knowledge about advanced topics like organometallic chemistry and group theory.
7	Course Description	The course includes the basic concept of group theory and its application in chemistry; as well as organometallic chemistry of transition metals.
8	Outline syllabus	
	Unit 1	Molecular symmetry
	A	Introduction, Meaning and examples of different symmetry elements and generated operations; and general rules, Derivation

*	SHARDA
	UNIVERSITY

	Beyond Boundaries
	of matrices for rotation; reflection; rotation; reflection and inversion operations;
В	Symmetry operations of all the molecular point groups $(C_n, D_n, C_{nh}, D_{nb}C_{nv}, D_{nd}, S_n, T, T_d, T_h, O, O_h, I and I_h)$; Determination of the classes of operations by similarity transform method (only C_{2v} ,
C	C _{2h} , C _{3v} , S ₄) and general rules
C	Defining properties of 'group'; Types of groups (Isomorphic, Cyclic and Abelion); Subgroups; reducible and irreducible
	representations;
Unit 2	Application of Group Theory
A	Great Orthogonality Theorem, construction of character table for C_{2v} and C_{3v} point group
В	Optical activity and dipole moment
С	Application of group theory to electronic and vibrational
	spectroscopy
Unit 3	Organometallic Chemistry-I
A	General Characteristics oforganometallic compounds, Ligand
	hapticity, electron count for different types of organometallic
	compounds, 16 and 18 electron rule and exceptions, Fluxionality in organometallic complexes. Stereochemical non-rigidity in
	organometallic compounds.
В	Synthesis, structure and bonding of organolithium and organomagnesium compounds
С	Organometallic reagents in organic synthesis and in homogeneous
	catalytic reactions (Hydrogenation, hydroformylation,
	isomerisation, polymerisation and metathesis).
Unit 4	Organometallic Chemistry-II
A	General synthetic routes, nature of bond and structural
	characteristics of alkyl, aryl, alkene, alkynes, allyls, dienyl and
D	arene complexes of transition metals.
B C	Structure and bonding of metallocenes. Synthesis, structure and reactivity of metal carbene and carbines
	Symmesis, structure and reactivity of metal carbene and carbines
Unit 5	Organometallic Chemistry-III
A	Ligand behavior of CO, General methods of preparation,
	structures, bonding, and vibrational spectra of metal (Fe, Ru, Os,
В	Cr, Ni) carbonyls. Ligand behavior of NO (NO ⁺ , NO ⁻ and bridging NO), preparation,
_ B	structures, bonding and important reactions of nitrosyls of Cr, Fe
	and Ru
	•

	, l -	Preparation, structure, bonding and reactivity of metal phosphines.			
	C Comparison of phosphine and carbonyl ligands in term			ands in terms of	
	bondi	ng.			
Mod	le of Theor	ry/Jury/Practical/	Viva		
exami	nation				
Weig	htage	CA	MTE	ETE	
Distrib	oution	30%	20%	50%	
	1. Inc	rganic Chemistry	y, J.E. Huhey, Harper & F	E. Huhey, Harper & Row.	
Text be	ook/s* 2.Org	anometallic Cher	mistry, R.C.Mehrotra and	A.Singh, New	
	Age I	nternational.			
	1. Ad	vanced Inorganic	Chemistry, F.A. Cotton	and Wilkinson,	
	John	Wiley			
Otl	ner 2. Int	roduction to Liga	nd fields, B.N. Figgis, W	iley, New York.	
Refer	ences 3. The	3. The Organometallic Chemistry of the Transit ion Metals, R.H.			
	Crabt	Crabtree, John Wiley.			
	4. Tra	4. Transition metal chemistry, Fundamental concept and			
	applic	cations, A.Yaman	noto, John Wiley, 1986.		

2.1 Template A1: Organic Chemistry-II (MCH136)

School:	SBSR	Batch: 2018-20		
Program:M.Sc.		Current Academic Year: 2019		
Branch: Chemistry		Semester:II		
1	Course No.	MCH136		
2	Course Title	Organic Chemistry II		
3	Credits	4		
4	Contact	4-0-0		
	Hours (L-T-			
	P)			
	Course	Compulsory		
	Status			
5	Course	1. To conceptualize the critical C-C bond forming reactions and in		
	Objective	organic synthesis and molecular rearrangements using enolates/		
		enamines/ metal catalyst or orgaganometallic compounds		
		2. To develop the critical thinking to analyze the conditions required for		
		C=C bond formation		
		3. To discuss the mechanism of various famous name reactions.		
		4. To elaborate the process of oxidation and reduction in organic		
		reactions by giving the example of suitable name reactions and		
		develop understanding of the functional mode of different oxidation		
		reduction reagents.		
		5. To recognize the factors that drives a reactant to undergo		
		rearrangement reaction and understand the different name reactions		
		involving rearrangement.		
6	Course	The students will be able to-		
Outcomes		1. compile the different ways to form C-C bond and associated name		
		reactions.		
		2. formulate his/her own reasoned opinions in the mechanistic side of		
		C=C bond forming organic reactions		
		3. enlist a number of oxidizing reagents and analyze the change in		
		oxidation state during the oxidation reaction.		
		4. understand the functional mode of various reducing reagents.		
		5. various name reactions and popular rearrangement reactions.		
		6. develop critical thinking and deep understanding of mechanistic		
		pathways of vast variety of reactions involving new formation,		
	~	reduction, oxidation and rearrangement reactions.		
7	Course	This course utilizes the basics developed in organic chemistry to		
	Description			
	0 41	(C-C or C=C), Redox, Rearrangement and important name reactions.		
8	Outline syllab			
	Unit 1	Single bond (C-C) formations		

	Beyond Boundaries
A	Chemistry of enolates (kinetic and themodynamic) and enamines,
	lithium and boron enolates in aldol and Michael reactions, alkylation and
	acylation of enolates,
В	Knoevenagel, Claisen, Dieckmann, Perkin, Stobbe, Darzen, Acyloin
	condensations, organolithium, organomagnesium (Grignard),
	organozinc, organocopper (Gilman & Normant) reagents in synthesis
С	epoxidations (Sharpless, Jacobsen and Shi), Metal catalyzed C-C bond
	formations (Negishi, Heck, Stille, Suzuki, Sonogashira, Buchwald-
	Hartwig and Ullmann
Unit 2	Double bond (C=C) formations
A	Dehydration of alcohols, β-eliminations (Hoffman & ester pyrolysis),
	Cope elimination, Phospohorus, nitrogen and sulfur ylids,
В	Wittig reaction, Wittig-Horner reaction, Tebbe olefination, Julia
	olefination, Mannich reaction, Robinson annulation, Peterson
	olefination, McMurry reaction, Shapiro reaction, selenoxide elimination
С	Corey-Winter reaction, olefins from epoxides, olefin metathesis
	(Schrock's catalyst, Grubbs' catalyst), ring closing metathesis, enyne
11.24.2	metathesis, Thorpe reaction
Unit 3	Oxidation
A	Oxidations of hydrocarbons (alkanes, alkenes and aromatic), alkenes to
	epoxides (peroxides/per acids based), alkenes to diols, Sharpless
_	asymmetric dihydroxylation,
В	Prevost reaction and Woodward modification, alkenes to carbonyls with
	bond cleavage, alkenes to alcohols/carbonyls without bond cleavage
	(Wacker oxidation),
C	ketones to α -hydroxy ketones, α,β -unsaturated ketones and
	ester/lactones, alcohols to carbonyls, alcohols to acids or esters, phenols
	(Fremy's salt, silver carbonate), Swern oxidation.
Unit 4	Reduction
A	Catalytic reduction (Pt, Pd, Ni), Dissolving metal reductions (alkali
	metals in Liq. NH ₃ and Zn, Sn), Reduction by hydride transfer reagents
	(Complex hydrides of Li, B, Si and Na);
В	Steroeselectivity of reduction with small hydride donors;
	Electroreduction with metals, Reduction with non-metals (HI, Diimides
	and hydrazine),
С	Reduction of epoxides, Reduction with enzymes-Bakers yeast, microbial
	reductions (NADH model etc.)
Unit 5	Name Reactions and Molecular Rearrangements
A	Mechanism of Hoffmann Curtius, Schimidt, Lossen rearrangement,
	Beckmann rearrangement, Nef reaction
В	Mechanism of Baeyer Villiger Favorskii and Sommelet-Hauser
	rearrangement, Brook rearrangement
С	Baylis-Hillman reaction, Henry reaction, Ritter reaction, Sakurai
	reaction, Tishchenko reaction, Ugi reaction
Mode of	
	Theory/Jury/Practical/Viva
examination	

*	SHARDA
	UNIVERSITY

Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
	1.Organic reactions and	l their mechanisms, P.S	. Kalsi, New Age
Text	International.		
Book/s*	2.Stereochemistry, P. S. I	Kalsi, New Age Internation	ıal.
	3.Organic Chemistry, R.	Γ. Morrison and R. N. Boy	d, Prentice-Hall.
	4.Reaction Mechanism in	Organic Chemistry, S. M.	Mukherji and S. P.
	Singh, Macmillan.		
Other	1.Advanced Organic Che	mistry Reactions, Mechani	sm and Structure,
references	Jerry March, John Wiley.		

2.1 Template A1: Physical Chemistry-II (MCH137)

Scho	ool: SBSR	Batch: 2018-20	
Prog	gram:M.Sc.	Current Academic Year: 2019	
Branch: Chemistry 1 Course Code		Semester:II	
1	Course Code	MCH137	
2	Course Title	Physical Chemistry II	
3	Credits	4	
4	Contact	4-0-0	
	Hours		
	(L-T-P)		
	Course Status	Compulsory	
5	Course	1. To familiarise students with theoretical and mathematical aspects of	
	Objective	quantised energy levels of particle in box.	
		2. To introduce the theoretical concept of Hydrogen atom and hydrogen	
		molecule and hydrogen molecule ion.	
		3. To infer the concept of Charge on colloids, electro kinetic	
		phenomenon's and different theories on colloids	
		4. To prioritise the surface phenomenon's and different equations and	
		theories to explain them.	
		5. To describe equilibrium processes of one and more than one component	
		systems such as congruent, Peritectic and Monotectic Systems.	
		CO1:The concepts of quantum mechanics and its mathematical	
		interpretation for atoms and molecules possessing single electron.	
		CO2:The results and their analysis obtained on the basis of MOT	
		and VBT for hydrogen atom, molecule and ion.	
		CO3: The nomenclature of particles on the basis of particle size and	
		different theories and results related to stability of colloids.	
6	Course	CO4:The concept of surface tension, micellization and	
	Outcomes	solubilisation.	
		CO5: The concept of existence of different phases with change in	
		different variables by visualizing the phase diagrams	
		CO6: The concept of quantum mechanics, their application to	
		MOT and VBT, how to draw phase diagrams and importance of	
		colloids and surface chemistry in daily life, their concepts,	
		phenomenon and mathematical equations.	
		Concept of Quantum mechanics and its applications in MOT and VBT	
7	Course	were shared with students. Theories of colloids and concepts of surface	
	Description	chemistry were discussed. The phase diagram of different component	
		systems were discussed and explained how to plot them.	
8	Outline syllabu		
	Outline syllabus Unit 1 Quantum Mechanics		
	A	Matter waves, The Uncertainty principle, The wave nature of the	
		electron, Interpretation of wave function, Normalized and orthogonal	
L	1	The second of the second secon	

*	SHARDA
	UNIVERSITY

		wave functions, Linear and Hermitian operators, Commutation of				
		operators, Eigen value and Eigen function				
	В	The wave equation, Particle in one dimensional box, particle in three				
	_	dimensional box, particle in a ring, Degeneracy. Angular momentum				
		operator, Ladder operator.				
	С	Hydrogen atom: Schrodinger wave equation, Transformation of				
		coordinates, separation of variable in polar spherical coordinates and its				
		solution, principal, azimuthal and magnetic quantum numbers and their				
		magnitude, probability distribution function, radial distribution				
		function and shape of atomic orbital's (s,p & d), Virial theorem.				
	Unit 2	Chemical Bonding				
	A	Born Oppenheimer Approximation, The ionic bond, The variation				
		method, Ground state energy of the hydrogen atom.				
	В	Huckel molecular orbital theory of conjugated systems, delocalisation				
		energy and Secular equations, Molecular orbital theory – Hydrogen				
		molecule ion,				
	C	Valence bond theory- Hydrogen molecule, Simple homo and hetero				
		nuclear diatomic molecules, Electronic spectra, effect of substituent on				
		spectra.				
	Unit 3	Colloids				
	A	Introduction, Origin of the charges, electro-kinetic phenomena,				
		electrophoresis, electro osmosis, sedimentation and streaming potential.				
B The concept of electrical double layer and various models to exp						
		structure and properties,				
	C	DLVO theory and stability of colloids. Smoluchowski theory of kinet				
		of coagulation and distribution of colloids aggregates. Organic and				
	TT •4 4	inorganic gels and clay colloids.				
	Unit 4	Surface Chemistry and Micelles				
	A	Surface tension and surface free energy; Pressure across an interface:				
	n	Laplace equation, Kelvin equation; Wetting: Young-Dupre equation;				
	В	Adsorption in liquid systems: Gibbs adsorption isotherm; Adsorption on solids: Langmuir isotherm, BET isotherm, transition state theory of				
		surface reactions: rates of chemisorption and desorption.				
	С	Micelles-Surface active agents and their classification, micellization,				
	C	hydrophobic interaction, critical micellar concentration (cmc), factors				
		affecting cmc of surfactants, counter ion binding to micelles,				
		thermodynamics of micellization-phase separation and mass action				
		models, solubilization, micro emulsions, reverse micelles.				
	Unit 5	Phase Equilibria				
	A	Statement and meaning of the terms in Gibbs phase rule;				
	- -	Thermodynamic derivation of Gibb's phase rule, phase equilibria of				
		water, Hellium and carbon systems;				
	В	Two component solid-liquid equilibria (example of Cu-Ni alloy,Bi -				
	Cd system and CuSO ₄ – H ₂ O System): simple eutectic; congruent					
		melting type; peritectic type and monotectic type phase diagrams,				
	ı					

C	concept of Phase equilibr	ria of three component sys	tems - CaO-Al ₂ O ₃ -
	SiO ₂ and Acetic acid-wat	ter-Butanol system, Phase-	Transformations in
	Solids: Thermodynamic Classifications of Phase Transitions		
Mode of	Theory/Jury/Practical/Viva		
examination			
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	1.Physical Chemistry, P. W. Atkins, Oxford University Press, New		
	York.		
	2.Physical Chemistry, I.N. Levine, Tata McGraw Hill Pub. Co. Ltd.,		
	New Delhi.		
	3. Physical Chemistry of Surfaces by A. W. Adamson, John Wiley and		
	Sons.		
Other	1. Theoretical Inorganic Chemistry by M.C.Day and J.Selbin		
References	2. Applied Colloid and Surface Chemistry by R. M. Pashley and M. E.		
	Karaman, Wiley Publications.		
	4.Comprehensive Physica	al Chemistry by N.B.Singh	, N.S.Gajbhiye and
	S.S.Das, New Age publishers, New Delhi		
	5.Physical Chemistry by D.A.McQuarrie and J.D.Simon		

2.1 Template A1: Analytical Chemistry-II (MCH138)

School: SBSR		Batch: 2018-20
Program: M.Sc.		Current Academic Year: 2019
Brai	nch: Chemistry	Semester: II
1	Course Code	MCH138
2	Course Title	Analytical Chemistry II
3	Credits	4
4	Contact	4-0-0
	Hours	
	(L-T-P)	
	Course Status	Compulsory
5	Course Objective	 Understand the theories and principles of qualitative and quantitative analysis through optical and spectroscopic technique. Analyse the textural information of bulk materials and particle dimension. Carry out qualitative and quantitative analysis employing descriptive knowledge of electrochemistry and electrochemical titration. Separate and estimate macromolecule (proteins, enzymes, blood and natural products) electroanalytically. Effectively use various sensors for estimation and gain idea about developing technologically potent sensor materials. To learn the advance spectroscopic and microscopic methods for the analysis of molecular materials.
6	Course Outcomes	CO1: Understand various optical and spectroscopic methods for qualitative and quantitative analysis of metals and non metal to trace level. CO2: Evaluate the properties of materials such as porosity, density and microstructure of materials. CO3: Develop new synthetic routes involving electrochemical redox process. CO4: Understand principles of Cyclic Voltammetry and Electrophoresis. CO5: Develop quick, sensitive and selective sensory materials for qualitative and quantitative estimation of analyte. CO6: Investigate the molecular materials using advanced spectroscopic and microscopic techniques.
7	Course Description	Analytical chemistry II emphasizes on various parts of analytical methods as - Atomic Spectroscopy comprises of AAS, AES and ICPMS, Electron Microscopic techniques comprises of SEM, TEM and FESEM, Polarography and amperometry, Cyclic voltammetry and electrophoresis Chemical sensors
8	Outline syllabus	
	Unit 1	Atomic Spectroscopy

Α.	Theory covers by many stories are sign another stories along			
A	Theory, sources, burners, atomic emission spectra, atomic absor	_		
	spectra, effect of temperature on emission and absorp	,		
	Instrumentation for AES and AAS, standard addition and int	ernal		
	standard method of analysis			
В	Comparison of atomic absorption and emission methods, Applica	tions		
	of AAS and AES			
	Features of atomic mass spectroscopy, Atomic weight in	mass		
	spectroscopy, mass to charge ratio			
С	Types of atomic mass spectroscopy, quadruple mass analyzer, tin	ne of		
	flight mass analyzer, Inductively coupled mass spectroscopy (ICP	MS),		
	Instrumentation for ICPMS, Applications of ICPMS			
Unit 2	Electron Microscopic Techniques			
A	Basic principle, instrumentation and application of Transmi	ssion		
	Electron Microscope (TEM) and HRTEM			
В	Basic principle, instrumentation and application of Scanning Elec-	ctron		
_	Microscope (SEM)			
С	Basic principle, instrumentation and application of FESEM			
Unit 3	Electroanalytical Technique I			
A	Polarography			
	Introduction, Instrumentation, Ilkovic equation and its verification			
В	Derivation of wave equation, Determination of half wave pote	ntial		
	qualitative and quantitative applications	mui,		
С	Amperometry: Basic principles, instrumentation, nature of titr	ation		
	curves and analytical principles			
Unit 4	Electroanalytical Technique II			
A	Cyclic Voltammetry Cell design, instrumentation, current-potential			
	relation for linear sweep voltammetry (LSV), cyclic voltammetry,			
	interpretation of voltammograms.			
В				
_ D	Electrophoresis: Separation by adsorption-Affinity techniques, affinity elution from ion exchangers and other adsorbents			
	elution from ion exchangers and other adsorbents	finity		
C	elution from ion exchangers and other adsorbents Pseudo, affinity, adsorbents, polyacrylamide, get, electrophores			
С	Pseudo affinity adsorbents, polyacrylamide get electrophor			
	Pseudo affinity adsorbents, polyacrylamide get electrophor isoelecrictric focusing, isotachophoresis			
Unit 5	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors			
	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of			
Unit 5	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically			
Unit 5 A	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials	resis,		
Unit 5	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials Solid electrolyte, gas, semiconductor, Humidity sensors, Biosensor	resis,		
Unit 5 A	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials Solid electrolyte, gas, semiconductor, Humidity sensors, Biosensor sensors	resis,		
Unit 5 A	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials Solid electrolyte, gas, semiconductor, Humidity sensors, Biosensor sensors Electrochemical sensors (Potentiometric sensors, Ion-selection)	resis,		
Unit 5 A B C	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials Solid electrolyte, gas, semiconductor, Humidity sensors, Biosensor sensors Electrochemical sensors (Potentiometric sensors, Ion-sele electrodes, Membrane electrodes, Amperometric sensors)	resis,		
B C Mode of	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials Solid electrolyte, gas, semiconductor, Humidity sensors, Biosensor sensors Electrochemical sensors (Potentiometric sensors, Ion-selection)	resis,		
Unit 5 A B C Mode of examination	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials Solid electrolyte, gas, semiconductor, Humidity sensors, Biosensor sensors Electrochemical sensors (Potentiometric sensors, Ion-sele electrodes, Membrane electrodes, Amperometric sensors) Theory/Jury/Practical/Viva	resis,		
B C Mode of	Pseudo affinity adsorbents, polyacrylamide get electrophorisoelecrictric focusing, isotachophoresis Chemical Sensors Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials Solid electrolyte, gas, semiconductor, Humidity sensors, Biosensor sensors Electrochemical sensors (Potentiometric sensors, Ion-sele electrodes, Membrane electrodes, Amperometric sensors)	resis,		

Text book/s*	Principles of Instrumental Analysis, Skkog, Holler, Nieman, (Sixth
	Ed.)
Other References	 Introduction to Instrumental Analysis by R. D. Broun, Mc Graw Hill (1987) Instrumental methods of chemical analysis by H. willard, L.Merrit, J.A. Dean and F.A. settle. Sixth edition CBS (1986) Fundamentals of Analytical Chemistry, 6th edition, D.A. Skoog, D.M. West and F.J. Holler, Saunders college publishing. Principles of Instrumental Analysis, Skkog, Holler, Nieman, (Sixth Ed.) Introduction to instrumental analysis by R. D. Braun, MC. Graw Hill-International edition. Analytical Chemistry, Ed. by Kellner, Mermet, otto, Valcarcel, Widmer, Second Ed. Wiley –VCH Electron microscopy in the study of material, P. J Grundy and G. A Jones, Edward Arnold.

2.1 Template A1: Renewable Energy Resources (MPH115)

Scho	ool: SBSR	Batch: 2018-2020			
Program: M.Sc		Current Academic Year: 2019			
Bra		Semester: II			
Chemistry					
1	Course Code	MPH115			
2	Course Title	Renewable Energy Sources			
3	Credits	4			
4	Contact	4-0-0			
	Hours				
	(L-T-P)				
	Course	Compulsory			
	Status				
5	Course	1. 1. To know the importance of Physics and Materials Science.			
	Objective	2. To utilize the various synthesis procedure to develop materials.			
	3	3. To explain the practical application of materials in various area			
6	Course	CO1: Learn the basics of Materials/Technology			
	Outcomes	CO2: Understand the correlation between Applied science			
		and Technology			
		CO3: Apply the concept of materials and technology at			
		certain levels.			
		CO4: Develop devices using materials.			
		CO5: Create the path to handle materials.			
		CO6: Expertise in various tools will make a bridge between			
		industry and students and find out the platform for			
		employment in high tech industries			
7	Course	This course is based on renewable energy that is collected from renewable			
	Description	resources, which are naturally replenished on a human timescale, such as			
		sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy often			
		provides energy in four important areas: <u>electricity generation</u> , <u>air</u> and <u>water</u>			
		heating/cooling, transportation, and rural (off-grid) energy services			
8	Outline syllabu				
	Unit 1	Natural and Renewable Energy Resources			
	A	Natural resources and associated problems, Forest, Water, Mineral,			
		Food, Energy and Land resources			
	В	Use and over-exploitation, Concept of an ecosystem, Environmental			
		Pollution, Nuclear hazards			
	С	Renewable Energy sources: Definition and types of renewable sources, Wind,			
	T T 1: 0	Ocean, Geothermal, Biomass, Hydro as renewable energy resources			
	Unit 2	Solar Energy: Fundamental and Material Aspects			
	A	Fundamentals of photovoltaic Energy Conversion Physics and Material			
		Properties, Types of solar energy conversion			
	В	solar thermal: basics and design of water heaters, solar ponds, Basic to			
		Photovoltaic Energy Conversion: Optical properties of Solids			

	Beyond Boundaries				
С	Direct and indirect transition semiconductors, interrelationship between				
	absorption coefficients and band gap recombination of carriers.				
Unit 3	Solar Energy: Different Types of Solar Cells				
A	Types of Solar Cells, p-n junction solar cell, Transport Equation, Current				
	Density, Open circuit voltage and short circuit current				
В	Brief description of single crystal silicon and organic and Polymer Solar				
	Cells, Elementary Ideas	s of Advanced Solar Cells	e.g. Tandem Solar		
	cells, Solid Liquid Junction Solar Cells				
C	Nature of Semiconduc	ctor, Principles of Photo	p-electrochemical Solar		
	Cells.				
Unit 4	Hydrogen Energy: Fu	ndamentals, Production	and Storage		
A	Hydrogen as a source o	f energy, Solar Hydrogen	through		
		ics of material characterist			
	Solar Hydrogen		1		
В	· ·	ous storage processes, spe	cial features of solid		
		Brief discussion of various storage processes, special features of solid hydrogen storage materials			
С	·		e material, New Storage		
	Structural and electronic characteristics of storage material, New Storage Modes.				
Unit 5	Hydrogen Energy: Safety and Utilization				
A	Various factors relevant to safety, use of Hydrogen as Fuel, Use in				
		drogen for Electricity Gen			
В		e of Fuel Cells, Applicatio			
С		other Hydrogen- Based d			
	Batteries	, ,	,		
Mode of	Theory				
examination					
Weightage	CA	MTE	ETE		
Distribution	30% 20% 50%				
Text book/s*		r Cells Photovoltaic Solar			
	:Fahrenbruch&Bube				
	1.Solar Cell Devices-Pl	nysics :Fonash			
Other		eal Solar Cells: Chandra			
References	_	gy Carrier Technologies S	vstems Economy:		
	Winter & Nitch (Eds.)		<i>J</i>		
		e EngeryCarrier : Andreas	Zuttel, Andreas		
	Borgschulte and Louis Schlapbach				
	201500 min Douis Semaponen				
 <u> </u>	l				

2.1 Template A1: Molecular Spectroscopy (MCH231)

Scho	ool: SBSR	Batch: 2018-20			
	gram:M.Sc.	Current Academic Year: 2019			
	nch:Chemistry	Semester:III			
1	Course No.	MCH231			
2	Course Title	Molecular Spectroscopy			
3	Credits	4			
4	Contact	4-0-0			
	Hours (L-T-				
	P)	· ·			
	Course Status	Compulsory			
5	Course	1.To know the principle and applications of molecular spectroscopy.			
	Objective	2.To understand the theories of UV, FT-IR, Raman, NMR, and Mass			
		spectroscopic techniques.			
		3. Analyze and identify simple organic molecules by using UV, IR, Mass,			
		¹ H NMR and ¹³ C NMR data.			
		4.To evaluate the application of NMR and Mass spectroscopic techniques			
		to different molecules.			
		5.To know the principle and instrumentation of different			
		spectrophotometric techniques.			
6.To impart the knowledge of electronic, rotation, vibration. NM					
		ESR, spectroscopy and their applications			
6	Course	CO1:Explain the general principles and theory of spectroscopy, distinguish			
	Outcomes	the specialities and applications of various types of spectroscopic methods.			
		CO2:Describe the concept and instrumentation of atomic uv-visible			
		absorption, infrared NMR and Mass spectrometers.			
	CO3:Apply Woodward Fieser Rules. CO4:Understand first and second order ¹ HNMR spectra.				
	CO4: Understand first and second order 'HNMR spectra. CO5:Solve analytical science problems involving uv-visible absorpt				
	infrared ¹ H, ¹³ C and mass techniques.				
		CO6:Predict UV, IR, Proton chemical shift, spin-spin coupling, coupling			
		constants and apply ¹³ C resonance spectroscopy and mass spectroscopy to			
		chemical structures.			
7	Course	The course is framed to give fundamental concepts of UV-Visible, IR,			
'	Description	¹ HNMR, ¹³ CNMR and Mass spectroscopy. Applications of these			
	F	spectroscopic techniques to organic/inorganic systems will be discussed.			
8	Outline syllabus				
	Unit 1	UV-Visible Spectroscopy			
	A	Lamberts—Beers law, Electronic spectra, Frank-Condon Principle,			
		predissociation spectra, Fortrat diagram,			
	В	conjugated polyene and enone systems, and different types of charge			
		transfer transitions and their basis			
	C Charge transfer spectra in organic and inorganic systems				

Unit 2	Infrared Spectroscopy		Beyond Boundaries	
A	Basic principle and sample	e handling. Modes of s	tretching and bending.	
	bond properties and absorp		are series.	
В	Survey of vibrational frequency	·	enes, alkynes, aromatic	
	compounds, alcohols, ethe		•	
	hydrides, lactones, lac	=		
	, 0.1.000, 1.00001100, 1.00	Turing units Conjuguetu		
carbonyl compounds. C Effect of hydrogen bonding and solvent effect on vibrational freq				
	overtones, combination bands and Fermi resonance.			
	overtones, combination ban	ids and I citin resonance	J.	
Unit 3	Nuclear Magnetic Resona	nce Spectroscopy-I		
A	¹ H NMR - Effect of magne		sitivity and resolution,	
	chemical shift δ , inductive a			
	correlations of δ , chemical	-		
	coupling, structural correlation			
В	first order and second order	1 0		
	and AA'BB' systems, simp	olification of second order	der spectrum, selective	
	decoupling, double resonar			
	coupling; chemical exchang			
С	Structural elucidation of or	ganic compounds using	¹ H NMR technique	
Unit 4 Nuclear Magnetic Resonance Spectroscopy-II				
A	¹³ C NMR- Introduction, in	nterpretation of ¹³ C NI	MR spectra, Chemical	
shifts and its calculation,				
В	proton coupled and decoupled spin-spin splitting; Application of DEPT			
		technique to the analysis of CH multiplicities in ¹³ C NMR spectroscopy.		
	Correlation spectroscopy - Illustration of practical applications of ¹ H- ¹ H			
	COSY, ¹ H- ¹³ C COSY.			
C	Nuclear overhauser enhance	Nuclear overhauser enhancement (NOE).Basic concept of Heternonuclear		
	(F, P, Si) NMR.			
Unit 5	Mass Spectrometry			
\mathbf{A}	Measurement technique (El			
	molecular ions; isotope ions	s; tragment ions of odd a	and even electron types;	
<u> </u>	rearrangement ions			
В	factors affecting cleavage p		ge; cleavage at a hetero	
	atom; multi centre fragmentation			
C	Structure elucidation of	•		
	spectroscopy; Special methods of GCMS; High resolution MS.			
3.6.3.0				
Mode of	Theory/Jury/Practical/Viva			
examination	C.A.	MTPT	EÆE	
Weightage	CA	MTE	ETE	
Distribution				
Text Book/s*	1. Spectroscopy of Organic Compounds – P.S. Kalsi, 6 th edition, 2004.			
	2.Molecular Spectroscopy – Banwell, 5 th Edition, 2013			

	1. Applications of Absorption Spectroscopy of Organic	
	Compounds – Dyer, 1 st Edition, 2009.	
2.Spectroscopic Methods in Organic Chemistry by D.H.		
	Williams and I. Fleming, 4th edition, Tata McGraw-Hill	
Other	Publishing company Ltd., New Delhi.	
References	3.Spectrometric Identification of Organic Compounds- R.	
	M. Silverstein, F. X. Webster, D. Kiemle, 7th Edition,	
	2005.	
	4.Physical Methods in Inorganic Chemistry by R. S.	
	Drago, Affiliated East-West Press, 1st Edition.	
	5. Spectroscopic identification of organic compounds by	
	Kiemle Webster Silverstein, 7 2 nd Edition, 2005	

2.1 Template A1: Inorganic Chemistry-III (MCH232)

Scho	ool: SBSR	Batch 2018-20		
Prog	gram: M.Sc.	Current Academic Year : 2019		
	nch: Chemistry	Semester III		
1	Course No	MCH232		
2	Course Title	Inorganic Chemistry III		
3	Credits	4		
4	Contact	4-0-0		
	hours(L-T-P)			
	Course Status	Compulsory		
5	Course	1.To explain the reaction mechanism of an inorganic reaction.		
	Objectives	2.To discuss factors affecting stability of complexes.		
	-	3. To explain the route of addition of molecules in a reaction.		
		4. To have an overview of chemistry of CO complexes.		
		5.To explain the concept of stereoisomerism in inorganic complexes.		
		6.To demonstrate mechanisms of substitution reaction and compare it		
		with associative reaction.		
6	Course	CO1: Explain the trends of rate constants and its determination with		
	Outcome	different methods.		
		CO2: Provide explanation for substitution in octahedral and square		
		planar complexes.		
		CO3: Explain ligand replacement reactions under different conditions.		
		CO4: Distinguish between oxidative addition and reductive elimination		
		mechanisms.		
		CO5: Analyze the chemistry of carbonyl compounds and metal hydride		
		CO6: Gain knowledge about various aspects of inorganic reaction		
		mechanism		
7	Course	The course gives a detailed view of reaction mechanism, electron		
	Description	transfer mechanisms, oxidative addition and insertion reactions of		
		transition metal complexes.		
8	Outline syllabus			
	Unit 1	Reaction Mechanism of Transition metal complexes-I		
	A	Rate Law, Steady state, Activated complex theory. Stepwise and		
		overall formation constants, their interaction		
	В	determination of formation constant by pH-meter, Job's method and		
		spectrophotometery. Trends in stepwise constants		
	~			
	C	factors affecting the stability of metal complexes with reference to the		
		nature of metal ion and ligand. Chelate effect and its thermodynamic		
		origin		
	Unit 2	Reaction Mechanism of Transition metal complexes-II		
	UIII 2	Neaction Mechanism of Transition metal complexes-11		

A	Inert and labile complexes, me (dissociative, associative inter- mechanism,	echanisms of substitut			
В	direct and indirect evidence in substitution in cis and trans co <i>trans</i> effects, explanation for <i>t</i>	mplexes, isomerism o			
С	Ligand replacement reactions of square planar and octahedral complexes: their factors and mechanism of substitution, Anation reactions.				
Unit 3	Electron Transfer Mechanis	ms			
A	Inner sphere and outer sphere	reactions and their me	echanisms		
В	Racemization and Isomerization	on, Effect of ligand fie	eld on reaction rates		
C	Mixed valence complexes, M electron transfer reactions.	arcus-Husch theory, 7	Thermal and optical		
Unit 4	Oxidative-Addition and Mig	ration (Insertion Rea	actions)		
A	Introduction: Acid base behaviour of metal atoms in complexes. Protonation and Lewis Base behaviour, acceptor properties of Lewis acidity of complexes				
В	oxidative addition and reductive elimination, addition of specific molecules, Hydrogen addition, HX additions, Organic halides addition of some other molecules productive elimination, migration (Insertion) reaction				
С	promotion of alkyl migration, insertion of CO into M-H bonds, other aspects of CO insertion reactions, Insertion of alkenes and C-C unsaturated compounds, Cleavage of C-H bonds; alkane activation, Cyclometallation reactions.				
Unit 5	Metal Hydride Complexes				
A	Synthesis, structure and reactions of hydrido complexes, characterization of complexes, molecular hydrogen compounds-synthesis and reactions				
В	Mononuclear polyhydrides, homoleptic polyhydride anions; carbonyl hydrides and anion				
С	MH interactions; synthetic applications of metal hydrides				
Mode of examination	Theory/Jury/Practical/Viva				
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1.J.E.Huheey. Inorganic Chemistry: Principles of Structure and Reactivity. Harper Inter science.				

	1.William L. Jolly, Modern Inorganic Chemistry, 2 nd	•	
	Edn, Tata McGraw Hill.		
	2.E. A. V. Ebsworth, D. W. H. Rankin and S. J. Cradock.		
, and the second			
0.0	Structural methods in Inorganic Chemistry, Blackwell		
Other	Scientific Oxford.		
References	3.I. P. Atkins, T. Overton, J. Rourke, M. Weller, F.		
	Armstrong, Shriver and Atkins. Inorganic Chemistry,		
	Oxford University Press.		
	4.T. Moeller. Inorganic Chemistry: A Modern approach,		
	John Wiley.		
	5.F. Basalo and R.G.Pearson, Mechanism of Inorganic		
	reactions,2 nd Edn ,Wiley Eastern Ltd., New Delhi		

2.1 Template A1:Physical Chemistry-III (MCH233)

Schoo	ol: SBSR	Batch 2018-20	
Progr	ram: M.Sc.	Current Academic Year : 2019	
Branc	ch : Chemistry	Semester III	
1	Course Code	MCH233	
2	Course Title	Physical Chemistry III	
3	Credits	4	
4	Contact hours	4-0-0	
	Course Status	Compulsory	
5	Course Objectives	The main objectives of this program is to: 1: To provide deep knowledge on advanced quantum chemistry. 2: To provide a thorough proficiency in approximate methods in quantum chemistry. 3: To enable students to interpret many electron systems quantum mechanically. 4: To impart knowledge on kinetics of complex reactions.	
		5: To make the student understand the kinetics of reaction in solution .6: Apply the knowledge about quantum chemistry and kinetics to solve real life problems .	
6	Course Outcome	After successful completion of the course, the students will be able to: CO1: understand different polynomials and their application. CO2. apply the knowledge of time dependent perturbation theory and variational method for quantum mechanical problems. CO3 apply the quantum chemistry knowledge to analyse the behaviour of multi electron systems. CO4. explain the kinetics of various types of complex reactions CO5. Apply the knowledge of kinetics of reactions in solution to solve kinetics problems. CO7.Apply knowledge quantum chemistry to solve real life problems and kinetics to understand mechanism of reactions.	
7	Course Description		
8	Outline Syllabus		
	Unit 1	Advanced Quantum chemistry: Prerequisite	
	A	Legendre, associated Legendre polynomials; Hermite polynomials;	
		Lagurre and associated Lagurre polynomials; polynomials as orthonormal functions, their properties; step-up and step-down	
		operators, application to single electron and multi-electron atom,	
	В	eigen-ket-ladder and formulation of spherical harmonics from angular momentum rules, finite rotation operation vs. angular	

Beyond Boundaries
momentum operators, spin angular momentum, Pauli spin matrices — spin eigenfunctions and their properties.
coupling of angular momentum for many electron system, spin-orbit coupling, Molecular term symbols. Quantum tunnel effect. Fermi and Bose gases.
Approximate methods
Time dependent perturbation theory, semi classical treatment of
radiation-matter interaction, transition probability and rates,
Einstein's A and B coefficients, selection rules; Oscillator strength,
Variation theorem and variational methods: principles of linear and non-linear variation methods,
stationary perturbation theory for non-degenerate and degenerate
states - applications to rotator, Stark effect.
Many electron systems
Antisymmetry of many electron wave function, spin and spatial orbitals, Slater determinant; closed-shell and open-shell electron configurations; multi-electron pure-spin state wave functions - examples with 2- and 3-electron systems,
formulation of a multi-electron closed-shell electron configuration energy, introduction of core, Coulomb and exchange integrals with their properties - example of He atom, independent particle model, multi-electron atomic Hartree Hamiltonian and related SCF equations solution,
Roothaan-Hartree-Fock method vertical ionization potential and Koopman's theorem; Problems with open-shell systems. Restricted and unrestricted HF methods (elementary idea). discussion of electron correlation.
Kinetics of complex reactions
Application of statistical mechanics to transition state theory, comparison of transition state theory with experimental results, Kinetics of complex reactions (reversible, simultaneous and consecutive),
chain reactions; branched and non-branched kinetic rate equations, population explosion, upper and lower ignition/explosion limits; thermal ignition and ignition temperature; chemical oscillation: conditions for oscillation, chemistry of BZ reaction (Brusselator model); autocatalysis,
Fast reactions, experimental techniques for fast reactions (stopped-flow, temperature- jump and flash photolysis
Reactions in solution
Reaction between ions, effect of solvent (single & double sphere
models), interpretation of frequency factor and entropy of
activation, influence of ionic strength, salt effect, reactions involving dipoles,

В	influence of pressure and volume on reaction rates in solution. Intermolecular potential and centrifugal barrier, impact parameter, collision cross section and rate, energy threshold, opacity function and reaction cross section				
C	Discussion of physicochemical techniques for kinetic study.				
Mode of	Theory/Jury/Practical/Viva				
examination					
Weightage	CA MTE ETE				
Distribution	30% 20% 50%				
Text book/s*	1. 1. Quantum Chemistry, I.M. Levine, Prentice Hall.				
	2. Chemical Kinetics, K. J. Laidler, Harper & Row, New York.				
Other References	 1. Quantum Chemistry by D.A.McQuarrie Viva Books 2. Quantum Chemistry, H. Eyring, J. Walter and G.E. Kimball, (1944) John Wiley, New York. 2. Foundations of Chemical Kinetics – S.W. Benson 				

2.1 Template A1: Organic Chemistry-III (MCH234)

School:	SBSR	Batch 2018-20
Program: M.Sc.		Current Academic Year : 2019
Branch: Chemistry		Semester III
1	Course No.	MCH234
2	Course	Organic Chemistry III
	Title	·
3	Credits	4
4	Contact	4-0-0
	Hours (L-T-	
	P)	
	Course	Compulsory
	Status	
		1.Oxidation and reduction reagents and their application for functional
		group conversion in organic synthesis.
		2.Explain retro-synthesis of aromatic, alicyclic and aliphatic compounds
5	Course	and synthons.
	Objective	3. The ability to recognize reagents for functional group transformations.
		4.Retrosynthetic simplification of target molecules and to provide
		forward synthetic proposals.
		5.Designing a retrosynthetic approach for the synthesis of a target
		molecule.
		CO1: Role of various reagents used in organic chemistry.
		CO2: Have a thorough grounding in protection and deprotection
		chemistry.
6	Course	CO3: Identify the components of retrosynthesis.
	Outcomes	CO4: Understand the synthesis and properties of metallocenes, non-
		benzenoids and polycyclic aromatics.
		CO5: Design a green synthesis using principles of prevention of
		waste/by-products/toxic products, atom economy.
		CO6: Gain in-depth knowledge in synthetic organic chemistry.
_	G.	The aim of this organic chemistry course is to provide an in-depth overview
7	Course	of retrosynthetic analysis and the disconnection approach. These are
	Description	fundamental concepts used by organic chemists in designing the synthesis
		of target molecules in sectors such as pharmaceuticals, agrochemicals and
0	Outline 2211-1-	fine chemicals.
8	Outline syllab	
	Unit 1	Reagents in Organic Synthesis Use of the following reagents in organic synthesis and functional group
	A	Use of the following reagents in organic synthesis and functional group transformations; Gilman's reagent, lithium diisopropylamide (LDA),
	В	dicyclohexylcarbodiimide(DCC)
	D	1,3-dithiane (reactivity Umpoloung), trimethylsilyl iodide, tri-n-butyltin
		hydride, DDQ,

С	Phase transfer catalysts, crown ethers and Merrifield resin, Wilkinson's		
	catalyst, Baker yeast.		
Unit 2	Protection and Deprotection of Functional Groups		
A	Protection and deprotection of hydroxy, carboxyl, carbonyl, carboxy		
	groups		
В	Protection and deprotection of amino groups and carbon-carbon mu		
	bonds		
С	chemo- and regioselective protection and deprotection, illustration of		
	protection and deprotection in multi-step synthesis		
Unit 3	Retrosynthetic Analysis		
A	Basic principles and terminology of retrosynthesis, guidelines, synthesis		
	of aromatic compounds		
В	one group and two group C-X disconnections, one group C-C and two		
	group C-C disconnections, amine and alkene synthesis		
C	important strategies of retrosynthesis, functional group transposition,		
	important functional group interconversions, reversal of polarity		
	(umpolung)		
Unit 4	Metallocenes, Non-benzenoid Aromatics and Polycyclic Aromatic		
	compounds		
A	General considerations, synthesis and reactions of some representative		
	compounds - tropone, tropolone, azulene,		
В	General considerations, synthesis and reactions of some representative		
	compounds - ferrocene, fluorene,		
C	General considerations, synthesis and reactions of some representative		
TT *4 F	compounds - phenanthrene and indene.		
Unit 5	Green Chemistry		
A	Principles of Green Chemistry, Concept of atom economy, Tools of Green Chemistry: Alternative feedstocks/starting materials, Reagents, Solvents,		
В	Product/target molecules, Catalysis and process analytical chemistry. Evaluation of chemical product or process for its effect on human health		
В	and environment, Evaluation of reaction types and methods to design		
	safer chemicals. Evaluating the effects of Chemistry:		
C	Toxicity to humans, Toxicity to wildlife, Effects on local environment,		
	Global environmental effects. Planning a green synthesis.		
Mode of	Theory/Jury/Practical/Viva		
examination	Theory, and the control of the contr		
Weightage	CA MTE ETE		
Distribution	30% 20% 50%		
Text	1. Organic reactions and their mechanisms, P.S. Kalsi, New Age		
Book/s*	International.		
	2.Reagents for Organic Synthesis, L.F. Fieser and M. Fieser.		
	3.Organic Synthesis: The Disconnection Approach, Stuart Warren, Paul		
	Wyatt.		
	4. Organic Chemistry, I.L. Finar Volumes I & II.		

	1. Anastas, P., and Williamson, T. C., Green Chemistry Frontiers in
	Benign Chemical Synthesis and Processes, Oxford University Press
	(1999).
Other	2.Ahluwalia, V. K., and Kidwai, M., New Trends in Green Chemistry,
references	Anamaya Publishers (2004).
	3. Protective Groups in Organic Synthesis, Peter G. M. Wuts, T.W.
	Greene.
	4.Sheldon, R.A., Arends, I., and Hannefed, U., Green Chemistry and
	Catalysis, Wiley-VCH Verlag GmbH and Co. (2007).

2.1 Template A1: Inorganic Chemistry-IV (MCH235)

Scho	ool: SBSR	Batch 2018-20
Program: M.Sc.		Current Academic Year : 2019
Branch:Chemistry		Semester:III
	rse Code	MCH235
	rse Title	Inorganic Chemistry IV
1	Credits	4
2	Contact Hour	4-0-0
	Course Status	Compulsory
5	Course	1.To describe about the structure, properties and uses of inorganic chains.
	Objective	2. To provide information about inorganic ring compounds.
	· ·	3. To introduce the basic concepts about cluster structure and their
		reactivity.
		4.To illustrate the basic concepts of inorganic photochemistry.
		5.To describe the various photochemistry of various inorganic metal
		complexes.
		6. To know about the application of photochemistry.
6	Course	CO1: Explain the structure, properties and uses of inorganic cages and
	Outcome	chains.
		CO2: Describe the structure and properties of inorganic rings.
		CO3: Predict the structure of inorganic clusters using Wade's rule.
		CO4: Understand photochemical reactions of various coordination
		compounds.
		CO5: Apply the knowledge of photochemistry in real life problems.
		CO6: Gain knowledge about advanced topics like inorganic
		photochemistry and inorganic clusters
7	Course	The course is designed to appraise the chemistry of inorganic chains,
	Description	cages, rings, clusters. The photochemistry of inorganic compounds is also
		covered in detail.
8	Outline syllabu	
	Unit 1	Chains and Cages
	A	Structural aspects of silicate minerals and silicones, Zeolites-Structure,
		applications and synthesis, Intercalation Chemistry, One dimensional
	D	conductors, (SN)x chains.
	В	Cages: Electron deficient bonding in higher boranes and its derivatives,
		Types of heteroboranes with special reference to carboranes, structure,
	•	bonding and IUPAC nomenclature.
	C	Metallaboranes, metal σ and μ bonded borane/carborane clusters. Resemblance of Metallaboranes with ferrocene and related compounds.
		Applications of Metallaboranes.
	Unit 2	Rings and Clusters
		ŭ
	A	Rings: Synthesis, structure and chemical application of borazine,
		Phosphazene, phosphazene polymers, Metal-Metal bonds. Concept of
		quadrupolar bond and its comparison with a C-C bond.

1	Beyond Boun		Beyond Boundaries		
D	CI . T	1 1 . 1 1. 1. 1.	CM M 1 1 C' 1		
		l clusters and multiplicity			
	and condensed metal carbonyl clusters-types, calculation of number of M bonds using 18/16 electron rule in low and high nuclearity me				
	_	electron rule in low and	high nuclearity metal		
	clusters, capping rule.				
		ule over metral carbonyl cl	usters. Metal halide and		
	metal chalcogenide clus				
	Photo Inorganic Chemis				
		n, excitation, photochemic			
		ates, Photochemical laws;			
		diative processes, Fran			
		rimary and secondary pr	cocesses, Kasha's rule,		
	Thexi state				
		cal reactions in transiti			
		ition, fragmentation, rea	rrangement and redox		
	reactions.				
	Photo Inorganic Chemis				
A	Photo substitution react	ions of Cr(III)- ammine of	complexes : Adamson's		
	rules,				
	•	II) and Rh(III) Ammine C	£		
	Photochemistry of Ru- Polypyridyl complexes, comparison of Fe(II) and				
	Ru(II) complexes. Ligar	dox reactions			
	Applications of Photochemistry				
A	Solar Cells, semicond	luctor supported metal	oxide systems, water		
	photolysis.				
		ng and sensitization technic			
	of reactive state in coordination complexes. Photoreactions and solar				
	energy conversions.				
C	Photochromism, Photocalorimetry, application of photochemistry in				
	lasers.				
Mode of	Theory/Jury/Practical/V	iva			
Examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
	1.J.E.Huheey. Inorganic Chemistry: Principles of Structure and Reactivity.				
	Harper Inter science.				
	2.F. A. Cotton and G. Wilkinson. Advanced Inorganic Chemistry, Wiley				
Text Book/s*	InterScience.				
	3.Concepts of Inorganic Photochemistry, A. W. Adamson and P. D.				
	Fleischauer, Wiley.				
	4. Advanced Inorganic Chemistry Vol-1 & 2, Gurdeep Raj, Krishna				
	4. Auvanceu morganic (, , , ,	rj,		
	4. Advanced morgame C Prakashan.				
	Prakashan.	. Tarr, Inorganic Chemis			

2.1 Template A1: Physical Chemistry-IV (MCH236)

School: SBSR		Batch 2018-20		
Program: M.Sc.		Current Academic Year : 2019		
Branch : Chemistry		Semester III		
1	Course Code	MCH236		
1	Course Title	Physical Chemistry IV		
3	Credits	4		
4	Contact hours	4-0-0		
	Course Status	Compulsory		
5	Course Objectives	 The main objectives of this course is to: To provide the details of advanced topics of spectroscopy. To provide the detailed understanding of Rotational spectroscopy. To provide the structure elucidation methods using IR spectroscopy. To provide the detailed knowledge of the electric structure of molecules. To provide the knowledge of the phenomenon associated with photoelectron spectroscopy. To enrich the student level of understanding of molecular 		
6	Course Outcome	After successful completion of the course, the students will be able to: CO1: Analyse the essential parameters from absorption and emission spectrum. CO2: Analyse the microwave spectrum of a molecule. CO3: Analyse the IR spectrum and obtain the bond strength parameters. CO4: Analyse the ground and excited state Absorption and emission spectrum of the molecules. CO5: Investigate the photoelectron spectrum of the molecules. CO6: Correctly predict the molecular structure and associated properties using various spectroscopic techniques.		
7	Course Description	properties using various spectroscopic techniques.		
8	Outline Syllabus			
	Unit 1	Principles of Spectroscopy		
	A	Electromagnetic radiation, Born-Oppenheimer approximation, Heisenberg's Uncertainty Principle,		
	В	Jablonski Diagram, Fourier Transform, Time dependent perturbation, Einstein coefficients. Lambert-Beer's law, Integrated absorption coefficients, Transition dipole moments and general selection rules based on symmetry ideas,		

C	Transition probability, oscillator strength, the integrated absorption coefficient.
Unit 2	Introduction to Rotational Spectroscopy:
A	Rotational spectroscopy of diatomic molecules based on rigid
	rotator approximation, Determination of bond lengths and/or atomic
	masses from microwave data
В	Effect of isotopic substitution, Non-rigid rotator, Classification of
	polyatomic molecules,
С	Energy levels and spectra of symmetric top molecules and
	asymmetric top molecules, First order Stark effect, FC principle.
Unit 3	Vibrational Spectroscopy:
A	Force constant and amplitudes, zero potential energy, Morse
	Potential, Normal coordinates analysis of homonuclear and
	heteronuclear diatomic molecules, Extension to polyatomic linear
	molecules
В	Derivation of selection rules for diatomic molecules based on
	Harmonic oscillator approximation. Anharmonic oscillator,
	Overtones and combination bands, Dissociation energies from
	Vibrational data, Vibration-rotation spectra, P, Q and R branches,
	Breakdown of the Born-Oppenheimer approximation.
C	Raman Spectroscopy: Classical and quantum theories, Stokes and
	anti-Stokes lines, Polarizability ellipsoids, Rotational and
	Vibrational Raman spectroscopy, pure rotational Raman Spectrum
	of a linear molecules. Selection rules-Mutually Exclusion Principle,
77.11.4	Polarization of Raman lines.
Unit 4	UV-Visible Absorption and Emission Spectroscopy:
A	Basic principle, Instrumentation and application of absorption and
	emission spectroscopy, Electronic spectra, Frank-Condon Principle, predissociation spectra, conjugated polyene and enone systems, different
	types of charge transfer transitions and their basis, Charge transfer spectra
	in organic and inorganic systems, solvent effects.
В	Steady-state fluorescence spectroscopy, Mirror-image symmetry
	and its violation, Radiative and radiationless deactivation,
	Fluorescence Quenching (static and Dynamics), Room Temperature
	Phosphorescence, Time-resolved (Time correlated single photon
	counting-TCSPC) fluorescence spectroscopy, Fluorescence lifetime
	measurement,
C	Introduction to Single molecule fluorescence and fluorescence
	imaging, Photometric titration, comparison of Luminescence and
	UV Absorption Methods, Limitation of absorption and emission
	measurement.
Unit 5	Photoelectron Spectroscopy:
Unit 5 A	

В	outlines of UPS, XPS and Auger techniques and their applications		
	in interpretation of valence and core shell spectra of atoms and		
	molecules	5,	
C	Laser Spe	ctroscopy.	
Mode of	Theory/Ju	ry/Practical/Viva	a
examination			
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	1. Fundamentals of Molecular Spectroscopy, Banwell, 3 rd Edition, 2018. 2. Pavia, D. L.; Lampmann, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy Cengage Learning (2014). 3. Barrow, G. M. Introduction to Molecular Spectroscopy McGraw-Hill (1962). 4. Hollas. J. M. Modern Spectroscopy 4th Ed., John Wiley & Sons (2004). 5. Chang, R. Basic Principles of Spectroscopy McGraw-Hill, New York, N.Y. (1970).		
Other References			

2.1 Template A1: Organic Chemistry-IV (MCH237)

School: SBSR		Batch: 2018-20		
Program:M.Sc.		Current Academic Year: 2019		
Branch:Chemistry		Semester:III		
1	Course No.	MCH237		
2	Course Title	ORGANIC CHEMISTRY IV		
3	Credits	4		
4	Contact	4-0-0		
	Hours (L-T-P)			
	Course status	Compulsory		
5	Course	1.Define the photochemistry and distinguish absorption and emission		
	Objective	process		
		2.Describe the nature of light.		
		3.Distinguish between electric and magnetic fields, describe the action		
		of light with matter.		
		4.Compare between spontaneous and simulated emission. h) Describe		
		the electronic transition i) State photochemistry laws		
		5.Understanding of some important aspects of pericyclic reactions, to		
		learn the orbital interactions (Woodward Hoffmann rules) in concerted		
		reactions		
		6.Apply concerted and stepwise reactions in organic synthesis		
		CO1:Define types of photochemical reactions, list the factors		
		determining reactivity, describe Franck Condon Principle.		
		CO2:Compare between Norish type I and Norish type II, distinguish		
		inter & intra molecular cyclo addition, describe photodissociation		
		reaction.		
	Comman	CO3:Learn photorearrangement reactions and compare between types		
6	Course	of singlet oxygen reactions.		
	Outcomes	CO4: Know what are pericyclic reactions, learn about classification of pericyclic reactions, identify electrocyclic reaction and evaluate		
		application of Woodward-Hoffmann rules to pericyclic reactions.		
		CO5: identify various theories/rules governing electrocyclic reaction,		
		cycloaddition and sigmatropic shifts and analyze which type of		
		pericyclic mechanism is operative in a reaction.		
		CO6:Understand the concepts involved in organic photochemical		
		reactions, their mechanisms and applications in organic synthesis.		
		The course is framed to make students familiar with the concepts and		
		applications in two important topics in advanced organic chemistry,		
7		namely concerted organic reactions and organic photochemistry.		
/		namely concerted organic reactions and organic photochemistry.		

	Course	Different methods of analysis of pericyclic reactions to arrive at the
		Woodword-Hoffmann rules are discussed. This course will uncover all
	Description	
	O 41' 11 1	the major topics in pericyclic reactions and organic photochemistry.
8	Outline syllabus	
	Unit 1	Photochemistry Part I
	A	Introduction, Primary photophysical process of atoms and diatomic
		molecules, spectroscopic notations, Frank condon principle and its
		applications, rates of absorption and emission, quantum
		efficiency/quantum yield
	В	quenching of excited states species, radiationless transition and
		predissociation, energy transfer processes, Wigner's spin rule
	С	Woodward Hoffman's rule, mechanistic analysis of photochemical
		reactions by spectroscopic techniques, sources of high energy radiation,
		chemical dosimetry, comparison between photo and radiation chemistry.
	Unit 2	Photochemistry Part II
	A	Photochemistry of Olefins- Cis-trans isomerism, cycloaddition,
		rearrangements. Reaction of conjugated olefins; di-π-methane
		rearrangements (including oxa- and aza-).
	В	Photochemistry of Ketones: Excited state of C=O, Norrish type-I and
		type-II cleavages.
	C	Paterno-Buchi reaction, α,β-unsaturated ketones, Rearrangement of
		cyclohexadienones.
	Unit 3	Photochemistry Part III
	A	Photochemistry of Aromatic compounds - Photorearrangement of
		benzene and its derivatives, Photo-Fries reactions of anilides,
		cycloaddition of benzene, Photo-Fries rearrangement
	В	Barton reaction, Hunsdiecker reaction, Photochemical oxidations and
		reductions
	С	Cycloaddition of singlet molecular oxygen, Oxidative coupling of
		aromatic compounds, photoreduction by hydrogen abstraction
	Unit 4	Pericyclic Reactions I
	A	Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-
		butadiene, 1,3,5-hexatriene and allyl system.
	В	Classification of pericyclic reactions. Woodward – Hoffmann
		correlation diagrams. FMO and PMO approach, transition state (ATS)
	~	theory, generalized orbital symmetry (GOS) rule.
	С	Electrocyclic reactions – conrotatory and disrotatory motions, [4n],
	** • · *	[4n+2] and allyl systems, torquoselectivity.
	Unit 5	Pericyclic Reactions II
	A	Cycloadditions – antarafacial and suprafacial additions, 4n and 4n+2
	D	systems. Regio, enantio and Endo selectivities in Diels-Alder reactions.
	В	Hetero Diels-Alder reaction, 2+2 addition of ketenes, Dipolar
	C	cycloadditions, retrocycloadditions.
	С	Sigmatropic rearrangements - suprafacial and antarafacial shifts of H,
		sigmatropic shifts involving carbon moieties. [i, j] - sigmatropic

	rearrangements (includ	ing Walk, Claisen, Cop	e, oxy and aza-Cope	
	rearrangements).			
Mode of	Theory/Jury/Practical/V	iva		
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	1. Reaction Mechanism in Organic Chemistry; S. M. Mukherji and S. P.			
	Singh.			
	2.Fundamentals of Photochemistry, K. K. Rohatgi-Mukherjee			
Other	1. Modern Synthetic reaction by H. O. House, W.A. Benjamin			
References	2. Advanced Organic Chemistry part B, F.A. Carey & R.J. Sundberg,			
	Plenum Press.			

2.1 Template A1: Environmental Chemistry (MCE201)

School: SBSR		Batch: 2018-20		
Prog	gram: M.Sc.	Current Academic Year: 2019		
Branch:Chemistry		Semester: III		
1	Course Code	MCE201		
2	2 Course Title Environmental Chemistry			
3	Credits	4		
4	Contact	4-0-0		
	Hours			
	(L-T-P)			
	Course Status	Elective		
		1.To introduce the basics knowledge of chemistry of environment.		
		2.To describe the chemistry of hydrosphere.		
5	Course	3.To provide an introduction to chemistry of soil.		
	Objective	4.To explain to the student the causes of industrial pollution.		
		5.To provide information environmental toxicology.		
		6.To illustrate the infamous cases of environment related disasters.		
		CO1:Understand the chemistry of atmosphere.		
		CO2:Understand the chemistry of hydrosphere.		
		CO3:Explain the chemistry of soil.		
6	Course	CO4: Know about adverse effect of industrialization and possible		
	Outcomes	prevention method		
		CO5:Know about environmental toxicology and a few example of		
		environmental disaster.		
		CO6: Gain knowledge about the chemistry of atmosphere, factors		
		affecting it and possible prevention methods		
	Course This course describes the chemistry of earth atmosphere, soil and			
7	Description	bodies. It also describes the adverse effect of industrial pollution and its		
	_	possible prevention method.		
8	Outline syllabus			
	Unit 1	Earth's Atmosphere		
	A	Introduction, composition of atmosphere, vertical temperature,		
		heat budget of the earth atmospheric system, vertical stability		
		atmosphere		
	В	Bio-distribution of elements. Reactions in atmosphere, Stratospheric		
		chemistry. Chemistry of photochemical smog, Precipitation, Acid rain,		
		Production and removal of nitric acid, Sulphuric acid		
	С	Atmospheric aerosols-Sources, Concentrations, Control. Chemistry of		
		global climate. Air sampling techniques, Sources, effects and		
		monitoring of air pollutants by Instrumental methods, Control of air		
		pollution		
		ponución		
	l			

Unit 2	Hydrosphere		
A	Chemical composition of water bodies — lakes, streams, rivers and wetlands etc Hydrological cycle. Aquatic pollution-inorganic, organic, pesticides, agricultural, industrial and sewage, detergents, oil spills and oil pollutants		
В	water quality parameters-dissolved oxygen, biochemical oxygen demand, solids, metals, content of chloride, sulphate, phosphate, nitrate and micro-organisms, water quality standards, Analytical methods for measuring BOD, DO, COD, F, OILS, METALS (As, Cd, Cr, Hg, Pb, Se), Residual chloride and chlorine demand, purification and treatment of water.		
С	Distribution of species in aquatic systems: Single variable diagrams, Two variable diagrams, Method of calculating pE ^o		
Unit 3	Soils		
A	Chemical composition of the soil, micro and macronutrients, the exploitation of the mineral resources and abuse of the earth		
В	soil pollution due to natural and artificial agencies and its effects, remedial measures to check the pollution. pollution-fertilizers, pesticides, plastics and metals, waste treatment.		
С	Humic material-Formation, Composition, Structure determination using spectroscopy, Properties. Radioactive pollution, disposal of radioactive waste		
Unit 4	Industrial Pollution		
A	Cement, sugar, distillery, drug, paper and pulp, thermal power plants, nuclear power plants, metallurgy, polymers, drugs etc		
В	radionuclide analysis, disposal of wastes and their management. Waste Water, Treatment of Industrial Waste Water,		
С	Environmental Impact Assessment process in India.		
Unit 5	Environmental Toxicology		
A	Chemical solutions to environmental problems, biodegradability,		
В	principles of decomposition, better industrial processes. Bhopal Gas Tragedy, Chernobyl Disaster, Three Mile Island, Sewozo and Minamata disasters.		
С	Occupational safety Hazard Assessment, MSDS		
Mode of examination	Theory/Jury/Practical/Viva		
Weightage	CA MTE ETE		
Distribution	30% 20% 50%		
Text book/s* 1.Environmental Chemistry, A.K.Das. 2.Environmental Chemistry, Samir K. Banerji. 3.Environmental Chemistry H. Kaur, 6th Edn, Pragathi Praka Meerut, 2011.			

	4.Environmental Pollution Analysis, S. M. Khopkar, New Age		
	International (P) Ltd, 1993.		
	1. Analysis of Industrial Waste Water, K.H.Mancy and W,.J.Weber.		
Other	Wiley, Interescience New York, 1971.		
References	s 2.Environmental Chemistry, L.W. Moore and E. A. Moore, McG.		
	Hill Publication, New York		
	3.Environmental Chemistry, Colid Baird. W. H. Freemand and		
	Company, 1995.		

2.1 Template A1: Polymer Science and Technology (MCE202)

Scho	ool: SBSR	Batch: 2018-20		
Program: M.Sc.		Current Academic Year: 201		
	nch:Chemistry	Semester:III		
1	Course Code	MCE201		
2	Course Title	Polymer Science and Technology		
3	Credits	4		
4	Contact	4-0-0		
	Hours			
	(L-T-P)			
	Course Status	Elective		
5	Course Objective	 To impart knowledge on synthesis of polymers using different polymerization methods/techniques and their characterization. To provide basic understanding on the synthesis and characterization of different types of copolymers and preparation of polymer blends and IPNs. To elaborate on the end-uses of polymers as matrix resins for composites, coatings and adhesives. To disseminate information on advanced polymeric systems and speciality polymers. To describe different processing techniques of polymers and to discuss degradation of polymers and the effect of use of polymers on environment. 		
6	Course Outcomes	CO1: Basic understanding on synthesis of polymers, determination of molecular weight and characterization of polymers using chemical methods and different instruments. CO2: Concept on the factors influencing the copolymerization of monomers and their microstructure, use of block copolymers as thermoplastic elastomers and compatibilizers for polyblends and knowledge on IPNs and Semi-IPNs. CO3: Knowledge on broad spectrum of end-use of polymers as matrix resins for composites, coatings and adhesives and their applications. CO4: Exposure to advanced polymeric systems such as shape memory polymers, self-healing polymers, engineering plastics and inorganic polymers. CO5: Understanding of different polymer processing techniques. CO6: Understanding the synthetic pathways and functional polymers along with factors influencing the degradation of polymers and gaining knowledge on the management of plastics and the		
7	Course Description	environmental impact. This elective course on Polymer Science and Technology covers the synthesis and characterization of homopolymers and copolymers, thermoplastic elastomers, polymer blends, interpenetrating polymer network (IPN) structures, polymer matrix composites, adhesives and coatings. This course also covers certain advanced/speciality polymer		

		systems such as shape memory polymers, dentrimers, hyperbranched	
		polymers and inorganic polymers. An insight into polymer processing	
		techniques, polymer degradation and recycling also forms part of this	
		course.	
8	Outline of syllabus		
	Unit 1	Synthesis and Characterization of Polymers	
	A	Atom Transfer polymerization, Group Transfer Polymerization, Ring	
		Opening Polymerization. Molecular weight: number average, weight	
		average, viscosity average molecular weight, z-average molecular	
		weight, molecular weight distribution.	
	В	Measurement of molecular weight and size: Colligative property	
		measurement, Light scattering, ultracentrifuge, viscosity, Gel	
		Permeation Chromatography, Fractionation of polymers by solubility.	
	C	Characterization of polymers: chemical methods, spectroscopic	
		methods, X-ray diffraction, microscopy and thermal analysis.	
		methods, 11 ray difficultion, interoscopy and diefinal analysis.	
	Unit 2	Copolymers, Thermoplastic elastomers, polymer blends and IPNs	
	A	Copolymers: Radical copolymerization - monomer reactivity ratios, Q-	
		e factor, Formation of random, alternating and block copolymers in	
		radical copolymerization based on monomer reactivity. Monomer	
		sequencing (diad and triad structures) in copolymers using NMR	
		spectroscopy.	
	В	Thermoplastic elastomers: ABA and (AB) _n type block copolymers as	
	D		
		thermoplastic elastomers, their microstructure and applications.	
	C	Role of block copolymers as compatibilizers Interpene-trating Polymer	
		Networks (IPNs): Semi-IPNs and full IPNs – Synthesis,	
		characterization and applications.	
	Unit 3	Polymer matrix composites (PMCs), Adhesives and Coatings	
	A		
	A	Polymer matrix composites: Matrix resins-epoxy resins, phenolic resins	
		and polyimides, Reinforcement-particulate, short fiber, continuous	
		fiber-glass fibre and carbon fibre, characterization techniques and	
		mechanical properties. Polymer Nano Composites, Aerospace and	
		defence applications of PMCs.	
	В	Adhesives: Theory of adhesion, an overview of polymers used as	
		adhesives, high temperature adhesives, evaluation of adhesive	
		properties. Applications of adhesives.	
	C	Coatings: Water-borne and solvent based coatings, polymers as binders	
		in paints. Self cleaning coatings. Applications of coatings.	
	Unit 4	Advanced Polymers/Speciality Polymers	
	A	Shape Memory Polymers, Self-Healing Polymers, Dentrimers and	
		hyper-branched polymers, Conducting polymers, Liquid Crystalline	
		Polymers.	
	•	. •	

В	Engineering thermoplastics: Polyetherimide, Poly-carbonate.				
C	Inorganic polymers: Polyphosphazene, polysilane, polycarbosilane, polysiloxane and polymetallosiloxanes.				
Unit 5	Polymer Processing, P	olymer degradation an	d the environ	ment	
A					
В	Polymer degradation: Tl	hermal degradation, Oxi	dative and UV	stability,	
	Chemical and hydrolytic stability, Effects of radiation.				
C	Environment: Managem		vironment-rec	ycling,	
	incineration and biodegr				
Mode of	Theory/Jury/Practical/V	iva			
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
	1. Text book of Polymo		on, F.W. Billı	neyer, Jr.	
75 41 1/s	Wiley-Intersciene, 2003.				
Text book/s*	2. Polymer Science & Technology, J. R. Fried, Prentice-Hall Inc., USA				
	(Indian Reprint) 2005.				
	Polymers: Chemistry and Physics of Modern Materials, 3rd edition, by				
	J.M.G. Cowie and V. A	rrighi, New York, CRC	Press, 2008.		
	1. Macromolecules: An 1	•		A. Bovey	
		Academic Press, New Yo			
	2. Inorganic Polymers, 2		, H. R. Allcoc	k and R.	
Other	West, Oxford Univers	•	~·		
References	References 3. Adhesives Technology Handbook, 3rd Edition, Sina Ebnesajjad an			33	
Arthur H. Landrock (Imprint: William Andrew) Elsevier, 2014.					
	4. Processing of Polymer Matrix Composites, P.K. Mallick, CRC Press, 2017.				
	5. Engineering Thermor	plastics: Properties and A	Applica-tions.	Margolis.	
	CRC Press, 1985.	troperiors wild i	-F F 11-04 01-011-05,		

2.1 Template A1: Inorganic Chemistry-V (MCH238)

School: SBSR		Batch: 2018-20		
Program: M.Sc.		Current Academic Year: 2020		
Branch:	Chemistry	Semester: IV		
1	Course Code	MCH238		
2	Course Title	Inorganic Chemistry V		
3	Credits	4		
4	Contact	4-0-0		
	Hours			
	(L-T-P)			
	Course Status	Compulsory		
5	Course Objective			
		6. To describe the bioinorganic chemistry of Vitamin B ₁₂ .		
6	Course Outcomes	CO1:Explain the transport of ions through membrane CO2: Predict the structure and mechanism of Fe and Cu containing metalloproteins. CO3:Learn about structure and chemistry of DNA and RNA. CO4: Understand the importance of Molybdenum, Tungsten and Zinc containing Enzymes. CO5:Illustrate biologically important processes like photosynthesis CO6:Understand the role and importance of metal ions in biology.		
7	Course Description	This course includes details discussion about various bio molecules and metal containing enzymes with special reference to iron, copper, zinc, tungsten and molybdenum.		
8	Outline syllabus	3		
	Unit 1	Bioinorganic Chemistry of Metals		
	A	Essential and trace elements in biological systems,		
	B structure and functions of biological membranes; mechanism of transport across membranes; sodium pump, role of calcium muscle contraction, blood clotting mechanism and biolog calcification.			
	С	Structure and functions of amino acids, proteins, peptides and comparative study of structures and functions of these Biomolecules		
		The state of the s		
	Unit 2	Bioinorganic Chemistry of Iron and Copper		
	A	Iron-sulphur proteins: rubredoxin and ferredoxins;		

*	SHARDA	4
	UNIVERSIT	_

		7.5.11		Beyond Boundaries	
	В			moglobin, myoglobin.	
	С	i e	Cytochrome c-oxidase		
		Synthetic oxygen carrier and model systems. Thermodynamic and			
		, ,	nation; Non-heme pro	teins: hemerythrin and	
		hemocyanin.			
	Unit 3	Bioinorganic Cher	mistry in Biological Sys	stems	
	A	-	f polynucleotides, nucle	osides and nucleic acids	
		(DNA and RNA).			
	В	<u> </u>	nd melting temperature.		
	C	Role of metal ions in	n replication and transcr	iption process of nucleic	
		acids. Metal deficie	ncy and disease		
	Unit 4	Molybdenum, Tur	ngsten and Zinc contain	ning Enzymes	
	A			tance of Zn in nature,	
		· · · · · · · · · · · · · · · · · · ·	, carboxypeptidase, alco	·	
	В	Biological nitrogen fixation	fixation (Nitrogenase)	and abiological nitrogen	
	С	tungsten containing	g formate dehydrogenas	se and tungsten bearing	
		hyperthermophilic and thermophilic enzymes.			
	Unit 5	Biologically Important Processes			
	A			lorophyll, PS-I and PS-	
		II,	·		
	В	Vitamin B 12 coenzyme, its function and application in organic			
		synthesis.			
	С	Availability of iron	and iron toxicity.		
	Mode of	Theory			
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Text book/s*			Bioorganic Chemistry;	
		Panima Publ. Corpi			
			inorganic Chemistry; A	n Introduction; Allyn	
		and Bacon Inc. (197			
		_	ne Inorganic Chemistry	of Biological Processes;	
		Wiley (1981).			
			organic Aspects of Biolo	ogical and Organic	
Chemistry; Academic Press (1976). 3.H. Kraatz & N. Metzler-Nolte (Eds.). Concep					
	Other			ncepts and Models in	
	References	_	istry; Wiley (2006).	Volentine	
		*	y; S. J. Dippard & J. S.		
		_	istry; Viva Books Pvt. I		
			V.R. Cullen; D. Dolphin of Inorganic Chemistry		
		Diological Aspects	or morganic Chemistry	, John Wiley (1977).	

2.1 Template A1: Physical Chemistry-V (MCH239)

Scho	ool: SBSR	Batch: 2018-2020		
Program: B. Sc		Current Academic Year: 2020		
Bra	nch: Chemistry	Semester: V		
1	Course Code	MCH 239		
2	Course Title	PHYSICAL CHEMISTRY-V		
3	Credits	4.0.0		
4	Contact	$(4\ 0\ 0)$		
	Hours			
	(L-T-P)			
	Course Status	Compulsory		
5	Course Objective	 To provide the understanding of Quantum mechanical aspect of Band gap and Band theory in semi conductors. To understand the various techniques for the preparation of nanomaterial and properties of nanomaterials. To extend the concept of X-Ray diffraction, their generation and different experiments to study X-Ray diffraction. To provide the understanding of physical aspects in Biological phenomenon. To provide the indepth concept of polymers and their properties. 		
6	Course Outcomes	CO1: Direct and indirect band gap in semiconductors, types and analysis of p-n junctions. CO2: Students will be able to prepare nanomaterials and will be able to characterize their optical, electronic and structural properties. CO3:Students will be able to understand the generation of X-rays and diffraction patterns and will be able to refine the X-ray patterns. CO4: Students will be able to understand the energy Transformation and Thermodynamic principles and their applications in biological		
7	Course	Course emphasizing on the application part of Solid state chemistry and		
	Description	analysis of structure using X-Ray diffraction, materials chemistry,		
		Biophysical aspects and applications and properties of polymers.		
8	Outline syllabus			
	Unit 1	Solid State Chemistry		
	A	Free electron theory of metals, Quantum mechanical		
		treatment explaining the origin of band gaps, density of		

_		Beyond Boundaries
		states, Band theory, Bloch theorem, Brillouin zones,
		effective mass of charge carriers,
	В	Semiconductors: Direct and indirect band gap
		semiconductors, hole concept, temperature dependence of
		mobility and electrical conductivity, free carrier
		concentration in intrinsic and extrinsic semiconductors, mass
		active law,
	С	Generation of carriers and their recombination in
		semiconductors. Types of junctions (metal-semiconductor,
		semiconductor-semiconductor, junctions in organic
		materials), Analysis of p-n junction including I-V
		characteristics.
	Unit 2	
		Materials Chemistry
	A	Definition of nanomaterials, various techniques for the
		preparation of nanomaterials, Thermodynamics and Kinetics
		of Nucleation, Thin Films and
	В	Langmuir-Blodgett films - Preparation techniques,
		evaporation/sputtering, chemical processes, MOCVD, sol-
		gel. Langmuir-Blodgett (LB) film growth techniques,
	C	photolithography, properties and applications of thin and LB
		films.
		Electronic structure and properties of nanomaterials, optical,
		electrical and magnetic properties, Chemical behaviour,
		applications of nanomaterials.
	Unit 3	X-Ray Diffraction and Crystal Structure
	A	Generation of X-rays, diffraction of X-rays by crystals, systematically
		absent reflections, multiplicities,
B X-ray diffraction experiments: the powder method-		
		Laue method, Bragg method and single crystal method, scattering of X-
		rays by atoms and a crystal,
	C Patterson Synthesis, the Rietveld Refinement of BaTiO ₃ , ZnO and	
		BaSnO ₃ , R-factor.
	Unit 4	Biophysical Chemistry
	A	Energy Transformation and Distribution of Energy, Thermodynamic
		principles in biological systems; Osmotic pressure,
		membrane equilibrium.
	В	muscular contraction and energy generation in
		mechanochemical system. Cell Membrane and Transport of
		Ions: Structure and functions of cell membrane.
i	1	
	<u> </u>	Active transport across call mambrana irroversible
	С	Active transport across cell membrane, irreversible
		thermodynamics treatment of membrane transport.
	C Unit 5	
	Unit 5	thermodynamics treatment of membrane transport. Polymers
		thermodynamics treatment of membrane transport. Polymers Introduction, Classification of polymers, Concept of Mass and Number
	Unit 5	thermodynamics treatment of membrane transport. Polymers

В	diffusion and light scattering	ng), Physical propert	ies of polymers (glass
	transition temperature, crystalline melting point),		
C	Rheological Properties, Biodegradable and Biomedical polymers, Liquid		
	crystal polymers.		
Mode of	Theory		
examination	-		
Weightage	CA	MTE	ETE
Distribution	30%	20%	50%
Text book/s*	1.Polymer Chemistry	, Billmayer	
	2. Polymer Chemis	•	
			l T. Haynie, Cambridge
	4. Biophysical Chemistry, Vol. 1-3, C. R. Cantor & Schimmel		
	5. Biophysical Chemistry: Principles and Techniques by		
	Jpadhyay, Himalaya Publishing House		
	6. Introduction to Biophysical chemistry, R. Bruce Martin, McGraw-H		
	NY, 1964.		
	7. Solid State Chemistry and its Applications(1984), A.R. West, John Wi		
	nd Sons,		
	Singapore		
	8. Introduction to Solids(1)	977), L.V. Azaroff, T	Tata McGraw-Hill, New
	Delhi		
	9. Solid State Chemistry(1	992), L. Smart and E	Moore, Chapman & Hall,
	Madras		
	10. Principles of Solid Sta	* * * * * * * * * * * * * * * * * * * *	
	Instrumental methods	of chemical analy	sis: Braun

2.1 Template A1: Organic Chemistry-V (MCH240)

Scho	ool: SBSR	Batch: 2018-20		
Program: M.Sc.		Current Academic Year: 2020		
	nch:Chemistry	Semester: IV		
1	Course No.	MCH240		
2	Course Title	Organic Chemistry V		
3	Credits	4		
4	Contact	4-0-0		
	Hours (L-T-P)			
	Course Status	Compulsory		
5	Course Objective	1.To impart knowledge on synthesis of five and six- member heterocyclic compounds with two or more hetero atoms. 2.To familiarize with the synthesis of larger ring heterocyclic compounds. 3.To impart knowledge on synthesis of natural products. 4.To familiarize with structure determination and stereochemistry of terpenoids and carotenoids. 6.To understand the structure and significance of alkaloids.		
6.	Course Outcomes	CO1: Understand the structure, properties, synthesis and reactions of five and six- member heterocyclic compounds with two or more hetero atoms. CO2: Propose syntheses and applications of heterocycles from the major classes. CO3:Describe the structure and synthesis of terpenoids and carotenoids		
7	This course will provide a concise introduction to heterocy chemistry. Emphasis will be given on the most important heterocy systems particularly five, and six-membered heterocyclic systems. Chem synthesis, properties, characteristics and applications of these syst will be discussed in detail. The course provides a basic knowledg natural products chemistry with emphasis on terpenoids, carotenoids alkaloids.			
8	Outline syllabus	S		
	Unit 1	Heterocycles I		
	A	Introduction, synthetic approaches, reactions and important applications of five membered heterocyclic compounds with two or three hetero atoms - imidazole, oxazoles,		
	В	synthetic approaches, reactions and important applications of - thiazoles, oxadiazoles,		

*	SHARDA
	UNIVERSITY

	Beyond Boundaries
С	synthetic approaches, reactions and important applications of -thiadiazoles, triazole.
Unit 2	Heterocycles II
A	Introduction, synthetic approaches, reactions and important applications of condensed five and six membered heterocycles with one hetero atom – indole.
В	synthetic approaches, reactions and important applications of – benzofuran, benzothiophene,
С	Synthetic approaches, reactions and important applications of – quinoline and isoquinoline.
Unit 3	Heterocycles III
A	Introduction, synthetic approaches, reactions and important applications of six membered heterocyclic compounds with two hetero atoms – pyridazine.
В	synthetic approaches, reactions and important applications of pyrimidine
С	synthetic approaches, reactions and important applications of pyrazine.
Unit 4	Terpenoids and carotenoids
A	Classification, nomenclature, occurrence, isolation, general methods of structure determination, isoprene rule. Structure determination and synthesis of the following representative molecules: Monoterpenoids - Citral, geraniol (acyclic), α-terpeneol, menthol (monocyclic). Sesquiterpenoids - Farnesol (acyclic), zingiberene (monocyclic), santonin (bicyclic), Diterpenoids - Phytol and abietic acid, β- carotene, lycopene and vitamin A.
В	Structure determination and synthesis of the following representative molecules: Sesquiterpenoids - Farnesol (acyclic), zingiberene (monocyclic), santonin (bicyclic).
С	Structure determination and synthesis of the following representative molecules: Diterpenoids - Phytol and abietic acid, β - carotene, lycopene and vitamin A.
Unit 5	Alkaloids
A	Definition, nomenclature and physiological action, occurrence, isolation, general methods of structure elucidation, degradation, classification based on nitrogen heterocyclic ring, role of alkaloids in plants.
В	Occurence, synthesis and structure elucidation of alkaloids – Reserpine
	Definition, nomenclature and physiological action, occurrence, isolation, general methods of structure elucidation, degradation,
_	*
В	Occurence, synthesis and structure elucidation of alkaloids – Reserpine

	С	Occurence, synthesis and structure elucidation of alkaloids –morphine.			
	Mode of examination	Theory/Jury/Practical/Viva			
	Weightage	CA	MTE	ETE	
	Distribution	30%	20%	50%	
	Distribution				
		•	•	T. L. Gilchrist.	1 D M
			iction to the Ci	hemistry of Heterocyclic compour	nas, R. M.
		Acheson.			
			•	. A. Joule & K. Mills.	
9	Text Book/s*	4. Principles	of Modern He	eterocyclic Chemistry, A. Paquette	e.
		5. Heterocyc	5. Heterocyclic Chemistry, J. A. Joule & Smith.		
		6. Handbook of Heterocyclic Chemistry, A. R. Katritzky.			
		7. Natural Products: Chemistry and Biological significance, J. Mann,			
		R. S. Davidson, J. B. Hobbs, D. V.,			
		Banthropde & J. B. Harborne.			
		8.Organic Chemistry, Vol-2, I. L. Finar			
		1.Stereoselective Synthesis: A Practical Approach, M. Nogrudi.			
10	References	2.Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey.			
		3. Chemistry, Biological and Pharmacological properties of Medicinal			
		plants from the Americans, Ed. Kurt. Hostettmann, M. P. Gupta and A.			
		Marston			

2.1 Template A1: Inorganic Chemistry-VI (MCH241)

School: SBSR Batch: 2018-20 Program:M.Sc. Current Academic Year: 2020 Branch: Chemistry Semester: IV 1 Course Code MCH241 2 Course Title Inorganic Chemistry VI		
Branch: Chemistry Semester: IV 1 Course Code MCH241		
1 Course Code MCH241		
2 Course Title Inorganic Chemistry VI		
- V	Inorganic Chemistry VI	
3 Credits 4	·	
4 Contact hours 4-0-0	4-0-0	
Course Status Compulsory	Compulsory	
5 Course 1.Understand the importance of superconductors in engineer	ring	
Objectives applications.	_	
2.Relate the supramolecular role in ion detections.		
3.Understand the chemistry of glasses and ceramics and their applications.	ation	
in daily routine.		
4.Understand the role of superconductors in catalysis.		
5.Describe the technique used in applications of nanomaterials.		
6.Understand the importance of nanomaterial based device in daily		
routine.		
6 Course CO1:Understand the concept of molecular recognition in the application	ition	
Outcome of supramolecules.		
CO2:Relate the applications of glass and ceramics on the basis of	their	
structure.		
	CO3:Explain the concept of superconductivity.	
	CO4:Synthesis of nanomaterials.	
	CO5:Identify the properties of nanomaterials and their applications in	
	electronic applications.	
· · · · · · · · · · · · · · · · · · ·	CO6:Gain knowledge about various advanced inorganic materials.	
7 Course The course is framed to give broad view of supramolecular, smart		
Description inorganic materials, superconductors and nanomaterials.		
Physicochemical properties and applications of nanomaterials have		
been covered in this paper. 8 Outline syllabus		
8 Outline syllabus Unit 1 Supramolecular Chemistry		
A Concepts of Molecular recognition: Molecular receptors for diffe	rent	
types of molecules including anionic substrates, design and synthes		
co-receptor molecules and multiple recognition	10 01	
	gels,	
Supramolecular reactivity in catalysis	5010,	
C Transport processes and carrier design. Supramolecular devices. S	ome	
example of self-assembly in supramolecular chemistry	JIIIC	
example of sen-assembly in supramolecular elemistry		
Unit 2 Inorganic Smart Materials		
A Structure of Glass and Ceramics: Ceramics crystal structures, de	isity	
computations, silicate ceramics	•	

		Beyond Boundaries			
	В	Glass ceramics.Refractories with reference to preparation, Properties			
		and applications.			
	С	fibre reinforced Composites, microscopic composites, preparation			
		procedure, special properties and applications			
	Unit 3	Superconductors			
	A	Inorganic semiconductors, Electrical, magnetic, thermal and optical			
	7.1	properties of superconductors,.			
	В	Metallic bonds High temperature superconductors Structural features of			
	D	cuprate superconductors:1-2-3 and 2-1-4 cuprates.			
	С	Electrical and magnetic properties of superconductors			
	_				
	Unit 4	Nanomaterials			
	A	Definition of nanomaterials, fullerenes, carbon nanotubes, graphene.			
		Discovery of C_{60} , Superconductivity in C_{60} , Alkali doped C_{60} .			
	В	Carbon nanotubes - Synthesis of Single walled carbon nanotubes.			
		Synthesis methods - Arc discharge, Laser Abalation, Low temperature			
	C	method, Chemical vapour deposition. Growth mechanisms on CNT.			
	С	Structure and characterization techniques. Surface area measurement,			
		determination of size and textural studies of nanotubes.			
	Unit 5	Physiochemical Properties and Applications of Nanomaterials			
	A	Reactivity, effect of size and shape on nanocrystal reactivity,			
		agglomeration and sintering, dispersibility and chemical stability in			
		solution, surface modification of metallic and semiconductor			
		nanoparticles, nanofabrication and nanomanipulation.			
	В	Magnetism in nanomaterials, Doping, functionalizing nanotube.			
	C	Applications of Graphene, CNTs and Fullerenes - sensing, organic			
		transistor, odour sensor, electronics and optoelectronics and			
		photovoltaics.			
	7.7.				
	Mode of	Theory/Jury/Practical/Viva			
	examination	CA MEE EEE			
	Weightage Distribution	CA MTE ETE 30% 50%			
9	Textbook/s*	1.Timp.G., Ed.Nanotechnology, Springer-Verlag, N. Y			
9	Textbook/s.	2.Supramolecular Chemistry by Jonathan W Steed; Jerry L. Atwood.			
10	Other	1.Keer, H.V. Principles of the Solid State, Wiley Eastern Ltd., New			
10	References	Delhi.			
	References	2.West, A. R., Solid State Chemistry and its applications, John Wiley			
		and Sons.			
		3.Supramolecular Chemistry: Concept and Perspective by Jean Marie			
		Lehn			
		4.Mitchell, B. S. – An introduction to material engineering and			
		Science.Wiley interscience.			
		Belefice. Whey interscience.			

2.1 Template A1: PHYSICAL CHEMISTRY VI (MCH 242)

School: SBSR		Batch: 2018-2020			
Program: M. Sc		Current Academic Year: 2020			
Bra	nch:Chemistry	Semester: 04			
1	Course Code	MCH 242			
2	Course Title	PHYSICAL CHEMISTRY VI			
3	Credits	4			
4	Contact	(3 1 0)			
	Hours				
	(L-T-P)				
	Course Status	Compulsory			
		6. To provide the understanding of photophysical and photochemical processes of atoms and diatomic molecules.7. To understand various nonradiative relaxation processes.			
5	Course	8. To get familiar with high energy radiation with matter, radiation dosimetry and flash photolysis.9. To understand the meaning, scope, laws of irreversible			
	Objective	thermodynamics. 10. To provide information about various laws, parameters, and equations related to transport phenomenon.			
		11. To provide the conceptual knowledge of molecular and advanced photochemistry; radiation chemistry, dosimetry, and photolysis; irreversible thermodynamics and transport phenomenon.			
6	Course Outcomes	CO1: To understand various photophysical and photochemical processes of atoms and diatomic molecules upon irradiation. CO2: To study the various radiationless relaxation pathways. CO3: To learn about mechanism of interaction of high energy radiation with matter; radiation dosimetry and principle and application of flash photolysis. CO4: To understand the fundamental meaning, scope, and laws of irreversible thermodynamics. CO5: To get familiarize with different parameters and laws related to transport phenomenon. CO6: To study molecular and advanced photochemistry; radiation chemistry, dosimetry, and photolysis; irreversible thermodynamics and transport phenomenon.			
7	Course Description	Course emphasize on the basic concepts of molecular and advanced photochemistry; radiation chemistry, dosimetry, and photolysis; irreversible thermodynamics and transport phenomenon.			
8	Outline syllabus	·			
	Unit 1	Molecular photochemistry			
	A	Introduction-primary photophysical process of atoms and diatomic			
		molecules, the absorption and emission of light - spectroscopic			
		notations, state mixing, spin-orbit coupling and spin forbidden radiative			
		transitions,			

	Beyond Boundaries		
В	Absorption complexes, Franck-Condon principle, selection rules, laws		
	of photochemical equivalence. Radiative transitions-classical model of		
	radiative transitions. Transitions between states (chemical, classical and		
	quantum dynamics, vibronic states).		
C	Potential energy surfaces; transitions between potential energy		
	surfaces. Jablonski diagram, Fluorescence, phosphorescence,		
	photosensitization, photosynthesis, and chemiluminescence.		
Unit 2	Advanced photochemistry		
A	Wave mechanical interpretation of radiationless transitions between		
	states, factors influencing the rate of vibrational relaxation.		
	Fluorescence quenching: collisional quenching, Stern-Volmer equation,		
	concentration quenching, quenching by excimer and exciplex emission		
В	Energy transfer: Theory of radiationless energy transfer and energy		
	transfer by electron exchange. Fluorescence resonance energy transfer		
	between photoexcited donor and acceptor systems and dexter energy		
	transfer.		
C	The Perrin formulation. Triplet-triplet, triplet-singlet, singlet triplet		
	energy transfer. Multiphoton energy transfer processes, reversible		
	energy transfer.		
Unit 3	<u> </u>		
	Radiation Chemistry, Dosimetry and Photolysis: An overview		
A	G-value. The mechanism of interaction of high energy radiation with		
	matter, Photoelectric effect, Compton effect, Pair production, total		
	absorption co-efficient, excitation and ionization, Stopping power and		
	linear energy transfer.		
В	Radiation dosimetry: Radiation dose and its measurement, standard free		
	air chamber method,		
	chemical dosimeter (Frick's Dosimeter). Short lived intermediates (ions,		
	excited molecules,		
	free radicals: Various mechanisms of their formation and energy		
	transfer processes)		
C	Flash photolysis: Principle and its applications. Radiolysis of water and		
	aqueous solutions.		
	Radiolysis of molecules of biological interest (carbohydrates, amino		
	acids, peptides, and		
	nucleic acids).		
Unit 4	Irreversible thermodynamics		
A	Meaning and scope of irreversible thermodynamics, Thermodynamic		
	criteria for non-equilibrium states, Phenomenological laws- Linear		
	laws, Gibbs equation		
В	Onsager's reciprocal relations, Entropy production- specific examples		
	of entropy production, Non-equilibrium stationary states		
С	1 1 1		
	phenomena. Some important applications.		
Unit 5	Transport phenomena		
A	Diffusion coefficients, Fick's first and second laws, relation between		
	flux and viscosity,		
	1		

В	relation betwe	een diffusion o	coefficient and mean free path, relation
Ъ	between thermal conductivity/viscosity and mean free path of a perfect		
	gas, Einstein relation.		
C	Nernst-Einstein equation, Stokes-Einstein equation, Einstein-		
C	Smoluchowsł	•	tokes-Emstern equation, Emstern-
Mode of		ar equation.	
examination	Theory		
	CA	MTE	ETE
Weightage		MTE	ETE
Distribution	30%	20%	50%
Text book/s*		J. Modern Mo	lecular Photochemistry Univ. Science Books
	(1991).		
			J. Essentials of Molecular Photochemistry
		Scientific (19	
			V.R. and Ramamoorthy, N., "Fundamentals
		•	NCAS, BARC, Mumbai.
			ndamentals of Photochemistry", New Age
		nal Pvt. Ltd., 1	
	5. Lakowicz, J.R., "Principles of Fluorescence Spectroscopy", Plenum		
	Press, New York. 6. Wishart, J.F. and Nocera, D.G., "Photochemistry and Radiation		
	·		
			iversity Press, USA.
			edy J.W., Miller, E.S. and Macais, J.M.,
	"Nuclear and Radiochemistry", John Wiley and Sons, Inc. New York.		
	8. Atkin's Physical Chemistry, P. Atkins & Julio de Paula, Oxford		
	University Press		
	9. Introduction to Thermodynamics of Irreversible Processes by I. Prigogine, Interscience		
	10. Fundamentals of Photochemistry, K. K. Rohatgi-Mukherjee.		
	11. Katchalsky, A. & Curren, P. F. Non Equilibrium Thermodynamics in		
	Biophysics Harvard University Press: Cambridge (1965).		
	Kalidas, C. & Sangaranarayanan, M.V. Non-Equilibrium		
	Thermodynamics: Principles & Applications, Macmillan India Ltd.		
	(2002).		

2.1 Template A1: Organic Chemistry-VI (MCH243)

School: SBSR		Batch 2018-20		
Program: M.Sc.		Current Academic Year : 2020		
Branch:		Semester IV		
Che	mistry			
1	Course No.	MCH243		
2	Course Title	Organic Chemistry VI		
3	Credits	4		
4	Contact	4-0-0		
	Hours (L-T-P)			
	Course status	Compulsory		
5	Course Objective	 To provide a comprehensive introduction to biochemistry. To learn the chemistry of enzymes, structures of nucleic acids, proteins and carbohydrates. To know the chemistry of selected steroids, cholesterol and hormones. To familiarize the chemistry and structure of oxytocin. To know the kinetics of enzymes. To understand the chemistry of antibiotics. 		
6	Course Outcomes	CO1:To introduce structure and functions of carbohydrates and the derivatives. CO2:Understand the structure, function, and folding of proteins. CO3:Analyze the double helical structure of DNA and its replication RNA and transcription. CO4:Learn kinetics of enzyme catalyzed reactions and enzyminhibition. CO5:Convert cholesterol to progesterone, estrone and testosterone and structure elucidation of cholesterol. CO6:Acquire knowledge of molecular structure and interactions present in proteins, nucleic acids and carbohydrates and enzymes, the organization and working principles of various components present iliving cell.		
7	Course Description	The course is designed to give provide an ability to assess the significance of fundamental chemical properties on biomolecular structure, understanding of the connection between biomolecular structure and function, acquire knowledge of chemical synthesis of biomolecules and the chemical reactions of biomolecules.		
8	Outline Syllabus			
	Unit 1	Carbohydrates		
	A	Conformation of monosaccharides, structure and functions of important derivatives of monosaccharides like glycosides, deoxy sugars, myoinositol, amino sugars.		

*	SHARDA
	UNIVERSITY

В	N-acetylneuraminic acid, sialic acid disaccharides and polysaccharides. Structural 80polysaccharides - cellulose and chitin. Storage polysaccharides- starch and glycogen. Structure and biological functions of glucosaminoglycans or mucopolysaccharides.			
С	Carbohydrates of glycoprotiens and glycolipids. Role of sugars in biological recognition. Blood group substances. Ascorbic acid.			
Unit 2	Amino acids and Proteins			
A	Chemical and enzymatic hydrolysis of proteins to peptides, amino acid sequencing. Secondary structure of protein, forces responsible for holding of secondary structures. A- helix, β -sheets, super secondary structure, triple helix structure of collagen. Tertiary structure of protein-folding and domain structure. Quaternary structure.			
В	Amino acid metabolism- degradation and biosynthesis of amino acids, sequence determination: chemical/ enzymatic/ mass spectral, racemization/ detection.			
C	Chemistry of oxytocin and tryptophan releasing hormone (TRH).			
Unit 3	Nucleic Acids			
A	Introduction, chemical and enzymatic hydrolysis of nucleic acids, Structure physical and chemical properties of the heterocyclic bases – Adenine, Guanine. Cytosine, Uracil and Thiamine.			
В	Structure and synthesis of mono and poly – nucleosides and nucleotides. Deoxyribose nucleic acid (DNA): Primary, secondary, tertiary structure of DNA.Structure of RNA. Types of RNA – mRNA, rRNA and tRNA.			
С	The chemical basis for heredity, an overview of replication of DNA, transcription, translation and genetic code.			
Unit 4	Enzymes			
A	Introduction and historical perspective, chemical and 80biological catalysis, remarkable properties of enzymes like catalytic power, specificity and regulation.			
В	Nomenclature and classification, extraction and purification. Fischer's lock and key and Koshland's induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labeling and enzyme modification by site-directed mutagenesis.			
C	Enzyme kinetics, Michaelis–Menten and Lineweaver Burk plots, reversible and irreversible inhibition, mechanism of enzyme action.			
Unit 5	Steroids and Hormones			
A	Occurrence, nomenclature, Diel's hydrocarbon and stereochemistry.			
B Isolation, structure determination and synthesis of Cholest acids.				

С	Androsterone, testosterone, estrone, progesterone, vitamin D.				
Mode of	Theory/Jury/Practical/Viva				
examination					
Weightage	CA	CA MTE ETE			
Distribution	30%	30% 20% 50%			
Text Book/s*	1.A.L. Lehninger, Principles of Biochemistry, CBS Publishers, Delhi.				
	2.I.L. Finar Volume II.				
	1.D. Voet, J.G. Voet & CW Pratt, Fundamentals of Biochemistry, John				
	Wiley & Sons, New York.				
Other	2.H.R. Mahler and E.H. Cordes, Biological Chemistry, 2 nd Edition,				
references	Harper and Row Pub., New York.				
	3.T.C. Bruice and S. Bentkovic, Bioorganic Mechanisms, Vol. I & II, W. A.				
	Benjamin, Ne	Benjamin, New York.			

2.1 Template A1: Medicinal Chemistry (MCE203)

School: SBSR		Batch: 2018-20		
Program:M.Sc.		Current Academic Year: 2020		
Branch: Chemistry		Semester:IV		
1	Course No.	MCE203		
2	Course Title	Medicinal Chemistry		
3	Credits	4		
4	Contact	4-0-0		
	Hours (L-T-P)			
	Course Status	Elective		
5	Course Objective	 To provide a comprehensive introduction to Pharmaceutical Chemistry. To introduce the Quantitative structure activity relationship. To introduce the software used in drug designing. To explain the process of pharmacology. To introduce the chemistry of antineoplastic drugs. To throw light on the chemistry of Anti-HIV Drugs and AIDS and antibiotics. 		
6.	Course Outcomes	CO1:Explain concept of Quantitative Structure Activity Relationship. CO2:Understand the process of pharmacokinetic and pharmacodynamics. CO3:Elucidate the mode of action of Antineoplastic drugs. CO4:Explain the chemistry and mode of action of Anti-HIV and AIDS drugs. CO5:Explain the chemistry and mode of action of NSAID drugs and review the chemistry of Antibiotic drugs. CO6:Have a thorough grounding in Pharmaceutical Chemistry and basic knowledge in drug designing.		
7	Course Description	The course is emphasises on physical interactions and chemical reactions and their mechanisms as applied to biological systems, how drugs are discovered and developed, classified, how they get to their site of action, what happens when they reach the site of action in their interaction with receptors, enzymes, and DNA. The approaches discussed are those used in the pharmaceutical industry and elsewhere for the discovery of new drugs.		
8	Outline Syllabus			
	Unit 1	Drug Design and Development		
	A	Procedures followed in drug design, concept of lead compound and lead		
		modification		
	В	structure-activity relationship (SAR), Quantitative structure activity		
		relationship (QSAR). History and development of QSAR.		
		Physicochemical parameters: lipophilicity, Hydrophobicity, Electronic		

	effect Steric factors, Hansch equation (Mathematical derivations of		
	equations excluded).		
C	Computer aided drug design. Software used in drug design.		
Unit 2	Pharmacology		
A	Pharmacokinetics: various modes of administration of drug distribution, metabolism (biotransformation) and drug excretion		
В	pharmacodynamic: Concepts of drug receptors interactions		
С	Definition of the following medicinal terms: Pharmacon,		
	pharmacophore, soft drug, prodrug, half-life, efficiency, LD50, ED50,		
	therapeutic index, drug toxicity, drug addiction, spurious drugs,		
	misbranded drugs, adulterated drugs, pharmacopoeia		
Unit 3	Antineoplastic Agents		
A	Introduction, cancer chemotherapy, special problems		
В	Role of alkylating agents and antimetabolites in treatment of cancer.		
	Mode of action of mechlorethamine, cyclophosphamide, 5-Fluorouracil.		
C	Recent development in cancer chemotherapy.		
Unit 4	Anti-HIV Drugs and NSAIDs		
A	Basic facts about HIV & AIDS, Structure of HIV cell, Anti HIV drugs		
	and their classification		
<u>В</u> С	NSAIDS & Mechanism of Action:Asprin		
C	NSAID-Induced Side Effects		
Unit 5	Antibiotics		
A	Introduction, classification of antibiotics, β-lactam antibiotics & their		
	mode of action - Amoxicillin, Chloramphenicol, Cephalosporin		
В	Tetracycline antibiotics & their mode of action, Aminoglycoside		
	antibiotics & their mode of action - Streptomycin.		
C	Macrolide antibiotics & their Mode of action – erythromycin		
Mode of	Theory/Jury/Practical/Viva		
examination			
Weightage	CA MTE ETE		
Distribution			
Text book/s*			
	Wiley & Sons Ltd. 2A Text Book of Medicinal Chemistry, Vol-I and Vol-II, Surendra N.		
	Pandeya, SG Publishers.		
	3.An Introduction to Drug Design, S.S. Pandeya and J. R. Dimmock,		
	New Age International Publishers.		
	4.Medicinal Chemistry, Ashutosh Kar, New Age International		
	Publishers.		

	5.Goodman and Gilman's Pharmacological Basis of Therapeutics,		
	McGraw-Hill.		
Other	1.Introduction to Medicinal Chemistry, A. Gringauge, Wiley-VCH.		
References	2. Wilson and Gisvold's Text book of Organic Medicinal and		
	Pharmaceutical Chemistry, Edited by J.N. Delgado and W. A. Remers,		
	J.B. Lipincott Company.		
	3. The Organic Chemistry of Drug Design and Drug Action, R.B.		
	Silverman, Academic Press.		
	4.Burger's Medicinal Chemistry and Drug Discovery, Vol. I-V, Edited		
	by M.E. Wolff, John Wiley & Sons Ltd		

2.1 Template A1: Chemistry of Nanomaterials (MCE204)

Scho	ool:SBSR	Batch:2018-20		
Prog	gram:M.Sc.	Current Academic Year: 2020		
	nch:Chemistry	Semester:IV		
1	Course Code	MCE204		
2	Course Title	Chemistry of Materials		
3	Credits	4		
4	Contact	4-0-0		
	Hours			
	(L-T-P)			
	Course Status	Elective		
5	Course	1.Teach the advanced methods towards the synthesis of functional		
	Objective	materials.		
	-	2. Teach the advanced methods towards the synthesis of high-quality thin		
		films.		
		3. Teach the mechanical and magnetic behaviour of functional materials.		
		4. Teach the basics and phenomenon associated with the electrical and		
		optical behavior.		
		5. Teach modern spectroscopic and microscopic methods towards the		
		characterization of functional materials.		
		6. To understand the novel materials from synthetic, analysis and		
		application perspectives.		
6	Course	CO1:Formulate the synthetic methods towards preparation of		
	Outcomes	novel materials.		
		CO2:Prepare the mechanistic pathway towards facile synthesis of thin		
		films.		
		CO3:Understand the diverse magnetic behaviour of materials		
		CO4:Understand the various electro-optical phenomenon of the		
		materials.		
		CO5:Characterize the materials via spectroscopic and microscopic tools.		
		CO6:Understand the advanced synthetic perspectives along with		
		physical properties and the concept of Auger and X-ray		
	~	Photoelectron Spectroscopy.		
7	Course	The elective course on Chemistry of Materials aims to teach the		
	Description	modern and advanced methods of synthesis, characterization and		
		properties of novel materials.		
8	Outline syllabus			
	Unit 1	Synthesis Methods: Physicochemical Techniques		
	A Preparation of materials by Ball milling, Attrition and Vibration milli			
		Cluster compounds, Preparation of nano particles, Preparation of		
		nanostructured polymers/Conducting polymers, composites.		
	В	Chemical precipitation and co-precipitation, Wet chemical methods,		
	~	Metal crystals by reduction, Sol-gel synthesis		
	C	Microemulsions or reverse micelles, Hydrothermal &		

*	SHARD	A
	UNIVERSIT	

	Solvotherma	l synthesis	, Thermolysis	routes,	Beyond Boundaries
	Microwave heating synthesis, Electrochemical				
	synthesis.				
Unit 2	Synthesis M	Synthesis Methods: Deposition Techniques			
A	Physical Vap	or Deposition	; mass evaporation r	ate; evapor	ators, e-beam,
	reactive ev	aporation, io	n beam assisted	deposition	n, Sputtering
	techniques				
В	Chemical V	apor Depositio	n - reaction chemis	try and the	ermodynamics
	of CVD				
C	Thermal CV	Thermal CVD, laser & plasma enhanced CVD, Pyrolytic synthesis.			
Unit 3			anical and Magneti		
A			different engineerin		
			ength, Hardness, Im		
В	_	_	e to brittle transition)), Fatigue, (Creep, Factors
		chanical prope			
C		_	materials, Diamag		_
	_	•	a- and paramagne		_
			nagnetism, Structur	e of Ferrite	•
Unit 4	_	Electrical and			
A			c concepts: complex		
		•	nechanism of polar		assification of
	dielectrics-frequency dependence of dielectric constant				
В	Ferroelectricity, Piezoelectricity, pyro-electric states, transition temperature, polarization catastrophe, antiferroelectricity, ferro electric				
	_	domains.			
		nontias. Dafus	ctive index and di	anamaian	Transmission
C			of light, Optical n		
Unit 5	Optical anisotropic, Non-linear optical crystals, Photoluminescence Structural Analysis				
A			and Atomic absorp	tion spectre	oscopy: Y-ray
A	diffraction	i i iix, ixaiiiaii	and 7 ttonne absorp	tion specifi	oscopy, A ray
В		gle and wide	angle, Debye-Scher	rer formula	a Dislocation
	density, Mic		angre, Beege sene	101111011	2, 215100001011
С			X-ray photoelectron	n spectrosc	opy (XPS)
Mode of	Theory	· · · · · · · · · · · · · · · · · · ·	, <u>r</u>		-17 (/
examination					
Weightage	CA	MTE	ETE		
Distribution	30%	20%	50%		
Text book/s*	1.Characteri	zation of mater	rials (Vol. 1 and 2)	by E.N. Ka	ufmann, John
	Wiley and S			•	
			of Materials', Volun		. M., Rose
	Shepard L. A	A., Wulff J.,4th	Edition, John Wiley	, 1984	
Other References	1.Pradeep T.	, "NANO th	e Essential, underst	anding Na	noscience and
			-Hill Publishing Compa		
	2. Charles P. Po	one Jr. Introduct	ion to Nanotechnology"	, John Willey	/ & Sons, 2003

2.3 A3: Syllabus of CCU401

School: SBSR		Batch :2018- 2020			
Prog	gram: M.Sc.	Current Academic Year: 2019			
	nch: Chemistry	Semester: II			
1	Course Code	CCU401			
2	Course Title	Community Connect			
3	Credits	2			
4	Contact Hours	2-0-0			
	(L-T-P)				
	Course Status	Compulsory			
5	Course Objective				
	ů	 To expose our students to different social issues faced by the people in different sections of society. To connect their class-room learning with problem solving skills in real life scenario. 			
6					
7	Course	In this mode, students will make survey, analyze data and will extract			
	Description The this mode, students will make survey, analyze data and will extra results out of it to correlate with their theoretical knowledge. E.g. Crops and animals, land holding, labour problems, medical problem of animals and humans, savage and sanitation situation, waste management etc.				
8	Outline syllabus				
	Unit 1	Introduction to the Topic			
	Unit 2	Drafting the questionnaire			
	Unit 3	Survey			
	Unit 4	Data collection, Discussions and result interpretation			
	Unit 5	Report writing and Presentation			
	Mode of examination	Presentation and Viva			
	Weightage	CA MTE ETE			
	Distribution	60% 0% 40%			
	Text book/s*	-			
	Other References	The entries in the list should be in alphabetical order.			

Journal article

Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. 169, 321–354 (1995)

Article by DOI

Sajti, C.L., Georgio, S., Khodorkovsky, V., Marine, W.: New nanohybrid materials for biophotonics. Appl. Phys. A (2007). doi:10.1007/s00339-007-4137-z

Book

Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992)

Book chapter

Broy, M.: Software engineering — from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002)

Online document

Cartwright, J.: Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 (2007). Accessed 26 June 2007

Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see

www.issn.org/2-22661-LTWA-online.php

For authors using End Note, Springer provides an output style that supports the formatting of in-text citations and reference list.

End Note style (zip, 2 kB)

2.3 A3: Syllabus of Dissertation A

School: SBSR		Batch :2018- 2020		
Prog	gram: M.Sc.	Current Academic Year: 2019		
	nch: Chemistry	Semester: III		
1	Course Code	MCH274		
2	Course Title	Dissertation A		
3	Credits	4		
4	Contact Hours	0-0-6		
	(L-T-P)			
	Course Status	Compulsory/Elective		
5	Course Objective	1 7		
		 To enhance the practical knowledge and result analysis skills. To enable the students experience a real-life problem solving under the supervision of faculty members. To prepare the students perform functions that demand higher competence in national/international organizations. To train the students in scientific research. To help the students find meaning in life by broadening their field of 		
		vision. 6.Develop deep knowledge of a specific area of specialization by literature search.		
6	Course Outcomes	CO1: Able to do literature search, develop deeper interest / inquisitiveness in chemistry and interdisciplinary subjects. CO2: Able to prepare stock solutions, buffers etc. CO3: Understand the basics of chemistry and become familiar with qualitative and qualitative estimations. CO4: Able to understand the chemistry of reactions. CO5: Able to analyse the results and understand the chemical reactions involved. CO6: Enhance the practical skills.		
7	Course	This course provides the applied knowledge of chemistry and gives		
	Description	confidence and a solid foundation for future learning.		
8	Outline syllabus			
	Unit 1	Introduction of subject / Literature search		
	Unit 2	Concept building and Study designing		
	Unit 3	Experimentation / Standardization of techniques		
	Unit 4	Data collection, Discussions and result interpretation		
	Unit 5	Report writing		

Mode of	Presentatio	Presentation and Viva		
examination				
Weightage	CA	CA MTE ETE		
Distribution	60%	0%	40%	
Text book/s*	-			
Other	Pubmed Search (NCBI)			
References	Review and	d research article	es of Indexed Journals	

2.3 A3: Syllabus of Dissertation B

School: SBSR		Batch :2018- 2020		
Prog	gram: B.Sc.(Hons)	Current Academic Year: 2020		
Brai	nch: Chemistry	Semester: VI		
1	Course Code	MCH275		
2	Course Title	Dissertation B		
3	Credits	6		
4	Contact Hours	0-0-12		
	(L-T-P)			
	Course Status	Compulsory/Elective		
5	Course Objective	 To enhance the practical knowledge and result analysis skills. To enable the students experience a real-life problem solving under the supervision of faculty members. To prepare the students perform functions that demand higher competence in national/international organizations. To train the students in scientific research. Develop research/ experimentation skills as well as enhancing project writing and oral presentation skills Inculcate team spirit and time management. 		
6	Course Outcomes	CO1: Able to use lab instruments independently. CO2:Cultivate the understanding of problem, study design, methodology/ experimentation, significance of reproducibility of results. CO3:Understanding of ethics of science and research for supporting higher studies. CO4:Learn effective project organizational skills along with discussions, result interpretation and paper writing. CO5: Able to analyse the results and understand the chemical reactions involved. CO6: Enhance the practical skills.		
7	Course	This course will help to develop knowledge and research skills		
'	Description	applicable to a career in chemistry.		
8	Outline syllabus	1 11		
	Unit 1	Introduction of subject/ literature search		
	Unit 2	Concept building and study design		
	Unit 3	Experimentation/ Standardization of techniques		
	Unit 4	Data collection, Discussions and result interpretation		

Unit 5	Report writing		
Weightage	CA	MTE	ETE
Distribution	60%	0%	40%
Text book/s*	-		
Other	Pubmed Search (NCBI)		
References	Review and research articals of Indexed Journals		

MCH171: Chemistry Lab

Sch	ool: SBSR	Batch: 2018-20		
	gram: M.Sc.	Current Academic Year: 2018		
	nch: Chemistry	Semester: I		
1	Course Code	MCH171		
2	Course Title	Inorganic Chemistry Lab I		
3	Credits	2		
4	Contact Hours (L-T-P)	0-0-3		
	Course Status	Compulsory		
5	Course Objective	 To perform the qualitative test on unknown inorganic compounds i.e. preliminary tests, tests for extra elements. To understand the basic concept of separation of cations from a mixture. To apply the gravimetric technique for separation of cations. To learn the preparation of a given inorganic complex. To analyze the prepared complexes with spectroscopic methods. 		
6	Course Outcomes	After finishing the course the students will be able to CO1: Understand the technique of analysis of cations and anions in a given mixture. CO2: Identify and perform the confirmatory tests on the cations. CO3: Design the plan to identify the cations and anions in a given mixture. CO4: Able to estimate the elements in a given mixture by gravimetric / volumetric methods. CO5: Apply the techniques and theory behind gravimeteric and volumetric methods. CO6: Prepare and analyse the inorganic complexes by spectrophotometric techniques		
7	Course Description Chemistry lab course is designed to make students understand technique of analysis of cations and anions in a given mixture, students also learn various techniques such as gravimeteric, vomethods and will also learn to synthesize and analyse the inorgence complexes by spectrophotometric techniques.			
8	Outline syllabus			
	Unit 1	Practical based on Quantitative analysis		
		Sub unit – a, b, c and d		
	Unit 2	Practical related to Quantitative analysis gravimetrically		
	77.14.2	Sub unit – a and b		
	Unit 3	Practical related to Quantitative analysis gravimetrically		
		Sub unit - a		
	Unit 4	Practical related to Synthesis and characterization of Complexes		
		Sub unit – a and b		
	Unit 5	Practical related to Synthesis and characterization of Complexes		

			Beyond Boundaries	
	Sub unit - a			
Mode of	Practical/Viva	Practical/Viva		
examination				
Weightage	CA	MTE	ETE	
Distribution	60%	0%	40%	
Text book/s*	O.P. Pandey,	D.N. bajpai, S.	Giri, "Practical Chemistry", S. Chand &	
	Co.			
Other	NA			
References				

MCH172: Organic Chemistry Lab I

Scho	ool: SBSR	Batch: 2018-20		
Prog	gram: M.Sc.	Current Academic Year: 2018		
	nch: Chemistry	Semester: I		
1	Course Code	MCH171		
2	Course Title	Organic Chemistry Lab I		
3	Credits	1		
4	Contact	0-0-3		
	Hours			
	(L-T-P)			
	Course Status	Compulsory		
5	Course Objective	 To perform the qualitative test on unknown organic compounds i.e. preliminary tests, tests for extra elements. To understand the basic concept of separation of organic compounds from a binary mixture. To apply the Paper and Thin layer chromatography technique for separation of compounds. 		
		for separation of compounds		
7	Course Outcomes Course Description	 To learn the preparation of an organic compound. After finishing the course the students will be able to CO1: Understand the technique of separation of compounds in a binary mixture. CO2: Able to measure specific rotation of an optically active compound CO3: Estimation of aniline in a solution of unknown strength CO4: Prepare the organic compounds in one or two steps. CO5: Apply the techniques of Paper and Thin Layer chromatography CO6: Learn organic synthesis and qualitative organic analysis Chemistry lab course is designed to make students understand the technique of qualitative analysis of a binary organic mixture. The students also learn various techniques such as paper chromatography, TLC, specific rotation measurement, synthesis of organic compounds 		
8	Outline syllabus	8		
	Unit 1	Practical based on Qualitative binary mixture analysis of organic		
		compounds		
		Sub unit – a, b, c and d		
	Unit 2	Practical based on measurement of specific rotation of an optically		
		active compound		
-	TI. 22	Sub unit – a and b		
	Unit 3 Practical related to estimation of Aniline			
-	TI	Sub unit - a Proportional related to Synthesis of Overania Common de		
	Unit 4	Practical related to Synthesis of Organic Compounds		
-	TT	Sub unit – a and b		
	Unit 5	Practical related to Chromatography of Organic Compounds		
		Sub unit - a		

Mode of	Practical/Viva			
examination				
Weightage	CA MTE ETE			
Distribution	60% 0% 40%			
Text book/s*	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical Chemistry", S. Chand &			
	Co.			
Other	Qualitative Organic Chemistry by Vogel			
References				

MCH174: Inorganic Chemistry lab-II

Scho	ool: SBSR	Batch:2018-20		
	gram: M.Sc	Current Academic Year: 2019		
Branch: Chemistry		Semester:II		
1	Course Code MCH174			
2	Course Title	Inorganic Chemistry Lab-II		
3	Credits			
4	Contact Hours (L-T-P)	0-0-2		
	Course Status	Compulsory		
5	Course	To learn about types of titration and estimation of elements of alloys, and		
	Objective	learn the techniques of jobs method and characterization of metal complexes		
		After doing this course the student should be able to		
		CO1: Prepare solutions of different strength and standardize them		
		CO2: Analyse domomite sample		
6	Course	CO3: Analyse various ferro-alloys and steel		
	Outcomes	CO4: Estimate one metal ion in a mixture		
		CO5: Understand the Job's method		
		CO6: Analyse given compound spectrochemically and using different		
		volumetric methods.		
7	Course	The course aims to appraise the students to learn basic methods of		
	Description	titration and caharacterisation of given material. It will enable students to		
		analyse various materials like steel and alloys.		
8	Outline syllabus			
	Unit 1	Practical related to analysis of samples		
		Sub unit – a ,b, c		
	Unit 2	Practical related to determination of elements in a mixture		
	77.4.0	Sub unit –c		
	Unit 3	Practical based to analysis of ferro alloys and steel		
	Unit 4	Sub unit- a Practical related to Applications of jobs method		
	UIII 4	Sub unit – c		
	Unit 5	Practical based to synthesis and characterization of metal complexes.		
		Sub unit - a		
	Mode of	Practical/Viva		
	examination			
	Weightage	CA MTE ETE		
	Distribution	60% 0% 40%		
	Text book/s*	O.P. Pandey, D.N. Bajpai, S.Giri, "Practical Chemistry", S. Chand &		
		Co.		
	Other	Vogel's "Textbook of quantitative Analysis", Pearson.		
	References	voget 8 Textbook of quantitative Allarysis, realson.		

MCH175: Organic Chemistry lab-II

School: SBSR		Batch: 2019-2021		
Program: M.Sc.		Current Academic Year: 2019		
Bran	nch: Chemistry	Semester: II		
1	Course Code	MCH 175		
2	Course Title	Organic Chemistry lab-II		
3	Credits	2		
4	Contact Hours	0-0-3		
	(L-T-P)			
	Course Status	Compulsory		
5	Course Objective	 To learn methods for, purification like fractional, steam distillation. To execute independently purification techniques to organic compounds column chromatography and Thin layer chromatography. To perform the qualitative test on mixture of unknown organic compounds i.e separation, preliminary tests, tests for extra elements, functional group test. To execute multistep organic synthesis procedures. To record the spectrum of synthesized compounds and interpret 		
6	Course Outcomes	their structure/Check the purity. Students are able to 1. Understand the Qualitative analysis of mixture of organic compounds 2. Understand the methods of separation and purification techniques of organic compounds 3. Execute the multistep organic synthesis procedures 4. Understand and interpret the structure of unknown compounds based on spectral analysis 5. Perform the extraction process of natural compounds 6. Will obtain the knowledge of independent organic synthesis, separation, purification and qualitative analysis. This course involves the qualitative analysis, Organic synthesis process,		
'	Description	purification and separation of organic compounds. It also involves		
	Description	extraction of organic compounds from natural products and characterization.		
8	Outline syllabus			
	Unit 1	Qualitative analysis of organic compounds-I		
	A	To analyze the mixture of two components.(Mixture 1)		
	В	To analyze the mixture of two components. (Mixture 2)		
	C	To analyze the mixture of two components. (Mixture 3)		
	Unit 2	Qualitative analysis of organic compounds-II		
	A	To analyze the mixture of two. (Mixture 4)components.		
	В	To analyze the mixture of two components. (Mixture 5)		
	C	To analyze the mixture of two components. (Mixture 6)		

Unit 3	Organic synthesis-I			
	Ü ,			
A		To prepare <i>m</i> -phenylenediamine form <i>m</i> -dinitrobenzene		
В	To prepare Methyl orange using aniline. Identify the product with M.P.,			
	UV and IR analysis.			
С	To extract the mustard oil from mustard seed using soxhlet extraction			
	technique			
Unit 4	Organic synthesis-II			
A	To prepare o-Chlo	To prepare o-Chlorobenzoic acid from phthalic anhydride.		
В	To prepare 2,4-dil	nydroxy ethylbenz	zene using resorcinol. Identify the	
		product with M.P. and IR analysis.		
С	To synthesize o-ar	nd p-nitro aniline	by two step process	
Unit 5	Separation of Organic compounds			
A	To separate Organic compounds with the help of Column			
	Chromatographic technique and report the yield of pure component			
	(sample1).			
В	To separate Organic compounds with the help of Column			
	Chromatographic technique and report the yield of pure			
	component(sample2)			
C	To separate Organic compounds with the help of Column			
			oort the yield of pure	
		component(sample3)		
Mode of	Practical/Viva	,		
examination				
Weightage	CA	MTE	ETE	
Distribution	60% NA 40%			
Text book/s*	O.P. Pandey, D.N.	O.P. Pandey, D.N. bajpai, S.Giri, "Practical Chemistry", S. Chand & Co.		
Other	V = ==12 = "T ===41= = =1=	of annualitation A	lessie? Decree	
References	Vogel's "Textbook of quantitative Analysis", Pearson.			

MCH 271: Inorganic Chemistry Lab-III

Sch	ool: SBSR	Batch: 2018-2020		
Program: MSc		Current Academic Year: 2019		
	nch: Chemistry	Semester: III		
	1 Course Code MCH 271			
	2 Course Title Inorganic Chemistry lab-III			
3	Credits	2		
4	Contact Hours	0-0-4		
_	(L-T-P)			
	Course Status	Compulsory		
5	Course	The main objective of this course is:		
	Objective	1. To explain various types of titration		
	3	2. To illustrate gravimetric analysis		
		3. To provide information about analysis of ores and cement		
		4. To explain the analysis of alloys like brass, steel		
		5. To learn to synthesize and characterize inorganic compounds		
6	Course	After doing this course the student should be able to		
	Outcomes	1. prepare solutions of different strength and standardize them		
		2. analyze steel and cement sample		
		3. analyze a sample of alloys and ores		
		4. understand the photochemical reactions		
		5. synthesize and characterize transition metal complexes		
7	Course	This course involves the analysis of industrially important materials like		
	Description	cement and steel. It also involves the analysis of ores and synthesis of		
		transition metal complexes.		
8	Outline syllabus			
	Unit 1 Analysis of industrially important materials-I			
	\mathbf{A}	Estimation of Copper in a sample of brass		
	В	Estimation of Copper in a sample of brass		
	C	Analysis of P in steel		
	Unit 2	Analysis of industrially important materials-II		
	A	Analysis of P in steel		
	В	Estimation of Fe ₂ O ₃ in Portland Cement		
	C	Estimation of CaO in Portland Cement		
	Unit 3	Analysis of ores		
	\mathbf{A}	Estimation of Mn(II) in pyrolusite		
	В	Estimation of Mn(II) in pyrolusite		
	C	Estimation of available oxygen in pyrolusite		
	Unit 4	Synthesis and characterization of transition metal complexes-I		
	A	Synthesis and characterization of Salen ligand		
	В	Synthesis and characterization of metal complex of salen		
	С	Characterization of the complex ans study of crystallization methods		
	Unit 5	Synthesis and characterization of transition metal complexes-II		
	A Synthesis of Cis - [Co(NH ₃) ₂ (Cl) ₂]Cl and its characterization			

В	Synthesis of trans [Co(NH ₃) ₂ (Cl) ₂]Cl and its characterization			
C	Synthesis of $K_3[Fe(C_2O_4)_3]$ and to study its photochemical reaction			
Mode of	Practical/Viva			
examination				
Weightage	CA MTE ETE 60% NA 40%			
Distribution				
Text book/s*	Vogel's "Textbook of quantitative Analysis", Pearson.			
Other	O. D. Danday, D. N. hainai, S. Ciri, "Practical Chamistry," S. Chand & Co.			
References	O.P. Pandey, D.N. bajpai, S.Giri, "Practical Chemistry", S. Chand & Co.			

MCH 176: Physical Chemistry II Lab

School: SBSR		Batch: 2018-20		
Program: M.Sc.		Current Academic Year: 2019		
Branch:Chemistry		Semester:II		
1	Course Code MCH176			
2	Course Title	tle Physical Chemistry II Lab		
3	Credits	2		
4	Contact	0-0-4		
	Hours			
	(L-T-P)			
	Course Status	Compulsory		
5	Course Objective	Instruments like Spectrophotometer, conductometer polarimeter and potentiometer are widely used in research labs and industries. Hence, knowledge of basic instruments and the experiments and advanced techniques is very important for Master's students. The 'Physical Chemistry II Lab' course provides students an indepth exposure to handle and use various instruments and to draw Adsorption curves, thermometric titration curves and calculate atomic parameters computationally.		
6	Course Outcomes	 Students will be able to understand the phenomenon of adsorption and how to determine concentration of a solution after adsorption. Student will be able to learn to use instruments like conductometer, potentiometers, UV/V spectrophotometer, Polarimeter for determining the composition, strength and dissociation constants of different chemicals/solutions. Student will understand the concept of thermometric titrations. Students will be able to determine atomic parameters using computational studies. Students will be able to understand the solubility, solubility product, CMC and how to determine them practically. Student will be able to understand the practical difference between the double alkali method and salt line method. 		
7	Course Description	Physical Chemistry II lab course is designed to make students learn the basic experiments to handle and use different instruments. The students get to learn computational techniques and various experiments/techniques to draw different types of thermometric, conductometric and potentiometric titration curves and CMC etc.		
8	Outline syllabu	S		
	Unit 1	Practical based Conductometer and Potentiometer		
	A& B	To estimate the normality of oxalic acid in given solutions		
		conductometrically		
		(a) Solution of pure oxalic acid		
	(b) Solution having HCl and oxalic acid			
		Solution having acetic acid and oxalic acid		

~	Beyond Boundaries		
C	To find out the composition of Zinc ferrocyanide precipitate on adding		
	ZnSO ₄ potentiometrically.		
Unit 2	Practical based on Adsorption and Thermometric Titration		
A& B	To verify the Freundlich and Langmuir adsorption isotherms by studying		
	the adsorption of oxalic acid/acetic acid on activated charcoal.		
C	To determine the concentration of strong acid by thermometric titration		
	and use it to calculate the enthalpy of neutralization.		
Unit 3	Practical based on Solubility product and CMC		
A & B	Find out solu	bility and solubility product of	the given sparingly soluble
	salt in water.		
C	Find cmc of	a given surfactant and, hence	e, calculate ΔGmix of the
	surfactant.	-	
Unit 4	Practical bas	ed on Polarimeter and Spectr	ophotometer
A	Find out the	rate constant of acid-catalyse	d hydrolysis of sucrose by
	polarimeter. S	tudy the rate equation for mutar	otation of D-glucose in water
	using polarimeter.		
B & C	To determine the concentration of KMnO ₄ solution after adsorption using		
	UV/Visible spectrophotometer.		
Unit 5	Computational Modeling, Salt line and Double Alkali Method		
A	To calculate the atomic parameters using density function calculations and		
	molecular simulations.		
B & C	_	conductometer a moderately str	ong acid (salicylic/mandelic
	_	a) salt-line method (b) double al	•
Mode of	Practical and/		
examination			
Weightage	CA	MTE	ETE
Distribution			
Text book/s	Practical Physical Chemistry by B. D. Khosla, R. Chand and Co., New		
	Delhi		
Other	O.P. Pandev.	D.N. Bajpai, S.Giri, "Practical	Chemistry", S. Chand & Co.
References	Traction Chemical 4, 5, 5, chang & Co.		
	I .		

MCH273 Physical Chemistry III

School: SBSR		Batch:2018-2020	
Program: M.Sc		Current Academic Year: 2019	
Branch: Chemistry		Semester III	
1 Course Code		MCH273	
2 Course Title		Physical Chemistry lab-III	
3	Credits	2	
4	Contact hours	0-0-3	
	Course Status	Compulsory	
5	Course	To learn methods for determination of various physical	
	Objectives	properties of compounds using spectrophotometric, UV-Vis, FTIR and kinetic studies.	
6	Course Outcome	Student will be able to: 1. Learn to use instruments like UV/Vis spectrophotometer, FTIR for determining the composition, charecteristics and dissociation constants of different chemicals/solutions. 2.Determine the parameters from enzyme kinetic reaction. 3.Explain the phase diagram of a two component system. 3. Measure the molecular weight of a polymer. 4. Correlate the concept of Chemical kinetics and its application in measuring rate constant and activation energy. 5. Design experiments, analyse experimental results and represent the data through writing.	
7	Course Description	The course will make student learn the concept of various physical chemistry techniques from practical point of view. It will provide student to understand experiment related to	
	-	spectrophotometric, UV-Vis and IR spectroscopic, kinetics, viscosity, Phase diagram of binary mixtures etc. This course is framed to explain the methods used in a physical experiments.	
8 Outline Syllabi		ıs	
Experiment N	lo.		
Unit 1	Practical related to Spectrophotometric analysis		
	Sub unit - a,b,c		
Unit 2		d to UV and IR Spectroscopy	
	Sub unit - a,b,c		
Unit 3	Practical related to Phase diagram		

	Cult weit o		beyond Boundaries	
	Sub unit - a,			
Unit 4	Practical based on Polymer			
	Sub unit - a,			
Unit 5	Practical based on Kinetics			
	Sub unit - a,b,c			
Mode of	Practical/Viva			
Examination				
Weightage	CA MTE ETE			
Distribution	60% 0% 40%			
Text book/s*	O.P. Pandey, D.N. bajpai, S.Giri, "Practical Chemistry", S. Chand & Co.			
Other	Vocal's "Taythack of Quantitative Analysis" Pearson			
References	Vogel's "Textbook of Quanlitative Analysis", Pearson.			