

Programme Structure

BACHELOR OF TECHNOLOGY

IN

Mechanical Engineering (ME) with Specialization

in Automotive Electrical Vehicles,

Mechatronics and Digital Manufacturing

Programme Code:- SET0601

Department of Mechanical Engineering

Sharda School of Engineering & Technology

(Batch: 2023-2027)

Sharda School of Engineering & Technology B.Tech- Mechanical Engineering Batch: 2023-2027 TERM: I

		• .	T	each	ing		
S.	Subject	Subjects		Loa	d	Credits	
No.	Code		L	Т	Р		UC/PC/PE/SEC
Theo	ory Subjects	5	1				
1.	CSE113	Programming for Problem Solving	3	0	0	3	UC
2.	HMM111	Human Values and Ethics	2	0	0	2	UC
3.	MTH141	Calculus Analysis and Linear Algebra	3	1	0	4	UC
4.	EEE112	Principles of Electric and Electronics Engineering	2	1	0	3	UC
5.	ARP101	Communicative English -1	1	0	2	2	SEC
6.	MEP107	Introduction to Mechanical Engineering (Tinkering lab)	0	0	2	1	UC
7.	CVL103	Environmental Studies	2	0	0	0	UC
Prac	tical/Viva-V	Voce/Jury					
8.	CSP113	Programming for Problem Solving Lab	0	0	2	1	Р
9.	EEP112	Principles of Electrical and Electronics Engineering Lab	0	0	2	1	Р
10.	MEP106	Computer Aided Design & Drafting	0	0	3	1.5	Р
11.	MEP105	Mechanical Workshop	0	0	3	1.5	Р
		TOTAL CREDITS	20				

Sharda School of Engineering & Technology B.Tech- Mechanical Engineering Batch: 2023-2027 TERM: II

S.	Course	Course	T	eachi Load	ng	Credita	
No.	Code	Course	L	T	P	Creans	UC/PC/SEC
Theor	ry Subjects		1	J	1	1 1	
1.	CSE114	Application based Programming in Python	3	0	0	3	UC
2.	MTH143	Differential Equations, Special Transforms and Complex Variable	3	1	0	4	UC
3.	PHY128	Engineering Physics	3	1	0	4	UC
4.	MEC236	Materials Science	3	0	0	3	PC
5.	ARP102	Communicative English -2	1	0	0	1	SEC
6.	MEP101	Idea Generation & Creativity	1	0	0	1	SEC
Pract	ical/Viva-V	oce/Jury				· · · · ·	
7.	CSP114	Application based Programming in Python Lab	0	0	2	1	Р
8.	MEP230	CAD Modeling through solid works Lab1	0	0	2	1	Р
9.	PHY 162	Physics Lab II	0	0	2	1	Р
10.	MEP101	Idea Generation & Creativity Lab	0	0	2	1	Р
11.	ARP102	Communicative English -2	2	1	SEC		
		TOTAL CREDITS	21				
	Industria	al Internship conduct	n to be eval	luated in III term			

G	C		ing	Carali			
S. No	Code	Course	т	Loa	d D	Creai ts	
110.	Coue		L	1	P	13	PC/SEC/UC/P
Theo	ry Subjects						
1.	MEC229	Manufacturing Technology - I	3	0	0	3	PC
2.	MEC235	Introduction to Thermal Engineering I	3	0	0	3	PC
3.	MEC224	Strength of Materials	3	1	0	4	PC
4.	MEC238	Mechanics of Machines	3	1	0	4	UC
5.	ARP203	Logical Skills Building and Soft Skills	1	0	0	1	SEC
6.	MEC234	Research methodology	2	0	0	2	UC
Prace	tical/Viva-Vo	ce/Jury					
7.	ARP203	Aptitude Reasoning and Business Communication Skills - Basic	0	0	2	1	SEC
8.	MEP219	Manufacturing Technology - I Lab	0	0	2	1	Р
9.	MEP235	Introduction to Thermal Engineering I Lab	0	0	2	1	Р
10.	MEP255	Solid Mechanics Lab	0	0	2	1	Р
11.	MEP238	Mechanics of Machines Lab	0	0	2	1	P
12.	MEP233	Industrial Internship	0	0	4	2	Р
13.	MEP231	Project Based Learning-1	0	0	4	2	Р

Sharda School of Engineering & Technology B.Tech- Mechanical Engineering Batch: 2023-2027 TERM: III

Sharda School of Engineering & Technology B.Tech - Mechanical Engineering Batch: 2023-2027 TERM: IV

S.	Course	Course	Te	Teaching						
No.	Code		Load		Credits					
			L	Т	Р	Creatis	PC/PE/OE/SEC/P/UC			
The	orv Subiect	5								
1.	MEC342	Manufacturing Technology – II	3	0	0	3	PC			
2.	MEC237	Introduction to Thermal Engineering II	3	0	0	3	PC			
3.	MEC322	Machine design	3	1	0	4	PC			
4.	PE I	Program Elective I	3	0	0	3	PE			
5.	ARP204	Quantitative and Qualitative Aptitude Skill Building	1	0	0	1	PE			
6.	OE I	Open Elective I	2	0	0	2	OE			
7.	MEC241	Entrepreneurship	2	0	0	2	SEC			
8.	BTY223	Introduction to Biology	2	0	0	2	UC			
Prac	ctical/Viva-V	Voce/Jury								
9.	ARP204	Quantitative and Qualitative Aptitude Skill Building	0	0	2	1	SEC			
10.	MEP232	Project Based Learning-2	0	0	4	2	Р			
		TOTAL CREDITS				23				
	Industry Connect conducted after IV term to be evaluated in V term									

Sharda School of Engineering & Technology B.Tech- Mechanical Engineering Batch: 2023-2027 TERM: V

S.	Course	Course	Т	Teaching			
No.	Code			Load	d	Credits	
			L	Т	P		PC/PE/OE/SEC/P
Theor	ry Subjects						
		Design of					
1.	MEC310	Mechatronic	3	0	0	3	PC
		System					
		Production,					
2.	MEC399	planning and	3	0	0	3	PC
		control					
3.	PE II	Program Elective	3	0	0	3	PE
	05.11		2	0	0	-	
4.	OE II	Open Elective III	2	0	0	2	<u> </u>
		Personality					SEC
5	A D D 201	Development	1	0	0	1	
5.	ARP301	and Desision molting	1	0	0	1	
		Decision making					
Due of							
Pract	ical/ v iva- v oc	e/Jury					
		Personality					SEC
		Development					
6.	ARP301	and	0	0	2	1	
		Decision making					
		Skills					
7	MEP302	Machining and	0	0	2	1	Р
/.	101EI 502	Metrology	0	0		1	
8.	MEP331	Project Based	0	0	4	2	Р
		Learning 3	Ū	Ŭ	•	_	
9.	MEP333	Industry Connect	0	0	4	2	Р
10	ECC301	Community	0	0	4	2	Р
10		Connect				2	
	MEP360	Automobile					
11		Engineering	0	0	2	1	Р
		Lab 1					
12	MEP310	Mechatronics	0	0	2	1	Р
		Laboratory	Ŭ	Ŭ	-	-	
						22	

Sharda School of Engineering & Technology B.Tech- Mechanical Engineering Batch: 2023-2027 TERM: VI

S. Course Course Teaching							SC/PC/PE/OE/SEC/P					
No.	Code			Load		Credits						
			L	L T P								
The	ory Subject	S S				I I						
1.	MEC330	Operations Research	3	0	0	3	SC					
2.	MEC341	Lean production	3	0	0	3	PC					
3.	PE -III	Program Elective-III	3	0	0	3	PE					
4.	PE-IV	Program Elective -IV	3	0	0	3	PE					
5.	PE- V	Program Elective -V	3	0	0	3	PE					
6.	OE III	Open Elective III	3	0	0	3	OE					
7.	ARP302	Campus to Corporate	1	0	0	1	SEC					
Prac	ctical/Viva-	Voce/Jury				· · · · · · · · · · · · · · · · · · ·						
8.	ARP302	Campus to Corporate	0	0	2	1	SEC					
9	MEP 327	Turbo Machinery Lab	0	0	2	1	Р					
10	MEP397	CNC Lab	0	0	2	1	Р					
11.	MEP301	Heat Transfer & RAC Laboratory	0	0	2	1	Р					
12.	12.MEP332Project Based Learning 40042P											
		TOTAL CREDITS				25						
	Summer Internship after VI term to be evaluated in VII term											

Sharda School of Engineering & Technology B.Tech- Mechanical Engineering Batch: 2023-2027 TERM: VII

S.	Course	Course	Te	Teaching			UC/PE/OE/P			
No.	Code]	Load		Credits				
			L	Τ	Р					
Theo	Theory Subjects									
1	HMM30	Management for	3	0	0	2	UC			
1.	5	Engineers				5				
2.	PE VI	Program Elective VI	3	0	0	3	PE			
3.	PE VII	Program Elective –	2	0	0	2	PE			
		VII								
4.	OE IV	Open Elective – IV	3	0	0	3	OE			
Prac	tical/Viva-`	Voce/Jury	-							
5.	MEP433	Summer Internship III	0-	0	4	2	Р			
6.	MEC460	Major Project-I	0	0	4	2	Р			

Sharda School of Engineering & Technology B.Tech-Mechanical Engineering Batch: 2023-2027 TERM: VIII

S. No.	Course Code	Course	Te l	Teaching Load		Credits	UC/PC/PE/OE/AECC/S EC
				Т	Р		
Practical/Viva-Voce/Jury							
1.	MEC461	Major Project-II	0	0	16	8	Р
		TOTAL CREDITS				8	

Specialization in Automobile Engineering:

S.			L	Τ	Р	С	Category	TERM
No	Course							
	Code	Course Name						
1	MEC314	Automotive	3	0	0	3	Engineering/Other	Ш
		Transmission	5	U	U	5	Eligneering/Other	111
2	MEC329	Automotive						
		Electrical and	3	0	0	3	Engineering/Other	IV
		Electronics Systems						
3	AUT306	Electric Vehicle	3	0	0	3	Engineering/Other	V
		Technology	5	U	U	5	Lingineering/Other	v
4	AUT307	Automotive Chassis	3	0	0	3	Engineering/Other	VI
5	AUT309	Modern Battery	2		0	0	F · · /0.1	
		Technology	3	0	0	3	Engineering/Other	VII
		Total Credits to be				15		
		taken				13		

Specialization in Mechatronics:

S.			L	Τ	P	С	Category	TERM
No	Course							
	Code	Course Name						
1	MEC310	Design of	3	0	0	3	Engineering/Other	Ш
		Mechatronics System	5	U	U	5	Lingineering/Other	111
2	ECE092	Control System	3	0	0	3	Engineering/Other	IV
		Engineering	5	U	U	5	Lingineering/Ouler	1 V
3	ECE093	Digital Electronics	3	0	0	3	Engineering/Other	V
- 1	MECOCA						0 0	
4	MEC364	Sensors and Signal	3	0	0	3	Engineering/Other	VI
		Processing					8 8	
5	MEC365	Robotics and						
		Machine Vision	3	0	0	3	Engineering/Other	VII
		System						
		Total Credits to be				15		
		taken				15		

Specialization in Digital Manufacturing:

S.			L	Τ	P	С	Category	TERM
No	Course							
	Code	Course Name						
1	MDM201	Industry 4.0 and IIOT	3	0	0	3	Engineering/Other	III
2	MDM202	Big Data Analytics for Manufacturing	3	0	0	3	Engineering/Other	IV
3	MDM301	Additive Manufacturing	3	0	0	3	Engineering/Other	V
4	MDM302	Robotics and Automation	3	0	0	3	Engineering/Other	VI
5	MDM401	Reverse Engineering	3	0	0	3	Engineering/Other	VII
		Total Credits to be taken				15		

List of Programme Electives

S. N o	Course Code	Course Name	L	Т	Р	С	Category	Prerequisite
1	MEC433	IC Engines	3	0	0	3	Engineering	Introduction to Thermal Engineering I
2	MEC356	Refrigeration and Air Conditioning	3	0	0	3	Engineering	Introduction to Thermal Engineering II
3	MEC335	Computer Integrated Manufacturing	3	0	0	3	Engineering	
4	MEC357	Introduction to six sigma	2	0	0	2	Engineering	
5	MEC358	Material Characterization Techniques	3	0	0	3	Engineering	
6	MEC359	Heat Treatment of Metals and Alloys	3	0	0	3	Engineering	
7	MEC360	Advanced Engineering Materials	3	0	0	3	Engineering	Materials Science and metrology
8	MEC318	Supply chain management	3	0	0	3	Engineering	
9	MEC361	Hydraulic machines	3	0	0	3	Engineering	Introduction to Thermal Engineering I
10	MEC334	Introduction to Robotics Engineering	3	0	0	3	Engineering	
11	AUT301	Automotive Safety Systems	2	0	0	2	Engineering	
12	AUT302	Auto Certification and Homologation	3	0	0	3	Engineering	

13	AUT303	Automotive Suspension and Steering Systems	2	0	0	2	Engineering	
14	AUT304	Vehicle Inspection and Maintenance	3	0	0	3	Engineering	
15	EEE332	Power Electronics	3	0	0	3	Engineering	Principles of Electrical and Electronics Engineering
16	MIC008	Virtual Instrumentation	3	0	0	3	Engineering	
17	ECE002	Microcontroller and Applications	2	0	0	2	Engineering	
18	MEC481	Mechanical Behavior of Nanomaterials	3	0	0	3	Engineering	
19	MEC482	Material Behaviors and Failure Prediction	3	0	0	3	Engineering	Materials Science and metrology
20	MEC483	Intermediate Fluid Mechanics	3	0	0	3	Engineering	
21	MEC484	Design for Additive Manufacturing	3	0	0	3	Engineering	
22	MEC485	Finite Element Methods in Solid Mechanics	3	0	2	4	Engineering	Strength of materials
23	MEC486	Design with Composite Materials	3	0	2	4	Engineering	Materials Science and metrology

Sc	hool: SSET	Batch: 2023-2027								
Pr	ogramme:	Current Academic Year: 2023-2024								
B .	Tech.									
Br	ranch: ME	CSE113								
1	Course Code	CSEI13								
2	Course Name	Programming for problem solving								
<u> </u>	Contact Hours	3-0-0								
4	(L-T-P)	5-0-0								
	Course Status	Core								
5	Course Objective	1. Learn basic programming constructs –data types, de	cision							
		structures, control structures in C								
		2. learning logic aptitude programming in c language								
		3. Developing software in c programming								
6	Course Outcomes	After the successful completion of course, students will be able t	0:							
		CO1: demonstrate the algorithm, Pseudo-code and flow	chart for							
		the given problem.								
		CO2: develop better understanding of basic concepts of C								
		programming.								
		CO3: create and implement logic using array and function.								
		CO4: construct and implement the logic based on the concept of								
		strings and pointers.								
		CO5: apply user-defined data types and I/O operations in file.								
		CO6: design and develop solutions to real world problem	ns using.							
7	Course	Programming for problem solving gives the Understand	ding of C							
	Description	programming and implement code from flowchart or algorit	hm							
8	Outline syllabus		CO							
			Mapping							
	Unit 1	Logic Building	001							
	А	Flowchart: Elements, Identifying and understanding input/	COI,							
	B	Algorithm design: Problem solving approach(top	CO1							
	2	down/bottom up approach)								
	С	Pseudo Code : Representation of different construct, writing	CO1							
		pseudo-code from algorithm and flowchart								
	Unit 2	Introduction to C Programming								
	А	Introduction to C programming language, Data types,	CO2							
		Variables, Constants, Identifiers and keywords, Storage								
1		classes								

В	Operators and expressions, Types of Statements:							
	Assignment, Control, jui	mping.						
С	Control statements: Deci	isions, Loo	ps, break, continue	CO2				
Unit 3	Arrays and Functions							
А	Arrays: One dimensional	l and multi	-dimensional arrays:	CO3				
	Declaration, Initializatio	n and array	manipulation (sorting,					
	searching).	-						
В	Functions: Definition, D	eclaration/	Prototyping and Calling,	CO3				
	Types of functions, Para							
	by reference.							
С	Passing and Returning A	CO3						
	Functions.							
Unit 4	Pre-processors and Poi	Pre-processors and Pointers						
А	Pre-processors: Types, D	Directives, 1	Pre-processors Operators	CO4				
	(#,##,\), Macros: Types,	, Use, pred	efined Macros					
В	Pointer: Introduction, de	claration o	f pointer variables,	CO4				
	Operations on pointers: I	Pointer arit	hmetic, Arrays and					
	pointers, Dynamic memo	ory allocati	on.					
С	String: Introduction, pre-	defined stri	ing functions,	CO4				
	Manipulation of text data	a, Commar	nd Line Arguments.					
Unit 5	User Defined Data Typ	es and Fil	e Handling					
А	Structure and Unions: In	troduction	, Declaration, Difference,	C05,C0				
	Application, Nested stru	cture, self-	referential structure,	6				
	Array of structures, Pass	ing structu	re in function.					
В	Files: Introduction, conc	ept of reco	rd, I/O Streaming and	CO5,CO				
	Buffering, Types of File	s: Indexed	file, sequential file and	6				
	random file,							
С	Creating a data file, Ope	ning and c	losing a data file, Various	CO5,CO				
	I/O operations on data fi	les: Storing	g data or records in file,	6				
	adding records, Retrievin	ng, and upo	lating Sequential					
	file/random file.							
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
 Distribution	25%	25%	50%					
 Text book/s*	Kernighan, Brian, and Dennis	s Ritchie. The	e C Programming Language					
Other	1. B.S. Gottfried - I	Programmi	ng With C - Schaum's Out	line Series				
References	- Tata McGraw H	Hill 2nd Ed	1110n - 2004.					
	2. E. Balagurusamy - Programming in ANSI C - Second Edit							
	Tata McGraw Hi	II- 1999						

COS	PO	PSO	PSO	PSO											
0.05	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CSE 113.1	1	2	1	_	_	1	_	_	_	_	-	_	1	1	_
CSE 113.2	2	_	2	_	_	1	_	_	_	-	1	_	2	2	_
CSE 113.3	1	-	1	-	-	_	_	_	-	_	_	_	_	1	_
CSE 113.4	1	-	1	-	_	_	_	_	_	_	_	_	_	1	_
CSE 113.5	1	-	1	-	-	_	_	_	-	_	_	_	_	1	_
CSE 113.6	2	2	2	_	_	2	_	_	_	_	1	_	2	2	1
CSE113	2	2	1	-	-	1	-	-	-	-	1	-	2	-	1

1-Slight (Low) 2-Moderate (Medium)

Sc	hool: SSET		Batch: 2023-2027							
P	rogramme:		Current Academic Vear: 2023-2024							
	B.Tech.		Current Academic Tear. 2025-2024							
1	Course Code	HMM111								
2	Course Name	Human values	s and Ethics							
3	Credits	2								
	Contact									
	Hours (L-T-									
4	P)C	(2-0-0)2								
5	Course Objective	To facilitate t towards life ar based on a con Existence	towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of Existence							
		After the successful completion of course, students will be able to: CO1. Apply the importance of human values and ethics in technical								
6	Course Outcomes	 education CO2. Examine the importance of 'I' and 'Body'. CO3. Infer the importance of harmony in the self, family and the society for mutual fulfilment. CO4. Infer the importance of harmony among human beings, other living beings and entire nature for universal equilibrium and mutual co-existence. 								
		CO5. Apply the ethical approach in profession for continuous happiness and sustained prosperity.CO6. Infer the importance of values and ethics in corporate sector								
7	Outline of sylla	ibus:								
7.01	HMM111.A	Unit 1	The Need and Process for Value Education							
7.02	HMM111.A1	Unit 1 Topic 1	The need, basic guidelines, content and process for Value Education							
7.03	HMM111.A2	Unit 1 Topic 2	Concept of 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration; Continuous Happiness and Prosperity- A look at basic Human Aspirations							
7.04	HMM111.A3	Unit 1 Topic 3 Right understanding, Relationship and Physica Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority								
7.05	HMM111.B	Unit 2 Understanding Harmony in the Human Being - Harmony in Myself								
7.06	HMM111.B1	Unit 2 Topic 1	Human being as a co-existence of the sentient 'I' and the material 'Body'							
7.07	HMM111.B2	Unit 2 Topic 2	The needs of Self ('I') and 'Body' ; Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)							

7.08	HMM111.B3	Unit 2 Topic 3	The characteristics and activities of 'I' and harmony in 'I'; Understanding the harmony of I with the Body: Correct appraisal of Physical needs, meaning of Prosperity in detail
7.09	HMM111.C	Unit 3	Harmony in the Family and Society
7.10	HMM111.C1	Unit 3 Topic 1	Values in human-human relationship; Trust and Respect as the foundational values of relationship
7.11	HMM111.C2	Unit 3 Topic 2	Understanding the meaning of Trust; Difference between intention and competence; The meaning of Respect; Difference between respect and differentiation; the other salient values in relationship
7.12	HMM111.C3	Unit 3 Topic 3	Harmony in the society (society being an extension of family; Visualizing a universal harmonious order in society - from family to world family
7.13	HMM111.D	Unit 4	Harmony in the Nature and Existence
7.14	HMM111.D1	Unit 4 Topic 1	The harmony in the Nature
7.15	HMM111.D2	Unit 4 Topic 2	Interconnectedness and mutual fulfilment among the four orders of nature recyclability and self-regulation in nature
7.16	HMM111.D3	Unit 4 Topic 3	Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
7.17	HMM111.E	Unit 5	Competence in professional ethics
7.18	HMM111.E1	Unit 5 Topic 1	Ability to utilize the professional competence for augmenting universal human order
7.19	HMM111.E2	Unit 5 Topic 2	Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems,
7.20	HMM111.E3	Unit 5 Topic 3	Ability to identify and develop appropriate technologies and management patterns for above production systems.
8	Course Evaluat	tion	
8.1	Course work: 3	0 marks	
8.11	Attendance	None	
8.12	Homework	4 assignments,	no weight
	Quizzes/Class		
8.13	Tests	Two	
8.14	Projects	None	
8.15	Presentations	None	
8.16	Any other	None	
8.2	MTE	25 marks CE	25 marks
8.3	End-term exam	ination: 50 mark	TS
91	Text books	1. R.R Gaur, I	R Sangal, G P Bagaria, "A foundation course in Human
7.1		Values and	professional Ethics", Excel books, New Delhi
92	Other	1. B L Bajpai,	2004, Indian Ethos and Modern Management, New Royal
9.2	references	Book Co., Luc	know.

	2.	A.N.	Trip	athy,	2003,	Human	Values	s, New	Age	International
	Pu	blisher	rs.		~	~ .			~	
	3.	PL I	Dhar,	RR	Gaur,	Science	and H	lumanisr	n, Co	ommonwealth
	Pu	rblishe	ers.							

COs	PO1	PO 2	PO 2	PO	PO	PO	PO 7	PO	PO	PO1	PO11	PO12
			3	4	5	0	1	0	9	0		
HMM111.1	-	-	-	-	-	2	-	2	1	3	-	1
HMM111.2	-	-	-	-	-	2	-	2	1	3	-	1
HMM111.3	-	-	-	-	-	2	-	2	1	3	-	1
HMM111.4	-	-	-	-	-	2	-	2	1	3	-	1
HMM111.5	-	-	-	-	-	2	-	2	1	3	-	1
HMM111.6	-	-	-	-	-	2	-	2	1	3	-	1
HMM111	-	-	-	-	-	2	-	2	1	3	-	1

1-Slight (Low) 2-Moderate (Medium)

School: SSET		Batch: 2023-2027								
Р	rogramme: B.Tech.	Current Academic Year: 2023-2024								
Bra	nch: ME	Semester: 1								
1	Course Code	MTH 141								
2	Course Title	Calculus and Abstract Algebra								
3	Credits	4								
4	Contact	3-1-0								
	Hours									
	(L-T-P)									
-	Course	Program Core								
	Status									
5	Course	The objective of this course is to familiarize the prospective	engineers with							
	Objective	techniques in basic calculus and linear algebra. It aims	s to equip the							
		students with standard concepts and tools at an intermedia	te to advanced							
		level that will serve them well towards tackling more adv	anced level of							
		mathematics and applications that they would find u	seful in their							
		disciplines.								
6	Course	After the successful completion of course, students will be	able to:							
	Outcomes	After the successful completion of course, students will be able to:								
		CO1. Interpret the basic Taylor's expansion of a function of two variables								
		and maxima and minima of a function of two variables								
		CO2: Evaluate surface using the concepts of double integrals.								
		CO3: Apply basics of determinants, rank of matrices for linear systems.								
		CO4: Interpret the basic concept of sets, relation, functions, groups, rings and field.								
		CO5: Investigate the properties of vector spaces and subspaces using by linear transformations.								
		CO6:Apply the concepts of eigen values, eigen vectors and diagonalisation in linear systems								
7	Course	This course is an introduction to the fundamental of Mathe	matics. The							
	Description	primary objective of the course is to develop the basic unde	erstanding of							
		differential and integral calculus, linear Algebra and Abstra	act Algebra.							
8	Outline syllab	ous: Calculus and Abstract Algebra	CO manning							
	Unit 1	Calculus	mabbine							
	A	Differentiation, Taylor's and Maclaurin theorems with	CO1							
		remanuers, mueterminate forms, L'Hospital's rule.								

В	B Maxima and minima, Partial derivatives, Euler's theorem.							
С	Total derivat Applications of	ive. Evaluati of double integ	on of double integration. ral (to calculate area).	CO2				
Unit 2	Matrices							
Α	Matrices, vect matrix multip	CO3						
В	Linear system of a matrix, de	s of equations, eterminants, Ci	, linear Independence, rank ramer's Rule	CO3				
С	Inverse of a melimination.	atrix, Gauss el	limination and Gauss-Jordan	CO3				
Unit 3	Basic Algebra	a						
А	Sets, relations	and functions	•	CO4				
В	Basics of grou	ips, cyclic grou	ups.	CO4				
С	Subgroups, ba	sics of Rings a	and Field.	CO4				
Unit 4	Vector spaces	5						
Α	Vector Space, dimension.	linear depende	ence of vectors, basis,	CO5				
В	Linear transfo linear map, ra	Linear transformations (maps), range and kernel of a linear map, rank and pullity						
С	Inverse of a linear map.	near transform	ation, Matrix associated with	CO5				
	-							
Unit 5	Vector spaces Module-4 Ve	s (Prerequisite ctor spaces)	e Module 2 –Matrices &					
Unit 5 A	Vector spaces Module-4 Ve Eigenvalues, l	s (Prerequisite ctor spaces) Eigenvectors	e Module 2 –Matrices &	CO6				
Unit 5 A B	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric	e Module 2 –Matrices &	CO6 CO6				
Unit 5 A B C	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p ogonalization.	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram-	CO6 CO6 CO6				
Unit 5 A B C Mode	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p ogonalization.	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram-	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p gonalization.	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram-	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25%	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p gonalization. MTE 25%	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50%	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s*	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears szig, Advance ohn Wiley & S	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic son, Reprint, 2002. d Engineering Mathematics, ons, 2006.	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s*	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p gonalization. MTE 25% as and R.L. Fin Edition, Pears szig, Advance ohn Wiley & S inear Algebra:	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic con, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s* Other References	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L Edition, Brool	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears szig, Advance ohn Wiley & S inear Algebra: ks/Cole, 2005.	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic son, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s* Other References	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L Edition, Brool 2. Veerarajan	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on etion of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears szig, Advance ohn Wiley & S inear Algebra: ks/Cole, 2005. T., Engineerin	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic son, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd g Mathematics for first year,	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s* Other References	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L Edition, Brool 2. Veerarajan Tata McGraw	s (Prerequisite ctor spaces) Eigenvectors eew-symmetric on ction of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears szig, Advance ohn Wiley & S inear Algebra: ks/Cole, 2005. T., Engineerin -Hill, New De	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic son, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd g Mathematics for first year, lhi, 2008.	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s* Other References	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L Edition, Brool 2. Veerarajan Tata McGraw 3. Ramana B	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears szig, Advance ohn Wiley & S inear Algebra: ks/Cole, 2005. T., Engineerin -Hill, New De .V., Higher Er	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic son, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd g Mathematics for first year, lhi, 2008. ngineering Mathematics, Tata	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s* Other References	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L Edition, Brool 2. Veerarajan Tata McGraw 3. Ramana B McGraw Hill	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears rszig, Advance ohn Wiley & S inear Algebra: cs/Cole, 2005. T., Engineerin -Hill, New Defin, 11	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic son, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd g Mathematics for first year, lhi, 2008. ngineering Mathematics, Tata th Reprint, 2010.	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s* Other References	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L Edition, Brool 2. Veerarajan Tata McGraw 3. Ramana B McGraw Hill 4. V. Krishnan	s (Prerequisite ctor spaces) Eigenvectors cew-symmetric on ction of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears rszig, Advance ohn Wiley & S inear Algebra: ks/Cole, 2005. T., Engineerin -Hill, New Del .V., Higher Er New Delhi, 11 nurthy, V.P. M	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic son, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd g Mathematics for first year, lhi, 2008. ngineering Mathematics, Tata th Reprint, 2010. Mainra and J.L. Arora, An	CO6 CO6 CO6				
Unit 5 A B C Mode Weightage Distribution Text book/s* Other References	Vector spaces Module-4 Ve Eigenvalues, I Symmetric, sk Diagonalizatio Basic introduc Schmidt ortho Theory CA 25% 1. G.B. Thom geometry, 9th 2. Erwin Krey 9th Edition, Jo 1. D. Poole, L Edition, Brool 2. Veerarajan Tata McGraw 3. Ramana B McGraw Hill 4. V. Krishnan introduction to	s (Prerequisite ctor spaces) Eigenvectors ew-symmetric on ction of Inner p ogonalization. MTE 25% as and R.L. Fin Edition, Pears szig, Advance ohn Wiley & S inear Algebra: ks/Cole, 2005. T., Engineerin -Hill, New Dei .V., Higher Er New Delhi, 11 nurthy, V.P. N o Linear Algeb	e Module 2 –Matrices & c, and orthogonal Matrices, product spaces, Gram- ETE 50% nney, Calculus and Analytic con, Reprint, 2002. d Engineering Mathematics, ons, 2006. A Modern Introduction, 2nd g Mathematics for first year, lhi, 2008. ngineering Mathematics, Tata th Reprint, 2010. Mainra and J.L. Arora, An ora, Affiliated East–West	CO6 CO6 CO6				

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО												
MTH 142.1	3	3	2	-	-	-	-	-	1	-	-	1
MTH 142.2	3	2	3	-	-	-	-	-	1	-	-	1
MTH 142.3	3	2	2	-	-	-	-	-	1	-	-	1
MTH 142.4	3	3	2	-	-	-	-	-	1	-	-	1
MTH 142.5	3	2	2	-	-	-	-	-	1	-	-	1
MTH 142.6	3	3	2	-	-	-	-	-	1	-	-	1
MTH 141	3	2	2	-	-	-	-	-	1	-	-	1

1-Slight (Low) 2-Moderate (Medium)

School: SSET		Batch : 2023-2027								
Prog	gramme:	Current Academic Year: 2023-2024								
B.T	ech									
Bra	nch: ME	Semester: II								
	Course Code	EEEI12 Driveintee of Electrical and Electronics Environment								
2	Course Title	Principles of Electrical and Electronics Engineerin	g							
3	Contact	3								
4	Hours	2-1-0								
(L-T-P)										
	Course Status	Program Core								
5	Course	To provide the students with an introductory co	oncept in the field of							
	Objective	electrical and electronics engineering to facilitate b	etter understanding of							
		the devices, techniques and equipment used in engi	neering applications.							
6	Course Outcomes	After the successful completion of course, students	will be able to:							
		CO1: Analyze and solve basic electrical circuits								
		CO3: Infer the working principle of transformer.								
		CO3: Explain the working principle of dc and ac motors.								
		CO4: Apply the basics of diode to describe the working of rectifier								
		circuits such as half and full wave rectifiers								
		CO5: Apply the concepts of basic electronic devices to design various								
		circuits								
		CO6:Apply the basic concepts in Electrical and Electronics Engineering								
		for multi-disciplinary tasks								
7	Course	This initial course introduces the concepts and fund	damentals of electrical							
	Description	and electronic circuits and devices. Topics include	basic circuit analysis,							
		diode and transistor fundamentals and application	ons. This course also							
		transformers	of dc/ac motors and							
8	Outline syllabu		CO Mapping							
	Unit 1	DC & AC Circuits (6 lectures)								
	А	Electrical circuit elements (R, L and C), series	CO1,CO6							
		and parallel circuits, concept of equivalent								
		resistance, Kirchhoff current and voltage laws,								
		star-delta conversion	CO1 CO1							
	В	Analysis of simple circuits with dc excitation and Superposition Theorem Popresentation of	01,006							
		superposition fleorem, Representation of								
		nower reactive power apparent power power								
		factor								

С	Introduction to three phase system, relationship	CO1,CO6
	between phase voltages and line voltages,	
Unit 2	Transformer(4 lectures)	
А	Working principle and construction of transformer, EMF equation	CO2,CO6
В	Efficiency of transformer, Power and distribution transformer and difference between them	CO2,CO6
С	Transformer applications in transmission and distribution of electrical power	CO2,CO6,
Unit 4	Electrical Motors (6 lectures)	
А	Construction, working principle, torque-speed characteristic and applications of dc motor.	CO3,CO6
В	Construction, working principle and applications of a three-phase induction motor, significance of torque-slip characteristic	CO3,CO6
С	Working principle starting methods and applications of single phase induction motor	CO3,CO6
Unit 4	Semiconductor Diode and Rectifier (5 lectures)	
А	PN junction and its biasing	CO4,CO6
В	Semiconductor diode, ideal versus practical diode , VI characteristics of diode	CO4,CO6
С	Half wave and full wave rectifiers with and without filters.	CO4,CO6
Unit 5	Transistors (5 lectures)	
А	Bipolar Junction Transistor (BJT) –Construction, working principle and input-output characteristics	CO5,CO6
В	BJT as CE amplifier and as a switch	CO5,CO6
С	Introduction to JFET	CO5,CO6
Mode of examination	Theory	
 Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Text book/s*	 D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010. S. K. Bhattacharya, "Basic Electrical and Electronics Engineering", Pearson Publication. Robert L Boylestad, "Electronic Devices and Circuit Theory" Pearson Education, 2009 	
Other References	1. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.	

COs	PO1	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO1	PO1
		<u> </u>	3	4	5	0	/	ð	9	10	I	<u> </u>
EEE112.1	2	2	0	0	0	0	0	0	0	0	0	2
EEE112.2	2	1	0	0	0	0	0	0	0	0	0	2
EEE112.3	2	1	0	0	0	0	0	0	0	0	0	2
EEE112.4	2	2	0	0	0	0	0	0	0	0	0	2
EEE112.5	2	1	0	0	0	0	0	0	0	0	0	2
EEE112.6	2	2	0	0	0	0	0	0	0	0	0	2
EEE112	2	2	0	0	0	0	0	0	0	0	0	2

1-Slight (Low) 2-Moderate (Medium)

Scho	ol: SSET	Batch : 2023-2027
		Academic Year: 2023-2024
Prog	ramme: -	
B.1e Bran	cn ch· ME	Semester: 1 st
1	Course Code	ARP101
2	Course Title	Communicative English-1
3	Credits	2
4	Contact Hours (L-T- P)	1-0-2
5	Course Objective	To minimize the linguistic barriers that emerges in varied socio-linguistic environments through the use of English. Help students to understand different accents and standardise their existing English. Guide the students to hone the basic communication skills - listening, speaking, reading and writing while also uplifting their perception of themselves, giving them self-confidence and building positive attitude.
		After completion of this course, students will be able to:
		CO1 Develop a better understanding of advanced grammar rules and write
		grammatically correct sentences
		CO2 Acquire wide vocabulary and punctuation rules and learn strategies for
		error-free communication.
		CO3 Interpret texts, pictures and improve both reading and writing skills
		which would help them in their academic as well as professional career CO4
6	Course	Comprehend language and improve speaking skills in academic and social
	Outcomes	CO5 Develop show and manimize new ideas with the concert of
		COS Develop, share and maximise new ideas with the concept of
		brainstorming and the documentation of key critical thoughts articulated
		towards preparing for a career based on their potentials and availability of
		opportunities.
		CO6 Function effectively in multi-disciplinary teams through the knowledge
		of team work, Inter-personal relationships, conflict management and leadership
		quality
7	Course Description	The course is designed to equip students, who are at a very basic level of language comprehension, to communicate and work with ease in varied workplace environment. The course begins with basic grammar structure and pronunciation patterns, leading up to apprehension of oneself through written and verbal expression as a first step towards greater employability.
8	Outline syllabu	us – ARP 101

	Unit A	Sentence Structure	CO Mapping
	Topic 1	Subject Verb Agreement	CO1
	Topic 2	Parts of speech	COI
	Topic 3	Writing well-formed sentences	
	Unit B	Vocabulary Building & Punctuation	
	Topic 1	Homonyms/ homophones, Synonyms/Antonyms	CO1, CO2
	Topic 2	Punctuation/ Spellings (Prefixes-suffixes/Unjumbled Words)	CO1, CO2
	Topic 3	Conjunctions/Compound Sentences	CO1, CO2
	Unit C	Writing Skills	
	Topic 1	Picture Description – Student Group Activity	CO3
		Positive Thinking - Dead Poets Society-Full-length feature film -	
	Topic 2	Paragraph Writing inculcating the positive attitude of a learner	CO3, CO2,
	Tople 2	through the movie SWOT Analysis – Know yourself	CO3
	Topic 3	Story Completion Exercise –Building positive attitude - The Man	CO2. CO3
		from Earth (Watching a Full length Feature Film)	GO2
	Topic 4	Digital Literacy Effective Use of Social Media	CO3
	Unit D	Speaking Skill	004
	Topic I	Self-introduction/Greeting/Meeting people – Self branding	<u>CO4</u>
	Topic 2	a Full length Feature Film)	CO4
	Topic 3	Dialogues/conversations (Situation based Role Plays)	CO4
	Unit E	Professional Skills Career Skills	
	Topic 1	Exploring Career Opportunities	CO4, CO5
	Topic 2	Brainstorming Techniques & Models	CO4, CO5
	Topic 3	Social and Cultural Etiquettes	CO4, CO5
	Topic 4	Internal Communication	CO4, CO5
	Unit F	Leadership and Management Skills	
	Topic 1	Managerial Skills	CO6
	Topic 2	Entrepreneurial Skills	CO6
		Class Assignments/Free Speech Exercises / JAM Group	
9	Evaluations	Presentations/Problem Solving Scenarios/GD/Simulations (25%	N/A
		CA and CE 25% ETE 50%	
	Texts &	Blum, M. Rosen. <i>How to Build Better Vocabulary</i> . Londor Publication	a: Bloomsbury
10	References Library Links	Comfort, Jeremy (et.al). <i>Speaking Effectively</i> . Cambridge Press	University

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ARP101.1	-	-	-	-	-	-	-	-	1	3		2	-	-	-
ARP101.2	-	-	-	-	-	-	-	-	1	3		2	-	-	-
ARP101.3	-	-	-	-	-	-	-	I	1	3		2	-	-	-
ARP101.4	-	-	-	-	-	-	-	I	1	2	1	2	-	-	-
ARP101.5	-	-	-	-	-	-	-	I	1	2	1	2	-	-	-
ARP101.6	-	-	-	_	-	-	_	_	1	2	1	2	-	-	-
ARP101	-	-	-	-	-	-	-	-	1	2	1	2	_	-	-

1-Slight (Low) 2-Moderate (Medium)

Sch	ool: SSET	Batch: 2023-2027									
Pro	gramme:	Current Academic Year: 2023–24									
B.T	ech										
Bra	nch: ME	Semester: I									
1	Course	MEP 107									
	Code										
2	Course Title	Introduction to Mechanical Engineering									
3	Credits	1									
4	Contact	0-0-2									
	Hours										
	(L-T-P)										
	Course	Basic Engineering									
	Status										
5	Course	To introduce different discipline of mechanical engineering, motivate students	to pursue								
	Objective	a career in the field of mechanical engineering and to perform hands on pr	actice on								
		mechanical components.									
6	Course	After the successful completion of course students will be able to:									
	Outcomes	CO1: Identify different areas of mechanical engineering and its application									
		CO2:Demonstrate the working mechanism of internal combustion engine									
		CO3: Apply the working principle of refrigeration system.									
		CO4: Interpret the mechanical characteristics of engineering materials and its ap	oplication								
		CO5: Classify different plant layouts used in engineering applications.									
		CO6: Interpret use of various production systems in the plant layout.									
8	Outline syllal	bus	СО								
			Mappin								
			g								
	Unit 1	Introduction	03								
	A	Definition of Mechanical Engineering,	-								
	В	Various streams like production & Industrial engineering, thermal and design	CO1								
	C	etc.	-								
	Unit 2	Introduction to IC Engine and Polyigoration Air conditioning	05								
		Introduction engine and its nomenclature	05								
	R	Working of 2 stroke and 4 stroke petrol and diesel engine	CO^2								
	C	Brief overview of transmission systems.									
	- Unit 3	Introduction to Refrigeration. Air conditioning									
	A	History and scope of refrigeration, application of refrigeration, difference in	CO3								
		retrigeration and heat pump									

В	Natural Refrigeration	n methods: Ice	e refrigeration, refrigeration by salt solution							
	and evaporative cool	ing								
С	Name of Mechanical	l refrigeration	systems and working of simple							
	refrigeration system	only.								
Unit 4	Engineering Mater	ials		04						
А	Classification of Eng	gineering Mate	erials							
В	Properties of engine	ering material	S	CO4						
С	Name and properties	of smart mat	erials							
Unit 5	Plant Layout			05						
	Plant Layout: factors	, principle, of	pjective and procedure of plant layout	CO5,C						
	Advantages of good	plant layout ."	Types of plant layout: process layout and	06						
	product layout.									
	Overview of job mas	s and batch p	roduction, Industrial Safety Aspects							
	Total Hours	1		20						
Mode of	Practical									
examination										
Weightage	СА	CE	ETE							
Distribution	25%	25%	50%							
Text	1. Foundations	of Materials S	Science and Engineering, William F. Smith,							
book/s*	Javad Hasher	Javad Hashemi, TMH Publication.								
Other	1. Fundaments	of Internal Co	mbustion Engine, V. Ganeshan, TMH							
References	Publication									
	2. Refrigeration	and Air Cond	ditioning, P.K Nag, TMH Publication							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEP	2	2	1	-	-	-	1	-	1	-	-	1	-	-	-
107.1															
MEP	2	1	1	-	-	-	1	-	1	-	-	1	-	-	-
107.2															
MEP	2	2	1	-	-	-	1	-	1	-	-	1	-	-	-
107.3															
MEP	2	2	1	-	-	-	1	-	1	-	-	1	-	-	-
107.4															
MEP	2	3	1	-	-	-	1	-	1	-	-	1	-	-	-
107.5															
MEP	2	2	1	-	-	-	1		1	-	-	1	-	-	-
107.6															
MEP	2	3	1	-	-	-	1	-	1	-	-	1	-	-	-
107															

1-Slight (Low) 2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027										
Pr	ogramme:	Current Academic Year: 2023-2024										
В.	Tech											
Br	anch: ME	Semester: I										
1	Course Code	CVL103										
2	Course Title	Environmental Studies										
3	Credits	0										
4	Contact	2-0-0										
	Hours											
	(L-T-P)											
	Course	Compulsory										
	Status											
5	Course	1. Enable students to learn the importance of environmental studies, popula	ation growth and									
	Objective	sustainable development	_									
	-	2. Provide students an insight to different aspects related to water i.e. water	r resources,									
		pollution and its control										
		3. Provide knowledge about air resources i.e. atmosphere, atmospheric pol	lution, control									
		of air pollution and climate change										
		4. Provide detailed knowledge about land resources, pollution and manage	ment of solid									
		wastes										
		5. Provide and enrich the students about other natural resources i.e. energy	, mineral and									
		food resources and biodiversity and its conservation										
6	Course	After the successful completion of course, students will be able to:										
	Outcomes											
		CO1. Understand the scope of environmental study and knowledge about	ut population									
		growth and its effects on environment and health and sustainable developm	ent									
		CO2. Comprehend different aspects related to water i.e. water resource	s, pollution and									
		its control										
		CO3. Understand different aspects related to air resources i.e. atmosphere	re, atmospheric									
		pollution, control of air pollution and climate change										
		CO4. Appreciate and comprehend land resources, pollution and manage	gement of solid									
		wastes										
		CO5. Understand about other natural resources i.e. energy, mineral and	food resources									
		and biodiversity and its conservation										
		CO6. Understand overall environmental issues and their ways of their effect	ive management									
7	Course	Environmental Studies emphasises on various aspects related to environme	nt, its									
	Description	degradation and control measures such as:	,									
	Ĩ	1. Population and Environment; Sustainable Development										
		2. Water: Resources, Pollution and Control										
		3. Air: Atmosphere, Pollution, Control and Climate Change										
		4. Land: Resources, Pollution and Management										
		5. Energy, Mineral and Food Resources and Biodiversity and its Conserva	ation									
8	Outline syllabu	JS	CO Mapping									
	Unit 1	Introduction to the course, Population and Environment and										
		Sustainable Development										
	A	Environmental Studies: Background; Definition; Objectives; Scope; Major	CO1, C06									
		environmental issues of concern; Multidisciplinary nature of										
		Environmental Studies										

	В	Human Population and Environment: Population growth/ explosion and its	CO1, C06
-	0	effects on numan health and environment	001 000
	C	Sustainable Development: Definition; Aim; Sustainability Development	COI, C06
		Goals (SDGs); Sustainability issues at various levels; Examples/	
		sustainability initiatives; Pillars of sustainable development; Desired	
	TT		
-	Unit 2	Water: Resources, Pollution and Control	000 000
	А	<u>Water Resources:</u> Water cycle; Total water on earth; Residence time of	CO2, C06
		water in different compartments; Classification of waters as per salt	
		content; Stresses on water resources/ water crises; water conservation;	
-	D	Water conflicts	CO2 C04
	В	Water Pollution: Impurities in water; Water quality parameters; Standards;	CO2, C06
		Major categories of water pollutants and their sources and effects; Surface	
		water versus groundwater quality; Point and non-point sources; Pollution	
		of (1) fresh water streams (DO sag curve/ self-purification), (11) lakes, (111)	
-	0	groundwater/ aquifers, and (iv) oceans	GOD G 0(
	C	<u>Water Pollution Control</u> : Water treatment (domestic and municipal);	CO2, C06
	TT	wastewater treatment (on-site and municipal)	
-	Unit 3	Air: Atmosphere, Pollution, Control and Climate Change	CO2 C0(
	A	<u>Atmosphere:</u> Composition and structure; Classification of pollutants; Air	003, 006
		pollution: sources and effects on numans, plants and materials; AQI and	
-	D	now it is calculated, Plume shapes	CO2 C06
	В	<u>Air Pollution Control:</u> Laws; Modifications in fuels and engines; Ambient	003, 006
		an quality control, control equipment s (in venicles and industry), stack	
-	C	Climate Changes Clabel warming and greenhouse offects Ozone lower	CO2 C06
	C	<u>Climate Change.</u> Global warming and greenhouse effect, Ozone layer	005, 000
		depiction and its consequences, chinate change and its impact on	
	In:t 1	Lond: Desources Dollution and Management	
-		Land Pasources: Importance: Soil and its formation: Soil profile: Land	CO4 C06
	A	<u>Land Resources.</u> Importance, Soil and its formation, Soil prome, Land degradation: causes and affects: Soil conservation through sustainable	004,000
		agriculture	
-	B	Soil/ Land Pollution: Major categories of soil pollutants: sources and	CO4_C06
	D	son Land Fondation. Major categories of son pondants. sources and	004,000
-	C	Solid Waste Management: Classification of solid wastes: Engineering	CO4_C06
	C	systems for management: Methods of treatment: Bio-medical wastes: Non-	004, 000
		degradable wastes: Hazardous wastes: Flectronic wastes: Plastic wastes	
		etc	
	Unit 5	Energy, Mineral and Food Resources and Biodiversity and its	
	Chit 5	Conservation	
	А	Energy Resources: Conventional and non-conventional: Non-renewable	CO5. C06
		and renewable: Fossil fuels: coal, petroleum and natural gas: Solar and	000,000
		wind energy	
	В	Mineral, Forest and Food Resources: (i) Minerals -Definition: Importance	CO5, C06
	_	Minerals in our diet. Metallic and non-metallic minerals. (ii) Forest - Direct	
		and indirect benefits: Depletion of forest resources: causes and effects:	
		and, (iii) Food - Three main calorie providers: Green revolution	
	С	Biodiversity and its Conservation: Definition: Threats to biodiversity:	CO5, C06
		Extinct, endangered and endemic species; Conservation of biodiversity	

_					
	Mode of	Theory	through	n OMR sheet having 100 MCQs	
	examination				
	Weightage	CA	MTE		
	Distribution	25%			
	Text book(s)	1. Era	ch Bharu		
		3 rd Ed.	, Univer		
	Other	1. Jose	ph, Beni	ny, Environmental Studies, Tata McGraw-Hill, New Delhi,	
	Reference (s)	2022			
		2. Hov	ward S.	Peavy, Donald R. Rowe, and George Tchobanoglous,	
		Enviro	nmental	Engineering, McGraw-Hill, New York, 1985	
					1

CO-PO Mapping

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	2	1	-	1	1	1	-	-	-
CO2	1	2	2	1	-	1	2	-	-	1	1	-	-	-	-
CO3	1	2	2	1	-	2	2	-	-	1	2	-	-	-	-
CO4	1	2	2	1	-	2	2	-	-	1	2	-	-	-	-
CO5	1	2	2	1	1	2	1	2	-	1	2	-	-	-	-
CO6	1	2	2	2	1	2	2	1	-	1	2	1	-	-	-
CO	1	2	2	1	1	2	1	1	-	1	2	1	-	-	-

School: SSET		Batch: 2023-2027								
P	rogramme: B.Tech.	Current Academic Year: 2023-2024								
B	ranch: ME	Semester: I								
1	Course Code	CSP113								
2	Course Title	Programming for problem solving Lab								
3	Credits	1								
4	Contact Hours (L-T-P)	0-0-2								
	Course Status	Program Core								
		1. Learn basic programming constructs -data types, de	cision structures,							
	Course	control structures in C								
5	Objective	2. learning logic aptitude programming in c language								
		3. Developing software in c programming								
6	Course Outcomes	 After the successful completion of course, students will CO1: demonstrate the algorithm, Pseudo-code and figiven problem. CO2: develop better understanding of basic concepts programming. CO3: create and implement logic using array and function CO4: construct and implement the logic based on the strings and pointers. CO5: apply user-defined data types and I/O operation CO6: design and develop solutions to real world process. 	be able to: low chart for the s of C nction. e concept of ons in file. blems using C.							
7	Course	Programming for problem solving gives the Understanding	of C programming							
,	Description	and implement code from flowchart or algori	thm							
8	TT A = A	Outline syllabus	CO Mapping							
	Unit 1	Logic Building	CO1,CO2							
		Draw flowchart for finding leap year								
		Write a c <u>Program to Add Two Integers</u>								
	Linit 2	Introduction to C Programming	CO2 CO1							
		Write a c program to convert length meter to cm	02,001							
		Write a c program to convert temp								
		Write a c program to swap two numbers								
	Unit 3	Arrows and Functions	CO3 CO 6							
	Unit 3	Write a c program to calculate the average using arrays								
		Write a c program to find the largest element of the array								
	Unit 4	Pre-processors and Pointers	CO4,CO6							

	Write a c p	rogram to swap	two values using pointers							
	Write a c prog	Write a c program to find largest number from array using								
		poin	ters							
Unit 5	User De	efined Data Ty	pes and File Handling	CO5,CO6						
	Write a c pro	gram to store in	formation of a student using							
		struc	eture							
	Write a c pro	gram to store in	formation of a student using							
		uni	on							
Mode of		Practical								
examination										
Weightage	CA	MTE	ETE							
Distribution	25%	25%	50%							
Text book/s*	Kernighan, B									
TEAT DOOK/S										
Other	1. B.S. Gott	ries - Tata McGraw								
References	2. E. Balagurus	samy - Programm	ning in ANSI C - Second Edition -	Tata McGraw Hill-						
	1999									
Softwares			Turbo C							

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CSP 113.1	1	2	1	-	-	1	-	-	-	_	-	-	1	1	-
CSP 113.2	2	-	2	I	I	1	I	I	I	-	1	I	2	2	-
CSP 113.3	1	_	1	_	_	_	_	_	_	_	_	_	_	1	_
CSP 113.4	1	_	1	_	_	_	_	_	_	_	_	_	_	1	_
CSP 113.5	1	_	1	_	_	_	_	_	_	_	_	_	_	1	_
CSP 113.6	2	2	2	_	_	2	_	_	_	_	1	_	2	2	1
CSP113	2	2	2	-	-	1	-	-	-	-	1	-	2	1	1

1-Slight (Low)

2-Moderate (Medium)

School: SSET		Batch: 2023-27								
Prog	gramme:	Current Academic Year: 2023-24								
B.T	ech									
Bra	nch: ME	Semester: I								
1	Course Code	EEP112								
2	Course Title	Principles of Electrical and Electronics Engineering Lab								
3	Credits	1								
4	Contact Hours	0-0-2								
	(L-T-P)									
	Course Status	Program Core								
5	Course	To provide the students with an introductory concept i	n the field of							
	Objective	electrical and electronics engineering to facilitate better un	derstanding of							
		the devices, techniques and equipments used in	engineering							
		applications.								
6	Course	After the successful completion of course, students will be	e able to:							
	Outcomes	CO1. To configure and enclose one sizes invit								
		CO2: To inspect the working of transformer and calculate	its officiancy							
		CO_2 : To understand the working of da and as motors and	magging its							
		vorious operating perometers	measure its							
		COA: To design rectifier circuits such as half and full way	e rectifiers							
		and observe its output waveforms								
		CO5: To obtain the characteristics of BIT								
7	Course	This initial course introduces the concepts and fundamenta	als of electrical							
,	Description	and electronic circuits and devices. Topics include basic c	ircuit analysis.							
	2 comption	diode and transistor fundamentals and applications. Th	is course also							
		introduces working principle and applications of dc/ac motors and								
		transformers.								
8	Outline syllabus		CO Mapping							
	Unit 1	Practical based on DC & AC Circuits	CO1							
		To configure a dc circuit on breadboard, and measure	CO1							
		voltage/current across/through each element								
		To verify Kirchhoff's Laws	CO1							
		To verify Superposition Theorem	CO1							
		To find the real power, reactive power, apparent power	COI							
		and power factor of RL & RC load								
	Unit 2	Practical related to Transformers								
		To find the efficiency of transformer by obtaining its	CO2							
		losses.								
	Unit 3	Practical related to Electrical Motors								
		To study cut-section of DC motor and induction motor.	CO3							
		To start the DC motor and reverse its direction of	CO3							
		rotation.								
		To start an induction motor and reverse its direction of	CO3							
		rotation.								
	Unit 4	Practical related to Diode and Rectifier								

	To determine	CO4							
	To assemble	CO4							
	circuits for th	circuits for their input and output waveform							
Unit 5	Practical rel	ated to Transi	stors						
	To determine	input and outp	out characteristics of BJT	CO5					
	Validation of	BJT as a switc	ch	CO5					
Mode of	Practical								
examination									
Weightage	CA	MTE	ETE						
Distribution	25%	25%	50%						
Text book/s*	1. D. P. Ko	othari and I. J. I	Nagrath, "Basic Electrical						
	Engineering"	Engineering", Tata McGraw Hill, 2010.							
	2. S. K. Bha								
	Electronics E								
	3. Robert L B								
	Theory" Pear								
Other	1. V. D.	Toro, "Electri	cal Engineering						
References	Funda	amentals", Pren	tice Hall India, 1989.						
		,	,						

Course Articulation Matrix:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS O2	PS O3	PS O4
CO112 .1	3	3	3	1	1	-	-	-	-	-	-	-	2	-	-	-
CO112 .2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	1	-
CO112 .3	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO112 .4	2	1	3	-	-	-	-	-	-	-	-	-	2	-	-	-
CO112 .5	2	1	1	-	-	-	-	-	-	-	-	-	2	-	-	-
EEP11 2	2	2	2	1	1	-	-	-	-	-	-	-	2	-	1	-

School: SSET		Batch : 2023-2027							
Pre	ogramme: B.Tech	Current Academic Year: 2023-2024							
Br	anch: ALL	Semester: I							
1	Course Code	MEP 106							
2	Course Title	Computer Aided Design & Drafting Laboratory							
3	Credits	1.5							
4	Contact Hours	0-0-3							
	(L-T-P)								
5	Course Status	Program Core							
5	Course Objective	The objective of this infoductory course is to make students familiar with							
		computer-aided drafting/ design, introduce them about the basic commands,							
		tools and dimension techniques for creation and presentation of various							
		engineering drawing by using AutoCAD software which helps in visualization							
		and problem solving in engineering disciplines.							
6	Course Outcomes	After successful completion of this course the student will be able to							
		CO1: Identify the fundamental features of CAD, AutoCAD workspace and							
		user interface.							
		CO2: Apply knowledge of drawing, editing and viewing tool to create two							
		dimensional engineering drawings in AutoCAD.							
		CO3: Choose advance features to present an engineering drawing in							
		AutoCAD.							
		CO4: Create an engineering drawing by implementing dimension techniques.							
		CO5: Construct orthographic projections from a pictorial view.							
		CO6: Apply the knowledge of AutoCAD in various industrial practice.							
7	Course Description	This introductory course is offered to students to make them proficient in							
		design, layout, product development, and other careers that require technical							
		drawing. Using the current version of the AutoCAD software, students will							
		learn a variety of drawing techniques and be able to replicate specific							
		drawings in multiple perspectives. The pinnacle of the class is to empower							
		and enable students to create using the software provided. Care							
		opportunities in 3D modeling, manufacturing, and engineering will also be							
		explored. No drafting or computer experience is necessary.							
8	Outline syllabus	СО							
	Europin and 1	Introduction to AutoCAD and its interface							
1	Experiment I	I muouucuon to Autocad anu its interface							
Experiment 2	Working with c polygon and cre	coordinates, Dra eating sketches	wing ofline, circle, arc,	CO2					
---------------	-----------------------------------	-------------------------------------	---------------------------------	----------					
Experiment 3	Editing of draw	ing by using ed	iting Tools and Power tools	CO2					
Experiment 4	Creating of adusing of block	vanced feature	like fillet, chamfer, hatch and	CO3					
Experiment 5	Representing te	CO4							
Experiment 6	Creating the d AutoCAD featu	hanical components by using	CO2, CO3						
Experiment 7	Creating the ele	ectrical circuit d	rawings in AutoCAD.	CO2					
Experiment 8	Drawing plan a	CO2, CO4							
Experiment 9	Creating the dr Mahal in Auto	awing of renow	vned constructions such as Taj	CO3, CO6					
Experiment 10	Creating of orth	nographic project	ctions from a pictorial views	CO5, CO6					
Mode	Practical								
Weightage	CA	CE	ETE						
	25%	25%	50%						
Text book/s*	Hill,								
	Internatio	onal Edition.							
Software	AutoCAD								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
MEP	2	-	1	2	2	-	-	-	1	-	-	1	-	-	-
106.1															
MEP	1	_	_	2	3	_	_	_	1	_	_	1	_	_	_
106.2	1	_	_	2	5	_	_	_	1			1		_	_
MEP	2				2							1			
106.3	2	-	-	-	5	-	-	-	-	-	-	1	-	-	-
MEP	1				2							1			
106.4	1	-	-	-	5	-	-	-	-	-	-	1	-	-	-
MEP	2			2								1			
106.5	2	-	-	2	-	-	-	-	-	-	-	1	-	-	-
MEP	2		1	2	2				1		1	1			
106.6	2	-	I	2	3	-	-	-		-	1	1	-	-	-
MEP 106	2	-	1	2	3	-	-	-	1	-	1	1	-	-	-

1-Slight (Low) 2-Moderate (Medium)

Schoo	ol: SSET	Batch : 2023-2027
Progr	amme: B.Tech	Current Academic Year: 2023-2024
Brane	ch: ME	Semester: I
1	Course Code	MEP105
2	Course Title	Mechanical Workshop
3	Credits	1.5
4	Contact Hours (L-T-P)	0-0-3
	Course Status	Practical
5	Course Objective	The objective of this course is to make the students, familiar with the
		modern day manufacturing processes, introduce them to various hand
		tools and equipment, acclimatize with the measuring devices, and
		perform basic machine tool operations in various machine tools.
6	Course Outcomes	After the successful completion of course, students will be able to:
		CO1: Apply 5S (Seiri, Seiton, Seiso, Seiketsu and Shitsuke)
		methodology at workplace.
		CO2: Select various hand tools used in basic mechanical engineering
		workshop viz. black smithy, carpentry, assembling, welding etc.
		CO3: Choose different measuring devices according to the job
		CO4: Explain various machine tools and their operation
		CO5: Classify suitable tools for machining processes including
		turning, facing, thread cutting and tapping, milling, drilling and
		shaping.
		CO6: Buildup basic knowledge of workshop to manufacture basic
		metallic or wooden components
7	Course Description	Black Smithy Shop: Simple exercises based on black smithy operations such as upsetting, practice of S -Hook from circular bar using hand forging operations. Carpentry Shop: Study of different types of wood, Carpentry Tools, Equipment and different joints, Practice of T joint, cross lap joint, Mortise and Tenon T joint, Bridle T joint Fitting Shop: Preparation of Square joint, V joint, half round joint, dovetail jointas per the given specifications, which contains: Sawing, Filing, Grinding, and Practice marking operations. Sheet Metal Shop: Study of galvanized Iron (G.I.) Sheet material properties, hand tools and sheet metal machines, and projective geometry, demonstration of different sheet metal operations and practice of

		Introduction, S Selection of w Joint, Lap Join machine (diff Demonstration	Study of Tools a elding electrode nt. Machine Sho ferent parts, di n of different op	nd welding Equipment (Gas and and current, Bead practice and F pp: Study of machine tools in pa fferent operations, study of o erations on Lathe machine, Prac	Arc welding), Practice of Butt articular Lathe cutting tools), tice of Facing,						
		Quick return r	nechanism of S	haper.	g and Study of						
8	Outline syllabus				CO Mapping						
	Experiment 1	To make a S s hand forging	shaped hook fr technique.	om a given circular rod using	CO4,CO1						
	Experiment 2	To make a do	ovetail lap join	t in Carpentry shop.	CO2,CO3						
	Experiment 3	To make a cr	oss-half lap jo	int in Carpentry shop.	CO2,CO3						
	Experiment 4	To make a so fitting shop.	uare fit from t	he given mild steel pieces in	CO3,CO5						
	Experiment 5	To prepare a fitting shop.	V-Fit from th	e given mild steel pieces in	CO3, CO5						
	Experiment 6	To make a result of the sheet metal s	ectangular tray hop.	v of specified dimensions in	CO2, CO5						
	Experiment 7	To make a L using arc wel	ap joint, using lding.	g the given mild steel pieces	CO3, CO5						
	Experiment 8	To perform s the given wo	tep turning and rk piece	d taper turning operations on	CO5						
	Experiment 9	To prepare a pattern	sand mould, u	sing the given single piece	CO2,CO6						
	Experiment 10	To prepare a pattern.	sand mould, u	sing the given Split-piece	CO2,CO6						
	Mode of examination	Practical									
	Weight- age	CA	CE	ETE							
	Distribution	25%	25%	50%							
	Text book/s*	 Raghuwar Rai & Sons. Kannaiah Scitech publi John K.C., Jeyapoova 3rd Edn Vik 	 Raghuwanshi B.S., Workshop Technology Vol. I & tai & Sons. Kannaiah P. and Narayana K.L., Workshop Manu citech publishers. John K.C., Mechanical Workshop Practice. 2nd Edn. I Jeyapoovan T.and Pranitha S., Engineering Practices rd Edn. Vikas Pub 2008 								

COs	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
MEP105.1	1	0	0	0	0	0	1	1	2	0	0	1	1	1	0
MEP105.2	1	0	0	0	0	0	1	0	0	0	0	1	1	1	0
MEP105.3	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0
MEP105.4	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0
MEP105.5	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0
MEP105.6	1	0	1	0	0	0	1	1	2	0	0	1	1	1	0
MEP105	1	0	1	0	0	0	1	1	2	0	0	1	1	1	0

1-Slight (Low)

2-Moderate (Medium) 3-Substantial (High)

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B.	Tech								
Br	anch: ME	Semester: II							
1	Course Code	CSE114							
2	Course Title	Application Based Programming in Python							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Program Core							
5	Course	Emphasis is placed on procedural programming, algorithm desig	n, and language						
	Objective	constructs common to most high-level languages through Python Pr	ogramming.						
6	Course	After the successful completion of course, students will be abl	e to:						
	Outcomes	CO1. Apply decision and repetition structures in program design.							
		CO2. Implement methods and functions to improve readability of p	rograms.						
		CO3. Demonstrate the use of Python lists, tuples and dictionaries							
		CO4. Describe and apply object-oriented programming methodolog	y.						
		CO5. Apply top-down concepts in algorithm design.							
7	Comme	CO6. Write Python programs to illustrate concise and efficient algo	rithms						
/	Course	used in many scientific areas for data exploration. This course is an introduction							
	Description	the Python programming language for students without price	or programming						
		experience. We cover data types, control flow, object-oriented prog	ramming.						
8	Outline syllabus) }	CO Mapping						
	Unit 1	Introduction	<u>11_C</u>						
	A	Python Environment, Variables, Data Types, Operators.	CO1						
	В	Conditional Statements: If, If- else, Nested if-else.	CO1						
		Looping: For, While, Nested loops.							
	С	Control Statements: Break, Continue, And Pass. Comments	CO1						
	Unit 2	List, Tuple and Dictionaries							
	A	Lists and Nested List: Introduction, Accessing list,	CO1, CO2						
		Operations, Working with lists, Library Function and	,						
		Methods with Lists.							
	В	Strings: Introduction, Accessing items of a string,	CO1, CO2						
		Operations, Working, Library Functions and Methods with							
		strings.							
		Tuple: Introduction, Accessing tuples, Operations,							
		Working, Library Functions and Methods with Tuples.							
	С	Sets: Introduction, Operations, Working, functions with sets.	CO1, CO2						
		Difference between set and lists.							
		Dictionaries :Introduction, Accessing values in dictionaries,							
		Working with dictionaries, Library Functions							
	Unit 3	Functions and Exception Handling							
	Α	Functions: Defining a function, Calling a function, Types of	CO3						
		functions, Function Arguments							

В	Anonymous functio	ns, Global and	l local variables	C03						
С	Exception Handlin	g: Definition,	Except clause, Try, finally	CO3						
	clause, User Define	d Exceptions								
Unit 4	OOP and File Han	dling								
А	OOPs concept : C	DOPs concept : Class and object, Attributes, Abstraction,								
	Encapsulation, Poly	Encapsulation, Polymorphism and Inheritance								
В	Static and Final Ke	tatic and Final Keyword, Access Modifiers and specifiers,								
	scope of a class	scope of a class								
С	File Handling: Intro	duction, File	Operations	CO4						
Unit 5	Application based	programming	5							
А	Modules& packag	ges :Importin	g module, Math module,	CO5						
	Random module, cr	eating Module	28							
В	Introduction to Nur	npy, pandas, l	Matplotlib	CO5,CO6						
С	Applications: Search	ning Linear Se	arch, Binary Search.	CO5,CO6						
	Sorting: Bubble Sort	t								
Mode of	Theory									
examination		[
Weightage	CA	MTE	ETE							
Distribution	25%	25%	50%							
Text book/s*	1. The Complete Hill	Reference Pyth	on, Martin C. Brown, McGraw							
Other	1. Introduction to	computing in p	roblem solving using Python, E							
References	Balahurusamy,									
	2. Introduction to Pearson									
	3. Mastering Pyth	 Pearson Mastering Python, Rick Van Hatten, Packet Publishing House 								
	4. Starting out wi	th Python, Tony	Gaddis, Pearson							

COs	P 0 1	Р О2	Р О3	Р О4	Р О5	Р Об	Р 07	Р 08	Р О9	PO 10	РО 11	PO 12	PS O1	PS O2	PS O3
CSE114.1	1	3	2	2	1	-	-	-	1	-	1	-	2	2	1
CSE114.2	3	3	3	3	3	-	-	-	3	-	3	-	3	3	3
CSE114.3	3	3	3	3	2	-	-	-	3	-	2	-	3	3	2
CSE114.4	2	2	2	1	2	-		-	2	-	1	-	2	1	1
CSE114.5	2	3	2	1	2				1		2		1	2	2
CSE114.6	1	2	1	2	1				1		1		3	2	2
CSE114	2	2	2	1	2	-	-	-	1	-	1	-	2	2	2

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-24							
B.	Tech.								
Bı	ranch: ME	Semester: II							
1	Course Code	MTH 143							
2	Course Title	DIFFERENTIAL EQUATIONS, SPECIAL	TRANSFORMS AND						
		COMPLEX VARIABLE							
3	Credits	4							
4	Contact	3-1-0							
	Hours								
	(L-T-P)								
	Course Status	Program Core							
5	Course	The objective of this course is to familiarize t	he prospective engineers with						
	Objective	techniques in multivariate integration, ordi	nary and partial differential						
		equations and complex variables. It aims to e	equip the students to deal with						
		advanced level of mathematics and application	ons that would be essential for						
		their disciplines.							
6	Course	After the successful completion of course, stu	dents will be able to:						
	Outcomes	CO1: Apply the concept of differential equ	ations, illustrate the first and						
		second order linear differential equations with	n constant coefficients						
		CO2: Recognize the major classification of	of PDEs and the qualitative						
		differences between the classes of equations							
		CO3: Solve linear differential equations using	the Laplace transform and Z						
		transform technique	5 une Lupinee d'ambrorini ana 2						
		CO4: Evaluate half range sine and cosine	e Fourier series and Fourier						
		transform of the functions							
		CO5: Apply the concept and consequences of	of analyticity and the Cauchy-						
		Riemann equations and of results on harmoni	c						
		CO6: Evaluate complex contour integrals dir	ectly and by the fundamental						
		theorem and Represent functions as Taylor	r, power and Laurent series,						
		classify singularities and poles							
7	Course	The primary objective of the course is to deve	olon the basic understanding						
ĺ,	Description	of differential equations, special transforms a	nd complex analysis						
8	Outline syllab	us :Differential Equations, Special	CO Manning						
Ŭ	Transforms a	nd Complex Variable	c c marphing						
	Unit 1	Ordinary differential equations							
	A	Exact differential equations, Second order	CO1						
		linear differential equations with constant							
		coefficients,							
		Method of variation of parameters, Cauchy-	CO1						
	В	Euler equation; Power series solutions;							

С	Introduction	of Legendre	and Bessel	CO1
 Unit 2	Dortial diffor	ontial aquation	6	
	Definition cla	sification of pa	s rtial	CO2
Π	differential eq	ustion method c	f separation	602
	of variables		n separation	
R	Solution of we	we equation		<u>CO2</u>
<u> </u>	Heat equation	and Lanlace e	austion using	CO2
C	method of sen	aration of variab	002	
 Unit 3	Lanlace Tran	sform and Z Ti		
A	Laplace transf	orm of some star	ndard	CO3
	functions and	its properties	ildui d	
B	Inverse Laplac	transform and	Convolution	CO3
D	theorem		Convolution	
С	Introduction to	Z transforms.		CO3
 Unit 4	Fourier series	s and Fourier T	ransform	
A	Fourier series.	Fourier series in	change of	CO4
	interval. Half	range sine and co	osine series	
В	Parseval's the	orem. Fourier Tr	ansforms	CO4
C	Fourier Cosine	e and sine Transf	form	CO4
-	properties of H	Fourier Transform	n.	
 Unit 5	Complex Var	iable – Differen	tiation	
А	Differentiation	n, Cauchy-Riema	ann equations,	CO5
	analytic functi	ons, harmonic fu	unctions,	
В	Contour integr	als, Cauchy-Inte	egral theorem,	CO5, CO6
	Cauchy Integr	al formula (with	out proof),	
С	Taylor's series	s and Laurent's s	series	CO6
	(without proof), zeros of analy	tic functions,	
	singularities, H	Residues, Cauch	y Residue	
	theorem (with	out proof).		
Mode of	Theory			
 examination			1	
Weightage	CA	MTE	ETE	
 Distribution	25%	25%	50%	
Text book/s*	1. Erwin	kreyszig,	Advanced	
	Engine	ering Mather		
	Edition	n, John Wiley &		
	2. Raman	a B.V., Higher		
	Mathe	matics. Tata M		
	New D	elhi, 11th reprin		
01	1 117 1			
Other	I. W. E.	Boyce and R.	C. DiPrima,	
References	Eleme	ntary Different	ial Equations	

		and Boundary Value Problems, 9th	
		Edn., Wiley India, 2009.	
	2.	S. L. Ross, Differential Equations,	
		3rd Ed., Wiley India, 1984.	
	3.	E. A. Coddington, An Introduction	
		to Ordinary Differential Equations,	
		Prentice Hall India, 1995.	
	4.	E. L. Ince, Ordinary Differential	
		Equations, Dover Publications,	
		1958.	
	5.	J. W. Brown and R. V. Churchill,	
		Complex Variables and	
		Applications, 7th Ed., McGraw Hill,	
		2004.	

COURSE OUTCOMES – PROGRAMME OUTCOMES MAPPING TABLE

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО												
CO143.1	3	2	2	-	-	-	-	-	-	-	-	1
CO143.2	3	2	2	-	-	-	-	-	-	-	-	1
CO143.3	3	2	2	-	-	-	-	-	-	-	-	1
CO143.4	3	2	2	-	-	-	-	-	-	-	-	1
CO143.5	3	2	2	-	-	-	-	-	-	-	-	1
CO143.6	3	2	2	-	-	-	-	-	-	-	-	1
MTH	2	2	2									1
143	3	2	2	-	-	-	-	-	-	-	-	1

	School: SSET Batch : 2023-2027								
P	rogramme:	Current Academic Year: 2023-2024							
B	.Tech								
B	ranch: ME	Semester: II							
1	Course Code	PHY128							
2	Course Title	Engineering Physics							
3	Credits	4							
4	Contact Hours	3-1-0							
	(L-T-P)								
	Course Status	Program Core							
5	Course Objective	The course will cover statics and dynamics. Statics deals with forces, including friction forces, and moments acting on rigid bodies at rest. Much time will be spent finding resultant forces for a variety of force systems, as well as analyzing forces acting on bodies to find the reacting forces supporting those bodies. Dynamics course provides students with the skills they need to analyze and solve problems involving bodies in motion through the application of vector mechanics and Newton's laws							
6	Course Outcomes	vill be able to: of equivalent force ding on how to be n two and three es acting at a point/on a to determine forces friction problems problems involving ng of how to apply igid bodies in two							
7	Course Description	The course introduces rate processes in fluid me transfer. The course confines itself largely to be estimates and use dimensionless parameters	echanics and in heat able to same simple						
8	Outline syllabus		CO Mapping						
	Unit 1	Forces as Vectors and first law of Newton							
	Α	Forces: components and resultants	CO1						
	В	Equilibrium of a particle in 2-D	C01						
	С	Equilibrium of a particle in 3-D	CO1						
	Unit 2	Equilibrium of rigid bodies							
	А	External and internal forces, concept of moment	CO2						
	В	Equivalent force system	CO2						
	С	Centre of gravity	CO2						
	Unit 3	Friction and simple structures							

А	Solving	problems with t	friction	CO4
В	Simple 2	-D trusses		CO3
С	Simple 2	-D frames	CO3	
Unit 4	Kinema	tics and kineti	cs of particles	
А	Rectiline	ar and curvilin	ear motion of particles	CO5
В	Newton'	s second law ar	nd linear momentum	CO5
С	Energy n	nethods applied	l to particles	CO5
Unit 5	Kinema	tics and kineti		
А	Translati	on and fixed ay	kis rotation	CO6
В	Kinetics	of rigid bodies	in plane motion	CO6
С	Kinetics	of rigid bodie	s in combined translation	CO6
	and rotat	ion		
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1. Baker	and Haynes, E		
	and Inter	ractive, e-book		
Other References	2. Beer a	nd Johnston, V		
	Engineer	s, Dynamics, N	/IcGraw-Hill	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1					2			1	2		
CO2	3	2	1	1					2			1	2		
CO3	3	2	1	1					2			1	2		
CO4	3	2	1	1					2			1	2		
CO5	3	2	1	1					2			1	2		
CO6	3	2	1	1					2			1	2		
CO	3	2	1	1					2	-	-	1	2		

1-Slight (Low) 2-Moderate (Medium)

Sc	School: SSET Batch : Batch : 2023-2027								
Pr	ogramme:	Current Academic Year: 2023-2024							
B.	Tech								
Bı	anch: ME	Semester: II							
1	Course	MEC236							
	Code								
2	Course	Materials Science							
	Title								
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
5	Course	Program Core							
	Status								
6	Course	After the successful completion of course, students will be able to:							
	Outcomes	CO1: Describe the structure and imperfections present in crystallin	e solids						
		CO2: Explain the reasons behind variations in mechanical pro	perties of						
		different categories of materials							
		CO3: Analyse phase diagrams and subsequently utilize it to predict the							
		microstructure							
		CO4: Compare and contrast the structure and properties of different							
		constituents of Iron-carbon system	c 1°CC /						
		COS: Summarise the composition, properties and applications of	different						
		ferrous and non-ferrous alloys; and conduct materials testing							
7	Course	The course feetings on the structure defects and structure managements	lS achoniana						
/	Description	associated with crystalling solids along with material testing. This c							
	Description	covers phase diagram phase transformations and processing of Ir	on-carbon						
		system	on-caroon						
8	Outline syllab		CO						
	o unine synue		Mapping						
	Unit 1	Structure and Imperfections in Crystalline Solids	inapping						
	A	Binding forces and energies in solids. Unit 3ells. Metallic crystal	CO1.						
		structures, Density computations, Crystal structures,	CO6						
		Crystallographic points, directions and planes							
	В	Crystalline and non-crystalline materials, Point defects:	CO1,						
		Vacancies, Self-interstitials and Impurities in solids,	CO6						
	С	Miscellaneous imperfections: Dislocations, Linear defects,	CO1,						
		Surface defects. Diffusion mechanisms and Factors that affect	CO6						
		diffusion							
	Unit 2	Mechanical Properties of Metals							
	A	Concepts of stress and strain, Stress-strain behavior, Anelasticity,	CO2,						
		Elastic properties of materials, True stress-strain curve and Elastic	CO6						
		recovery							
	В	Safety factors, Characteristics of dislocations, Slip systems,	CO2,						
		Plastic deformation in polycrystalline materials	CO6						

С	Strengthening r solution strength Brittle fracture	nechanisn rening and	ns in metals: Strain hardening, Solid d Hall-Petch strengthening, Ductile and	CO2, CO6					
Unit 3	Phase Diagram	S							
А	Solubility limit Unary phase dia	, Phases, gram	Microstructure, Phase equilibria and	CO3					
В	Binary phase Development o systems and Gib	diagrams f microst bs phase i	: Interpretation of phase diagram, ructure in Isomorphous and eutectic rule.	CO3					
С	Iron-Carbon s Development of elements	ystem: f microstr	Iron-Iron carbide phase diagram, ucture and influence of other alloying	CO3, CO6					
Unit 4	Phase Transformations								
A	Kinetics of phase transformations: Homogenous and heterogeneous nucleation and Growth, Metastable and Equilibrium states								
В	Isothermal transformation diagrams, Athermal transformation and Continuous cooling transformation diagram								
С	Mechanical beha	avior of Ir	on-Carbon alloys: Pearlite, Spheroidite,	CO4,					
	Banite and M	artensite,	Tempered martensite and Temper	CO6					
	embrittlement								
Unit 5	Processing of M	<u>letal Allo</u>	ys and Materials Testing	<u> </u>					
А	Ferrous and f	Non-ferrou	is alloys: Composition, Mechanical	CO5,					
D	Concent of lo	Application	18	<u>CO5</u>					
D	Annealing proce of ferrous alloys	esses: Pro Normali	cess annealing, Stress relief, Annealing zing, Full anneal and Spheroidizing	05					
С	Hardness test, T	ensile test	, Impact test, Significance of fatigue and	CO5					
	creep properties	, Fatigue t	est and Creep test						
Weightage	СА	MTE	ETE						
Distribution	25%	25%	50%						
Text	Materials Scien	ce and \overline{Er}	ngineering an Introduction by William						
book/s*	D. Callister and David G. Rethwisch								
Other	Materials Scien	ice and E	ngineering: A First Course byV.						
References	Raghavan								

COs	PO	PO	PO	PO	РО	PO	PS	PSO	PS						
	1	2	3	4	5	6	7	8	9	10	11	12	O1	2	O3
MEC236.1	3	1	2	1	-	-	-	-	-	-	-	-	2	2	2
MEC236.2	1	1	2	-	-	-	-	-	-	-	-	-	3	3	3
MEC236.3	3	3	3	-	-	-	-	-	-	-	-	-	1	-	2
MEC236.4	3	3	3	-	-	-	-	-	-	-	-	-	3	2	3
MEC236.5	1	2	2	1	-	-	-	-	-	-	-	-	-	-	2
MEC236	2	2	2	1	-	-	-	-	-		-	-	2	2	2
1-Slight (Low)2-Moderate (Medium)3-Substantial (High)															

Pro	gramme:-	Batch : 2023-2027							
B.T	Sech Sech	Current Academic Year: 20	23-2024						
Sch	ools: SSET	Semester: 2 nd (Second	1)						
1	Course Code	ARP102							
2	Course Title	Communicative English	-2						
3	Credits	2							
4	Contact Hours (L-T-P)	1-0-2							
5	Course Objective	To Develop LSRW skills through audio-visual language acquirement, creative writing, advanced speech et al and MTI Reduction with the aid of certain tools like texts, movies, long and short essays.							
6	Course Outcomes purse Description	After the successful completion of course, studen CO1 Acquire Vision, Goals and Strategies through A Texts CO2 Synthesize complex concepts and present them CO3 Develop MTI Reduction/Neutral Accent throug & Practice CO4 Determine their role in achieving team success strategies for effective communication with different p CO5 Realize their potentials as human beings and properly in the ways of world. CO6 Acquire satisfactory competency in use of Qua Logical Reasoning The course takes the learnings from the previous ser level of language learning and self-comprehension th of audio-visual aids as language enablers. It also advanced level of writing, reading, listening and speaking reducing the usage of L1 to minimal in order to incre- chances.	ts will be able to: Audio-visual Language in creative writing gh Classroom Sessions cess through defining people d conduct themselves antitative aptitude and mester to an advanced rough the introduction leads learners to an ing abilities, while also ease the employability						
8		Outline syllabus – ARP 102							
	Unit 1	Acquiring Vision, Goals and Strategies through Audio-visual Language Texts	CO Mapping						
	Topic 1	Pursuit of Happiness / Goal Setting & Value Proposition in life							
	Topic 2	12 Angry Men / Ethics & Principles	CO1						
	Topic 3	The King's Speech / Mission statement in life strategies & Action Plans in Life							
	Unit 2	Creative Writing							

	Topic 1	Story Reconstruction - Positive Thinking	
	Topic 2	Theme based Story Writing - Positive attitude	CO2
	Topic 3	Learning Diary Learning Log – Self- introspection	
	Unit 3	Writing Skills 1	
	Topic 1	Precis	
	Topic 2	Paraphrasing	CO2
	Topic 3	Essays (Simple essays)	
	Unit 4	MTI Reduction/Neutral Accent	
	Umt 4	Practice	
	Topic 1	Vowel, Consonant, sound correction, speech sounds, Monothongs, Dipthongs and Tripthongs	
	Topic 2	Vowel Sound drills , Consonant Sound drills, Affricates and Fricative Sounds	CO3
	Topic 3	Speech Sounds Speech Music Tone Volume Diction Syntax Intonation Syllable Stress	
	Unit 5	Gauging MTI Reduction Effectiveness through Free Speech	
	Topic 1	Jam sessions	
	Topic 2	Extempore	CO3
	Topic 3	Situation-based Role Play	
	Unit F	Leadership and Management Skills	
	Topic 1	Innovative Leadership and Design Thinking	CO4
	Topic 2	Ethics and Integrity	CO4
	Unit F	Universal Human Values	
	Topic 1	Love & Compassion, Non-Violence & Truth	CO5
	Topic 2	Righteousness, Peace	CO5
	Topic 3	Service, Renunciation (Sacrifice)	CO5
	Unit G	Introduction to Quantitative aptitude & Logical Reasoning	
	Topic 1	Analytical Reasoning & Puzzle Solving	CO6

		Number Systems and its Application in	CO6
	Topic 2	Number Systems and its Application in	000
		Solving Problems	
		Class Assignments/Free Speech	
		Exercises / JAM Group	N/A
9	Evaluations	Presentations/Problem Solving	
		Scenarios/GD/Simulations (60% CA	
		and 40% ETE	
		• Wren, P.C.&Martin H. High English	
		Grammar and Composition, S.Chand&	
	Texts &	Company Ltd, New Delhi.	
		• Blum, M. Rosen. How to Build Better	
		Vocabulary. London: Bloomsbury	
		Publication	
10		• Comfort, Jeremy(et.al). Speaking	
10	References	Effectively. Cambridge University	
	Library Links	Press.	
		The Luncheon by W.Somerset	
		Maugham -	
		http://mistera.co.nf/files/sm luncheon.p	
		df	
		—	

COs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	PSO
	1									0	1	2	O1	2	3
ARP102.1	-	-	-	-	-	-	-	-	1	3	1	2	-	-	-
ARP102.2	-	-	-	-	-	-	-	-	1	3	1	2	-	-	-
ARP102.3	-	-	-	-	-	-	-	-	1	3	1	2	-	-	-
ARP102.4	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP102.5	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP102.6	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP102	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch: 2023-2027									
Pr	ogramme:	Current Academic Year: 2023-24									
B.	Tech										
Bı	anch: ME	Semester: II									
1	Course Code	CSP114									
2	Course Title	Application Based Programming in Python Lab									
3	Credits	1									
4	Contact	0-0-2									
	Hours										
	(L-T-P)										
	Course Status	Program Core									
5	Course	Emphasis is placed on procedural programming, algorithm d	lesign, and language								
	Objective	constructs common to most high level languages through Py	thon Programming.								
6	Course	After the successful completion of course, students will	be able to:								
	Outcomes	CO1. Apply decision and repetition structures in program de	esign.								
		CO2. Implement methods and functions to improve readability	lity of programs.								
		CO3. Demonstrate the use of Python lists, tuples and diction	naries								
		CO4. Elaborate and apply object-oriented programming met	thodology.								
		CO5. Apply top-down concepts in algorithm design.	CO5. Apply top-down concepts in algorithm design.								
7	Course	Python is a language with a simple syntax, and a powerful set of libraries. It is									
/	Description	widely used in many scientific areas for data exploration. The	is course is an								
	Description	introduction to the Python programming language for studen	its without prior								
		programming experience. We cover data types, control flow.	object-oriented								
		programming.	, .								
8	Outline syllabu	S	CO Mapping								
	TT \$4 1										
	Unit I	Practical based on conditional statements and									
		control structures	CO1 C0(
		1. Program to implement all conditional statements 2. Program to implement different control structures	CO1,C06								
	Unit 2	Practical related to List Tunles and dictionaries									
		1 Program to implement operations on lists	CO3 CO6								
		2 Program to implement operations on Dictionary	003,000								
		3. Program to implement operations on Tuple									
	Unit 3	Practical related to Functions and Exception									
		Handling									
		1. Program to implement Exception Handling	CO2,CO6								
		2. Program to use different functions	,								
	Unit 4	Practical related to Object Oriented Programming									
		Program to use object oriented concepts like inheritance,	CO4,CO6								
		overloading polymorphism etc.									
		Program for file handling									
	Unit 5	Practical related to Modules and Applications									
		Program to use modules and package	CO2,CO5,CO6								
1		Program to implement searching and sorting	1								

Mode of	Practical/Viv	Practical/Viva							
examination									
Weightage	CA	CE	ETE						
Distribution	25%	25%	50%						
Text book/s*	1. The	. The Complete Reference Python, Martin C. Brown,							
	McGraw Hill	McGraw Hill							
Other	1. Introd	luction to compu	ting in problem solving using						
References	Python, E Bala	gurusamy, McGra	aw Hill						
10101010005	1. Introd	luction to prograr	nming using Python, Y. Daniel						
	Liang, Pearson	Liang, Pearson							
	1. Maste								
	House		-						
	1. Startin	ng out with Pythor	n, Tony Gaddis, Pearson						

COs	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PS O1	PS O2	PS O3
CSP114.1	1	3	2	2	1	-	-	-	1	-	1	-	2	2	1
CSP114.2	3	3	3	3	3	-	-	-	3	-	3	-	3	3	3
CSP114.3	3	3	3	3	2	-	-	-	3	-	2	-	3	3	2
CSP114.4	2	2	2	1	2	-		-	2	-	1	-	2	1	1
CSP114.5	2	3	2	1	2				1		2		1	2	2
CSP114.6	1	2	1	2	1				1		1		3	2	2
CSP114	2	2	2	2	2	-	-	-	2	-	2	-	2	2	2

1-Slight (Low) 2-Moderate (Medium)

Scl	hool: SSET	Batch: 2023-2027	
Pre	ogramme:	Current Academic Year: 2023-2024	
B.	Tech		
Br	anch: ME	Semester: III	
1	Course Code	MEP230	
2	Course Title	CAD modelling through solid works Laboratory	
3	Credits	1	
4	Contact Hours	0-0-2	
	(L-T-P)		
	Course Status	Program Core	
5	Course Objective	The objective of this introductory course is to make with computer-aided design, introduce them about the tools and dimension techniques for creation and prese	students familiar basic commands, intation of various
		visualization and problem solving in engineering disc	re which helps in ciplines.
6	Course Outcomes	After the successful completion of course, students w	vill be able to:
		user interface.	as workspace and
		CO2: Apply the sketch tools such as draw, edit, and two-dimensional engineering drawings in Solidworks	view for creating S.
		CO3: Choose advance features to present a 3D Solidworks.) part model in
		CO4: Creating assembly drawings from the part mod	els.
		CO5: Generating views and projections from a 3d part	rt model.
		CO6: read an engineering drawing and use the softwork drafting and modeling.	vare packages for
7	Course Description	This introductory course is offered to students to mak in design, layout, product development, and other ca technical drawing and modelling. Using the curren Solidworks software, students will learn a variety of creation techniques and be able to assemble them perspectives. The pinnacle of the class is to emp students to create using the software provided. Caree 3D modeling, manufacturing, and engineering will No drafting or computer experience is necessary.	the them proficient areers that require nt version of the of 3D part model n for in multiple ower and enable er opportunities in also be explored.
8	Outline syllabus		CO Mapping
	List of Experiments		

Experiment 1	Introduction to	o Solidworks a	nd its interface	CO1
Experiment 2	Working with line, Centerli Rectangle, SI Spline, Points Chamfer, Off Mirror, Dyna Scale, Stretch	Sketch Entitie ne line, Line, ots, Polygon, , Text, Constru- set, convert e amic Mirror, , Sketch pattern	s and Tools – Inference , Circle, Arc, Ellipse, Ellipse, Partial Ellipse, action geometry, Fillet, entities, Trim, Extend, Move, Copy, Rotate, n	CO2
Experiment 3	Adding Sketch Dimensioning	h Relation, Aut	tomatic relations, Smart	CO3
Experiment 4	Creating of P Sweep and Lo	CO3		
Experiment 5	Creating Adva Hole types, C	CO3		
Experiment 6	Creating Rib a	CO4		
Experiment 7	Introduction t – Top down a	CO4		
Experiment 8	Applying Sta Perpendicular Angle.	ndard Mates- , Tangent, Con	Coincident, Parallel, centric, Lock, Distance,	CO4
Experiment 9	Generating dr	awing and Cre	ating Explode Views	CO5, CO6
Experiment 10	Creating vie predefined vie Detailed View Broken Views Alternate Posi	ws relative ws, Auxiliary vs, Crop view, s, Section View tion View, Dra	to model, Inserting Views, Broken –Out Section, ⁷ , awing properties.	CO5, CO6
Mode of	Practical			
Waishtaga	CA	CE	ETE	
Distribution	CA 25%	CE 25%	500/	
Taxt book/a*	2J%	23%	JU% Theomy and Dreatica" MaC	row Uill
TEXT DOOK/S [*]	1. Ibranim Zaic	i, CAD/CAM- I	neory and Practice, McG	raw Hill,
Softwara	Solid works	nial Eultion.		
Soltware	Solid WORKS			

COs	PO1	Р	PO	PO	PO	PO	PO7	PO8	PO	PO	PO	PO	PS	PS	PS
		0	3	4	5	6			9	10	11	12	01	O2	O3
		2													
MEP230.1	2	2	2	-	3	-	-	-	-	-	-	3	3	-	-
MEP230.2	2	2	2	-	3	-	-	-	-	-	-	3	3	-	-
MEP230.3	2	2	2	-	3	-	-	-	-	-	-	3	3	-	-
MEP230.4	2	2	2	-	3	-	-	-	-	-	-	3	3	-	-
MEP230.5	2	2	2	-	3	-	-	-	-	-	-	3	3	-	-
MEP230	2	2	2	-	3	-	-	-	-	-	-	3	3	-	-

1-Slight (Low)

2-Moderate (Medium)

School	: SSET	Batch: 2023-2027	
Progra	mme: B.Tech.	Current Academic Year: 2023-2024	
Bra	anch: ME	Semester: II	
1	Course Code	PHY 162	
2	Course Title	Physics Lab 2	
3	Credits	1	
4	Contact Hours (L- T-P)	0-0-2	
	Course Status	Program Core	
5	Course Objective	To gain practical knowledge by applying the exp to correlate with the Physics theory.	erimental methods
6	Course Outcomes	After the successful completion of course, stu	dents will be
		able to:	
		 CO1: Knowledge and study of basic physics exp simple harmonic motion CO2: Conduct the experiment and calculate me Young's modulus of engineering materials. CO3: Determine moment of inertia of different be CO4: Draw the characteristic curves of different be contacted and the characteristic curves of different be characteristic curves of different	eriments based on odulus of rigidity, odies.
		components CO5:Evaluate the frequency of an electrically main using Melde's Experiment CO6: Apply the mathematical concepts/equ quantitative results and ability to conduct, and experiments	ntained tuning fork ations to obtain lyze and interpret
7	Outline Syllabus		CO Manning
,	Unit 1		
	A	To verify the relation of time period using simple	CO1
	B	pendulum.	001
	C	To determine the acceleration due to gravity and	
		radius of Gyration of compound pendulum and	
		compare with theoretical value.	CO2,CO6
	Unit 2		
	А	To measure the moment of inertia of a flywheel.	
	В	To determine the Young's modulus of a beam	CO2,CO6
	С	using cantilever beam experiment apparatus. To determine vertical distance between two points using sextant.	
	Unit3		
	А	To determine the modulus of rigidity of a	CO3,CO6
	В	material of a given wire with an inertia table	
	С	(torsion pendulum) by dynamical method. To calculate Moment of inertia of different irregular shapes.	CO4,CO6
	Unit 4		

A B C	To determine the freque maintained tuning for Apparatus. (i) Transverse Longitudinal mode of vib To determine the coefficie by Poiseuille's method.	ency of an electrica ork using Meld mode of vibration ration. ent of viscosity of wa	lly e's CO4,CO6 (ii) ter
Unit 5			
А	To draw the characteristic	curve of a PN juncti	ion
В	diode.		CO5,CO6
C	To trace the circuit of a	Half Wave Rectif	ier
	circuit and determine e	fficiencies and rip	
	To trace the circuit of	a muticitor inters.	ier CO5,CO0
	circuit and determine e	fficiencies and rin	nle
	factors with capacitor and	l inductor filters.	
Mode of	Practical/Viva		·
Examination		•	
Weightage	CA	CE	ETE
Distribution	25%	25%	50%
Text books	B.Sc. Practical Physics- H	Iarnam Singh, S. Ch	and Publishing.
	B.Sc. Practical Physics- C	C L Arora, S. Chand	Publishing.
Other References	Geeta Sanon, BSc Practio	cal Physics, 1st Edr	a. (2007), R. Chand &
	Co.		
	B. L. Worsnop and H. T	. Flint, Advanced F	Practical Physics, Asia
	Publishing House, New		

COs	PO1	PO	PO3	PO	PO	PO	PO7	PO	PO	PO1	PO	PO
		2		4	5	6		8	9	0	11	12
PHY 161.1	2	2	2	1					1			1
PHY 161.2	2	2	2	1					1			1
PHY 161.3	2	2	2	1					1			1
PHY 161.4	2	2	2	1					1			1
PHY 161.5	2	2	2	1					1			1
PHY 161.6	2	2	2	1					1			1
PHY 162	2	2	2	1					1			1

1-Slight (Low)

2-Moderate (Medium)

Sc	chool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B.	Tech								
Bı	ranch: ME	Semester: II							
1	Course Code	MEP101							
2	Course Title	Idea Generation and Creativity Lab							
3	Credits	1							
4	Contact Hours (L-T-P)	0-0-2							
	Course Status	Program Core							
5	Course Objective	The objective of this course is to make the students creativity and innovation in engineering. Then c	s understand the importance of ourse will enable students to						
		generate better creative ideas and observation skills	S.						
6	Course	After the successful completion of course, stud	lents will be able to:						
	Outcomes	1. Build the importance of creativity in solving	g complex problems						
		2. Analyze the observation skills through an	understanding of creativity						
		models.							
		3. Discuss the process and tools of new design	thinking.						
		4. To provide the understanding for the mo	ock review of presentation						
		(generating solutions and ideas in classroon	through discussion).						
		5. To identifying the fundamental problems ar	d resolving the issues.						
		6 To define the final presentation detailing	the solution to the selected						
		problem/new modification							
7	Course	This course focuses on the understanding of ge	pherating different ideas by						
,	Description	musting new concerts to reality it also bringer	workshop op good						
	Description	creating new concepts to reality; it also brings	workshop on-good						
		engineering practices (GEP).							
8	Outline syllabu	5	CO Mapping						
	List of								
	Experiments								
	Experiment 1	Introduction and presentation on creative ideas	CO1						
		that changed the world/Case studies	COI						
	Experiment 2	To discuss on various engineering							
	_	issues/deficiencies in existing product/propose	CO2						
		new design for an existing product.							
	Experiment 3	To explore various ideas to tackle/list alternative							
		solutions/challenges/ logical approach/what are	CO3						
		the constraints/most economical							
	Experiment 4	Mock review of the presentation (generating	GO 4						
		solutions and ideas in classroom through	solutions and ideas in classroom through CO4						
	True contract of F	discussion)							
	Experiment 5	To identifying and resolving the issues	CUS						
	Experiment 6	Final presentation detailing the solution to the selected problem/new modification.	CO6						
	Experiment 7	To create the experiential learning concepts	CO2						

Experiment 8	Developing	and Validati	CO3,CO4					
Mode of	Practical							
examination								
Weight- age	CA	CE	ETE					
Distribution	25%	25%	50%					
Text book/s*	Mechanical	Design Engi	neering Handbook,Peter R	R N Child				
	Garrat,S., "I	Motor Vehic	les", Butterworthy London	n,13th edition.				
	Bosch Hand	osch Hand Book, 3rd Edition, SAE,1993						
	MSC Softw	are from						
	http://pages	.mscsoftware	e.com/MSC_Symposium20	012_Vehicle_Home.htm				

COs	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
MEP201.1	1	2										2	1	1	1
MEP201.2	1	2										2	1	1	1
MEP201.3	1		1		2							2	1	1	1
MEP201.4			2	2					3	2		2	1	1	1
MEP201.5	1		2	2								2	1	1	1
MEP201.6	1	2										2	1	1	1
MEP101	1	2	2	2	2				3	2		2	1	1	1

1-Slight (Low)

2-Moderate (Medium)

School	I: SSET	Batch : 2023-2027	
Progra	amme: B.Tech	Current Academic Year: 2023-2024	
Branc	h: ME	Semester: III	
1	Course Code	MEC229	
2	Course Title	Manufacturing Technology – I	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Program Core	
5	Course	1. To familiarize casting process and various types of casti	ng.
	Objective	2. To learn the various metal joining processes.	
		3. To teach students different types of sheet metal processe	es.
		4. To impart knowledge on selection of suitable manufact	uring process
		for the typical mechanical component.	
6	Course	After the successful completion of course, students will be	able to:
	Outcomes	CO1: choose the various casting methods for product making with	ith their
		advantages and disadvantages.	
		CO2 Design solution for the different types of welding process	sses in metal
		joining.	
		CO3 Choose appropriate bulk deformation processes line roll	ing, forging,
		Extrusion	
		CO4 Analyse the various processes involved in sheet metal for	orming with
		its applications and salient features and Familiarize about the ma	anufacturing
		processes used for plastic materials.	C
		COS Apply correct procedure while measuring the dimension	i of a
		component	ng for a
		specific product	lig for a
7	Course	Manufacturing is the creation, through one or several processing	g operation of
,	Description	components or products from basic raw materials. The effective	ess of process
	Description	selection will be based on the inter-related criterion of design	on parameters.
		material selection and process economies.	5 p
8	Outline syllab	18	CO Mapping
	Unit 1	Metal Casting Processes	
	A	Introduction to foundry, Types of Pattern and pattern allowances,	G01 G07
		Moulding materials, Core and core materials,	CO1, CO6
	В	Design of Gating system, Casting defects,	CO1, CO6
	С	Special casting processes - Shell mould casting, Investment	CO1 CO6
		casting, Die casting, Centrifugal casting	01,000
	Unit 2	Metal Joining and Allied Processes	
	А	Fusion welding processes: Introduction, Oxy-fuel Gas welding,	CO2, CO6
		Gas cutting, Flame characteristics, Electric Arc welding,	
	ļ	Resistance Welding	
	В	consumable electrode and non-consumable electrode, Manual	CO2, CO6
		metal arc welding, Gas Tungsten arc welding, Gas metal arc	
		welding, TIG, MIG	
	C	Solid state welding processes:Friction welding,Friction stir	CO2, CO6
		welding, Thermit welding, Brazing, soldering, Defects in	
		weiding.	

Unit 3	Metal F	orming Proces	ises					
А	Hot and	Cold working,	Bulk Deformation Processes:	CO3 CO6				
	Fundame	entals of metal	forming, Rolling, Forging	003,000				
В	Forging	orging and various Forging operations, Forging defects and						
	remedies	5. Extrusion prin	nciple,	005,000				
С	Hot and	Cold extrusions	s, Wire drawing and Tube drawing	CO3, CO6				
Unit 4	Sheet M	etal Processes	and Plastic processing					
А	Sheet me	Sheet metal characteristics, shearing, bending and drawing						
	operation	ns,Sheet metal j	processes : Blanking, Punching,	CO4, CO6				
	Perforati	ng, Notching, S	Spinning, Embossing, Coining,					
В	Sheet M	etal Working: I	Deep drawing process, Die and Punch	CO4, CO6				
С	Types of	Plastics, Type	s of Molding: Injection molding, Blow	CO4 CO6				
	molding	olding, Compression molding, Transfer molding						
Unit 5	Metrolo	gy						
А	Termino	logies associa	ated with metrology, Surface plate,					
	Toleranc	e, Limits and F	its: Hole basis system, Shaft basis system	CO5, CO6				
	and Sele	ctive assembly						
В	Linear	measurement,	Angular measurement and Thread	CO5 CO6				
	measure	ment		005,000				
С	Surface	exture, Gauge	and Gauge design	CO5, CO6				
Mode of	Theory							
examination		1	1					
Weightage	CA	MTE	ETE					
Distribution	25%	25%	50%					
Text	1. P.N.	Rao, Manufact	uring Technology: Foundry, Forming and					
book/s*	Weld	Welding, Tata McGraw Hill, 2008.						
	2. Mike	Mikell P. Groover, Introduction to Manufacturing Processes,						
	Wile	Wiley Publication, September 2011, ©2012						
Other	3. A G	hosh and A K	Mallik, Manufacturing Science, Wiley					
References	Easte	ern, 2010.						

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC232.1	3	2	1	1	1	1			2	1		1	2		
MEC232.2	3	2	1	1	2	1			2	1		2	2		
MEC232.3	3	2	1	1	1	1	2		2	1		2	2		
MEC232.4	3	2	1	1	1	1			2	1		1	2		
MEC232.5	3	2	1	1	2	1	2		2	1		1	2		
MEC232.6	3	2	1	1	1	1			2	1		1	2		
MEC229	3	2	1	1	2	1	2		2	1		1	2		
1 61:~1	1 Signature 2 Signatu												•		

2-Moderate (Medium)

S	chool: SSET	Batch : 2023-2027								
P	rogramme:	Current Academic Year: 2023-2024								
B	.Tech									
B	ranch: ME	Semester: III								
1	Course Code	MEC235								
2	Course Title	Introduction to Thermal Engineering - I								
3	Credits	3								
4	Contact Hours	3-0-0								
	(L-T-P)									
	Course Status	Program Core								
5	Course Objective	To appreciate the rate processes connected with momentum and heat transfer and develop the ability to make first estimates of the rates.								
6	Course Outcomes	After the successful completion of course, students y	will be able to:							
0	Course Outcomes	CO1 Deal with measure exciting in static fluids								
		CO2 solve simple problems involving mass he	nd in manometers							
		balance and energy balance	nance, momentum							
		CO3 Appreciate the mechanics of fluid-dynamic dra	ag of bodies							
		CO4. Solve conduction problems (including unstead	v problems)							
		in one-dimension	j procients)							
		CO5. Calculate the convective heat transfer in simpl	e situations							
		CO6. Solve problems of radiative exchange using cit	rcuit analogy.							
7	Course	The course introduces rate processes in fluid me	echanics and in heat							
	Description	transfer. The course confines itself largely to be	able to same simple							
	-	estimates and use dimensionless parameters								
8	Outline syllabus		CO Mapping							
	Unit 1	Introduction/ Fluid Statics								
	A	Fluid and its properties	C01							
	В	Pressure and forces variations in static fluids	C01							
	С	Manometry	C01							
	Unit 2	Fluid kinematics and dynamics								
	А	Field description, acceleration, and momentum	000							
		balance	02							
	В	mass balance and momentum balance	CO2							
	С	Bernoulli equation, engineering energy equation	CO2							
	Unit 3	Drag on bodies								
	А	Concept of boundary layer	CO3							
	В	Variations of drag with shape of bodies and with speeds	CO3							
	С	Magnus effect	CO3							
<u> </u>	- Unit 4	Heat Transfer basics								
	A	Fourier law and 1-D conduction.	CO4							
1	B	Fins	CO4							
	D	1 1115	001							

С	Unstea	ady heat transfer		CO5
Unit 5	Conve	ection and radiat	tive heat transfer	
А	Basic	ideas of convection	on. Forced convection	CO5
В	Interna	al convection and	free convection	CO5
С	Basic	concepts of radia	tion	CO6
Mode of examination	Theor	у		
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	Gupta Applic Gupta 2021	and Gupta, Fluid cations, New Age , Elements of Hea		
Other References				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC235.1	3	2	1	1	1	1			2	1		1	2		
MEC235.2	3	2	1	1	2	1			2	1		2	2		
MEC235.3	3	2	1	1	1	1	2		2	1		2	2		
MEC235.4	3	2	1	1	1	1			2	1		1	2		
MEC235.5	3	2	1	1	2	1	2		2	1		1	2		
MEC235.6	3	2	1	1	1	1			2	1		1	2		
MEC235	3	2	1	1	1	1	2		2	1		1	2		

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
В.	Tech								
Br	anch: ME	Semester: III							
1	Course Code	MEC224							
2	Course Title	Strength of Materials							
3	Credits	4							
4	Contact Hours	3-1-0							
	(L-T-P)								
	Course Status	Program Core							
5	Course	1. To develop the relationship between the loads applied to a non-rigid body and the							
	Objective	internal stresses and deformations induced in the body.							
		2. To study the general state of stresses and strains in a given loaded member and							
		the magnitude and direction of the principal stresses							
		3. To understand the different approaches to calculate slope and deflection for							
		various types of beams.							
		4. To analyze the columns with different edge conditions.							
6	Course	After the successful completion of course, students will be able to:							
	Outcomes	CO1: Apply the concept of stress and strain, elastic constants and constitutive							
		relations to materials.							
		CO2: Determine the stresses and deformations in members subjected to avial							
		flexural and torsional loads							
		CO3: Construct the shear force and bending moment diagram of various beams							
		subjected to various loads.							
		CO4: Evaluate slope and deflection in various beams subjected to various							
		using different methods.							
		CO5: Determine principal stresses and strains by locating principal planes under							
		combined loading.							
		CO6: analyse future design models							
7	Course	This course is about the performance of deformable solids in various materials under							
	Description	the action of different kinds of loads. Thus the main objective of the course will be							
	2 comption	to show how to determine the stress, strain, and deflection suffered by structural							
		elements when subjected to different loads. Understanding the adequacy of							
		mechanical and structural elements under different loads is essential for the design							
		and safe evaluation of any kind of structure.							
8	Outline syllabus								
	Unit 1	Loads and Stresses							
	А	Strain and stress, Hooke's law, Stress-strain diagram, Deformation of resisting							
		forces, Stress at a point, Notations for stress: Double index notation, Stress in thin							
		circular pressure vessel							
	В	Stress produced in compound bars subjected to axial loading							
	С	Thermal stress and strain calculations, Shear stresses and shear strain.							
		Complementary shear stress							
	Unit 2	Strains and material properties							

А		Fund	Fundamental strategy of mechanics of deformable mechanics												
В	Statically indeterminate problems, Lateral strain: Poisson ratio											ratio			
C		Shea	r strai	n , Te	nsile	test									
Unit 3		Tors	ion aı	nd me	oment	ts in l	beams	5							
A		Angl shaft	e of t Stati	wist t	o twis indete	sting	mome ate sh	ent, St afts	tresses	s and s	train i	n a cir	cular s	haft, H	Iollow
B		Bean	,Stati	mes o	f sun	orts	Type	s of	heams	and T	vnes	of load	s and s	unnor	Sign
		conv	ention	Det	ermin	ing sh	near fo	orce a	nd bei	nding i	nomer	nt	s and c	uppon	, bigii
С		Meth	od of	draw	ing sh	ear fo	orce a	nd be	nding	mome	nt diag	rams			
Unit 4		Stres	s in b	eam	and d	eflec	tion		0			<u></u>			
A		Pure	Pure bending, Simple bending theory and its application to beams of different												
		section	sections, Relating curvature of beam to the bending moment												
В		Bean	Beam deflection, Relation between slope, Deflection and radius of curvature												
С		Diffe	Differential equation for deflection of beams, Method of superposition.												
Unit 5		Combined stresses and strain & stability													
Α		Plane stress , Transformation of plane stresses, Mohr circle, Principle plane												olane,	
	Principal stresses and Maximum shear stresses														
В	B Displacement and strain , Strain gauges , Strain rosettes, Criteria for failure														
C Introduction to stability of c								nns, (Critica	al load	of an	elastic	e colur	nn, Eff	fective
		lengt	h												
Mode of	Mode of Theory														
Weightege	n	CA		МТ	E	E'	гс								
Distributio	n	CA		IVI I .	C	E	IC								
Distributio	11	25%		25%)	50)%								
Text book/	s*														
	-	Gupt	a and	Gupt	a, An	Intro	ductio	n to N	Mecha	nics of	f Mate	rials			
		, Nev	v Age	, 2018	8										
		Gupt	a, Ele	ments	s of H	eat Ti	ransfe	r, Nev	w Age	2021					
COURSE	ART		ATIO	N M	ATRI	X	1	1	1			1			
COs	P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS	PS
		02	1	04	05	06	07	08	09	10	11	12		$\frac{02}{2}$	03
MEC230.1	3	3		1								2	2	$\frac{2}{2}$	
MEC230.2	5	3	1	1								2	2	2	
MEC230.3	3	3	1	1								1	2	2	
MEC230.4	3	3	1	1								1	2	2	
MEC230.5	3	3	1	1								1	2	2	
MEC230.6	3	3	1	1								1	2	2	
MEC224	3	3	1	1								1	2	2	
	1-Sli	ght (L	. ow)		2-Mo	dera	te (M	ediun	n)	3-St	ıbstan	tial (H	igh)		

Scl	hool: SSET	Batch: 2023-27
Pre	ogramme:	Current Academic Year: 2023-2024
B. 7	Гесh	
Br	anch: ME	Semester: IV
1	Course Code	MEC238
2	Course Title	Mechanics of Machines
3	Credits	4
4	Contact Hours (L-T-P)	3-1-0
	Course Status	Program Core
5	Course Objective	1. To familiarize students with links, joints, and degrees of freedom to perform position, velocity and acceleration analysis of simple mechanisms using graphical and analytical methods
		2. To teach the basics of synthesis of simple mechanisms.
		3. To teach students the kinematic analysis of cam-follower motion and gear train configurations.
		4. To understand the concepts of turning moment diagrams, flywheel design, and the dynamics of reciprocating engines.5. To understand the balancing procedures for rotating and reciprocating masses, rotors, and engines.
		6. To provide students an understanding of different types of governors and the effect of gyroscopic couples in various vehicles
6	Course	After the successful completion of course, students will be able to:
	Outcomes	CO1: Perform the position, velocity and acceleration analysis of planar mechanisms using various graphical techniques.
		CO2: Formulate the dimension synthesis of simple linkage mechanisms and construct the various cam profiles for specified motions of followers
		CO3: Apply the principles of the gear profiles and analyze the various gear trains.
		CO4: Perform the dynamic force analysis of machines such as engines and punching machine.
		CO5: Apply principles of balancing in machines and control systems such as gyroscopes and governors. CO6: Formulate and analyze the linkage and cam-follower systems using
		graphical and analytical techniques.
7	Course Description	This course introduces students to involve in kinematics and dynamics study how a physical system might develop or alter over time and study the causes of those changes. The fundamental physical laws such as Newton's laws of motion and Kennedy's Instantaneous centers' theorem and basic mathematics such as vector algebra, graphical techniques, and Chebychev equations are applied to synthesize and analyze feature of the simple
		mechanisms which simulates the motions of various machines. Further, the

		course describes the requirement of balancing of the rotor i	n a single and
		two planes under static and dynamic conditions	
8	Outline syllabus	8	CO Mapping
	Unit 1	Kinematic Analysis of plane mechanisms	
	A	Mechanisms & Machines, Kinematic pairs, Kinematic chains and their classification, Kinematic Inversions of four-link planar mechanisms and mobility	CO1
	В	Aronhold Kennedy's theorem, Velocity analysis of simple four-bar mechanisms using Instantaneous Centres.	CO1
	С	CO1	
	Unit 2		
	А	Types of dimension synthesis, Function Generation (Four bar mechanisms): Fruedenstein's Analytical method using Cheybychev's Spacing	CO2, CO6
	В	Classification of followers and Cams, Description of follower movements, Analysis of follower motion.	CO2, CO6
	С	Synthesis of radial cam profile (Graphical Approach)	CO2, CO6
	Unit 3	Gears mechanisms and Gear train	
	А	Spur gear terminology and definitions, Basics of nonstandard gear teeth -Helical – Bevel – Worm - Rack and pinion gears	CO3
	В	Law of toothed and involute gearing, Gear tooth action - Interference and undercutting, Comparison of involute and cycloidal tooth forms	CO3
	С	Kinematic analysis in simple, compound and epicyclic gear trains	CO3
	Unit 4	Dynamic Force Analysis and Turning Moment Diagram	
	A	D'Alembert's principle, Dynamic force analysis of slider- crank mechanism excluding inertia of connecting rod. Piston and crank effort. Turning moment on the crankshaft	CO4, CO6
	В	Equivalent offset inertia force. Engine force analysis including inertia of connecting rod.	CO4, CO6
	C	Turning moment on the crankshaft, turning moment diagrams-single cylinder double acting steam engine, four- stroke IC engine and multi-cylinder steam engine, fluctuation of energy, flywheel.	CO4, CO6
	Unit 5		
	A	Balancing of several rotating masses in the different planes. Partial balancing of two-cylinder locomotives, the variation of tractive force, swaying couple, hammer blow.	CO5, CO6

-											
	В	Terminology, ce Deadweight gov Sensitivity, Stabili	Deadweight governors-Porter & Proell governor Sensitivity, Stability, Hunting, Isochronism.								
	С	Principles of gyr couple on the stab	Principles of gyroscopic torque. Effect of gyroscopic couple on the stability of airplanes and ships								
	Mode of examination	Theory									
	Weightage	CA	MTE	ETE							
	Distribution	25%	25%	50%							
	Text book/s*	1. Ghosh, A. and Machines, 1988.	Mallik, A.K, Th	eory of Mechanisms and							
	Other	2. Shigley, J.E. and	d Uicker, J.J., T	heory of Machines and							
	References	Mechanisms, McC	Fraw Hill, 1980.								
		3. Paul, B., Kinem	atics, and Dyna	mics of Planar							
		Mechanisms, Pren	tice-Hall, 1979.								
		4. Bevan, T.E., Th	eory of Machine	es, Pearson, 3rd edition,							
		2010.									
		5. Rattan, S.S., Th									
		2014.									
		Software: – Worki	ng Model 2-D.	(<u>http://design</u>							
		simulation.com/W	M2D/download	<u>.php</u>),							
		MATLAB Simuli	ık.								

COs	PO	PO1	PO1	PO1	PSO	PS	PS								
	1	2	3	4	5	6	7	8	9	0	1	2	1	02	03
MEC238.1	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
MEC238.1.2	3	3	2	-	-	-	-	-	-	-	-	2	1	1	-
MEC238.1.3	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
MEC238.1.4	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
MEC238.1.5	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
MEC238.1.6	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
MEC238	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-

1-Slight (Low)

2-Moderate (Medium)

S	chool: SSET	Batch : 2023-2027									
I	Programme: B.Tech	Academic Year: 2023-2024									
I	Branch: ME	Semester: III									
1	Course Code	ARP203									
2	Course Title	Logical Skills Building and Soft Skills									
3	Credits	2									
4	Contact Hours (L-T-P)	1-0-2									
	Course Status	Active									
5	Course Objective	To enhance holistic development of students and improve their employability skills. To provide a 360-degree exposure to learning elements of Business English readiness program, behavioural traits, achieve softer communication levels and a positive self-branding along with augmenting numerical and altitudinal abilities. To step up skill and upgrade students across varied industry needs to enhance employability skills. By the end of this semester, a student will have entered the threshold of his/her 1 st phase of employability enhancement and skill building activity exercise.									
		After the successful completion of course, students will be able	e to:								
6	Course Outcomes Course Description	 CO1: Ascertain a competency level through Building Essential CO2: Build positive emotional competence in self and learn Goals techniques CO3: Apply positive thinking, goal setting and success-focused which would help them in their academic as well as professiona CO4: Acquire satisfactory competency in use of aptitude, logic CO5: Develop strategic thinking anddiverse mathematical number puzzles CO6: Demonstrate an ability to apply various quantitative aptitude decisions This Level 1 blended training approach equips the students for readiness and combines elements of soft skills and numerical al purpose 	Language and Life Skills GOAL Setting and SMART d attitudes al career al and analytical reasoning concepts through building de tools for making business Industry employment bilities to achieve this								
		purpose.									
8		Outline syllabus – ARP 203									
	Unit 1	BELLS (Building Essential Language and Life Skills)	CO Mapping								
	А	Know Yourself: Core Competence. A very unique and interactive approach through an engaging questionnaire to ascertain a student's current skill level to design, architect and expose a student to the right syllabus as also to identify the correct TNI/TNA levels of the student.CO1									
	В	Techniques of Self Awareness Self Esteem &Effectiveness Building Positive Attitude Building Emotional CompetenceCO1, CO2									
	C Positive Thinking & Attitude Building Goal Setting and SMART Goals – Milestone Mapping Enhancing L S R W G CO1, CO2,CO3										
	and P (Listening Speaking Reading Writing Grammar and Pronunciation) Verbal Abilities - 1										
---------------------------	--	-----									
Unit 2	Introduction to APTITUDE TRAINING- Reasoning- Logical/ Analytical										
А	Syllogism Letter Series Coding, Decoding, Ranking & Their Comparison Level-1	CO4									
В	Number Puzzles	CO5									
С	Selection Based On Given Conditions	CO5									
Unit 3	Quantitative Aptitude										
А	Number Systems Level 1 Vedic Maths Level-1	CO6									
В	Percentage ,Ratio & Proportion Mensuration - Area & Volume Algebra	CO6									
Weightage Distribution	Class Assignment/Free Speech Exercises / JAM – 60% Group Presentations/Mock Interviews/GD/ Reasoning, Quant & Aptitude – 40%										
Text book/s*	Wiley's Quantitative Aptitude-P Anand Quantum CAT – Arihant Publications Quicker Maths- M. Tyra Power of Positive Action (English, Paperback, Napoleon Hill) Streets of Attitude (English, Paperback, Cary Fagan, Elizabeth Wilson) The 6 Pillars of self-esteem and awareness – Nathaniel Brandon Goal Setting (English, Paperback, Wilson Dobson										

Cos	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	PSO
	1									0	1	2	O1	2	3
ARP203.1	-	-	-	-	1	-	-	-	1	3	-	2	-	I	I
ARP203.2	-	-	-	-	1	-	-	-	1	3	-	2	-	-	-
ARP203.3	-	-	-	-	1	-	-	-	1	3	-	2	-	-	-
ARP203.4	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP203.5	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP203.6	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP203	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027
Pr	ogramme: B. Tech.	Academic Year: 2023-2024
Brai	nch: ME	
1	Course	Semester: III
1	Code	MEC234
2	Course Title	Research Methodology
3	Credits	2
4	Contact Hours (L-T-P)	2-0-0
	Course Status	Program Core
5	Course	• To develop understanding of the basic framework of research process.
	Objective	• To develop an understanding of various research designs and techniques.
		• To identify various sources of information for literature review and data
		collection.
		• To develop an understanding of the ethical dimensions of conducting
		applied research.
		• Appreciate the components of scholarly writing and evaluate its quality.
6	Course Outcomes	After the successful completion of course, students will be able to: CO1: Infer the mind-set of a researcher
		CO2: Design a research plan
		CO3: Apply different methods for data collection
		CO4: Analyze the collected data
		CO5: Compile relevant data and prepare a report
		CO6: Infer the process of research right from inception of idea to
		execution and documentation.
7	Course	The course aims to develop a research orientation among the scholars and
	Description	to acquaint them with fundamentals of research methods. Specifically, the
		course aims at introducing them to the basic concepts used in research and
		to scientific social research methods and their approach. It includes
		discussions on sampling techniques, research designs and techniques of
		analysis.

8	Outline sylla	ous			CO Mapping
	Unit 1	Introduction			
	А	Introduction to researce process overview	ch – The role	of research, research	CO1
	В	Philosophies and th building – Science ar and The meaning of n	CO1,CO2		
	С	Thinking like a resea Constructs, Variables,	CO1,CO2		
	Unit 2	Research Problem an			
	A	Defining the researc problems	CO2,CO3		
	В	Formulation of the res of hypothesis	CO2,CO3		
	C	Experimental and Nor	n-experiment	al research design	CO2,CO3
	Unit 3	Data Collection			
	A	Field research, and Su	CO4,CO5		
	В	Methods of data colle methods	CO4,CO5		
	C	Methods of data colle collection, and Survey	CO4,CO5		
	Unit 4	Data Analysis			
	А	Attitude measureme measurement scales Reliability and Validit	nt and sca ; Question ty	aling – Types of naire designing –	CO5,CO6
	В	Sampling techniques Probability sampling design, Determination	s – The n design, Non- 1 of sample	ature of sampling, probability sampling	CO5,CO6
	С	Processing and analys	is of data		CO5,CO6
	Unit 5	Report Writing			
	Α	Ethical issues in cond	ucting researc	ch	CO6
	В	Report generation and	l report writir	ıg	CO6
	С	APA format – Titl Methodology, Result Appendices	CO6		
	Weightage	CA	MTE ETE		
	Distribution	25%	25%	50%	
	Text book/s*	Chawla, Deepak & methodology: Con- House Pvt. Ltd. De	c Sondhi, Neo cepts and cas elhi	ena (2011). Research es, Vikas Publishing	

	• Bryman, Alan & Bell, Emma (2011). Business Research Methods (Third Edition), Oxford University Press.	
Other Referer	 Kerlinger, F.N., & Lee, H.B. (2000). Foundations of Behavioural Research (Fourth Edition), Harcourt Inc. Rubin, Allen & Babbie, Earl (2009). Essential Research Methods for Social Work, Cengage Learning Inc., USA. 	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC234.1				1						1	-	2	-	-	-
MEC234.2		1	1	1						2	-	2	-	-	-
MEC234.3		1		1				2		2	-	2	-	-	-
MEC234.4		1		1	1					1	1	2	-	-	-
MEC234.5		1		1				2	1	1	1	2	-	-	-
MEC234.6		1	1	2	1			2	1	2	1	2	-	-	-
MEC234		1	1	2	1			2	1	2	1	2			

1-Slight (Low)

2-Moderate (Medium)

Sche	ool: SSET	Batch : 2023-2027			
Prog	gramme: B.Tech	Current Academic Year: 2023-2024			
Bra	nch: ME	Semester: III			
1	Course Code	MEP 219			
2	Course Title	Manufacturing Technology – I Lab			
3	Credits	1			
4	Contact Hours (L-T-P)	0-0-2			
	Course Status	Program Core			
5	Course Objective	This course helps students to gain knowledge a good understanding in diverse areas such as ca processes and metal cutting process. After this students will be able	and possess a sting, welding course the		
		• To understand the practical aspects of c	casting		
		 To understand aspects of various Metal 	cutting		
		processes	U		
		• To understand aspects of welding opera	ations.		
6	Course Outcomes	After the successful completion of course, stud able to: CO1 – Demonstrate the mold making and cast a single piece pattern. CO2- Create a sand mold for a split pattern process. CO3- Explain a drilling and boring process machine. CO4- Make use of lathe machine to perfor operation. CO5- Illustrate a butt joint using arc welding an CO6- Develop a specific product by using variou processes.	lents will be ing process for using casting ss for a lathe m a threading ad gas welding. s manufacturing		
7	Course Description	The course is designed to provide a basic un traditional methods of materials processing su and metal cutting and joining used in product n Through demonstrations and laboratory exposu is given the applications of each process.	derstanding of uch as casting, nanufacturing. ure, the student		
8	Outline syllabus		CO Mapping		
	List of Experiments				
	Experiment 1	Sand Mould Making and Casting for Single Piece Pattern CO1			
	Experiment 2	To prepare a sand mold, using the given split pattern	CO1		

Experiment 3	To perform using lathe 1	a drilling and nachine.	l boring operation	CO2					
Experiment 4	To perform machine	a threading	operation using lathe	CO3					
Experiment 5	To make a E pieces by ar	Butt joint usir c welding an	ng the given two M.S d gas welding.	CO3					
Experiment 6	To make pip	oing joint by	using Arc Welding.	CO3					
Experiment 7	To do the re tool using g	To do the resharpening of single point cutting tool using grinding process							
Experiment 8	To prepare surface.	job on sha	per involving plane	CO4					
			CO5						
				CO6					
Mode of examination	Practical								
Weightage Distribution	CA	CE	ETE						
	25%								
Text book/s*	1. P.N. Ra And We	rring Technology: Fou McGraw Hill, 2008.	ndry, Forming						
Reference	Manuals pro	ovided in the	lab						

r			r	r	1	r			r		1			r	r
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	PS
										0	1	2	O1	2	O3
MEC	3	2	-	-	-	-	-	-	-	-	2	-	1	-	-
219.1															
MEC	2	1	3	-	-	1	-	-	-	2	2	-	3	2	
219.1.2															1
MEC		1	2	-	-	-	2	3	-	2	2	-	3	2	-
219.1.3	2														
MEC	1	-	3	-	-	-	-	-	2	2	2	-	1	3	-
219.1.4															
MEC	2	-	-	1	3	2	-	-	3	-	1	-	3	-	-
219.1.5															
MEC	3	2	-	1	-	1	-	-	-	-	-	-	-	-	-
219.1.6															
MEC	2	2	-	1	-	1	2	3	2	2	2	-	-	-	-
219.1															
MEP	2	2	2	1	2	2	2	3	2	2	2	-	3	2	1
232															

1-Slight (Low)

2-Moderate (Medium)

Scl	hool: SSET	Batch : 2023-2027									
Pre	ogramme: B.Tech	2023-2024									
Br	anch: ME	Semester: III									
1	Course Code	MEP235									
2	Course Title	Introduction to Thermal Science-I Laboratory									
3	Credits	1									
4	Contact Hours	0-0-2									
	(L-T-P)										
	Course Status	Program Core									
5	Course Objective	To provide practical knowledge in verification of prin	ciples of fluid								
	-	flow.	-								
		To impart knowledge in measuring discharge and velo	city of fluid								
		flow									
		To understand the major and minor losses									
		Understand the concept of continuity and Bernoulli's	equations								
6	Course Outcomes	After the successful completion of course, students wi	ll be able to:								
		CO1: To analyse the uncertainty in experimental resul	ts								
		CO2: To organize the contents of a lab notebook									
		CO3: To use spreadsheets to make repeated calculatio	ns								
		CO4: To experiment with manometers to determine pr	ressure drops in								
		various flow situations									
		CO5: To interpret results of fluid mechanical experiments.									
7	Course	Introduction to fluid mechanics laboratory to under	erstand physical								
	Description	processes more closely. Various apparatus are a	vailable in the								
		laboratory like, Verification of Bernoulli's theorem apparatus, venturi									
		& Orifice meters, orifice & mouth piece apparatus, Flow over notches									
		apparatus to understand the concept of conservation of mass									
		momentum and energy, head losses, condition of equilibrium and									
0	Oratlin a scallabora	coefficient of discharge etc	COMensing								
0	Jist of		CO Mapping								
	LISt OI Exporimonts										
	Experiment 1	Determination of Poynolds number for a given flow	CO1 CO5								
	Experiment 1	Determination of fluid viscosity	CO1-CO5								
	Experiment 2	Determination of metacentric height of a flat	01-005								
	Experiment 5	bottomed vessel	CO1-CO5								
	Exporimont 1	Verification of Bernoulli's theorem	C01-C05								
	Experiment 4	Flow measurement using venturimeter	C01-C05								
	Experiment 5	Flow measurement using orifice meter	C01-C05								
	Experiment 0	Flow measurement using Pitot's tube CO1-CO5									
	Experiment 9	Determination of head loss in pipe due to sudden									
	Experiment o	contraction enlargement and elbow bend									
	Experiment 9	Determination of co-efficient of friction for different									
		Determination of co-efficient of friction for different CO1-									
	Experiment 10	Determination of drag on a sphere	CO1-CO5								

Mode of	Practical									
examination										
Weightage	CA	CE	ETE							
Distribution	25%	25%	50%							
Text book/s*	Lab manual h	andout	·							
Software	EXCEL	XCEL								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO
										0	1	2	1	2
CO215.1	2	2	-	-	-	-	-	-	-	-	-	2	1	-
CO215.2	1	1	-	2	-	-	-	-	-	-	-	2	1	-
CO215.3	1	2	-	-	-	-	-	-	-	-	-	2	1	-
CO215.4	1	2	1	2	-	-	-	-	-	-	-	2	1	_
CO215.5	1	2	1	2	_	_		_	_	-	-	2	1	_
MEP235	1	2	1	2	_	_	-	_	_	-	-	2	1	_

1-Slight (Low)

2-Moderate (Medium)

Scl	nool: SSET	Batch : 2023-2027							
Pre	ogramme: B.Tech	Current Academic Year: 2023-2024							
Br	anch: ME	Semester: III							
1	Course Code	MEP255							
2	Course Title	Solid Mechanics lab							
3	Credits	1							
4	Contact Hours	0-0-2							
	(L-I-P) Course Status	Program Core							
5	Course Objective	1 To familiarize students with various material test							
5	Course objective	2. To provide students an understanding of different typ test	es of impact						
		3. To teach the students about tensile and compression	test.						
		 4. To teach students about evaluation of torsional strength. 5. To provide students an understanding of different type of hardness test 							
6	Course Outcomes	After the successful completion of course, students will	be able to:						
		CO1: Explain the principles of various material testing.							
		CO2: Analyze the various impact test.							
		CO3: Evaluate the torsional strength and modulus	of rigidity of						
		material.							
		CO4: Demonstrate tension and compression test							
		CO5: Evaluate hardness of different material by different	t methodology.						
		CO6: Apply the concept of centre of gravity and centre of mass to solve							
		problems and Compute coefficient static and dynamic friction between							
		given surfaces.							
7	Course Description	This course introduces students about various materi students get exposure of common material test lik compression test, impact test, hardness test.	al testing. The tensile test,						
8	Outline syllabus		CO Mapping						
	Experiment 1	To conduct the impact test on impact testing machine and find out the impact strength of mild steel specimen	C01,C02						
		by CHARPY method and IZOD method							
	Experiment 2	To find out the torsion strength and the modulus of rigidity of the material of the test rod.	C01,C03						
	Experiment 3	To conduct a compressive test on CTM and determine the ultimate compressive strength of the given specimen	CO1,CO4						

Experiment 4	To conduct th and find out hardness test r	e hardness the hardne nethod	test on mild steel specimen ss of material by Rockwell	CO1,CO5						
Experiment 5	To conduct th and find out hardness test r	e hardness the hardn nethod	test on aluminium specimen ess of material by Brinell	CO1, CO5						
Experiment 6	To study the U	Γo study the UTM and perform tensile test								
Experiment 7	To perform co	CO1, CO4								
Experiment 8	To find out ce	To find out centre of gravity of different lamina.								
Experiment 9	To determine plane apparatu	the coefficients	ent of friction by inclined	CO6						
Experiment 10	To determine apparatus	the coeffici	ent of friction by belt-pulley	CO6						
Mode of	Practical									
examination										
Weightage	CA	CE	ETE							
Distribution	25%	25%	50%							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEP255.1	1			2					3	1			1	1	
MEP255.2	1			2					3	1			1	1	
MEP255.3	1			2					3	1			1	1	
MEP255.4	1			2					3	1			1	1	
MEP255.5	1			2					3	1			1	1	
MEP255.6	1			2					3	1			1	1	
MEP255	1			2					3	1			1	1	

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B. '	Гесh								
Br	anch: ME	Semester: III							
1	Course Code	MEP238							
2	Course Title	Mechanics of machines Lab							
3	Credits	1							
4	Contact Hours (L-T-P)	0-0-2							
	Course Status	Practical							
5	Course Objective	The course covers the procedures needed to develop the concepts related to precision measurement, inspection and analysis of dynamic behaviour of system							
6	Course Outcomes	After the successful completion of course, students will be a CO1: Classify the mechanisms used in the mechanical systems b kinematics.	ble to: based on their						
	CO2: Analyze and select centrifugal governors based on the req	uirement and							
		their characteristics.							
		CO3: Demonstrate the gyroscopic effects in ships, aero-planes and road							
		vehicles.							
		CO4: Analyze balancing of masses in machinery.							
		CO5: Demonstrate free and forced vibrations of single degree free	edom systems						
		CO6: Evaluate frequencies and modes of vibration of two rotor sy	ystem.						
7	Course Description	The course covers the procedures needed to develop the conce precision measurement, inspection and analysis of dynamic behav	pts related to vior of system						
8	Outline syllabus		CO Manning						
	List of Experiments								
	Experiment 1	To perform experiment to study and classify the mechanisms							
		suitable for synthesizing machines.	CO1						
	Experiment 2	To perform experiment on watt governor to prepare performance characteristics curve	CO2						
	Experiment 3	To perform experiment on Porter governor to prepare performance characteristics curve	CO2						
	Experiment 4	To perform experiment on Proell governor to prepare performance characteristics curve	CO2						
	Experiment 5	Observation of gyroscopic behavior. And experimental justification of the equation $C = I.\omega.\omega p$ for calculating the gyroscopic couple by observation and measurements of result for independent variation in applied couple C and precession ωp	CO3						
1	Experiment 6	To obtain balancing mass for the rotating mass system.	CO4						

Experiment 7	To study the	longitudinal	vibrations of helical spring and to	COS					
	theoretically a	and actually by	experiment.	05					
Experiment 8	To determine using free vi value.	the radius of bration techni	f gyration of compound pendulum que and compare with theoretical	CO5					
Experiment 9	To study the frequency of	To study the free vibration and to determine the natural requency of vibration of two-rotor system.							
Experiment 10	To study whi modes of Vib	irling phenom rations under f	enon in shaft and observe various ixed end condition	CO6					
Mode of examination	Practical								
Weightage	CA	CE	ETE						
Distribution	25%	25%	50%						
Text book/s*	Handouts give	Handouts given by the instructor							
Software	-								

	PO	PO1	PO1	PO1	PSO	PSO	DSO3								
COS	1	2	3	4	5	6	7	8	9	0	1	2	1	2	1303
MEP238.1	2	2							1			1	2	2	
MEP238.2	2	2							1			1	2	2	
MEP238.3	2	2							1			1	2	2	
MEP238.4	2	2							1			1	2	2	
MEP238.5	2	2							1			1	2	2	
MEP238.6	2	2							1			1	2	2	
MEP238	2	2							1			1	2	2	

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B. 7	Гесh								
Br	anch: ME	Semester: III							
1	Course Code	MEP233							
2	Course Title	Summer Internship I							
3	Credits	2							
4	Contact Hours	0-0-4							
	(L-T-P)								
	Course Status	Practical							
5	Course	To expose engineering students to the real industrial scenario, which is							
	Objective	not possible in the classroom? Familiarize with various materials.							
	-	processes products and their applications along with relevant aspects of							
		quality control and shop floor management. Understand the psychology							
		of the workers and their helits, attitudes and approach to problem							
		of the workers and their habits, autitudes and approach to problem							
		solving. Understand the social, economic and administrative							
		considerations that influence the working environment of industrial							
		organizations. Learn about team work, collaboration and leadership.							
		Importance of time management, discipline, self-learning and effective							
		communication. To apply the engineering knowledge in real industrial							
		situations. To gain experience in writing reports in enginee							
		works/projects. To enhance the employability of the students. Get							
		exposed to the current technological developments relevant to the subject							
		eros to which the training partains. To develop self esteem for							
		area to which the training pertains. To develop sen-esteen for							
	~	employment after graduation							
6	Course	After the successful completion of course, students will be able to:							
	Outcomes	CO1: Infer the working environment of industry.							
		CO2: Analyze the resources in practice.							
		CO3: Apply Engineering Knowledge for Problem analysis							
		CO4: Decide investigative procedure to sort out complex industrial							
		problems							
		CO5: Interpret the importance of working in a team							
7	C	CO6: Maximize his/her ability to make work related presentations.							
/	Course	Inis practical course is intended to expose the students to real life							
	Description	scenario in industry with the intention to make them future ready for							
		Their professional fole. In this, the students undergo in reputed Private /							
		month in summer vegetion after II semester. It is expected that the skills							
		student gain via internship with an organization will help him/hor							
		perform better in the assigned job after graduation. Apart from this the							
		industrial internship enhances the chance for students to obtain							
		amployment after graduation. It is pertinent to mention that developing							
		an awareness of general workplace behaviour and interpersonal skills are							
		an awareness of general workplace benaviour and interpersonal skills are expected from students at the end of the Industrial internship. The student							
		employment after graduation. It is pertinent to mention that developing an awareness of general workplace behaviour and interpersonal skills are expected from students at the end of the Industrial internship. The student							

		should be able relate, apply and adapt relevant knowledge and concepts							
		within industrial ambience and ethics.							
8	Outline		CO Mapping						
-	Α	INTERNSHIP DIARY							
		An internship diary is provided by the university for collecting the information during industrial internship on daily basis. It also helps the student for writing his/her report. The objective of maintaining daily diary is to cultivate the habit of documenting and encourage him/her to search for details. It develops the students' own thought process and reasoning abilities. The students should record in the daily training diary the day to day account of the observations, impressions and information gathered. It should contain the sketches & drawings related to the observations made by the students. On the basis of recorded data in the diary, the student will prepare a report	CO1, CO2, CO3, CO5						
	В	INTERSHIP REPORT							
		A student should learn about equipments, machines, plant layout and other industrial practices in industry. After collecting the information, one should prepare a comprehensive internship report at the end of one's internship to demonstrate what one has learnt in this period. Daily diary will facilitate to a great extent in writing the report. It is mandatory for the student to submit a hard copy of report to one's assigned coordinator for corrections and subsequently, submitting a final spiral bound copy to department. The assigned coordinator will check the followings things in the draft submitted by the student: Report is made as per the format approved by the department. Originality of the report Very adequate and purposeful write-up. Organization, drawings, sketches, format, style, language, fig no, table no and references etc. Variety and relevance of learning experience. After doing correction the corrected copies will be submitted at the time of presentation, duly signed by the faculty coordinator and Head of Department.	CO6						
	С	INDUSTRIAL INTERNSHIP EVALUATION							
		PROCESS							
		The Industrial Internship Evaluation is done in the presence of assigned Department Faculty coordinator	CO4, CO6						

	and External Examiner, duly approved by The controller of Examination. The evaluation process includes a seminar presentation and viva-voce, done on the basis of following criteria. The Power Point Presentation Proper Planning of Presentation Effectiveness of Presentations Depth of knowledge and skills. Records in which internship diary and reports are analyzed along with presentation and viva voce	
Mode of	Practical	
examination		

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEP233.1	0	0	0	0	0	1	3	1	0	0	0	2	2	2	2
MEP233.2	0	0	0	0	0	0	2	0	0	0	0	2	2	2	2
MEP233.3	0	0	0	0	0	2	1	0	0	0	0	2	2	2	2
MEP233.4	0	0	0	0	0	2	0	0	0	0	0	2	2	2	2
MEP233.5	0	0	0	0	0	0	1	1	0	0	0	2	2	2	2
MEP233.6	0	0	0	0	0	0	0	0	0	2	0	3	3	3	3
MEP233	0	0	0	0	0	2	1	1	0	1	0	2	2	2	2

1-Slight (Low)

2-Moderate (Medium)

School: SSET		Batch : 2023-2027						
Prog	ramme: B.Tech	Current Academic Year: 2023-2024						
Bran	ch: ME	Semester: III						
1	Course Code	MEP231						
2	CourseTitle	Project Based Learning -1						
3	Credits	2						
	Contact	0-0-4						
4	Hours							
	(L-T-P)							
	Course Status	Practical						
5	Course Objective	• To align student's skill and interests with are a list	stic problem					
		or project						
		• To understand the significance of problem and it	s scope					
		• Students will make decisions within a framework						
6	Course Outcomes	After the successful completion of course, students w	ill be able to:					
		CO1: Identify and formulate problem statement with	systematic					
		approach.						
		CO2: Develop teamwork and problem-solving skills,	, along with the					
		ability to communicate effectively with others.						
		CO3: Design the problem solution as per the problem	n statement					
		framed.						
		CO4: Classify and understand techniques for softwar	e verification and					
		validation of project successfully.						
		CO5: Fabricate and implement the solution by using	different aspects					
		of programming language.						
		CO6: Develop a glory of the need to engage in life-lo	ong learning.					
7	Course Description	IIn PBL-1, the students will learn how to define	the problem for					
		developing projects, identifying the skills required f	or developing the					
		project based on given a set of specifications						
		and all subjects of that Semester.						
8	Outline syllabus		CO					
			Mapping					
	Unit 1	Problem Definition, Team/Group formation and	CO1, CO2					
		Project Assignment. Finalizing the problem						
		statement, resource requirement, if any.						
	Unit 2	Develop a work flow or block diagram for the	02,003					
		proposed						
	Unit 3	Design algorithms for the proposed problem	CO3					
	Unit A	Implementation of work under the guidence of a	CO3 CO4					
		Implementation of work under the guidance of a [CO3, CO4						
<u> </u>	Unit 5	Demonstrate and execute Project with the team	CO4 CO5 CO6					
	UIIII 5	Validate and varify the project modules						
		I andate and verify the project modules.						

	Report should include	e Abstract,	Hardware/So	oftware	Requir	ement,						
	Problem Statement,	Design/Al	gorithm, Im _l	olementa	tion	Detail.						
	Validation Reports. Ref	'alidation Reports. References if any. The presentation, report, work										
	one during the term. Supported by the documentation, forms the basis											
	of assessment.											
Mode of	Practical /Viva											
examination												
Weight age	CA	CE	ETE									
Distribution	25%	25%	50%									

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEP231.1	3	3	-	3	-	-	-	-	3	3	2	3	2	2	1
MEP231.2	3	2	-	3	-	-	2	-	3	3	2	3			1
MEP231.3	3	2	-	-	2	-	-	-	3	3	2	3	2	2	
MEP231.4	3	3	-	-	-	2	-	-	3	3	2	3		2	
MEP231.5	3	3	2	2	2	2	3	3	3	3	2	3	2	2	
MEP231.6	3	3	-	3	-	-	-	-	3	3	2	3			1
MEP231	3	3	2	3	2	2	2	3	3	3	2	3	2	2	1

1-Slight (Low)

2-Moderate (Medium)

Scl	nool: SSET	Batch : 2023-2027	
Pro	ogramme:	Current Academic Year: 2023-2024	
B. 7	ſech		
Bra	anch: ME	Semester: IV	
1	Course	MEC342	
	Code		
2	Course	Manufacturing Technology-II	
	Title		
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course	Program Core	
	Status		
5	Course	1 The objective of this course is to understand the basic mechanis	m of metal
	Objective	removal and selection of appropriate tool material for machining	in or metal
		2 To understand the process parameters and their effects on the n	erformance of
		various machining operations	errormance or
6	Course	After the successful completion of course, students will be able to	•
Ũ	Outcomes	CO1: Apply the basic principles in metal cutting according to the n	eed along with
	0	selection of the appropriate tool nomenclature for performing diffe	erent
		machining operations	lient
		CO2 select of different characteristics of the materials through chi	n mornhology
			pinoiphoiogy
		CO3: Analyse the different forces during various cutting condition	18.
		CO4:Identify and select the appropriate material for different type	s of machining
		and recognize different types of tool wear and the reasons behind t	that.
		CO5: Design and select the tools in different circumstances and ur	nderstand
		machinability as well as economics of machining	
		CO6: Demonstrate knowledge of various machine tools and mach	ining
-	9	operations that can be performed on them.	
/	Course	This course introduces students to the concept and basic mech	ianics of metal
	Description	cutting, working of standard machine tools such as lathe, shap	ping and allied
		machines, milling, drilling and allied machines, grinding and allie	d machines and
		broaching. To make students understand the basic concepts	of traditional
0		machining processes, tool life, wear and tear and economics of ma	chining.
ð	Utiline sylla		CO Mapping
		Deformation and Cutting of Metals	<u> </u>
	A D	Elastic and Plastic deformation.	
	D	toor nonnenciature: Single Point cutting tool- Signification of	CO1
		new various angle of cutting tool and nose radius, tool	
	<u> </u>	Nomenelature: 1001 011 flaffid, ASA & UKS.	CO1
		Nomenciature of drifts, withing cutters and broacnes.	
	Unit 2	Mechanics of Metal Cutting	

А	Need for chip breaker, Mechanism of Formation of chips-types of chips and the condition conducive for the formation of each type-	CO2
	built-up edge, its effects	
В	Orthogonal Vs oblique cutting, Merchant's circle diagram-Force	CO^2
	and velocity relationship, shear plane angle,	002
С	Energy consideration in machining-Ernst Merchants theory of	CO2
	shear angle relationship.	002
Unit 3	Cutting Forces in Machining	
А	Forces in turning, drilling, milling.	CO3
В	Forces in Grinding, Conventional Vs climb milling, Specific	CO3
	cutting force	005
С	Introduction of tools dynamometer- construction and principle of	
	operation of tools dynamometer for turning, drilling and milling	CO4
	based on tool deflection, tool deformation and pressure.	
Unit 4	Tool Materials , Tools Wear and Tool life	
А	Requirement of tool materials- advances in tool materials-	
	HSS,PM, HSS, coated HSS, carbides and coated carbides,	CO1,CO5
	ceramic, cold pressed, hot pressed, ceramic composites,	
В	CBN, Diamond properties, advantages and limitation- ISO	
	specification for inserts and tools holders, Different kinds of Tool	CO1,CO5
	Wear and prevention techniques.	
С	Tool life, Machinability, economics of machining.	CO1,CO5
Unit 5	Machine Tools and operations	
А	Machining operation perform by - Lathe, Milling, shaping,	
	slotting, planning, Drilling, Boring, Broaching, Grinding	CO6
	(cylindrical, surface, center less),	
В	Thread rolling and gear cutting machining.Machining on	COG
	capstans and Turret lathe.	000
С	Micro finishing operations like honing lapping, super finishing	CO6
*** * 1		
Weightage	CA MIE EIE	
 Distribution	<u>25%</u> <u>25%</u> <u>50%</u>	
Text	1. A Gnosh and A K Mallik, Manufacturing Science, Wiley	
 book/s*	Eastern, 2010.	
Other	1) H.M.I, "Production Technology" Ist Edition, Tata Mc	
References	GrawHill Publishing Co.Ltd, 2008.	
	2) Introduction to machining Science by G.K Lal, New	
	Age International (P) Limited	
	3) Mikell P. Groover, Introduction to Manufacturing	
	Processes, Wiley Publication, September 2011, ©2012	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC.1	3	-	-	-	-	-	-	-	-	-	-	1	3	2	2
MEC.2	3	3	3	-	-	-	-	-	-	-	-	1	2	1	2
MEC.3	3	3	3	-	-	-	-	-	-	-	-	1	2	1	2
MEC.4	3	-	-	-	-	-	-	-	-	-	-	1	2	1	2
MEC.5	3	-	-	-	2	-	-	-	-	-	-	1	1	1	2
MEC.6	3	-	-	-	2	-	-	-	-	-	2	1	1	3	2
MEC342	3	3	3	-	2	-	-	-	-	-	2	1	2	2	2

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch: 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B.	Tech								
Bı	anch: ME	Semester: IV							
1	Course Code	MEC237							
2	Course Title	Introduction to Thermal Engineering-II							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Program Core							
5	Course	1) To comprehend the fundament as of thermodynamics an	d be able						
	Objective	to apply the same in Thermal Systems							
		2) Understand and analyse the Refrigeration Systems							
		2) Onderstand and analyse the Kenngeration bystems							
6	Course	After the successful completion of course, students will be able	to:						
	Outcomes	CO1: apply first law to simple thermodynamic systems.							
		CO2: apply the concepts of entropy to simple thermodynamic s	veteme						
		CO_2 : determine the efficiency of various simple thermodynami							
		COA selected in the efficiency of various simple thermodynamic	c cycles						
		CO4: calculate simple refrigeration cycles							
		CO5: make simple pshychrometric calculations							
		CO6: Recommend a Refrigeration System.							
	Course	The course teaches Thermodynamics and various Refrigeration	Systems.						
7	Description								
8	Outline syllabus		CO						
Ŭ	o utilite sy fiuo us		Mappin						
			g						
	Unit 1	Energy and first law	0						
	A	Thermodynamic properties and state, cycles, systems and							
		processes, Path and point functions, Thermodynamic	CO1						
		equilibrium,							
	В	Zeroth law, Thermometry. First law applied to closed systems	CO1						
		and in various process	COI						
	С	1 st law of thermodynamic for steady flow process. Application	CO1						
		of 1 st law thermodynamics	COI						
	Unit 2	Second law							
	А	Kelvin-Planck and Clausius statements, Heat engines and heat	CO2						
		pumps, Efficiency and COP	02						
	В	Carnot Engine and Carnot cycle	CO2						
	С	Clausius Inequality, Principle of entropy, Available energy,	CO2						
		Availability.							
	Unit 3	Steam properties and thermodynamic cycle.							
		Psychrometry							
	А	Steam generation, Use of steam table	CO3						
	В	Dryness fraction measurement, PVT surface	CO3						

С	Otto cycle Rankine cy	Otto cycle, Diesel cycle, Sterling cycle, Brayton cycle and Rankine cycle, Rankine cycle with regeneration.							
Unit 4	Refrigera	tion							
А	Refrigerati Refrigerati	Refrigeration by non-cyclic process, vapour Compression Refrigeration Cycle							
В	Performan Psychrome	Performance and Capacity of a vapour Compression Plan, Psychrometry, Heat load estimation							
С	Actual Var Compressi	Actual Vapour Compression Cycle, Components in a Vapour Compression Plant							
Unit 5	Refrigera	Refrigeration Applications							
А	Multi-stag	Multi-stage Vapour Compression Systems, Refrigerants,							
В	Absorption Liquefaction	n Refrigera	tion Cycle,Claude System of Air tion of Solid Ice	CO6					
С	New techn	ologies in	refrigeration.	CO6					
Mode of examination	Theory								
Weightage Distribution	CA	CA MTE ETE							
	25%								
Text book/s*	Engineerir	Engineering Thermodynamics: P.K.Nag							
	Thermal E	Thermal Engineering: R.K.Rajput							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC237.1	3	2	0	1	0	0	0	0	1	0	0	3	2	2	0
MEC237.2	3	2	0	1	0	0	0	0	1	0	0	3	2	2	0
MEC237.3	3	2	0	1	0	0	0	0	1	0	0	3	2	2	0
MEC237.4	3	2	0	1	0	0	0	0	1	0	0	3	2	2	0
MEC237.5	3	2	0	1	0	0	0	0	1	0	0	3	2	2	0
MEC237.6	3	2	0	1	0	0	0	0	1	0	0	3	2	2	0
MEC237	3	2	0	1	0	0	0	0	1	0	0	3	2	2	0

1-Slight (Low)

2-Moderate (Medium)

Schoo	l: SSET	Batch : 2023-2027
Progr	amme: B.Tech	Current Academic Year: 2023-2024
Branc	ch: ME	Semester: IV
1	Course Code	MEC322
2	Course Title	Machine Design
3	Credits	4
4	Contact Hours (L-T-P)	3-1-0
	Course Status	Program Core
5	Course	1: Develop an ability to apply knowledge of mathematics, science, and
	Objective	engineering
		2: To develop an ability to design a system, component, or process to
		meet desired needs within realistic constraints.
		3: To develop an ability to identify, formulate, and solve engineering
		problems.
		4: To develop an ability to use the techniques, skills, and modern
		engineering tools necessary for engineering practice.
6	Course Outcomes	After the successful completion of course, students will be able to: CO1: Explain detail procedure, theory of failure and use of factor of
		safety in design of machine element
		CO2: Apply concept of stress concentration, Notch sensitivity and
		Goodman- Soderberg criteria for design of component
		CO3: Examine stress and design shaft and key in various load
		situation
		CO4:Evaluate stress and design riveted joint, bolted joint and springs
		under various load condition
		CO5: Evaluate various load in bearing, select suitable bearing and
		calculate various design parameter of bearing.
		CO6: Analyse the stresses and strains induced in a machine element.
7	Course	Machine design studies the conversion of one type of motion to
	Description	another. Along with the change in the type and direction of motion, the
		rotational speed and torque may also change. This course begins with

		a review and further development of stress anal	ysis (statics). At that
		point, specific components of machines, such as	s shafts and bearings
		and belts, chains and gears will be addressed	C
		and beits, chains and gears will be addressed.	
8	Outline sylla	abus	CO Mapping
	Unit 1	Introduction and Design against Static Load	
	А	Design requirements of machine elements, Design	001
		procedure, Standards in design, Selection of	COI
	D	preferred sizes	
	В	stresses	CO2,CO6
	C	Stresses due to bending and torsion. Theory of	
	C	failure	CO1, CO6
	Unit 2	Design against Fluctuating Loads	
	A	Cyclic stresses, Fatigue and endurance limit. Stress	
		concentration factor. Stress concentration factor for	CO2,CO6
		various machine parts,	,
	В	Notch sensitivity, Design for finite and infinite life,	CO2COC
		Soderberg, Goodman & Gerber criteria	02,006
	С	Shafts subjected to fatigue loads, Design for	CO3 CO6
		rigidity	005,000
	Unit 3	Shafts, Keys and couplings	
	А	Cause of failure in shafts, Materials for shaft,	CO3 CO6
		Stresses in shafts	005,000
	В	Design of shafts subjected to twisting moment,	
		bending moment and combined twisting and	CO3, CO6
		bending moments	
	C	Types of keys, splines, Selection of square & flat	CO3, CO6
	TI 94 A	keys, Strength of sunk key	
	Unit 4	Fasteners and Springs Threaded joints Design types of screw fastening. Design	
	А	of bolted joints, Basic types of screw fastening, Design	CO4CO6
		or boned joint	04,000
	В	Riveted joints, Types of failure, Caulking &	<u> </u>
		fullering, Design of riveted joints	CO4,CO6
	С	Types of springs, Terminology of helical springs,	
		styles of end, spring materials,	CO4,CO6
		Design of helical springs against static and loads	
	Unit 5	Rolling Contact Bearing and Sliding Contact	
		Bearing	
	A	Bearings, Types of Rolling contact bearings,	
		Selection of bearing types, Static load carrying	CO5,CO6
		capacity, Stribeck's equation	
	В	Dynamic load carrying capacity, Equivalent	CO5.CO6
		bearing load, Load life relationship	,

C	Basic mo bearing, l sliding co	des of lubrica Bearing desig ontact bearing	ation, Hydrostatic step on, comparison of rolling and gs	CO5,CO6
Mode of examinatio n	Theory			
Weightage	CA	MTE	ETE	
Distributio	25%	25%	50%	
n				
Text	1)Bhanda	uri, V.B.,"D	esign of Machinery" Tata	
book/s*	McGraw	Hill Publicat	ions, 2010	
Other	1) Shigley	, J.O., "Mech	anical Engineering Design",	
References	McGraw H	Iill Publisher	s, 2004	
	2) Norton,	R.L., "Mach	nine Design an Integrated	
	Approach'	', Prentice Ha		
	3) Downlo	ad MIT Calc		
	Spring des	ign from		
	http://ww	w.mitcalc.co	<u>m/en/download.htm</u>	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PS
														02	03
MEC	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
331.1															
MEC	3	3	2	-	-	-	-	-	-	-	-	2	1	1	-
331.2															
MEC	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
331.3															
MEC	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
331.4															
MEC	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
331.5															
MEC	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-
331.6															
MEC322	3	3	3	-	-	-	-	-	-	-	-	2	1	1	-

1-Slight (Low)

2-Moderate (Medium)

	School: SSET	Batch : 2023-2027				
	Programme: B.Tech	Academic Year: 2023-2024				
	Branch: ME	Semester: IV				
1	Course Code	ARP204				
2	Course Title	Quantitative and Qualitative Aptitude Skill Building				
3	Credits	2				
4	Contact Hours (L-T-P)	1-0-2				
	Course Status	Active				
5	Course Objective	To enhance holistic development of students and improve their empl skills. Provide a 360 degree exposure to learning elements of Business readiness program, behavioural traits, achieve softer communication lev positive self-branding along with augmenting numerical and altitudinal To up skill and upgrade students' across varied industry needs to employability skills. By the end of this semester, a will have entered the of his/her 2 nd phase of employability enhancement and skill building exercise.	oyability s English els and a abilities. enhance threshold g activity			
6	Course Outcomes	 After the successful completion of course, students will be able to: CO1: Develop and deliver the effective presentations to interpret the meaning of life. CO2: Improve listening skills so as to understand complex business comm in a variety ofglobal English accents through proper pronunciation CO3: Demonstrate a good understanding of effective business writing and telephone handling Skills CO4: Acquire higher level competency in use of aptitude, logical and a reasoning CO5: Develop higher level strategic thinking and diverse mathematical through building number puzzles CO6: Demonstrate higher level quantitative aptitude tools for making decisions 	e deeper unication analytical concepts business			
7	Course Description	This course bundle allows students to build vision, mission and strategy st while exposing them to various models of communication along w reduction and the 2nd level of quant, aptitude and reasoning abilities	atements with MTI			
8		Outline syllabus – ARP204	CO MAPPI NG			
	Unit 1	Communicate to Conquer				
	А	MOSA (Vision, Mission, Values and Ethics) Business Communication - Verbal Communication Skills Barriers in communication Basics of effective communication – PRIDE & STAR Model				
	В	Different styles of communication & style flexing (Based on the 4 social styles-Analytical, Driving, Expressive, Amiable) Importance of Listening	CO2			

	& practice of Active Listening The Art of Giving Feedbacks Feedback							
	Skills Asking fact finding questions- Probing Skills							
	Email Etiquette Business Writing Skills Telephone Etiquette Skills (
С	Telephone Handling Skills) Non Verbal Communication-Kinesthetics,	CO3						
	Proxemics, Paralanguage MTI Reduction Program Verbal Abilities - 2							
Unit ?	Introduction to APTITUDE TRAINING- Reasoning- Logical/							
Unit 2	Analytical							
А	Coding Decoding, Ranking & Their Comparison Level-2	CO4						
В	Series, Blood Relations & Number Puzzle	CO5						
Unit 3	Quantitative Aptitude							
А	Number System Level 2	CO5						
В	B Vedic Maths Level-2 Probability Permutation & Combination							
C	Percentage, Profit & Loss ,Partnership,Simple Interest & Compound	CO6						
C	Interest							
Weightage	(CA)Class Assignment/Free Speech Exercises / JAM – 60% / (ETE)							
Distribution	Group Presentations/Mock Interviews/GD/ Reasoning, Quant & Aptitude –							
Distribution	40%							
	Wiley's Quantitative Aptitude-P Anand Quantum CAT - Arihant							
	Publications Quicker Maths- M. Tyra Power of Positive Action (English,							
Text book/s*	Paperback, Napoleon Hill) Streets of Attitude (English, Paperback, Cary							
	Fagan, Elizabeth Wilson) The 6 Pillars of self-esteem and awareness -							
	Nathaniel Brandon Goal Setting (English, Paperback, Wilson Dobson							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ARP204.1	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP204.2	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP204.3	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP204.4	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP204.5	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP204.6	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP204	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-

1-Slight (Low)

2-Moderate (Medium)

Scho	ol: SSET	Batch: 2023-2027							
Prog	ramme: B. Tech.	Current Academic Year: 2023-2024							
Bran	ch: ME	Semester: IV							
1	Course Code	MEC241							
2	Course Title	Entrepreneurship							
3	Credits	2							
4	Contact Hours	2-0-0							
	(L-1-P)								
	Course Status	Program Core							
5	Course Objective	Entrepreneurship plays an influential role in the economic growth and development of the country. As the world economy is changing so is the dynamism of the business world. The aim of this course is to instil and kindle the spirit of Entrepreneurship amongst students. The idea of this course is to create "job providers rather than job seekers".							
6	Course Outcomes	 After the successful completion of course, students will be able CO1: Describe the evolution of Entrepreneurship and its role development CO2: Identify the factors that influence the emergence of Entrepreneur CO3: Construct a business plan CO4: Choose the best way to manage capital, inventory and human resetting up a business CO5: Estimate the growth of a business and recommend measure industrial sickness CO6: Identify and solve the problems present in the society 	to: in economic urship esource while es to combat						
7	Outline syllabus		CO Mapping						
	Unit 1	Introduction to Entrepreneurship	C01						
	А	Meaning, Definition and concept of Enterprise, Entrepreneurship and	CO1						
		Entrepreneurship Development, Evolution of Entrepreneurship							
	В	Characteristics of Entrepreneurship, Concepts of Intrapreneurship,	CO1						
		Entrepreneur v/s Intrapreneur							
	С	Role of Entrepreneurship in Economic Development, Factors	CO1, CO6						
		affecting Entrepreneurship, Problems of Entrepreneurship							
	Unit 2	Entrepreneurial Environment	CO2						
	А	Internal and external factors that influence emergence of	CO2						
	D	Entrepreneurship	CO						
	В	Company Definition and Types of Ownership, Cooperatives and Joint Stock	CO2						
	С	Government Policies for Small Scale Entrepreneurs- New Small Enterprise Policy 1991, Micro, Small & Medium Enterprises Development (MSMED) Act 2006	CO2, CO6						
	Unit 3	Preparation of Business Plan	CO3						
	А	Meaning of Project, Project classification and identification, Project objective, Internal and external constraints	CO3						
	В	Project life cycle, Formulation of a Project- Need, Concept, Significance	CO3						

С	Elements of Projec economic analysis, analysis, Financial Appraisal	t Formulation- Feasibili Project design and net analysis, Social cost-ben	ty analysis, Techno- work analysis, Input efit analysis, Project	CO3, CO6							
 Unit 4	Setting Up Small B	usiness Enterprises		CO4							
А	Working capital man	agement, Inventory mana	gement	CO4, CO6							
В	Human resource management, Market	mobilization, productiting and channel selection	on and operation	CO4, CO6							
С	Growth strategies, Product launching, Incubation, Venture capital										
Unit 5	Management of Sm	Ianagement of Small Business Enterprises									
А	Stages of growth, Ex Sub-contracting	Stages of growth, Expansion, Diversification, Joint venture, Merger, Sub-contracting									
В	Industrial sickness: I to combat industrial	Path, signals, cause and cosickness	onsequence, Measures	CO5							
С	Introduction to Indu Industry 4.0	stry 4.0 and Case Studi	es based on Role of	CO5, CO6							
Mode of examination	Theory										
Weightage	CA	MTE	ETE								
Distribution	25%	25%	50%								
Text book/s*	 Entrepreneurial Development by Dr S S Khanka, S Chand & Company Ltd Entrepreneurship Development & Small Business Enterprises by Poornima M Charantimath, Pearson. Lall & Sahai: Entreprenurship (Excel Books 2 edition) Couger, C- Creativity and Innovation (IPP, 1999) 										

CO and PO Mapping

CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	1	-	1	-	1	2
CO2	-	-	-	-	-	1	1	-	-	-	-	-
CO3	-	2	1	2	1	-	-	-	-	2	-	1
CO4	-	-	1	1	-	-	-	-	1	-	1	1
CO5	-	-	-	-	-	-	-	-	1	-	2	1
CO6	-	1	2	2	1	1	1	-	2	1	2	2
CO	-	1	1	2	1	1	1	-	1	1	1	1

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027	
Pr	ogramme:	Current Academic Year: 2023-2024	
B	.Tech		
Br	anch: ME	Semester: IV	
1	Course Code	BTY223	
2	Course Title	INTRODUCTION TO BIOLOGY FOR ENGINEERS	
3	Credits	2	
4	Contact	2-0-0	
	Hours		
	(L-T-P)		
	Course	Program Core	
	Status		
5	Course	1. To acquire a fundamental knowledge of Biomolecules, genetics,	
	Objective	immunology.	
		2. To understand the different concepts of plant animal and microbi	al systems.
	0	3. To understand basic concepts of bioremediation and biotetilizers.	
6	Course	After the successful completion of course, students will be able to:	
	Outcomes	CO1: To understand the fundamentals of living things, their classification,	cell structure
		and biochemical constituents.	
		CO2: To apply the concept of plant, animal and microbial systems and g	rowth in real
		Intersituations.	
		CO3. To comprehend genetics and the infinute system.	disassas
		CO5: To give a basic knowledge of the applications of biological system	uiseases.
		industries	is in relevant
		CO6. Discuss various aspects of biological systems and their significance	e in design of
		products.	
7	Course	Students will be introduced to the functions and interactions of biological	systems from
	Description	a quantitative perspective. To provide a foundation in biology with er	igineering of
		living systems and to apply various tools of traditional engineering fields	s. To harness
		potential of living systems for the benefit of human mankind.	
8	Outline syllab	us	CO
			Mapping
	Unit 1	UNIT I: INTRODUCTION TO LIFE	
	А	Characteristics of living organisms	CO1, CO2
	В	Cell theory	
	С	Structure of prokaryotic and eukaryotic cell	
	Unit 2	UNIT II: Biomolecules	
	А	General classification and important functions of carbohydrates and	
		lipids	<u> </u>
	B	General classification and important functions of proteins	CO1, CO3
	C	General classification and important functions of DNA and RNA	
	Unit 3	UNIT III: Genetics and Immune system	
	A	Theories of Evolution	CO4 and
			006
1	B	Mendel's laws of inheritance	
<u> </u>	C	Immune system and Immunity	
	Unit 4	UNIT IV: Human Diseases	
	A	Genetic diseases and Infectious diseases	CO5

В	AIDS ar	nd Diabete	2S									
С	Cancer a	and its cau	ses									
Unit 5	UNIT V	: Biology	and its industrial application									
А	Vaccine	s and their	types	CO5 and								
				CO6								
В	Bioreme	ioremediation and Biofertilizers										
С	Bioreact	lioreactors										
Mode of	Theory/	Theory/Jury/Practical/Viva										
examination												
Weightage	CA	MTE	ETE									
Distribution	25%	25%	50%									
Text book/s*	1. Karp,	G. Cell an	nd Molecular Biology, 5th ed., John Wiley and Sons,									
	Inc.											
Other	1.	Alberts, B	. et al. Essential Cell Biology, Garland Publishing, Inc.									
References		(ISBN: 081533480X) 4.										
	2.	Berger, S.	et al. Introduction to Bioengineering, Oxford									
		University	/ Press (ISBN: 978-0-19-856515-4)									

Cos	PO	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	2	3												
CO	3	2	2	-	-	-	-	-	-	-	3	3	1	-	-
BTY223.1															
CO	3	3	3	-	-	-	-	-	-	-	3	3	1	-	-
BTY223 .2															
CO	3	3	3	-	-	-	-	-	-	-	3	3	1	-	-
BTY223 .3															
CO	3	3	3	-	-	-	-	-	-	-	3	3	1	-	-
BTY223. 4															
CO	3	1	1	-	-	-	-	-	-	-	3	3	1	-	-
BTY223 .5															
CO	3	2	2	-	-	-	-	-	-	-	3	3	1	-	-
BTY223 .6															
CO	3	2	2								3	3	1		
BTY223.7															
BTY223	3	2	2	-	-	-	-	-	-	-	3	3	1	-	-

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027											
Pr	ogramme: B.7	ech Current Academic Year: 2023-2024											
Br	anch: ME	Semester: IV											
1	Course Code	MEP232											
2	CourseTitle	Project Based Learning -2											
3	Credits	2											
4	Contact	0-0-4											
	Hours												
	(L-T-P)												
	Course Status	Practical	Practical										
5	Course Object	 ive 1. To align student's skill and interests with a project 2. To understand the significance of problem 	area listic problem or										
		3 Students will make decisions within a fram	nework										
6	Course Outco	mes After the successful completion of course stude	ents will be able to:										
Ŭ		CO1: Create better work babits towards learning											
		CO_2 : Take part in brain storming activities	8										
		CO3: Formulate their goals and objectives toward	ards the research problem										
		CO4: Improve their soft skills like communicati	ion presentation etc										
		CO5: Evaluate the extent to which goals are ach	CO5: Evaluate the extent to which goals are achieved										
		CO6: Make use of Technology to convert ideas	s into products										
/	Course Descri	ption in PBL-2, the students will learn now to define projects, identifying the skills required for devingiven a set of specifications and all subjects of that Semester.	projects, identifying the skills required for developing the project based on given a set of specifications and all subjects of that Semester.										
8	Outline syllab	us	СО										
			Mapping										
	Unit 1	Problem Definition, Team/Group formation and Pr Assignment. Finalizing the problem statement, reso requirement, if any.	Project CO1, CO2 source										
	Unit 2	Develop a work flow or block diagram for the propose system / software.	sed CO2,CO3										
	Unit 3	Design algorithms for the proposed problem.	CO3										
	Unit 4	Implementation of work under the guidance of a facul member and obtain the appropriate results.	lty CO3, CO4										
	Unit 5	Demonstrate and execute Project with the team. Valid and verify the project modules.	date CO4, CO5, CO6										
		Report should include Abstract, Hardware/Software	re Requirement, Problem										
		Statement, Design/Algorithm, Implementation Detail. References if any. The presentation, report, work done during the term	ment, Design/Algorithm, Implementation Detail. Validation Reports. rences if any. presentation, report, work done during the term										
		Supported by the documentation, forms the basis of as	ported by the documentation, forms the basis of assessment.										
	Mode of	Practical /Viva											
	examination												

Weight age	CA	ETE	
Distribution	50%	50%	

COS	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2	PSO3
MEP232.1	3	3	-	3	-	-	-	-	3	3	2	3	2	2	1
MEP232.2	3	2	-	3	-	-	2	-	3	3	2	3			1
MEP232.3	3	2	-	-	2	-	-	-	3	3	2	3	2	2	
MEP232.4	3	3	-	-	-	2	-	-	3	3	2	3		2	
MEP232.5	3	3	2	2	2	2	3	3	3	3	2	3	2	2	
MEP232.6	3	3	-	3	-	-	-	-	3	3	2	3			1
MEP232	3	3	2	2	2	2	2	3	3	3	2	3	2	2	1

1-Slight (Low)

2-Moderate (Medium)

School: SSET		Batch : 2023-2027										
Programme:		Current Academic Year: 2023-2024										
B.	Tech											
Bı	canch: ME	Semester: V										
1	Course Code	MEC310										
2	Course Title	Design of Mechatronics System										
3	Credits	3										
4	Contact Hours	3-0-0										
	(L-T-P)											
	Course Status	ogram Elective										
5	Course	Mechatronics system design and simulation, ergonomics and										
	Objective	• Theoretical and practical aspects of computer interfacing	rfacing, real time									
		data acquisition and control										
		• Design of motion control, motion converter and te	emperature									
		control	1									
6	Course	After the successful completion of course, students will be able to:										
	Outcomes	CO1: Understand the basics and key elements of mechatronics	f mechatronics design									
		process	0									
		CO2: Identify fundamental design tradeoffs by applying the prize	ciples of									
		totic and dynamic performance in mechatronic systems										
	static and dynamic performance in mechatronic systems											
		CO3: Apply the concepts of engineering system and dynamic resp										
		the system										
		CO4: Analyze the models of engineering system.										
		CO5: Realize the concepts of real time interfacing and data acq	ealize the concepts of real time interfacing and data acquisition									
		CO6: Design and control a simple mechatronic system.										
7	Course	This course intends to impart through knowledge in system modelling										
	Description	system identification and simulation of mechatronics system and to										
		provide their applications in real-life.										
8	Outline syllabus											
	5		Mapping									
	Unit 1	Introduction to design of mechatronics system										
	А	Introduction, Key elements, Integrated Design Issues in										
		Mechatronics	COI									
	В	Mechatronics design process, Mechatronics and traditional	CO1									
		design										
	С	Applications in Mechatronics: Condition Monitoring,										
		Monitoring On-Line, Model-Based Manufacturing,										
		Supervisory Control Structure, Opt mechatronics,										
		Mechatronic Systems in Use										
	Unit 2	Basic system modelling										
	А	Introduction, Operator Notation and Transfer Functions,										
		Block Diagrams, Manipulations, and Simulation	002									

_		—									
	В	Block Diagram Modelling—Direct Method, Analogy									
		Approach and Modified Analogy Approach	002								
	C	Mathematical modelling: Basic system modelling of	CO2								
		mechanical, electrical, fluid and thermal system	02								
	Unit 3	Mechatronic system modelling and Controllers									
	А	Engineering systems: Rotational-translational and electro-	CO2,								
		mechanical system	CO3								
	В	Engineering systems: Pneumatic-mechanical, hydraulic-	CO2,								
		mechanical	CO3								
	С	Control modes, Adaptive control system, Programmable logic	CO2,								
		controllers	CO3								
	Unit 4	Sensors and Transducers									
	A	Sensor Classification. Parameter Measurement in Sensors and									
		Transducers, Quality Parameters, Errors and Uncertainties in Mechatronic Modelling Parameters									
	В	Sensors for Motion and Position Measurement Digital									
		Sensors for Motion Measurement Force and Torque Sensors									
	С	Vibration—Acceleration Sensors, Sensors for Flow									
	-	Measurement, Temperature Sensing Devices and Sensor	CO4								
		Applications									
	Unit 5	Actuating Devices and Real time interfacing									
1											
	A	Mechanical Actuators, Electrical Actuators and Pneumatic	CO4.								
	A	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators	CO4, CO5								
	A B	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and	CO4, CO5 CO4,								
	A B	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators	CO4, CO5 CO4, CO5								
	A B C	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices	CO4, CO5 CO4, CO5 CO5,								
	A B C	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process	CO4, CO5 CO4, CO5 CO5, CO5, CO6								
	A B C Mode of	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE ETE	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25%	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s*	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s*	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s*	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s* Other Beferences	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s* Other References	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2 Bradley, D Dawson, N.C. Burd and A. L. Loader	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s* Other References	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes" CPC	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s* Other References	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes", CRC	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s* Other References	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 50% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes", CRC Press 1991, First Indian print 2010 2. De Silva "Machatronics" A Foundation Course", Textor %	CO4, CO5 CO4, CO5 CO5, CO6								
	A B C Mode of examination Weightage Distribution Text book/s* Other References	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 25% 25% 50% 1. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes", CRC Press 1991, First Indian print 2010 3. De Silva, "Mechatronics: A Foundation Course", Taylor & Ermais Indian Poriet 2012	CO4, CO5 CO4, CO5 CO5, CO6								

Cos	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
MEC310.1	3	1	1	1	-	-	-	-	-	-	-	1	-	3	3
MEC310.2	3	2	1	2	-	-	-	I	-	-	I	1	-	3	3
MEC310.3	3	3	3	3	-	-	-	I	-	-	I	1	-	3	3
MEC310.4	3	3	3	3	-	-	-	-	-	-	-	1	-	3	3
MEC310.5	3	3	3	3	-	-	-	-	-	-	-	1	-	3	3
MEC310.6	3	3	3	3	-	-		-	-	-	-	1	-	3	3
MEC310	3	3	3	3	-	-	-	-	-	-	-	1	-	3	3
Schoo	ol: SSET	Batch: 2023-2027													
--------------	------------------------------	--	---	--	--	--	--	--	--	--	--				
Progr	amme:	Current Academic Year: 2023-2024													
B.Tec	h														
Branc	ch: ME	Semester: V													
1	Course code	MEC399													
2	Course Title	Production planning and Control													
3	Credits	3													
4	Contact Hours (L- T-P)	3-0-0													
5	Course	The objective of PPC is to equip the learner with the know	wledge and skills												
	Objective	necessary to be able to perform in one of the many discipline	es associated with												
		production and inventory management such as planning, De	mand forecasting,												
		Production planning and control inventory control, materials planning etc.													
6	Course	After the successful completion of course, students will be able to:													
	Outcomes	CO1. Identify the principles and applications relevant to	o Production and												
		operations of manufacturing/service firms.													
		CO2. Forecast situations in a production system environm	nent that suggests												
		the use of certain quantitative methods to assist in decision	on making.												
		CO3. Explain how Enterprise Resource Planning and MRPI	I systems are used												
		in managing operations.													
		CO4. Plan and contribute to manufacturing and business op	Plan and contribute to manufacturing and business operations.												
		CO5. Demonstrate the managerial responsibility for Operati	ons and inventory												
		management.													
		CO6. Apply planning, control, and inventory manager	ment in real-life												
		complex problem													
7	Outline sylla	bus	CO MAPPING												
7.01	Unit 1	INTRODUCTION													
7.02	A	An Overview of production systems,	CO1												
7.03	В	Production management objectives CO1													
7.04	C	Manufacturing strategy, Technological innovations in CO1													
7.05	Linit ?														
7.05		The forecasting process	CO2												
7.00	R	Monitoring and controlling the forecasting system	CO_2												
7.07	C	multi-item forecasting	CO_2												
1.00	Č –		002,000												

7.09	Unit 3	PLANNINGACTIVITIES											
7.10	А	Aggregate Planning Strategies and methods	CO3, CO6										
7.11	В	The Master Production Schedule,	CO3,CO6										
ff7.1	С	Planning of material requirements-MRP, Manufacturing	CO2 CO6										
2		Resources Planning	005,000										
7.13	Unit 4	CONTROLACTIVITIES											
7.14	А	Capacity planning and control	CO4, CO6										
7.15	В	Production Activity control,, Scheduling in Manufacturing,	CO4, CO6										
7.16	С	Theory of constraints and synchronous manufacturing.CO4, CO6											
7.17	Unit 5	INVENTORYMANAGEMENT and TQM											
7.18	A Basic Inventory systems, Inventory systems under risk, CO5, CO6												
7.19	BDistribution inventory management,CO5, CO6												
7.20	С	TQM basic concepts and application	CO5, CO6										
8	Course Evalu	ation											
0.1		2004											
8.1	Course work	: <u>30%</u>											
8.11	Attendance	None	None										
8.12	Homework	Three best out of 4 assignments: 20 marks	Two 30-minutes surprise quizzes: 10 marks										
8.13	Quizzes	I wo 30-minutes surprise quizzes: 10 marks											
8.14	Projects	None											
8.15	Presentations	s None											
8.16	Any other	None OF 250											
8.2	MTE	25 percent CE 25%											
8.3	End-term exai	nination: 50%											
9	References												
9.1	Text book	1. Lee J.Krajewski,Larry P.Ritaman," Operations Man	agement										
		",Addison-Wesley,2000.											
9.2	Other referen	ces Reference Books and Monographs											
		 Seetharama L.Narasimhan, Dennis W.McLeavy, Billington, ." Producion planning and inventor. Averetle E Adam, Jr Ronaald J. Ebert "Product operational management, PHI Elwood S Bufa and Rakesh K Sarin " Modern Production/Operations Management", Wiley In Reprint 2009 Shailendra Kale, "Production and Operations I TMH Education, 	Peter J y control ", PHI. tion and dia Edition, Management",										

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC339.1		2	-	-	1	-	-	2	1			1	2	2	
MEC339.2	2	2	-	2	-	-	-	2	1			1	2	2	
MEC339.3	2	2	3	2	2	-	-	2	1			1	2	2	
MEC339.4	2	2	-	-	-	-	1	2	1			1	2	2	
MEC339.5	2	2	-	-	-	-	1	2	1			1	2	2	
MEC339.6	2	2	2	2	2	-	-	2	1			1	2	2	
MEC339	2	2	2	2	2	-	1	2	1	-	-	1	2	2	-

1-Slight (Low)

2-Moderate (Medium)

S	chool: SSET	Batch : 2023-2027								
P	Programme: B.Tech	Academic Year: 2023-2024								
I	Branch: ME	Semester: V								
1	Course Code	ARP 301								
2	Cradita	Personality Development and Decision making Skills								
5	Contact Hours	2								
4	(L-T-P)	1-0-2								
	Course Status	Active								
		To enhance holistic development of students and improve their employable	ility skills. Provide							
		a 360 degree exposure to learning elements of Business English r	eadiness program,							
		behavioural traits, achieve softer communication levels and a positive self-b	oranding along with							
5	Course	augmenting numerical and altitudinal abilities. To up skill and upgrade stud	lents' across varied							
C	Objective	industry needs to enhance employability skills. By the end of this semester,	a will have entered							
		the threshold of his/her 3 rd phase of employability enhancement and ski	ll building activity							
		aversise								
		After the successful completion of course, students will be shi	a to:							
		CO1: Apply skills of personality development which will help a student groo								
		meet the needed social strata for establishing themselves in the society								
		CO2: Build a positive behavioural attitude and attributes develop	ing interpersonal							
		skills for building positive and meaningful social and professional relationships								
		CO3: Review and revise development plans to adapt to changing aspirations,								
6	Course	circumstances and working environments								
	Outcomes	CO4: Acquire higher level competency in use of numbers and d	ligits, logical and							
		analytical reasoning								
		CO5: Develop higher level strategic thinking and diverse mathe	matical concepts							
		through building cubes and cuboids.								
		CO6: Demonstrate higher level quantitative aptitude such as analyti	cal and statistical							
		tools for making business decisions.								
		This bundles Training approach attempts to explore the personality, charac	eter, and the natural							
7	Course	style of the student. This helps to develop character, personality, confidenc	e and interpersonal							
	Description	abilities within the student along with level 3 readiness in quant, aptitude a	nd reasoning skills							
8		Outline syllabus – ARP301								
	Unit 1 Impress to Impact CO MAPPIN									
	А	What is Personality? Creating a positive impression – The 3 V's of Impression Individual Differences and Personalities	What is Personality? Creating a positive impression – The 3 V's of CO1 Impression Individual Differences and Personalities							
	В	Personality Development and Transformation Building Self Confidence CO2 Behavioural and Interpersonal Skills CO2								

	Avoiding Arguments The Art of Assertiveness Constructive Criticism	CO3
С	The Personal Effectiveness Grid Assessing our Strengths &	
C	Limitations and Creating an Action Plan for Learning with the 4M	
	Model Verbal Abilities-3	
Unit 2	Introduction to APTITUDE TRAINING- Reasoning- Logical/	
	Analytical	
Α	Numbers & Digits , Mathematical Operations Analytical Reasoning	CO4
В	Cubes & Cuboids Statement & Assumptions	CO5
С	Strong & Weak Argument	CO5
Unit 3	Quantitative Aptitude	
А	Work & Time, Pipes & Cistern	CO6
D	Time ,Speed & Distance, Quadratic & Linear Equations, Logs &	CO6
D	Inequalities	
С	Sequence & Series, Logarithms, Data Interpretation Data sufficiency -	CO6
C	Level 1	
Weightage	(CA)Class Assignment/Free Speech Exercises / JAM – 60% (ETE)	
Weightage	Group Presentations/Mock Interviews/GD/ Reasoning, Quant &	
Distribution	Aptitude - 40%	
	Wiley's Quantitative Aptitude-P Anand Quantum CAT – Arihant Publi	ications Quicker
Tarre baalr/a*	Maths- M. Tyra Power of Positive Action (English, Paperback, Napoleo	on Hill) Streets of
TEXT DOOK/S*	Attitude (English, Paperback, Cary Fagan, Elizabeth Wilson) The 6 Pilla	ars of self-esteem
	and awareness - Nathaniel Brandon Goal Setting (English, Paperback,	Wilson Dobson

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ARP301.1	-	-	-	-	-	1	-	-	1	2	1	2	-	-	-
ARP301.2	-	-	-	-	-	1	-	-	1	2	1	2	-	-	-
ARP301.3	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP301.4	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP301.5	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP301.6	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP 301	1	-	-	-	-	1	-	-	1	2	1	2	-	-	-

1-Slight (Low)

2-Moderate (Medium)

Schoo	ol: SSET	Batch : 2023	-2027									
Prog	ramme:	Current Aca	demic Year:	2023-24								
B. Te	ch.											
Bran	ch: ME	Semester: V										
1	Course Code	MEP302										
2	Course Title	Machining and	Metrology L	ab								
3	Credits	1										
4	Contact	0-0-2										
	Hours											
	(L-T-P)											
	Course Status	Practical										
5	Course	The course aim	he course aims to give hands on experience of different machining processes and various									
	Objective	precision meas	ecision measurement techniques to the students.									
6	Course	A. C	for the successful completion of course, students will be able to:									
0	Outcomes	After the succ	ter the successful completion of course, students will be able to:									
	Outcomes	CO1: Identify	different parts	machining instruments and ex	plain their working							
		CO2: Perform	various nachi	ning operations on milling ma	chine shaper grinder drilling							
		machine and sl	otter	ing operations on mining ma	ennie, snuper, grinder, drining							
		CO4: Explain t	the working of	profile projector and utilize it	for doing measurements							
		CO5: Identify	CO5: Identify different parts of precision measuring instruments and carryout									
		measurements	measurements									
		CO6: Select a l	nachining ope	ration and corresponding measured	suring and machining tools for							
7		a specific appli	cation in real	time.								
/	Jist of				CO Mapping							
	Elst Of Experiments											
	Experiment 1	To perform st	en turning a	d taper turning operations								
		on lathe mach	ine.	id uper turning operations	CO1, CO2, CO6							
	Experiment 2	To perform	grooving 1	courling and chamfering								
	F	operations on	lathe machir	ie	CO1, CO2, CO6							
	Experiment 3	To perform 1	nilling and s	shaping operations on the								
	•	given specime	en and attain	the given dimensions.	CO1, CO3, CO6							
	Experiment 4	To perform s	urface grindi	ng operation on the given								
	-	work piece	C		CO1, CO3, CO6							
	Experiment 5	To drill and p	erform slottin	g on the given work pieces	CO1, CO2, CO6							
	Experiment 6	Study of profi	ile projector	<u> </u>	CO4, CO6							
	Experiment 7	Measurement	of lengths	, heights, diameters by	CO5 CO6							
		Vernier calipers micrometers.										
	Experiment 8	Measurement of bores by using a micrometer. CO5, CO6										
	Mode of	Practical										
	examination											
	Weightage	CA	CE	ETE								
	Distribution	25%	25%	50%								
	Text book/s*	Handouts give	en by the inst	ructor								
	Software	-										

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO2	1	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	1	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO4	1	-	-	-	1	-	-	-	-	-	-	-	1	1	-
CO5	1	-	-	-	1	-	-	-	-	-	-	-	1	1	-
CO6	1	-	-	-	-	-	-	-	-	-	1	2	2	2	1
MEP302	1	-	-	-	1	-	-	-	-	-	1	2	1	1	1

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

SU/SSET/B.Tech- Mechanical Engineering

Sc	hool: SSET	Batch : 2023-2027										
Pr	ogramme:	Current Academic Year: 2023-2024										
B. '	Гесh											
Br	anch: ME	Semester: V										
1	Course Code	MEP331										
2	CourseTitle	Project Based Learning -3										
3	Credits	2										
4	Contact Hours	0-0-4										
	(L-T-P)											
	Course Status	Practical										
5	Course	1. To align student's skill and interests with are alistic participation of the student of the s	roblem									
	Objective	or project										
		2. To understand the significance of problem and its sco	pe									
		3. Students will make decisions within a framework										
6	Course	After the successful completion of course, students will be	able to:									
	Outcomes	CO1: Adapt general metacognitive knowledge strategies										
		CO2:Solve the complex problems efficiently	CO2:Solve the complex problems efficiently									
		CO3: Relate deeply with the target content										
		CO4:Develop constructive cumulative goal orientation acquisition										
		process										
		CO5: Build scientific writing skills by means of regular pro	ogress									
		presentation										
		CO6: Utilize technology-based knowledge to improvise the existing										
		designs	-									
7	Course	In PBL-3, the students will learn how to define the	problem for									
	Description	developing projects, identifying the skills required for d	eveloping the									
		project based on given a set of specifications										
		and all subjects of that Semester.										
8	Outline syllabi	18	CO									
			Mapping									
	Unit 1	Problem Definition, Team/Group formation and Project	CO1, CO2									
		Assignment. Finalizing the problem statement, resource										
		requirement, if any.										
	Unit 2	Develop a work flow or block diagram for the proposed	CO2,CO3									
		system / software.	202									
	Unit 3	Design algorithms for the proposed problem.	CO3									
	Unit 4	Implementation of work under the guidance of a faculty	CO3, CO4									
L		nember and obtain the appropriate results.										
	Unit 5	Demonstrate and execute Project with the team. Validate	CO4, CO5,									
		and verify the project modules.	CO6									

	Report should in clued Abs	stract, Hard	ware/ Software						
	Requirement, Problem State	ement, Des	ign/ Algorithm,						
	Implementation Detail. Val	oorts.							
	References if any.								
	The presentation, report, we								
	Supported by the document								
	assessment.	assessment.							
Mode of	Practical /Viva								
examination									
Weight age	CA	CE	ETE						
Distribution	25%	25%	50%						
	Mode of examination Weight age Distribution	Report should in clued Abs Requirement, Problem State Implementation Detail. Val References if any. The presentation, report, we Supported by the document assessment.Mode of examinationWeight age Distribution25%	Report should in clued Abstract, Hard Requirement, Problem Statement, Des Implementation Detail. Validation Rep References if any. The presentation, report, work done du Supported by the documentation, form assessment.Mode of examinationPractical /Viva CE DistributionQACE 25%	Report should in clued Abstract, Hardware/ Software Requirement, Problem Statement, Design/ Algorithm, Implementation Detail. Validation Reports. References if any. The presentation, report, work done during the term Supported by the documentation, forms the basis of assessment.Mode of examinationPractical /VivaWeight age DistributionCACEETEDistribution25%50%					

COS	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2	PSO3
MEP331.1	3	3	-	3	-	-	-	-	3	3	2	3	2	2	1
MEP331.2	3	2	-	3	-	-	2	-	3	3	2	3			1
MEP331.3	3	2	-	-	2	-	-	-	3	3	2	3	2	2	
MEP331.4	3	3	-	-	-	2	-	-	3	3	2	3		2	
MEP331.5	3	3	2	2	2	2	3	3	3	3	2	3	2	2	
MEP331.6	3	3	-	3	-	-	-	-	3	3	2	3			1
MEP331	3	3	2	3	2	2	2	3	3	3	2	3	2	2	1

1-Slight (Low)

2-Moderate (Medium)

SSET	Batch : 2023-2027										
nme:	Current Academic Year: 2023-2024										
ME	Semester: V										
rse Code	MEP333										
rse Title	Summer Internship II										
its	2										
act Hours -P)	0-0-4										
rse Status	Practical										
rse	To expose engineering students to the real industrial scenario, which is not possible in the classroom? Familiarize with various materials, processes, products and their applications along with relevant aspects of quality control and shop floor management. Understand the psychology of the workers and their habits, attitudes and approach to problem solving. Understand the social, economic and administrative considerations that influence the working environment of industrial organizations. Learn about team work, collaboration and leadership. Importance of time management, discipline, self-learning and effective communication. To apply the engineering knowledge in real industrial situations. To gain experience in writing reports in engineering works/projects. To enhance the employability of the students. Get exposed to the current technological developments relevant to the subject area to which the training pertains. To develop self-esteem for employment after graduation										
rse comes	After the successful completion of course, students will be able to: CO1: Explain the working environment of industry. CO2: Analyze the resources in practice. CO3: Apply Engineering Knowledge for Problem analysis CO4: Decide investigative procedure to sort out complex industrial problems CO5: Show the importance of working in a team CO6: Maximize his/her ability to make work related presentations. This practical course is intended to expose the students to real life scenario in industry with the intention to make them future ready for their professional role. In this, the students undergo in reputed Private / Public Sector / Government organization / companies for four weeks/one month in summer vacation after II semester. It is expected that the skills student gain via internship with an organization will help him/her perform better in the assigned job after graduation. Apart from this, the industrial internship enhances the chance for students to obtain										
	SET me: ME se Code se Title its act Hours -P) se Status se ctive										

		an awareness of general workplace behaviour and interpersonal skills are								
		expected from students at the end of the Industrial internship.	Гhe							
		student should be able relate, apply and adapt relevant knowled	dge and							
		concepts within industrial ambience and ethics.	C							
8	Outline		СО							
			Mapping							
	Α	INTERNSHIP DIARY								
		An internship diary is provided by the university for collecting								
		the information during industrial internship on daily basis. It								
		also helps the student for writing his/her report. The objective								
		of maintaining daily diary is to cultivate the habit of								
		documenting and encourage him/her to search for details. It	CO1,							
		develops the students' own thought process and reasoning	CO2,							
		abilities. The students should record in the daily training diary	СОЗ,							
		the day to day account of the observations, impressions and	CO4							
		information gathered. It should contain the sketches &								
	drawings related to the observations made by the students. On									
	the basis of recorded data in the diary, the student will prepare									
	a report.									
	В	INTERSHIP REPORT								
		A student should learn about equipment's, machines, plant	CO6							
		layout and other industrial practices in industry. After	CO5							
		collecting the information, one should prepare a								
		comprehensive internship report at the end of one's internship								
		to demonstrate what one has learnt in this period. Daily diary								
		will facilitate to a great extent in writing the report. It is								
		mandatory for the student to submit a hard copy of report to								
		one's assigned coordinator for corrections and subsequently,								
		submitting a final spiral bound copy to department. The								
		assigned coordinator will check the followings things in the								
		draft submitted by the student: Report is made as per the								
		format approved by the department. Originality of the report.								
		very adequate and purposerul write-up. Organization,								
		drawings, sketches, format, style, language, fig no, table no								
		and references etc. variety and relevance of learning								
		After doing correction the corrected conies will be submitted								
		at the time of presentation duly signed by the faculty								
		coordinator and Head of Department								
		coordinator and riead or Department.								
	С	INDUSTRIAL INTERNSHIP EVALUATION								
		PROCESS								

	The Industrial Internship Evaluation is done in the presence of assigned Department Faculty coordinator and External Examiner, duly approved by The controller of Examination. The evaluation process includes a seminar presentation and viva-voce, done on the basis of following criteria. The Power Point PresentationProper Planning of PresentationEffectiveness of PresentationsDepth of knowledge and skills. Records in which internship diary and reports are analyzed along with presentation and viva voce	CO4, CO6
Mode of	Practical	
examination		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEP333.1	0	0	0	0	0	1	3	1	0	0	0	2	2	2	2
MEP333.2	0	0	0	0	0	0	2	0	0	0	0	2	2	2	2
MEP333.3	0	0	0	0	0	2	1	0	0	0	0	2	2	2	2
MEP333.4	0	0	0	0	0	2	0	0	0	0	0	2	2	2	2
MEP333.5	0	0	0	0	0	0	1	1	0	0	0	2	2	2	2
MEP333.6	0	0	0	0	0	0	0	0	0	2	0	3	3	3	3
MEP333	0	0	0	0	0	2	1	1	0	2	0	2	2	2	2

1-Slight (Low)

2-Moderate (Medium)

School:	SSET	Batch: 20	23-2027							
Program	mme: B.Tech	Current A	cademic Year: 2023-2024							
Branch	: ME									
1	Course code	ECC301								
2	Course Title	Community	Connect							
3	Credits	2								
3.01	(L-T-P)	(0-0-2)								
4	Learning									
	Hours		Contact Hours	60						
			Project/Field Work	40						
			Assessment 00							
			Guided Study 20							
			Total hours	60						
5	Course	1. To conne	ct the students to the community.							
	Objectives	2. To condu	ct survey of community people ar	d record responses and						
		identify the	issues faced by the community.							
		3. To do det	ailed analysis of data collected in	the survey and student will						
		use their lea	rning to propose suitable solution	for these issues.						
		4. 10 ennan	ce skills of students on communic	ation, data analysis and repo	ort					
		5 To condu	IS.							
6	Course	After the s	uccessful completion of course	students will be able to:						
Ũ	Outcomes	CO1 Interr	ret knowledge on different issue	s faced by the community	in					
		better way	siet knowledge on different issue	s faced by the community	m					
		CO2 Analy	ze data and identify problems							
		CO3. Solve	the complex problems efficiently							
		CO4. Const	ruct documentation, data analysis	and report on any project.						
		CO5. Estim	ate the engineering and societal va	lues of the developed soluti	ion					
		for the prob	lem	-						
		CO6. Utiliz	e technology-based knowledge to	improvise the existing						
		solution for	the problem							
7	Theme	Major Sub	-themes for research:							
		1. Energy s	olutions, saving and managemen	nt						
		2. Electron	ics solution in everyday life							
		3. Civil Wol	rks like transportation, drainage	e, water, construction etc.						
		4. Agricult	smort solutions	1011						
		5. 101 and Sillari Solutions 6 Madical and Healthcare issues								
		7 Environmental issues								
		8. Security	and surveillance							
		9. Educatio	n and skills							
		10. Waste r	nanagement							
		10. Any oth	ner issues							

8.1	Guidelines for Faculty Members	 Any one of the sub-themes can be taken as survey topics It will be a group assignment. There should be not more than 10 students in each group. The faculty guide will guide the students to complete the survey and help the student in preparing final report. The questionnaire should be well design by the school and it should
		 carry at least 40 questions (Including demographic questions). The faculty will guide each group of students to prepare the PPT. Each group should submit the report to CCC-Coordinator signed by the faculty guide before one week of last date of instruction mentioned in the Academic Calendar.
		• The students have to send the hard copy of the report and PPT , and then only they will be allowed for ETE.
8.2	Role of CCC- Coordinator	The CCC Coordinator will supervise the whole process and assign students to faculty members.
8.3	Layout of	Abstract (250 words)
	the Report	• Introduction
		 Literature review(optional) Objective of the recorrect
		 Objective of the research Research Methodology
		 Finding and discussion
		Conclusion and recommendation
		• References
		Research report should base on primary data.
8.4	Guideline	Title Page: The following elements must be included:
	for Report	• Title of the article;
	wrung	• Name(s) and initial(s) of author(s), preferably with first names
		spelled out;
		 Affiliation(s) of author(s); Name of the faculty guide and Co guide
		• Name of the faculty guide and Co-guide Abstract: Each article is to be preceded by a succinct abstract of up to 250
		words, that highlights the objectives, methods, results, and conclusions of
		the paper.
		Text: Manuscripts should be submitted in Word.
		• Use a normal, plain font (e.g., 12-point Times Roman) for text.
		 Use italics for emphasis. Use the automatic page numbering function to number the pages
		 Ose the datomatic page numbering function to number the pages. Save your file in docx format (Word 2007 or higher) or doc format
		(older Word versions)
		Reference list:
		The list of references should only include works that are cited in the text
		and that have been published or accepted for publication.
		I ne soft copy of final report should be submitted along with the hard copy signed by faculty / guide and countersigned by HoD / Doop
		The report will be subject to plagiarism check as per the guidelines
		given in the notification.
8.5	Format:	The report should be Spiral / softbound
		The Design of the Cover page to report will be given by the Coordinator-
		CCC

		Cover page
		Acknowledgement
		Content
		Project report
		Appendices
8.6	Important	Students will complete their community survey before last instruction date
	Dates:	of the running semester and submit the same to concern faculty member.
		(Each group should complete min 50 questionnaires).
		Faculty members should guide students for report writing.
		The students should submit the hard copy and soft copy of the report to
		CCC-Coordinator signed by the faculty guide.
		The students should submit the soft copy of the PPT to CCC-
		Coordinator signed by the faculty guide before 1 week of final
		presentation.
		The final presentation and evaluation should be organised by the School
		before last instruction date.
8.7	ЕТЕ	The students will be evaluated by panel of internal faculty members on
		the basis of their presentation.
		•

9	Course Evaluation	
9.01	Continuous Assessment	60%
	Noting responses to the questionnaire	20 Marks
	Data analysis and Report Writing	40 Marks
9.02	ETE (PPT presentation)	40%

COs	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03
ECC301.1	2	1	1	1	-	1	2	1	-	-	1	1	1	1	-
ECC301.2	2	1	1	1	-	1	2	I	-	-	1	1	1	1	-
ECC301.3	2	1	1	1	-	1	2	-	-	-	1	1	1	1	-
ECC301.4	2	1	1	1	-	1	2	-	-	-	1	1	1	1	-
ECC301.5	2	1	1	1	-	2	2	-	-	-	1	1	1	1	-
ECC301.6	2	1	1	1	-	1	2	-	-	-	1	1	1	1	-
ECC301	2	1	1	1	-	1	2	-	-	-	1	1	1	1	-

1-Slight (Low) 2-Moderate (Medium)

Sch	ool: SSET	Batch : 2023-2027						
Pro	gramme: B.Tech	Current Academic Year: 2023-2024						
Bra	nch: ME	Semester: V						
1	Course Code	MEP360						
2	Course Title	Automobile Engineering Lab-I						
3	Credits	1						
4	Contact Hours (L-T-P)	0-0-2						
	Course Status	Practical						
5	Course Objective	components of petrol engine and diesel engine by dismantli assembling the parts like carburetor, fuel system, Cooling system we have the multi cylinder diesel and petrol engines for easy le Although, the student can learn about the various electrical comp of an automobile and the wiring circuits and to test the starter ignition system, batteries etc.						
6	Course Outcomes After the successful completion of course, students will be able to:							
		CO2: Identify the components of an engine in Maruti Suzuki 800 CO						
		car.						
		CO3: Explain the operation of Lubrication and Fuel System	of SI and CI					
		Engine.						
		CO4: Summarize the operation of Engine Cooling and Ignit	tion System					
		CO5: Demonstrate the principles of Engine management systems.						
		CO6: Determine the components of automotive electrical and						
		electronics in modern vehicles.						
7	Course Description	This course covers the theory, construction, inspection, diagnosis repair of internal combustion engines and related systems. Topics in fundamental operating principles of engines and diagnosis, inspe adjustment, and repair of automotive engines using appropriate se information. Upon completion, students should be able to perform diagnosis, measurement and repair of automotive engines appropriate tools, equipment, procedures, and service information.						
8	Outline syllabus		CO Mapping					
	List of Experiments							
	Experiment 1	To dismantle engine block, cylinder head and peripherals.	CO1					
	Experiment 2	Scraping, refurbishing of engine block, cylinder head and. Peripherals fewer than 4 modes of fluid pressure washing.	CO2					
	Experiment 3	To study the fuel supply of a petrol/CNG engine.						

Experiment 4	To study the fue	l supply of a dies	sel engine.	CO3			
Experiment 5	To study engine	's lubricating sys	stem.	CO3			
Experiment 6	To study engine	's cooling system	1.	CO4			
Experiment 7	To study ignition	n system.		CO4			
Experiment 8	To assemble var	ious engine sub	systems and components.	CO5			
Experiment 9	Unmount the ex compartment an connecting all he sensors and swit	CO6					
Experiment 10	To study engine	management sys	stem.	CO5			
Mode of examination	Practical						
Weightage	СА	CE	ETE				
Distribution	25%	25%	50%				
Text book/s*	 Crouse, W.H., and Anglin, D.L., Automotive Mechanics, Tata McGraw Hill, New Delhi, 2005. Heitner, J., Automotive Mechanics, Affiliated South West Press, New Delhi, 2000. 						
Software	ANSYS						

COs	PO1	PO	РО	PS	PSO									
		2	3	4	5	6	7	8	9	10	11	12	01	2
MEP360.1	2	3	-	-	3	-	-	-	-	-	-	3	2	3
MEP360.2	3	3	-	-	3	-	-	-	-	-	-	3	2	3
MEP360.3	3	2	-	-	3	-	-	-	-	-	-	2	2	3
MEP360.4	2	3	-	-	3	-	-	-	-	-	-	2	2	3
MEP360.5	2	3	-	-	3	-	-	-	-	-	-	3	2	3
MEP360.6	2	2	-	-	3	-	-	-	-	-	-	3	2	3
MEP360	2	2	-	-	3	-	-	-	-	-	-	2	2	3

1-Slight (Low) 2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2	Batch : 2023-2027								
Pr	ogramme:	Current Acad	lemic Year: 2	2023-2	2024						
B.	Tech										
Br	anch: ME	Semester: V									
1	Course Code	MEP310									
2	Course Title	Mechatronics 2	Laboratory								
3	Credits	1									
4	Contact Hours	0-0-2									
	(L-T-P)										
	Course Status	Practical									
5	Course	Mecha	tronics system	n desig	n and simulation, ergono	mics and safety					
	Objective	• Practic	al aspects of c	compu	ter interfacing, real time	lata acquisition					
	~	and co	ntrol								
6	Course	After the succe	essful complet	tion of	f course, students will be	able to:					
	Outcomes	CO1: Apply th	ne basic princi	iples o	f sensors and actuators to	stystems.					
		CO2: Analyze	various valves	and cy	linders used in pneumatic	kits for various					
		operations.									
	CO3 assemble electro-pneumatic kits for various operations.										
		CO4: Apply the concepts of design of mechatronics elements.									
	CO5 Analyze automatic door opening and closing system using PLC										
		CO6: Design	and control a	simple	e mechatronic system						
	Description	This course int system identifi provide their a	tends to impar ication and sin pplications in	rt thro mulati 1 real-l	ugh knowledge in system on of mechatronics system ife.	modelling, m and to					
8	List of Experime	ents				CO					
						Mapping					
	1	Study and dem components	nonstration of	mech	atronics system and its	CO1					
	2	Study and Der	nonstration of	f Sense	ors.	CO1					
	3	Study and Der	nonstration of	f Actu	ators.	CO2					
	4	Operation of a	single acting	cylind	ler	CO2					
	5	Operation of a	single acting	cylind ferent	ler Controlled from	CO3					
	6	Single cycle a	utomation of n	multin	le cylinders in sequence	CO3					
	7	Operation of a	single acting	cyling	ler using solenoid valve	C04					
	8	Operation of a	double acting	g cylin	der using double solenoi	d CO1					
		valve CO4									
	9	Study of PLC	and its applica	ations		CO5					
	10	PLC Program	ning exercise	for va	rious systems	CO5					
	11	Study and wor	king of Auton	matior	studio	CO6					
	Mode of	Lab									
	examination	 									
		CA	CE	ETE	2						

Weightage	25%	25%	50%					
Distribution								
Text book/s*	2. Devdas Sh							
	Design", 2							
Other	1 Pneumatics	1 Pneumatics Manual, Janatics PVT Ltd						
References	2. Electropneumatics Manual, Janatics PVT Ltd							
	_							

CO-PO mapping

COs	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	3	1	1		-	-	-	-	-	-	-	2	-	3	3
CO2	3	2	1		-	-	-	-	-	-	-	2	-	2	2
CO3		3	2		-	-	-	-	-	-	-	3	-	3	3
CO4	3	3	3		-	-	-	-	-	-	-	3	-	3	3
CO5	3	2	2		3	-	-	-	-	-	-	3	-	2	3
CO6	3	2			3	-		-	-	-	-	3	-	3	3
MEP310	3	2	2		3	-	-	-	-	-	-	3	-	3	3

SCHO	OL OF	MECHANICAL		Current Academic	Sem: VI					
ENGI	NEERING &	ENGINEERING		Vear: 2023-2024						
TECH	NOLOGY	Programme:- B.Tec	ch	Ratch • 2023_2027						
Branc	h: ME			Daten : 2025-2027						
1	Course number	MEC330								
2	Course Title	OPERATIONS RESE	ARCH							
3	Credits	3								
4	Contact Hours (L- T-P)	3-0-0								
5	Course Objective	The objective of OR is solving problems invol system approach by a to which is in the best inte	to provi lving inte eam of e erest of t	de a scientific basis to the ma eraction of the components of experts drawn from different of the organisation as a whole.	nagers of an organisation for the system, by employing a lisciplines, for finding a solution					
6	Course Outcomes	After the successful	l comp	letion of course, students	s will be able to:					
		CO1: To identify and configurations	and visualize the modes of Operation research in different practical							
		CO2: To understand problems	stand basic mathematical/numerical methods needed to solve different OR							
		CO3: Proficiency wi engineering economic a the public sector in con	O3: Proficiency with tools from optimization, probability, statistics, simulation, and ngineering economic analysis, including fundamental applications of those tools in industry and he public sector in contexts involving uncertainty and scarce or expensive resources.							
		CO4: Facility with mathematical and computational modelling of real decision-making problems, including the use of modelling tools and computational tools, as well as analytic skills to evaluate the problems.								
		CO5: Facility with the	design,	implementation, and analysis	of computational experiments.					
7	Outline syllabus									
7.01	MEC330.A	Unit A	Introdu	iction & Linear Programmi	ng Problems					
7.02	MEC330.A1	Unit A Topic 1	Introduc	ction: OR models and their ap	plications					
7.03	MEC330.A2	Unit A Topic 2	Formula	ation of Linear Programming	Problems, Graphical solution					
7.04	MEC330.A3	Unit A Topic 3	Simplex	procedure for maximization	and minimization, Duality concept					
7.05	MEC330.B	Unit B	Transp	ortation Model & Assignme	nt Models					
7.06	MEC330.B1	Unit B Topic 1	Mathem VAM	natical formulation, Methods t	o find IBFS like NWCR, LCM and					
7.07	MEC330.B2	Unit B Topic 2	MODI 1	nethod, Degeneracy and its re	esolution.					
7.08	MEC330.B3	Unit B Topic 3	Assignm	nent Model: Hungarian Metho	od, Travelling Salesman Problem					
7.09	MEC330.C	Unit C	Queuin	g Model & Inventory Contr	ol					
7.10	MEC330.C1	Unit C Topic 1	Queuing queuing machine	g Model: Introduction, Ken models, Sequencing of n jobs	ndall's notation, Classification of s and 2 & 3 machines, 2 jobs and m					
7.11	MEC330.C2	Unit C Topic 2	Invento	ory control: Introduction, mo	dels of inventory,					
7.12	MEC330.C3	Unit C Topic 3	fixed or	der quantity system, periodic	quantity system EOQ model.					
7.13	MEC330.D	Unit D	Decisio	n Theory and theory of gam	es					
7.14	MEC330.D1	Unit D Topic 1	Decision	n making under certainty and	uncertainty,					
7.15	MEC330.D2	Unit D Topic 2	Decision	n tree						
7.16	MEC330.D3	Unit D Topic 3	Theory graphica	of games-definition, pure a al Methods.	nd mixed strategy, algebraic and					
7.17	MEC330.E	Unit E	Network Models & Computational Practices							
7.18	MEC330.E1	Unit E Topic 1	Basic concept, Rules for drawing the network diagram.							
7.19	MEC330.E2	Unit E Topic 2	Applica	tions of CPM and PERT tech	niques.					
7.20	MEC330.E3	Unit E Topic 3	Cost and	alysis and crashing the networ	 rk					
8	Course Evaluation	<u> </u>		<u> </u>						

8.1	Course work:	30%							
8.11	Attendance	None							
8.12	Homework	Three best out of 4 assignments: 20 marks							
8.13	Quizzes	Two 30-minutes surprise quizzes: 10 marks							
8.14	Projects	None							
8.15	Presentations	None							
8.16	Any other	None							
8.2	MTE 25% CE - 25%								
8.3	End-term examination: 50%								
9	References								
9.1	Text book	1. Hira & Gupta, Operations Research, S. Chand & Co. New Delhi, 2007.							
9.2	Other references	 Sharma,J.K., Operations Research: Theory and Application, McMillan India Publication. New Delhi, 3rd Edition. Taha, H.A., Introduction to Operation Research, PHI Publication, 9th edition. Tripathy, Production and Operation Management, Scitech Publication, 2007 edition. Rajgopal, K., Operation Research, PHI Learning Pvt Ltd., 1st Edition, 2012. Paneerselvam, R., Operation Research, PHI Learning Pvt Ltd., 2nd Edition, 2009. Use MATLAB Software– MATLAB R2011b; Version 8.1, and Microsoft Office Excel 2007 or2012. 							

Mapping of Outcomes vs. Topics

Outcome no. \rightarrow	1	2	3	4	5
Syllabus topic↓					
MEC330.A	Х	Х	Х	Х	Х
MEC330.A1	Х				
MEC330.A2				Х	
MEC330.A3	Х				
MEC330.B	Х	Х	Х	Х	X
MEC330.B1					
MEC330.B2					
MEC330.B3					
MEC330.C	Х	Х	Х	Х	X
MEC330.C1					
MEC330.C2					
MEC330.C3					
MEC330.D	Х		Х	Х	X
MEC330.D1				Х	
MEC330.D2				Х	
MEC330.D3				Х	
MEC330.E	Х		Х	Х	X
MEC330.E1					
MEC330.E2					X
MEC330.E3					X

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B. '	Гесh								
Br	anch: ME	Semester: VI							
1	Course Code	MEC341							
2	Course Title	Lean Production							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Program Core							
5	Course	The Lean Production Course offers a practical introduction to	lean						
	Objective	management principles and techniques. The course is tailored	to help						
		the reader (s) implement lean manufacturing in business envir	onment to						
		improve productivity, business resilience, and to reduce waste							
6	Course	After the successful completion of course, students will be abl	e to:						
	Outcomes	CO1:label lean production and mass production							
		CO2: Compare the process capacity and production system of different							
		organization.							
		CO3: Improve Workplace Visualization and maintaining continuou							
		flow.							
		CO4: Elaboratepull systems and scheduling.							
		CO5: Recommend quality and continuous process im	provement						
		guidelines.							
7	Course	CO6: Develop a resilient organization with minimum wastage							
/	Course	Lean production focuses on improving the speed of a proce	ss and the						
	Description	Lean production deals with the effectiveness with which	ded steps.						
		Lean production deals with the effectiveness with which meetscustomer requirements. The graduate course covers the	a process						
		with an emphasis on quantitative methods Employers are in	creasingly						
		looking for candidates trained in process engineering	lereasingry						
8	Outline syllabus	Tooking for canonalies trained in process engineering.	CO						
Ŭ	outine synuous		Mapping						
	Unit 1	INTRODUCTION: IDENTIFICATION OF WASTE							
	A	Understand the basic differences between lean production							
		and mass production.	CO1						
	В	Review the history of Lean Production, focusing on Japan's							
		Toyota Production System as an alternative to mass	CO1						
		production.							
	С	waste impacts productivity and Taiichi Ohno's famous 7	CO1						
		Wastes.							
	Unit 2 UNDERSTANDING FLOW: CAPACITY ANALYSIS								
	А	Basics of process analysis, process capacity and	CO2,						
		resource utilization, the important concepts of cycle	CO6						
		time and takt time.							
	В	The relationship between inventory, a waste and a	CO2,						
		flow time in a system through Little's Law.	CO6						

С	Different types	s of production	system	CO2, CO6				
Unit 3	IMPROVING ORGANISAT	FLOW: WO	RKPLACE SUALIZATION					
А	Introduction to	the concepts of	of Workplace Visualization	CO3				
В	Organization a continuous flo	nd 5S for impr w in Lean Prod	oving and maintaining luction,	CO3				
С	The concept of	f Total Product	ive Maintenance	CO3				
Unit 4	MAINTAINI	NG FLOW: E	STABLISHING					
	PULL SYSTE	EMS AND SCI	HEDULING					
А	Define the key	principle from	the Toyota Production System,	CO4				
	Just-In-Time (JIT) and the sig	nificance that JIT has for Lean	CO4,				
	Production in	reducing waste	and meeting customer demand.	000				
В	Review of pro-	duction plannir	ng and Production Scheduling	CO4, CO6				
С	Mixed-Model	Scheduling and	l Pull systems using Kanban,	CO4,				
	value stream n	napping		CO6				
Unit 5	QUALITY A	ND CONTINU	JOUS IMPROVEMENT					
А	The impact of	defects on flow	rate and Poka Yoka	CO5,				
В	Kaizen Blitz fo	ving and process improvements	CO5,					
С	The Toyota W	ay 2001, and Jo	effrey Liker's 14 Management	CO5,				
	Principles.			CO6				
Mode of examination	Theory							
Weightage	CA	MTE	ETE					
Distribution	25%	25%	50%					
Text book/s*	1. Lean A	And Six Sigma	– Six Sigma Black Belt (2007					
	BOK):	Enterprise-Wi	de Deployment Paper Back by					
	Suvabr	ata Mitra						
Other	1.Toyota Prod	uction System	-An integrated approach to Just	in Time –				
Kelelelices	Industrial Eng	ineers – 1983	ening and Management Fless -	institute of				
	2 James P Wo	mack Daniel 7	Jones and Daniel Roos. The Ma	achine that				
	changed the V	World The Sto	ry of Lean Production -Harper	Perennial				
	edition published 1991							
	3. Gemba K	aizen: A Co	nmonsense Approach to a C	Continuous				
	Improvement	Strategy. Seco	nd Edition Hardcover – 2012by	y Masaaki				
	Imai							
	4. Value Stream	m Mapping : H	ow to Visualize Work and Align					
	Leadership for	Organizationa	l Transformation Paperback – 20	16 by				
	Karen Martin	, Mike Osterlin	g	-				

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
MEC341.1	2	2	-	-	1	-	-	2	2	3	2
MEC341.2	2	2	-	2	-	-	-	2	2	2	2
MEC341.3	3	3	3	2	2	-	-	2	2	2	2
MEC341.4	2	2	-	-	-	-	1	2	2	2	2
MEC341.5	2	2	-	-	-	-	1	2	2	2	2
MEC341.6	2	2	2	2	2	-	-	2	2	2	2
MEC341	2	2	2	2	2	-	1	2	2	2	2

1-Slight (Low)

2-Moderate (Medium)

	School: SSET	Batch : 20	Batch : 2023-2027					
	Programme:	Current Academic	Vear. 2023-2024					
	B.Tech		- 1 car : 2025-202 1					
	Branch: ME	Semest	er: VI					
1	Course Code	ARP	302					
2	Course Title	Campus to	Corporate					
3	Credits	2						
4	Contact Hours (L-T-P)	1-0-2						
	Course Status	Active						
5	Course Objectiv	To enhance holistic development of studen Provide a 360 degree exposure to learning eler behavioural traits, achieve softer communicat with augmenting numerical and altitudinal a across varied industry needs to enhance employ will have entered the threshold of his/her 4 th p building activity exercise.	To enhance holistic development of students and improve their employability skills. Provide a 360 degree exposure to learning elements of Business English readiness program, behavioural traits, achieve softer communication levels and a positive self-branding along with augmenting numerical and altitudinal abilities. To up skill and upgrade students' across varied industry needs to enhance employability skills. By the end of this semester, a will have entered the threshold of his/her 4 th phase of employability enhancement and skill building activity exercise					
6	Course Outcomes	After the successful completion of cou CO1: Develop a creative resumes, cover interpret KRA and KPI statements and art CO2: Build negotiation skills to get maximis scenarios. CO3: Develop skills of personal branding CO4: Acquire higher level competency such as direction sense, strong and weak a CO5: Develop higher level strategic thin through building analogies, odd one out CO6: Demonstrate higher level quantit proportions, mixtures & allegation for making	urse, students will be able to: r letters, interpret job descriptions and t of conflict management. mum benefits from deals in practical life to create a brand image and self-branding in use of logical and analytical reasoning rguments king and diverse mathematical concepts ative aptitude such as average, ratio & ng business decisions.					
7	Course Description	This penultimate stage introduces the student the student to understand and interpret KRA student also understands how to manage or relations and empathise others with level-4 of Outline syllabus – ARP	to the basics of Human Resources. Allows KPI and understand Job descriptions. A onflicts, brand himself/herself, understand quant, aptitude and logical reasoning 302					
Ĕ	Unit 1	Ace the Interview	CO MAPPING					
		HR Sensitization (Role Clarity KRA KPI	CO1					
	A	Understanding JD) Conflict Management						
	В	Negotiation Skills Personal Branding	CO3, CO4					
	С	Uploading & Curating Resumes in Job Portals, getting Your Resumes Noticed Writing Cover Letters Relationship Management Verbal Abilities-4	CO1, CO3					
	Unit 2	Introduction to APTITUDE TRAINING- Reasoning- Logical/ Analytical						

	А	Sitting Arrangement & Venn Diagrams Puzzles Distribution Selection	CO4						
	В	Direction Sense Statement & Conclusion Strong & Weak Arguments	CO4						
	С	Analogies,Odd One out Cause & Effect	CO5						
	Unit 3	Quantitative Aptitude							
	А	Average, Ratio & Proportions, Mixtures & Allegation	CO6						
	В	Geometry-Lines, Angles& Triangles	CO6						
	С	Problem of Ages Data Sufficiency - L2	CO6						
	Weightage Distribution	(CA)Class Assignment/Free Speech Exercises / JAM – 60% (ETE) Group Presentations/Mock Interviews/GD/ Reasoning, Quant & Aptitude – 40%							
	Text book/s*	Wiley's Quantitative Aptitude-P Anand Quantum CAT – Arihant Publications Quicker Maths- M. Tyra Power of Positive Action (English, Paperback, Napoleon Hill) Streets of Attitude (English, Paperback, Cary Fagan, Elizabeth Wilson) The 6 Pillars of self-esteem and awareness – Nathaniel Brandon Goal Setting (English, Paperback, Wilson Dobson							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ARP302.1	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP302.2	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP302.3	-	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP302.4	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP302.5	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP302.6	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-
ARP 302	1	-	-	-	-	-	-	-	1	2	1	2	-	-	-

1-Slight (Low)

2-Moderate (Medium)

School:		Batch : 2023-2027						
Di Pi	ogramme	Current Academic Year: 2023-2024						
:]	B.Tech							
B	ranch:	Semester: VI						
Μ	E							
1	Course	MEP327						
-	Code							
2	Course	Turbo machinery Laboratory Lab						
3	Credits	1						
4	Contact	0-0-2						
-	Hours							
	(L-T-P)							
	Course	Practical						
	Status							
5	Course							
	Objective	To understand the concept and basic concepts of turbomachine	ery, working of di	fferent turbine				
		(such as pelton wheel, Kaplan and Francis turbine) and differen	nt pumps (recipro	cating and				
	0	centrifugal pump) through a series of experiments.						
6	Course	After the successful completion of course, students will be able	to:					
	Outcomes	CO1- Analyze the forces exerted by a jet of fluid on vanes.	nuin ain las af					
		different classes of hydraulic turbines	principles of					
		CO3 - Analyze the performance characteristic curves of hydraul	lic turbines.					
		CO4 - Study and analyze the construction features and working	principles of					
		different pumps.	1 1					
		CO 5 - Analyze the performance characteristic curves of hydrau	ilic pumps.					
		CO6- Understand the working principles of various hydraulic sy	ystems such as					
_	~	hydraulic lift and hydraulic ram.						
7	Course	The objective of this laboratory is to introduce to students the	ne principles of					
	Descripti	of various machines like turbines pumps and other	devices using					
	UII	incompressible fluids (liquids) and the ability to visualize at	id design some					
		simple equipment used in practice.	ia aesign some					
8	Outline svl	labus	CO Mapping					
	List of							
	Experim							
	ents							
	Experim		CO1					
	ent 1	To estimate the Impact of jet of a fixed vane.						
	Experim	C02, C03						
	ent 2 Evnerim	To determine the characteristics of a Pelton turbine.						
	ent 3	To determine the characteristics of a Francis turbine	CO2, CO3					
	chi 5	TO determine the characteristics of a Flatters turblife.						

Experim ent 4	To determine the o	characteristics of	a Kaplan turbine.	CO2, CO3					
Experim ent 5	To determine the	e characteristics	of a reciprocating pump	CO4, CO5					
Experim ent 6	To determine the	e characteristics	of a centrifugal pump	CO4, CO5					
Experim ent 7	Experimental and	Experimental and analytical study of a Hydraulic ram.							
Experim ent 8	Experimental and	CO6							
Mode of examinati on	Practical								
Weightag	CA	CE	ETE						
e Distributi on									
 Text book/s*	Rajput R.K., Hydraulic Machines, 4 th Edition, S. Chand, 2010.								
KEIEIEIICE	ivianuais provide								

COs	РО	PO	PO1	PO1	PO1	PSO	PSO							
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO.	3	2	-	-	-	-	-	-	3	-	-	2	2	-
1														
CO.	3	2	-	-	-	-	-	-	3	-	-	2	2	-
2														
CO.	3	2	-	-	-	-	-	-	3	-	-	2	2	-
3														
CO.	3	2	-	-	-	-	-	-	3	-	-	2	2	-
4														
CO.	3	2	-	-	-	-	-	-	3	-	-	2	2	-
5														
CO	3	2							3			2	2	

1-Slight (Low) 2-Moderate (Medium)

Sc	chool: SSET	Batch : 2023-2027							
P	rogramme:	Current Academic Year: 2023-2024							
B.	Tech								
B	ranch: ME	Semester VI							
1	Course Code	MEP 397							
2	Course Name								
3	Credits Contact Hours								
4	(L-T-P)	0-0-2							
	Course Status	Practical							
5	Course	The course provides an in-depth understanding and skill of writi	ng programs by						
	Objective	developing G and M codes for turning and Milling components. The stude							
	-	have hands-on experience to generate automated tool paths for	an engineering						
		component.							
6	Course	After the successful completion of course, students will be able to:							
	Outcomes	CO1: Build the CNC codes using Virtual CNC software.							
		CO2: Apply the CNC programming for different kind of operation of	n a job						
		operation in CNC lathe.							
		CO3: Develop the CNC programming for drilling, grooving and bor	ing on a job						
		operation in CNC lathe.							
		CO4: Apply the CNC programming using various kind of interpolation on a job							
		operation in CNC Milling machine.							
		CO5: Construct the CNC Programming on a job using mirror imaging in CNC							
		Milling Machine.							
		CO6: Analyse the CNC Programming on a job using Profiling in CN	IC Milling						
		Machine.							
7	Course	The objective of this laboratory enables the students will learn	to use the CNC						
	Description	machines efficiently for manufacturing desired products and	knowledge of						
		programming and use of CNC tooling. The students will use program	nmable language						
		called G code to input desired project dimensions and work condition	ons, such as feed						
		rate and speed. This information is relayed to the CNC machine's inte	egrated computer						
		system as work instructions that control the machining process. These machines can							
		be used for specialized and complex applications, including en	graving and die						
		sinking, or making impressions in die blocks.							
8	Outline syllabus		CO Mapping						

Experiment 1	Generate and	verify the CNC co	des using Virtual CNC software.	CO1				
Experiment 2	Develop the dimension us	CNC program for faing CNC Lathe.	acing operation on a job of given	CO2				
Experiment 3	Develop the 0 a job of giver	CNC program for P	lain and Step turning operation on CNC Lathe.	CO2				
Experiment 4	Develop the Q given dimens	Develop the CNC program for taper turning operation on a job of given dimension using CNC Lathe.						
Experiment 5	Develop the O operation on	evelop the CNC program for internal and external threading peration on a job of given dimension using CNC Lathe.						
Experiment 6	Develop the 0 job of given of	Develop the CNC program for grooving, drilling and boring on a bob of given dimension using CNC Lathe.						
Experiment 7	Develop the given dimens	Develop the CNC program using linear interpolation for a job of given dimension using CNC Milling machine.						
Experiment 8	Develop the G given dimens	CNC program using ion using CNC Mil	g circular interpolation for a job of ling machine.	CO4				
Experiment 9	Develop the dimension us	CNC program using ing CNC Milling m	g mirror imaging on a job of given nachine.	CO5				
Experiment 10	Develop the dimension us	CNC program using ing CNC Milling m	g profiling for a job of given nachine.	CO6				
Mode of examination	Practical	Practical						
Weightage	CA	CE	ETE					
Distribution	25%	25%	50%					
Text book/s*	NITW CNC L	NITW CNC Lab Manual						
Software	Handouts give	andouts given by the instructor						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEP 397.1	3	-	2	-	2	-	-	-	3	-	-	2	2	-	-
MEP 397.2	3	-	2	-	2	-	-	-	3	-	-	2	2	-	-
MEP 397.3	3	-	2	-	2	-	-	-	3	-	-	2	2	-	-
MEP 397.4	3	-	2	-	2	-	-	-	3	-	-	2	2	-	-
MEP 397.5	3	-	2	-	2	-	-	-	3	-	-	2	2	-	-
MEP 397.6	3	-	2	-	2	-	-	-	3	-	-	2	2	-	-
MEP 397	3	-	2	-	2	-	-	-	3	-	-	2	2	-	-

1-Slight (Low)

2-Moderate (Medium)

S	chool:	Batch: 2023-2027								
D:	SET	Comment A Jami's Maarin 2022 2024								
	Tech	Current Academic Year: 2023-2024								
· I R	ranch.	Somector: VI								
M	E E	Semester. VI								
1	Course	MEP 301								
	Code									
2	Course									
	Title	Heat Transfer and Refrigeration & Air Conditioning	Lab							
3	Credits	1								
4	Contact	0-0-2								
	Hours									
	(L-T-P)									
	Course	Practical								
	Status									
5	Course	The laboratory course is aimed to provide the practical	exposure to the students							
	Objectiv	with regard to the determination of amount of heat exc	change in various modes							
	e	conditioning by determining the performance of refrigeration & air								
		conditioning by determining the performance of	of temperation & an							
6	Course	After the successful completion of course students	will be able to:							
	Outcom CO1: Determine the heat transfer performance of Glycerin insulated									
	es	heat pipe, composite walls								
		CO2: Estimate average heat transfer coefficient for free and forced								
		convection.								
		CO3: Determine the surface emissivity of a test pla	te.							
		CO4: Calculate the coefficient of performance of re	frigeration system and							
		air conditioning systems								
		CO5: Perform the tubing and charging of refrigeration	on & air conditioning							
		system								
		CO6: Acquire the knowledge about refrigeration ch	arging and compressor							
		electrical connections								
7	Course	Heat Transfer laboratory provides fundamental and	d industrial knowledge							
<i>'</i>	Descript	about modes of heat transfer. like conduction conve	ction and radiation. and							
	ion	their application. Also, this course develops the under	standing of principle of							
		refrigeration & air conditioning along with hands on	practice.							
8	Outline sy	/llabus	CO Mapping	В						
			•	TL						
	List of									
	Experi									
	ments			TTO						
	Experim	To determine the thermal conductivity of Glycerin	ermine the thermal conductivity of Glycerin CO1							
	ent I		001							

E er	Experim nt 2	To draw the temp pin fin for natura	perature distributi l and forced conv	on profile of a vection process	CO2	K3
E ei	Experim nt 3	Theoretical and e heat pipe	experimental anal	ysis of insulated	CO1	K3
E ei	experim nt 4	To determine the composite wall profile	ne temperature and draw its t	at each face of emperature drop	CO1	K3
E ei	experim nt 5	To determine the	emissivity of a c	opper plates	CO3	K3
E er	experim nt 6	Determine coef refrigeration test	ficient of per	formance of a	CO4	K3
E ei	Experim nt 7	Determine coeffice capacity of air co	cient of performation	ance and tonnage	CO4	K3
E er	experim nt 8	Perform flaring a prepare tube sect	nd swaging operation with brazing	CO5	K3	
L	ist of Va	llue-Added Expen	riments			
E n	Experi nent 1	Perform refrigera	int charging proc	ess	CO6	K3
E n	Experi nent 2	Recognize comp	ressor electric con	nnections	CO6	K2
N ez ti	Iode of xamina on	Practical				
W	Veighta	CA	CE	ETE		
g D io	e Distribut On	25%	25%	50%		
T b	`ext ook/s*	1. C.P. Aror	a, Refrigeration a	nd Air Conditionir	ng, TMH.	

COs	PO	Р	PO	PS	PSO	PSO									
	1	0	3	4	5	6	7	8	9	10	11	12	01	2	3
		2													
MEP301.1	2	2	-	-	-	-	-	-	2	-	-	2	-	-	-
MEP301.2	2	2	-	-	-	-	-	-	2	-	-	2	-	-	-
MEP301.3	2	2	-	-	-	-	-	-	2	-	-	2	-	-	-
MEP301.4	2	2	-	-	-	-	-	-	2	-	-	2	-	-	-
MEP301.5	2	2	-	-	-	-	-	-	2	-	-	2	-	-	-
MEP301.6	2	1	-	-	-	-	-	-	2	-	-	2	-	-	-
MEP 301	2	2	-	-	-	-	-	-	2	-	-	2	-	-	-

1-Slight (Low)

2-Moderate (Medium)

School: S	SSET	Batch : 2023-2027								
Progran	me: B.Tech	Current Academic Year: 2023-2024								
Branch:	ME	Semester: VI								
1	Course Code	MEP332								
2	Course Title	Project Based Learning -4								
3	Credits	1								
4	Contact	0-0-2								
	Hours									
	(L-T-P)									
	Course	Practical								
	Status									
5	Course	1. To align student's skill and interests with are alistic prob	lem or							
	Objective	project								
		2. To understand the significance of problem and its scope								
		3. Students will make decisions within a framework								
6	Course	After the successful completion of course, students will be able to:								
	Outcomes	CO1: Build self-directed learning								
		CO2: Demonstrate the acquired knowledge in solving complex re	ealistic							
		problem								
		CO3: Utilize and analyse various software, designing and model	ling tools							
		CO4: Develop a product that would be suitable as well as sustain	nable							
		CO5: Solve the realistic problems of academia and industry								
		CO6: Estimate the engineering and societal values of the develop	bed process or							
		product								
7	Course	In PBL-4, the students will learn how to define the problem for	or developing							
	Description	projects, identifying the skills required for developing the pro	ject based on							
		given a set of specifications								
		and all subjects of that Semester.								
8	Outline sylla	bus	CO							
			Mapping							
	Unit 1	Problem Definition, Team/Group formation and Project	CO1, CO2							
		Assignment. Finalizing the problem statement, resource								
		requirement, if any.								
	Unit 2	Develop a work flow or block diagram for the proposed	CO2,CO3							
		system / software.								
	Unit 3	Design algorithms for the proposed problem.	CO3							
	Unit 4	Implementation of work under the guidance of a faculty	CO3, CO4							
		member and obtain the appropriate results.								
	Unit 5	Demonstrate and execute Project with the team. Validate	CO4, CO5,							
		and verify the project modules.	CO6							

	Report should include Abs	stract, Har	dware/Software	
	Requirement, Problem Stat	ement, Des	sign/Algorithm,	
	Implementation Detail. Vali			
	References if any.			
	The presentation, report, wo			
	Supported by the document			
	assessment.			
Mode of	Practical /Viva			
examination				
Weight age	CA	CE	ETE	
Distribution	25%	25%	50%	

COS	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2	PSO3
MEP332.1	3	3	-	3	-	-	-	-	3	3	2	3	2	2	1
MEP332.2	3	2	-	3	-	-	2	-	3	3	2	3			1
MEP332.3	3	2	-	-	2	-	-	-	3	3	2	3	2	2	
MEP332.4	3	3	-	-	-	2	-	-	3	3	2	3		2	
MEP332.5	3	3	2	2	2	2	3	3	3	3	2	3	2	2	
MEP332.6	3	3	-	3	-	-	-	-	3	3	2	3			1
MEP332	3	3	2	3	2	2	2	3	3	3	2	3	2	2	1

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027						
Pr	ogramme:	Current Academic Year: 2023-2024						
B. '	Гесh							
Br	anch: ME	Semester: VII						
1	Course Code	HMM305						
2	Course Title	Management for Engineers						
3	Credits	3						
4	Hours	3-0-0						
	(L-T-P)							
	Course	Program Core						
	Status							
5	Course	The objective of this course is to expose the students to understand the basic						
	Objective	of Management Foundations. The students will be given a detailed						
		grounding for the theories and cases related to the general management. The						
		aim of the course is to orient the students in theories and practices of						
		Management so as to apply the acquired knowledge in actual business						
		practices. This is a gateway to the real world of management and decision-						
		making.						
6	Course	After the successful completion of course, students will be able to:						
	Outcomes	CO1: List the basic principles and concepts related to management in an						
		organization including the functions, different theories of						
		management and roles they play in an organization.						
		CO2: explain the primary function Planning with its process. Also, how						
		forecasting is done in organizations with various techniques are used.						
		CO3: compare different types of organization and also using						
		decentralization and span of control in organizations.						
		CO4: Analyze jobs, recruitment process, manpower planning, job rotation,						
		trainings and rewards in various organizations.						
		CO5: Measure motivation and management control concepts to obtain						
		effective controlling in management system in organizations.						
		CO6: Develop proper system in an organization by using all the functions						
		of management.						
7	Course	This course gives	ent and help to					
---	----------------	---------------------	-----------------	----------------------------	------------------			
	Description	understand the var	rious functions	of management used in a	an organization.			
	_	The focus of the o	course is the d	evelopment of individual	skills and team			
		work.						
8	Outline syllab	us			CO Mapping			
	Unit 1	Introduction of Ma	anagement & C	Organisation	CO1			
	А	Management-Defi	nition of Mana	gement & Organisation	CO1			
	В	Concept, Nature, S	Scope and Fund	ctions of Management,	CO1			
		Levels of Manager	ment, Manager	nent Theories - Taylors				
		principle, Fayol's	Principles, Hav	wthorne Studies, Systems				
		Approach and Cor	tingency Appr	oach to Management.				
	С	Mintzberg's Mana	gerial Roles, S	kills of Manager,	CO1			
		Functions of mana	gement					
	Unit 2	Management Plan	ning Process		CO2			
	А	Planning objective	s and character	ristics.	CO2			
	В	Hierarchies of plan	nning.		CO2			
	С	The concept and te	CO2					
	Unit 3	Organizing	C03					
	А	Meaning, Importan	C03					
	В	Departmentalizatio	on, Span of Co	ntrol	CO3			
	С	Types of Organiza	tion, Authority	y, Delegation of Authority	CO3			
	Unit 4	Staffing			CO4			
	А	Meaning, Job anal	ysis		CO4			
	В	Manpower plannir	ng, Recruitmen	t, Transfers and	CO4			
		Promotions						
	С	Appraisals, Manag	gement Develog	pment, Job Rotation,	CO4			
		Training, Rewards	and Recogniti	on,				
	Unit 5	Directing & Contr	olling		CO5			
	А	Motivation, Co-or	dination, Com	nunication,	CO5			
	В	Directing and Mar	agement Contra	rol, Decision Making,	CO5			
	C	Management by ol	ojectives (MBC	D) the concept and	CO5			
		relevance. Objectiv	ves and Proces	s of Management Control				
	Mode of	Theory						
	examination							
	Weightage	CA	CE	ETE				
	Distribution	25%	25%	50%				
	Text book/s*	1. Principles &	practice of M	gmt., L.M. Prasad				
	Other	1. Managemen	t Today, Burto	n & Thakur				
	References	2. Principles &	Practices of N	Igmt., C.B. Gupta				
		3. Understandi	ng Managemer	nt, Richard L.Daft				
		4. Managemen	t, Stoner, Free	mand & Gilbert				
		5. Essential of	Management,	Koontz O' Donnel				
					1			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HMM305.1	1	-	-	-	-	-	-	2	2	2	2	2	-	-	-
HMM305.1.2	1	-	-	-	-	-	-	-	2	2	2	2	-	-	-
HMM305.1.3	1	-	-	-	-	-	-	-	-	2	2	2	-	-	-
HMM305.1.4	1	-	-	-	-	-	-	-	2	2	2	2	-	-	-
HMM305.1.5	1	-	-	-	-	-	-	-	3	2	2	2	-	-	-
HMM305.1.6	1	-	-	-	-	-	-	-	-	2	2	2	-	-	-
HMM305	1	-	-	-	-	-	-	2	2	2	2	2	-	-	-

1-Slight (Low) 2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027
Pr	ogramme:	Current Academic Year: 2023-2024
B. '	Tech	
Br	anch: ME	Semester: VII
1	Course Code	MEP433
2	Course Title	Summer Internship III
3	Credits	2
4	Contact Hours (L-T-P)	0-0-4
	Course Status	Practical
5	Course Objective	To expose engineering students to the real industrial scenario, which is not possible in the classroom? Familiarize with various materials, processes, products and their applications along with relevant aspects of quality control and shop floor management. Understand the psychology of the workers and their habits, attitudes and approach to problem solving. Understand the social, economic and administrative considerations that influence the working environment of industrial organizations. Learn about team work, collaboration and leadership. Importance of time management, discipline, self-learning and effective communication. To apply the engineering knowledge in real industrial situations. To gain experience in writing reports in engineering works/projects. To enhance the employability of the students. Get exposed to the current technological developments relevant to the subject area to which the training pertains. To develop self-esteem for
6	Course	After the successful completion of course, students will be able to:
	Outcomes	 CO1: Explain the working environment of industry. CO2: Analyze the resources in practice. CO3: Apply Engineering Knowledge for Problem analysis CO4: Decide investigative procedure to sort out complex industrial problems CO5: Show the importance of working in a team CO6: Maximize his/her ability to make work related presentations.
7	Course Description	This practical course is intended to expose the students to real life scenario in industry with the intention to make them future ready for their professional role. In this, the students undergo in reputed Private / Public Sector / Government organization / companies for four weeks/one month in summer vacation after II semester. It is expected that the skills student gain via internship with an organization will help him/her perform better in the assigned job after graduation. Apart from this, the industrial internship enhances the chance for students to obtain employment after graduation. It is pertinent to mention that developing an awareness of general workplace behaviour and interpersonal skills

		are expected from students at the end of the Industrial inte	ernship. The
		student should be able relate, apply and adapt relevant know	owledge and
		concepts within industrial ambience and ethics.	
8	Outline		CO Mapping
	Α	INTERNSHIP DIARY	¥
		An internship diary is provided by the university for collecting the information during industrial internship on daily basis. It also helps the student for writing his/her report. The objective of maintaining daily diary is to cultivate the habit of documenting and encourage him/her to search for details. It develops the students' own thought process and reasoning abilities. The students should record in the daily training diary the day to day account of the observations, impressions and information gathered. It should contain the sketches & drawings related to the observations made by the students. On the basis of recorded data in the diary, the student will prepare a report.	CO1, CO2, CO3, CO5
	В		
		A student should learn about equipment's, machines, plant layout and other industrial practices in industry. After collecting the information, one should prepare a comprehensive internship report at the end of one's internship to demonstrate what one has learnt in this period. Daily diary will facilitate to a great extent in writing the report. It is mandatory for the student to submit a hard copy of report to one's assigned coordinator for corrections and subsequently, submitting a final spiral bound copy to department. The assigned coordinator will check the followings things in the draft submitted by the student: Report is made as per the format approved by the department. Originality of the report. Very adequate and purposeful write-up. Organization, drawings, sketches, format, style, language, fig no, table no and references etc. Variety and relevance of learning experience. After doing correction the corrected copies will be submitted at the time of presentation, duly signed by the faculty coordinator and Head of Department.	CO6
	C	INDUSTRIAL INTERNSHIP EVALUATION PROCESS	

	The Industrial Internship Evaluation is done in the presence of assigned Department Faculty coordinator and External Examiner, duly approved by The controller of Examination. The evaluation process includes a seminar presentation and viva-voce, done on the basis of following criteria. The Power Point PresentationProper Planning of PresentationEffectiveness of PresentationsDepth of knowledge and skills. Records in which internship diary and reports are analyzed along with presentation and viva voce	CO4, CO6
 Mode of examination	Practical	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEP433.1	0	0	0	0	0	1	3	1	0	0	0	2	2	2	2
MEP433.2	0	0	0	0	0	0	2	0	0	0	0	2	2	2	2
MEP433.3	0	0	0	0	0	2	1	0	0	0	0	2	2	2	2
MEP433.4	0	0	0	0	0	2	0	0	0	0	0	2	2	2	2
MEP433.5	0	0	0	0	0	0	1	1	0	0	0	2	2	2	2
MEP433.6	0	0	0	0	0	0	0	0	0	2	0	3	3	3	3
MEP433	0	0	0	0	0	2	2	1	0	2	0	2	2	2	2

1-Slight (Low) 2-Moderate (Medium)

Schoo	ol: SSET	Batch : 2023-2027						
Progr	amme: B.Tech	Current Academic Year: 2023-2024						
Brane	ch: ME	Semester: VII						
1	Course Code	MEC 460						
2	Course Title	Major Project I						
3	Credits	2						
4	Contact Hours (L-T-P)	0-0-4						
	Course Status	Practical						
5	Course Objective	The course provides an in-depth understanding and skill in the field of Mechanical Engineering and its associated fields.						
6	Course	After the successful completion of course, students will be able to:						
	Outcomes	CO1: Identify a topic in advanced areas of mechanical engineering						
		CO2: Choose the literature to identify research gaps and define						
		objectives						
		CO3: Evaluate the feasibility of project.						
		CO4: Develop and implement innovative ideas for social benefit.						
		CO5: Create a prototype/models, experimental set up and software systems necessary to meet the objectives						
		CO6: Compile the short report of literature survey and experimental work						
7	Course Description	The course provides an in-depth understanding and skill in the field of Mechanical Engineering and its associated fields.						
	Mode of examination	Project report and Viva-Voce						
	Weightage	CA MTE ETE						
	Distribution	25% 25% 50%						
	Text book/s*	As per the field/specialization						
	http:/	Google scholar, Research gate.						

COs	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
MEC 460.1	3	-	-	-	-	-	-	-	2	-	2	2	-	-	-
MEC 460.2	3	3	-	-	-	-	-	-	2	-	2	2	2	-	-
MEC 460.3	3	3	3	-	-	-	-	-	2	-	2	2	2	2	2
MEC 460.4	3	-	3	2	-	2	-	-	2	-	2	2	2	2	2
MEC 460.5	3	-	3	-	3	-	-	-	2	-	2	2	2	2	2
MEC 460.6	-	-	-	-	-	-	-	3	2	3	2	2	-	-	-
MEC 460	3	3	3	2	3	2	-	3	2	3	2	2	2	2	2

1-Slight (Low) 2-Moderate (Medium)

School: SS	SET	Batch : 2023-2	2027					
Program	ne: B.Tech	Current Acad	lemic Ye	ear: 2023-2024				
Branch: N	Æ	Semester: VI	II					
1	Course Code	MEC461						
2	Course Title	Major Projec	t II					
3	Credits	8						
4	Contact Hours (L-T-P)	0-0-16						
	Course Status	Practical						
5	Course	The course pro	ovides an	in-depth understanding and skill in the				
	Objective	field of Mecha	nical En	gineering and its associated fields.				
6	Course	After the succe	essful co	mpletion of course, students will be able				
	Outcomes	CO1: Identify	the meth	nodology to carry the experiments towards				
		significant out	come.					
		CO2: Constru	ict the	procedures with a concern for society,				
		environment and ethics						
		CO3: Analyze the prototype/model using the mathematical models						
		equation						
		CO4: Compare the results with optimization tools and also draw						
		the valid conclusions						
		CO5: Create a	report a	s per the recommended format and defend				
		the work.						
		CO6: Develo	op the	possibility of publishing papers in				
		symposium/co	onference	proceedings.				
7	Course	The course pr	ovides a	n in-depth understanding and skill in the				
	Description	field of Mecha	inical En	gineering and its associated fields.				
	Mode of examination	Project report	and Viva	-Voce				
	Weightage	CA	CE	ETE				
	Distribution	25%	25%	50%				
	Text book/s*	As per the field/specialization						
	http:/	Google schola	ar, Resea	rch gate.				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC461 .1	3	-	2	-	2	-	-	-	2	-	-	2	2	2	2
MEC461 .2	3	2	2	-	2	-	-	-	2	-	-	2	2	2	2
MEC461 .3	3	3	-	3	3	-	-	-	2	-	-	2	2	2	2
MEC461 .4	3	-	-	-	2	-	-	-	2	-	-	2	2	2	2
MEC461 .5	-	-	-	-	2	-	-	2	2	2	2	2	-	-	-
MEC461 .6	-	-	-	-	2	3	3	3	3	2	2	2	-	-	-
MEC461	3	2	2	3	2	3	3	3	2	2	2	2	2	2	2

1-Slight (Low)

2-Moderate (Medium)

Sch	ool: SSET	Batch : 2023-2027						
Pro	gramme: B.Tech	Current Academic Year: 2023-2024						
Bra	nch: ME	Semester: III						
1	Course Code	MEC314						
2	Course Title	Automotive Transmission						
3	Credits	3						
4	Contact Hours	3-0-0						
	(L-T-P)							
	Course Status	Program Core						
5	Course Objective	In this course, Student will be able to learn the necessity of the of power. Furthermore, They can able to apply elementary formulate, dynamics of machines, fluid mechanics and m involved in the basic transmission system and also formula solve typical problems based on different modes of power Eventually, they will be able to gain the knowledge on the late of Drive and Axle in automobile.	e transmission mathematical achine design ate as well as transmission. est technology					
0	Outcomes	CO1: Demonstrate the classification, principle and working of different						
		types of Clutches.						
		CO2: Summarize the necessity of different types of Gear Box	narize the necessity of different types of Gear Box in cars.					
		CO3: Explain the concept of Final drive, Drive line and Ax	le of different					
		models of car.						
		CO4: Classify the technical requirements of Hydrodynamic Drive System						
		in automobile						
		CO5: Compare the technical requirements of Hydrostatic Dr	ive System in					
			-					
		CO6: Express the concept of Automatic overdrive, Hydraulid	c control					
		system of new launched cars.						
7	Course Description	This course prepares students to install, remove, maintain a system in an automobile. This course introduces students to transaxles and transmission services. It also discusses transmissions as well as the maintenance of a latest vehicle's transmissions a	and repair this transmissions, nission theory and transaxles					
8	Outline syllabus		CO					
	Sume synabus		Mapping					
	Unit 1	Introduction and Clutch						
	A	Need for Transmission system, Classification of Transmission systems, Front wheel, Rear wheel and Four wheel drive.	CO2					

	В	Clutches: Princi	iple, functions,	general requirements,	CO1		
		types of clutch	es: cone clutch	single-plate clutch,	COI		
	C	Contrifugal and	g clutch, muni-pi	ale clutch, alutab lining			
	C	materials	electromagnetic	ciucii, ciucii ining	CO1		
	Unit 2	Coor Boy					
		Necessity of gen	r hoy Posistance	to motion of vehicle			
	A	Requirements of	gear box, Resistance	ons of gear box	CO2		
	В	Types of gear bo	ox: Principle, con	struction and working			
		of Sliding mesh,	Constant mesh a	and Synchromesh gear	CO2		
		box, applications	s of helical gears.				
	С	Gear selector me	chanism, Lubrica	ation of gear box.	CO2		
	Unit 3	Drive Line, Fina	al Drive &Rear	Axle			
	А	Propeller shaft-u	niversal joints, he	ooks and constant			
		velocity U.J., Pu	rpose of final driv	ve, need of	CO3		
		differential, Con	structional Detail	s of differential unit,	005		
		Non slip differen					
	В	Function of rear	axle, Types of loa	ads acting on rear			
		axle,			CO3		
		Types of rear w	005				
		tube drive					
	C	Types of rear ax	le support: semi-f	floating, full floating,	CO3		
		three quarter floa	ating,				
	Unit 4	Hydrodynamic	& Hydrostatic I	Drive			
	A	Fluid coupling,	Principle of ope	eration, Constructional			
		details, Torque	capacity, Perfor	mance characteristics,	CO4		
		Torque converte	r-Principle of op	eration, constructional			
		details, performa	ince characteristic	CS,			
	В	Hydrostatic drive	e : principle, type	es, advantages,			
		limitations –			CO5		
		Comparison of	hydrostatic driv	e with hydrodynamic			
		drive	1 1: 64	· 1 T 1 1 / /·			
	C	Construction and	d working of typ	ical Janny hydrostatic	CO5		
		drive			005		
	Unit 5	Power Transmi	ssion				
	А	Wilson Gear box	, Ford - T-model	gear box	CO2		
		~ .					
	В	Continuous vai	riable transmissi	ion (CVT)-operating			
	В	Continuous vai principle, basic	riable transmissi layout and opera	ion (CVT)–operating ation, Advantages and	CO2		
1	В	Continuous vai principle, basic disadvantages	iable transmiss layout and opera	ion (CVT)–operating ation, Advantages and	CO2		
	B C	Continuous vai principle, basic disadvantages Automatic over	iable transmiss layout and opera drive, Hydrauli	ion (CVT)–operating ation, Advantages and ic control system for	CO2		
	B C	Continuous van principle, basic disadvantages Automatic over automatic transm	iable transmiss layout and opera drive, Hydrauli nission.	ion (CVT)–operating ation, Advantages and ic control system for	CO2 CO6		
	B C Mode of	Continuous vai principle, basic disadvantages Automatic over automatic transm Theory	iable transmiss layout and opera drive, Hydrauli nission.	ion (CVT)–operating ation, Advantages and ic control system for	CO2 CO6		
	B C Mode of examination	Continuous van principle, basic disadvantages Automatic over automatic transn Theory	iable transmiss layout and opera drive, Hydrauli hission.	ion (CVT)–operating ation, Advantages and ic control system for	CO2 CO6		
	B C Mode of examination Weightage	Continuous van principle, basic disadvantages Automatic over automatic transm Theory CA	iable transmiss layout and opera drive, Hydrauli hission. MTE	ion (CVT)–operating ation, Advantages and ic control system for ETE	CO2 CO6		
	B C Mode of examination Weightage Distribution	Continuous vai principle, basic disadvantages Automatic over automatic transm Theory CA 25%	iable transmiss layout and opera drive, Hydrauli hission. MTE 25%	ion (CVT)–operating ation, Advantages and ic control system for ETE 50%	CO2 CO6		

Text book/s*	1. Crouse, W.H., Anglin, D.L, "Automotive Transmission	
	and Power Trains construction", McGraw-Hill, 1976	
Other References	2. Heldt.P.M., "Torque converters ", Chilton Book Co.,	
	1992.	
	3. Newton and Steeds, " Motor vehicles ", Illiffe	
	Publishers, 1985.	
	4. Judge.A.W., "Modern Transmission systems ",	
	Chapman and Hall Ltd., 1990. SAE Transactions	
	900550 & 930910.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC314.1	3	2	-	2	-	-	-	-	-	-	2	2	-	3	3
MEC314.2	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC314.3	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC314.4	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC314.5	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC314.6	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC314	3	2	-	2	-	-	-	-	-	-	2	2	-	3	3

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027									
Pr	ogramme: B.Tech	Current Academic Year: 2023-2024									
Br	anch: ME	Semester: IV									
1	Course Code	MEC 329									
2	Course Title	Automotive Electric and Electronic									
3	Credits	3									
4	Contact Hours	3-0-0									
	(L-T-P)										
	Course Status	Program Elective									
5	Course Objective	In this course, Students will be able to learn the mounting of electrical and electronics automotive parts in automobile and their functions and understanding of uses of batteries and their accessories even. Students will be able to learn the basics of electrical and electronics concept and also the use of sensors and									
6	Course Outcomes	After the successful completion of course students will be able	to:								
0	Course Outcomes	CO1. Analyze the efficiency of the betteries	10.								
		CO1: Analyze the efficiency of the batteries. CO2: Demonstrate the concept of Starting System									
		CO3: Summarize the concept of Charging system, Lighting	g System, Wiper								
		System.									
		CO4: Recall the concept of Automotive Electronics									
		CO5: Illustrate the details of Automotive Electricals.									
		CO6: Define the concept of Sensors									
7	Course	To provide the knowledge to the students is the principles	of operation and								
	Description	constructional details of various Automotive Electrical and Electronic Systems									
		like Batteries, Starting System, Charging System, Ignition System, Lighting									
		System and Dash Board Instruments.									
8	Outline syllabus		CO Mapping								
	Unit 1	BATTERIES AND ACCESSORIES									
	A	Principle and construction of lead acid battery, characteristics of battery, rating capacity and efficiency of batteries. various tests on batteries, maintenance and charging	CO1								
	В	Lighting system: insulated and earth return system, details of head light and side light.	CO3								
	С	LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.	CO3,CO4								
	Unit 2	STARTING SYSTEM									
	А	Starting Condition, behaviour of starter during starting, series	CO2 CO5								
		motor and its characteristics.	002,005								
	В	Principle and construction of starter motor.	CO2, CO5								
	C	Working of different starter drive units, care and maintenance	CO5								
	Unit 2	CHADCINC SVSTEM									
		Concretion of direct ourrent shunt concrete characteristics									
	A	armature reaction, third brush regulation	CO3, CO5								

В	Cut out, voltage a regulator, alternat	and current regulators.	ators, compensated voltage	CO3, CO4, CO5
С	Principle and cons developments.	structional aspec	ts and bridge rectifiers, new	CO4, CO5
Unit 4	FUNDAMENTA	LS OF AUTON	10TIVE ELECTRONICS	
А	Electronic engin interference suppr	CO4,CO5		
В	Electronic dashbo security and warn	ard instruments, ing system.	onboard diagnostic system,	CO4,CO5
С	Magneto-Ignition	System.		CO4,CO5
Unit 5	SENSORS AND	ACTIVATORS	5	
A	Types of sensors: oxygen level, mar temperature, exha application.	Sensor for speed nifold pressure, nust temperature	l, throttled position, exhaust crankshaft position, coolant , air mass flow for engine	CO4,CO5,CO6
В	Solenoids, stepper	motors relay.		CO3,CO4,CO5, CO6
С	Introduction to Automobiles.	Microprocess	or & Applications in	CO4,CO6
Mode of examination	Theory			
 Weightage	СА	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1. Young A.P. Equipment", ELB	& Griffiths. S & New Press	L. "Automotive Electrical 1999.	
Other References	 William, B. R. Butter worth Hein Bechhold "Und 1999 Crouse, W.H "A McGraw-Hill Boo 	"Understanding emann Woburn, erstanding Auto Automobile Elec ok Co., Inc., Nev	Automotive Electronics", 5 th edition – 1998. motive Electronics", SAE, trical Equipment", 7 York, 3 rd edition, 1986.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC 329.1	3	2	-	2	-	-	-	-	-	-	2	2	-	3	3
MEC 329.2	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC 329.3	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC 329.4	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC 329.5	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC 329.6	3	-	-	-	-	-	-	-	-	-	2	2	-	3	3
MEC 329	3	2	-	2	-	-	-	-	-	-	2	2	-	3	3

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027								
Pr	ogramme:	Current Academic Year: 2023-2024								
B. 7	Гесh									
Br	anch: ME	Semester: V								
1	Course	AUT306								
	Code									
2	Course	Electric Vehicle Technology								
	Title									
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
	Course	Program Core								
	Status									
5	Course	In this course, Student will be able to understand the oper	ation of battery							
	Objective	driven electric vehicle. This course initiates candidates int	to the emerging							
	-	area of Electric Vehicles and helps learn the Basics of Battery	/ driven Electric							
		Vehicle and its Dynamics, Motors, Power Electronics, Batt	eries, Charging							
		etc. The program consists of instructor led live lecture	e sessions and							
		demonstrations.								
6	Course	After the successful completion of course, students will be able to:								
	Outcomes	CO1: Explain the concept of Hybrid Electric Vehicle.								
		CO2: Demonstrate the details of Electric drives.								
		CO3: Design the various energy storage devices in electric vehicle.								
		CO4: Explain the concept of Engine Mangement System.								
		CO5: Apply the application of Connectors in Electric Vehic	le.							
		CO6: Create the idea of manufacturing the Electric Vehicle.								
7	Course	The course will start with introduction section which will ena	ble the students							
	Description	to understand the focus areas that come under the umbr	ella of electric							
	1	vehicles. Then the course will start covering this focus areas	one by one such							
		as vehicle dynamics, Motors, Power Electronics, Batteries cl	harging etc. The							
		most important part of this course will be that each topic w	vill be analyzed							
		and demonstrated through Matlab Simulink, so that the grip	p of the subject							
		will be strong and the knowledge acquired will be useab	ble in real time							
		applications.								
8	Outline syllab	bus	CO Mapping							
	Unit 1	Introduction to Hybrid Electric Vehicle								
	А	Introduction to Hybrid Electric Vehicles: Types of	CO1							
		EVs	COI							
	В	Hybrid Electric Drive-train	CO1							
	С	Tractive effort in normal driving	CO1							
	Unit 2	Electric Drives								
	А	Energy consumption Concept of Hybrid Electric Drive								
		Trains, Architecture of Hybrid Electric Drive Trains.								

В	Series Hybrid E	Electric Drive	Trains, Parallel hybrid					
	electric drive tra	ains, Electric F	Propulsion unit,	CO2				
	Configuration a	and control of I	DC Motor drives.					
С	Induction Moto	r drives, Perm	anent Magnet Motor	CO2				
TT I I I A	drives, Switche	s reluctance m	otor.					
Unit 3	Energy Storag	e a						
А	Introduction to	Energy Storag	e Requirements in	600				
	Hybrid and Ele	ctric Vehicles:	- Battery based energy	CO3				
6	storage and its a	analysis,	1.1. 1.1					
В	Fuel Cell based	energy storage	e and its analysis,	CO 2				
	Hybridization o	of different ene	rgy storage devices.	003				
0	Sizing the drive	e system.						
C	Design of Hybr	CO3						
Unit 1	Fnorgy Manag	mont Syston	.					
	Energy Management System Energy Management Strategies Automotive							
A	networking and	CO4						
B	EV charging sta	CO4 CO6						
D C	Business: E-mo	04,000						
C	challenges Rus	CO4 CO6						
	electrification c	channenges, Business- E- modifity business,						
 Unit 5	Mobility and (
A	Connected Mol	pility and Auto	nomous Mobility- case					
	study Emobility	/ Indian Roadn	nap Perspective. Policy:					
	EVs in infrastru	icture system,	integration of EVs in	CO5, CO6				
	smart grid, soci	al dimensions	of EVs.					
В	Connectors- T	ypes of EV cha	arging connector, North					
	American EV F	lug Standards,	DC Fast Charge EV	CO5, CO6				
	Plug Standards	in North Amer	rica					
С	CCS (Combine	d Charging Sy	stem), CHAdeMO,	CO5 CO6				
	Tesla, European	n EV Plug Star	ndards,	005,000				
Mode of	Theory							
examination	r							
Weightage	CA	MTE	ETE					
Distribution	25%	25%	50%					
Text book/s*	1. Emadi, A. (E	Ed.), Miller, J.	, Ehsani, M., "Vehicular					
0.1	Electric Power S							
Other	2. Husain, I. "Ele							
References	Raton, CRC Pres							
	5. Larminie, Jam							
	Electric Vehicle							
	John whey and	aaaCamala "T1						
	4. Tariq Muneer	and Irene Illes	casuarcia, the					
	Challen acc?"	aution 2017	s. Prospects and					
	Chantenges, Els	evier, 2017						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
AUT306.1	3	-	-	-	-	2	-	-	-	-	-	3	-	2	2
AUT306.2	3	-	-	-	-	2	-	-	-	-	-	3	-	2	2
AUT306.3	3	-	-	-	-	2	-	-	-	-	-	3	-	2	2
AUT306.4	3	-	-	-	-	2	-	-	-	-	-	3	-	2	2
AUT306.5	3	-	-	-	-	2	-	-	-	-	-	3	-	2	2
AUT306.6	3	-	-	-	-	2	-	-	-	-	-	3	-	2	2
AUT306	3	-	-	-	-	2	-	-	-	-	-	3	-	2	2

1-Slight (Low)

2-Moderate (Medium)

School: S	SSET	Batch : 2023-2027	
Program	me: B. Tech	Current Academic Year: 2023-2024	
Branch:	ME	Semester: VI	
1	Course Code	AUT307	
2	Course Title	Automotive Chassis	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	Program Elective	
5	Course Objective	 After the successful completion of course, students wil 1. To gain the basic knowledge about the vehicle frame 2. To help the students to identify the various type of st systems. 3. To understand the different types of drive line and fi 4. To study the fundamental and working of different ty suspension systems, wheels and tyres. 5. To acquire the fundamental knowledge about the bra 6. To enable the students to apply the knowledge of aut chassis to develop modern vehicle parts. 	l be able to: eering nal drive. ypes of king systems. comotive
6	Course Outcomes	On successful completion of the course, the student will CO1: Possess the knowledge about various vehicle fram sub systems CO2: Know the suitable steering system for diffe application. CO3: Familiarize the various axles and drive line automobiles CO4: Evaluate the different type of suspension syste performances. CO5: Select suitable wheels and tires according to the a CO6: Apply the fundamental knowledge to develop m systems.	Il be able to, es and vehicle erent vehicles e systems for em and brake application. odern vehicle
7	Course Description	This course prepares students to install, remove, maint this system in an automobile. This course introduce transmissions, transaxles and transmission services. It transmission theory as well as the maintenance of a l transmissions and transaxles.	ain and repair es students to also discusses atest vehicle's
8	Outline syllab	us	CO Mapping
	Unit 1	CHASSIS LAYOUTS and FRAMES	
	A	Types of Chassis Layout with reference to Power Plant Location and Drive.	CO1, CO6

В	Automotive Fra	mes - Material	Selection and its	CO1 CO6					
	Constructional D	etails, Various ty	pes	01,000					
С	Different Loads	s acting on F	Frame, Testing of	CO1 CO6					
	Automotive Fran	nes.		01,000					
Unit 2	STEERING SYS	STEM							
А	Types of Front A	xles and Stub Ax	les, Front Wheel						
	Geometry, Condi	ition for True Rol	ling Motion of	CO2, CO6					
	Wheels during St	teering.							
В	Steering Mechan	isms, Steering E	rror Curve, Steering	CO2, CO6					
	Linkages, Differe	ent Types of Steer	ring Gears						
С	Slip Angle, Over	Slip Angle, Over Steer and Under Steer, Reversible and							
	Irreversible Steer								
Unit 3	DRIVE LINE								
А	Propeller Shaft -	Design Considera	ations &						
	Constructional D	etails, Universal.	Joints, Constant	CO3, CO6					
	Velocity Joints.								
В	Hotchkiss Drive,	Torque Tube Dri	ve, Radius Rods						
	and Stabilizers, F	Final drive - Diffe	rent types,	CO3, CO6					
	Multiaxled Vehic	cles							
C	Differential - Wo	CO3, CO6							
	Details, Non–Sli								
Unit 4	SUSPENSION S								
А	Need for Suspens								
	Springs, Constru	CO4, CO6							
D	Single Leaf, Mul	ti Leaf, Coil		GO1 GO (
В	Constructional de	etails and Charact	eristics of Torsion	CO4, CO6					
	bar, Rubber, Pne	umatic and Hydro	$e^{-elastic}$						
0	Suspension Syste	ms, Independent	Suspension System	<u>CO1 CO(</u>					
	Shock Absorbers	- Types and Con	structional details.	04,006					
Unit 5	BRAKING SYS	IEMS	XV 1 1 4						
А	Stopping Distance	e, Braking Efficie	ency, weight	CO5, CO6					
D	Drum Brokes C	Draking.	aila Laading and	CO5 CO6					
D	Trailing Shop P	olistructional Det	ans, Leaunig and	005,000					
	and Construction	al Dataila Palati	sc blake - Types						
	disadvantages ov	er Disc Brakes H	Ve auvantages anu						
	System	ci Disc Diakes. Il	Iyuraune Draking						
C	Dreumatic Braki	ng System Power	-Assisted Braking	CO5 CO6					
C	System Servo Brakes Retarders Types and								
	Construction								
Mode of									
examination	11001 9								
Weightage	СА	MTE	ETE						
Distribution	25%	50%							
 Text	K V James D Ha								
book/s*	Systems" 6th Edi	ition Prentice Ha	ll Publisher						
00000									

Other	1.	James E Duffy (2011) "Modern Automotive	
Refere	ences	Technology", Goodheart-Willcox; Seventh	
		Edition.	
	2.	Jack Erjavec (2009) "Automotive Technology	
		- A systems approach", Cengage Learning.	
	3.	William H. Crouse and Donald L. Anglin	
		(2007) Automotive Mechanics, 10th edition.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
AUT307.1	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT307.2	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT307.3	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT307.4	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT307.5	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT307.6	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT307	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3

1-Slight (Low)

2-Moderate (Medium)

Sch	ool: SSET	Batch : 2023-2027								
Pro	gramme: B.Tech	Current Academic Year: 2023-24								
Bra	nch: ME	Semester: VII								
1	Course Code	AUT309								
2	Course Title	Modern Battery Technology								
3	Credits	3								
4	Contact Hours	3-0-0								
	(L-T-P)									
	Course Status	Program Core								
5	Course Objective	In this course, Student will be able to impart fundamental knowledge on electrochemical energy storage systems considering the operation and design of various battery technologies.								
6	Course Outcomes	After the successful completion of course, students will be able t	0:							
		CO1: Recognize the basic physical concepts of thermodynar	nics and kinetics							
		involved in electrochemical reactions								
		CO2: Apply the various changes in energy in cells								
		CO3: Select the appropriate battery system with respect to applic	cation.							
		CO4: Interpret the recent developments in battery systems.								
		CO5: Demonstrate the requirements of battery systems for autom	otive applications							
		and understand the modelling of battery systems.								
		CO6: Interpret the Life Cycle Analysis according to cost and env	vironmental							
		aspects; material and energy consumption, reuse, recycling								
7	Course Description	The course will start with introduction section which will enab understand the requirement of batteries for automotive application environment policy considerations.	le the students to on combined with							
8	Outline syllabus		CO Mapping							
	Unit 1	Introduction								
	A	Introduction to battery technologies. Electrochemical Power sources, Nomenclature, The renaissance in battery development,	CO1							
	В	A survey of common battery types and application. The electrical double layer and the formation of electric potentials at interface,	CO1							
	С	Thermodynamics of galvanic cells, Current flow in electrochemical cell	CO1							
	Unit 2	Electrochemical energy storage								
	Α	Electromotive force- Reversible cells- Relation between electrical energy and energy content of a cell	CO2							
	В	Free energy changes and electromotive force in cell	CO2							
	С	Current challenges in Energy storage Technologies.	CO2							

Unit 3	Major Battery								
A	Battery performa time- Voltage da operating temper	ance evaluation- ta- Service life - rature on service	Primary battery - Service - ohmic load curve- Effect of life.	CO3					
В	Secondary batter Plateau voltage	ries- Discharge c	eurves Terminal voltages-	CO3					
С	Lead acid Batter	ies – Constructio	on and application	CO3					
Unit 4	Recent Technol	ogies:							
A	Recent develop batteries- Recen application to so	ment of electro t development of lid state batterie	ode materials in lithium ion of solid electrolytes and their s	CO4					
В	Polymer solid e Film solid state application	Polymer solid electrolytes for lithium ion conduction– Thin Film solid state Batteries: Fundamentals, Constriction and application							
С	Super Capacitors	CO4							
Unit 5	Batteries for Au								
Α	Degrees of vehic	ele electrification	a - Battery size vs. application	CO5					
В	USABC and DC - Analysis and S	E targets for velocities to the termination of battering the second seco	hicular energy storage systems teries	СО					
С	Equivalent circuin battery produce	it and life model ction – recycling	ling – Environmental concerns of batteries.	CO6					
Mode of examination	Theory								
Weightage	CA	MTE	ETE						
Distribution	25%	25%	50%						
Text book/s*	 T.Minami, Kohijiya, Solid s 2009 Sandeep Dhan publication, 200 	 T.Minami, M.Tatsumisago, M.Wakihara, C. Iwakura, S. Kohijiya, Solid state ionics for batteries, Springer Publication, 2009 Sandeep Dhameja, Electric Vehicle Battery Systems, Newnes publication, 2001 							
Other References	 Bard, Allen J. Methods: Fundat VCH, Verlag, G Masataka Wal Batteries Fundat GmbH, 1999. Robert A.Hug aspects,Springer 								

COs	Р	P	PO	PSO1	PSO	PSO3									
	01	0	3	4	5	6	7	8	9	10	11	12		2	
		2													
CO309.1	3	2	-	-	-	-	-	-	-	-	1	2	2	3	-
CO309.2	3	2	-	-	-	-	-	-	-	-	1	2	2	3	-
CO309.3	3	2	-	-	-	-	-	-	-	-	1	2	2	3	-
CO309.4	3	-	-	-	-	2	-	-	-	-	1	2	2	3	-
CO309.5	3	-	-	-	-	2	-	-	-	-	1	2	2	3	-
CO309.6	3	2	-	-	-	-	-	-	-	-	1	2	2	3	-
AUT309	3	2	-	-	-	2	-	-	-	-	1	2	2	3	-

1-Slight (Low) 2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027									
Pr	ogramme:	Current Academic Year: 2023-2024									
B.	Tech										
Bı	anch: ME	Semester: III									
1	Course Code	MEC310									
2	Course Title	Design of Mechatronics System									
3	Credits	3									
4	Contact Hours	3-0-0									
	(L-T-P)										
	Course Status	Program Core									
5	Course	• Mechatronics system design and simulation, ergonomics	and safety								
	Objective	• Theoretical and practical aspects of computer interfacing	g, real time								
		data acquisition and control	<i>,</i>								
		 Design of motion control motion converter and te 	mnerature								
		• Design of motion control, motion converter and te	mperature								
6	Course	After the successful completion of course students will be able	to:								
Ũ	Outcomes	CO1: Understand the basics and key elements of mechatronics	design								
		the same set of the basics and key clements of meenatomes	design								
		CO2: Familiar with basic system modelling									
		CO3: Understand the concepts of engineering system and dynar	nic								
		response of the system									
		CO4: Understanding the concepts of design of mechatronics ele	ements.								
		CO5: Realize the concepts of real time interfacing and data acquired	uisition								
		CO6: Design and control a simple mechatronic system.									
7	Course		1 11'								
	Description	This course intends to impart through knowledge in system modelling,									
	1 I	system identification and simulation of mechatronics system and to									
0	Outling gullabug	provide then applications in feat-me.	CO								
0	Outilitie syllabus		Manning								
	Unit 1	Introduction to design of mechatronics system	wiapping								
		Introduction Key elements Integrated Design Issues in									
	11	Mechatronics	CO1								
	В	Mechatronics design process. Mechatronics and traditional									
	D	design	CO1								
	С	Applications in Mechatronics: Condition Monitoring.									
		Monitoring On-Line, Model-Based Manufacturing,	0.01								
		Supervisory Control Structure, Opt mechatronics,	COI								
		Mechatronic Systems in Use									
Unit 2 Basic system modelling											
	А	Introduction Operator Notation and Transfer Functions									
	· •	Block Diagrams, Manipulations, and Simulation	CO2								

		-							
В	Block Diagram Modelling—Direct Method, Analogy	CO2							
	Approach and Modified Analogy Approach	02							
C	Mathematical modelling : Basic system modelling of	CO2							
	mechanical, electrical, fluid and thermal system	02							
Unit 3	Mechatronic system modelling and Controllers								
А	Engineering systems: Rotational-translational and electro-	CO2,							
	mechanical system	CO3							
В	Engineering systems: Pneumatic-mechanical, hydraulic-	CO2,							
	mechanical	CO3							
C	Control modes, Adaptive control system, Programmable logic	CO2,							
	controllers	CO3							
Unit 4	Sensors and Transducers								
А	Sensor Classification, Parameter Measurement in Sensors and								
	Transducers, Quality Parameters, Errors and Uncertainties in	CO4							
	Mechatronic Modelling Parameters								
В	Sensors for Motion and Position Measurement, Digital	CO4							
	Sensors for Motion Measurement, Force and Torque Sensors	04							
С	Vibration—Acceleration Sensors, Sensors for Flow								
	Measurement, Temperature Sensing Devices and Sensor								
	Applications								
Unit 5	Actuating Devices and Real time interfacing								
Omt 5	Actuating Devices and Kear time internacing								
A	Mechanical Actuators, Electrical Actuators and Pneumatic	CO4,							
A	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators	CO4, CO5							
A B	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and	CO4, CO5 CO4,							
A B	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators	CO4, CO5 CO4, CO5							
A B C	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices	CO4, CO5 CO4, CO5 CO5,							
A B C	Actuating Devices and Real time interfacingMechanical Actuators, Electrical Actuators and PneumaticActuatorsFluid Power Actuation, Fluid Power Design Elements andPiezoelectric ActuatorsElements of a Data Acquisition and Control System, Devicesfor Data Conversion and Data Conversion Process	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE ETE	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution	Actuating Devices and Real time interfacing Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 30% 20%	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s*	Actuating Devices and Real time interfacing Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 30% 20% 50% 3. Devdas Shetty, Richard A. Kolk, "Mechatronics System	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s*	Actuating Devices and Real time interfacing Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 30% 20% 50% 3. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s*	Actuating Devices and Real time interfacing Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE S0% 20% 3. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s* Other References	Actuating Devices and Real time interfacing Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 30% 20% 50% 3. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003.	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s* Other References	Actuating Devices and Real time interfacing Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 30% 20% 50% 3. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader,	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s* Other References	Actuating Devrees and Real time interfacing Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE S0% 20% 3. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes", CRC	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s* Other References	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE Bernery CA MTE So% 20% So% 30% Conversion Receive Actuation, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes", CRC Press 1991, First Indian print 2010	CO4, CO5 CO4, CO5 CO5, CO6							
A B C Mode of examination Weightage Distribution Text book/s* Other References	Mechanical Actuators, Electrical Actuators and Pneumatic Actuators Fluid Power Actuation, Fluid Power Design Elements and Piezoelectric Actuators Elements of a Data Acquisition and Control System, Devices for Data Conversion and Data Conversion Process Theory CA MTE 30% 20% 50% 3. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition, Cengage Learning 2011 1 Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003. 2. Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes", CRC Press 1991, First Indian print 2010 3. De Silva, "Mechatronics: A Foundation Course", Taylor	CO4, CO5 CO4, CO5 CO5, CO6							

COs	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
MEC310.1	3	1	1	1	-	-	-	-	-	-	-	1	-	3	3
MEC310.2	3	2	1	2	-	-	-	-	-	-	-	1	-	3	3
MEC310.3	3	3	3	3	-	-	-	-	-	-	-	1	-	3	3
MEC310.4	3	3	3	3	-	-	-	-	-	-	-	1	-	3	3
MEC310.5	3	3	3	3	-	-	-	-	-	-	-	1	-	3	3
MEC310.6	3	3	3	3	-	-		-	-	-	-	1	-	3	3
MEC310	3	3	3	3	-	-	-	-	-	-	-	1	-	3	3

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027
Pr	ogramme:	Current Academic Year: 2023-2024
B.	Tech	
B	ranch: ME	Semester: IV
1	Course Code	ECE092
2	Course Title	Control System Engineering
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Program Elective
5	Course	1. To introduce the components and their representation of control
	Objective	systems
		2. To learn various methods for analyzing the time response, frequency
		response and stability of the systems.
		3. To learn the various approach for the state variable analysis.
6	Course	After the successful completion of course, students will be able to:
	Outcomes	CO1: Apply transfer function models, signal flow graphs and block
		diagram algebra to obtain the transfer function of a given system
		CO2: Obtain system response in time domain
		CO3: Design a closed-loop control system to satisfy dynamic performance
		specifications using frequency response
		CO4: Analyze closed-loop control systems for stability and steady-state
		performance
		CO5: Measure the performance of simple feedback controllers and
		compensators to meet desired specifications
		CO6: Able to solve the state equation of a control system
7	Course	The objective of this course is to introduce different types of system and
	Description	identify a set of algebraic equations to represent and model a complicated system
		into a more simplified form to interpret different physical and mechanical systems
		in terms of electrical system to construct equivalent electrical models for analysis.
		Employment of time domain analysis to predict and diagnose transient
		performance parameters of the system for standard input functions and identify
		the needs of different types of controllers and compensator to ascertain the

		required dynamic response from the system. Formulation of different types of									
		analysis in frequency domain to explain the nature of stability of	the system.								
			, and the second se								
8	Outline syllabus		CO Mapping								
	Unit 1	SYSTEMS COMPONENTS AND THEIR	CO1, CO2								
		REPRESENTATION	,								
	А	Control System: Terminology and Basic Structure-Feed	CO1 CO2								
		forward and Feedback control theory	01,002								
	В	Electrical and Mechanical Transfer Function Models-	CO1 $CO2$								
		Block diagram Models	01,002								
	С	Signal flow graphs models-DC and AC servo Systems,	CO1 $CO2$								
		001, 002									
	Unit 2	CO2									
	А										
		CO2									
	В	CO2									
		0.02									
	С	PID control-Analytical design for PD,PI,PID control	CO2								
	TZ A C	systems									
	Unit 3	FREQUENCY RESPONSE AND SYSTEM	CO3								
	٨	ANALYSIS Closed lose frequency menones Defermence									
	A	Closed loop frequency response-Performance	CO3								
	D	Frequency response of standard second order system									
	Б	Rode Plot - Polar Plot - Nyquist plots	CO3								
	С	Design of compensators using Bode plots-Cascade lead									
	C	compensation-Cascade lag compensation-Cascade lag-lead	CO3								
		compensation	005								
	Unit 4	CONCEPTS OF STABILITY ANALYSIS	CO4. CO5								
	A	Concept of stability-Bounded, Input Bounded, Output									
		stability	CO4, CO5								
	В	Routh stability criterion, Relative stability	CO4, CO5								
	С	Root locus concept-Guidelines for sketching root locus-	CO4 CO5								
		Nyquist stability criterion.	004, 005								
	Unit 5	CONTROL SYSTEM ANALYSIS USING STATE	CO1, CO6								
		VARIABLE METHODS									
		State veriable representation Conversion of state veriable									
	А	State variable representation-Conversion of state variable									
	A	models to transfer functions-Conversion of transfer	CO1, CO6								
	A	models to transfer functions-Conversion of transfer functions to state variable models	CO1, CO6								
	AB	models to transfer functions-Conversion of state variable functions to state variable models Solution of state equations-Concepts of Controllability	CO1, CO6								

	between transf	between transfer function and state variable									
	representations	representations									
С	State variable a control design	CO1, CO6									
Mode of examination	Theory										
Weightage	CA	MTE	ETE								
Distribution	25%	25%	50%								
Text book/s*	1. M.Gop	al, "Control Sy	vstem — Principles and								
	Design	", Tata McGra	w Hill, 4th Edition, 2012.								
Other	1. J.Nagra	ath and M.Gop	al, "Control System Engineeri	ng", New Age							
References	Interna	tional Publishe	ers, 5 th Edition, 2007.								
	2. K. Oga	ta, 'Modern Co	ontrol Engineering', 5th edition	, PHI, 2012.							
	3. S.K.Bh	attacharya, Co	ntrol System Engineering, 3rd	Edition,							
	Pearson	n, 2013.									
	4. Benjan	nin.C.Kuo, "Au	atomatic control systems", Pres	ntice Hall of							
	India, 7	th Edition,199	95.								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ECE092.1	3	3	1	1	1	-	-	-	-	1	-	-	2	3	2
ECE092.2	3	3	1	1	1	-	-	-	-	1	-	-	2	3	2
ECE092.3	3	2	1	1	1	-	-	-	-	1	-	-	2	3	1
ECE092.4	3	2	1	1	1	-	-	-	-	1	-	-	2	3	2
ECE092.5	3	3	1	2	2	-	-	-	-	1	-	-	2	3	2
ECE092.6	3	3	1	2	1	-	-	-	-	1	-	-	2	3	2
ECE092	3	3	1	2	2	-	-	-	-	1	-	-	2	3	2

1-Slight (Low)

2-Moderate (Medium)

Schoo	l: SSET	Batch : 2023-2027								
Progr	amme: B.Tech	Current Academic Year: 2023-2024								
Branc	ch: ME	Semester: V								
1	Course Code	ECE093								
2	Course Title	Digital Electronics								
3	Credits	3								
4	Contact Hours (L-T-P)	3-0-0								
	Course Status	Program Elective								
5	Course Objective	 To present the Digital fundamentals, Boolean algebra and its digital systems To familiarize with the design of various combinational digit logic gates To introduce the analysis and design procedures for synchror asynchronous sequential circuits To explain the various semiconductor memories and related t 	applications in al circuits using hous and echnology							
6	Course	After the successful completion of course, students will be	able to:							
7	Outcomes Outcomes Course Description	 CO1: Design and analyse combinational logic circuits CO2: Distinguish between modular combinational MUX/DEMUX, Decoder, Encoder CO3: Choose the different flip flops and convert them. CO4: Solve synchronous sequential logic circuits CO5: Select different programmable connections implementation of logic functions. CO6: Compare different memory elements used in the elect This course covers combinational and sequential logic functions include number systems, Boolean algebra, logic families integration (MSI) and large scale integration (LSI) circuits, a (AD) and digital to analog (DA) conversion, and other relation verify, and troubleshoot digital circuits using appropriate test equipment 	circuits with and FPGA tronics systems circuits. Topics , medium scale analog to digital ted struct, analyze, techniques and							
8	Outline syllab		CO Manning							
	Unit 1	DIGITAL FUNDAMENTALS	CO1							
	A	Number Systems – Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements	C01							
	В	Codes – Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates	CO1,CO6							
	С	Sum of products and product of sums, Minterms and Maxterms, Karnaugh map Minimization and Quine- McCluskey method of minimization	CO1,CO6							
	Unit 2	COMBINATIONAL CIRCUIT DESIGN	CO2							
	Α	Design of Half and Full Adders, Half and Full Subtractors	CO2							
	В	Binary Parallel Adder – Carry look ahead Adder, BCD Adder,	CO2							

С	Multiplexer, Demultiplexer, Magnitude Comparator, Decoder, Encoder, Priority Encoder	CO2
Unit 3	SYNCHRONOUS SEQUENTIAL CIRCUITS	CO3
А	Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF	CO3
В	Analysis and design of clocked sequential circuits – Design – Moore/Mealy models, state minimization, state assignment, circuit implementation	CO3
С	Design of Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register.	CO3
Unit 4	ASYNCHRONOUS SEQUENTIAL CIRCUITS	CO4
А	Stable and Unstable states, output specifications, cycles and races	CO4
В	State reduction, race free assignments, Hazards, Essential Hazards	CO4,CO6
С	Pulse mode sequential circuits, Design of Hazard free circuits.	CO4, CO6
Unit 5	MEMORY DEVICES AND DIGITAL INTEGRATED CIRCUITS	CO5,CO6
А	Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM	CO5,CO6
В	Programmable Logic Devices – Programmable Logic Array (PLA) – Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) – Implementation of combinational logic circuits using PLA, PAL.	CO5,CO6
С	Digital integrated circuits: Logic levels, propagation delay, power dissipation, fan-out and fan-in, noise margin, logic families and their characteristics-RTL, TTL, ECL, CMOS	CO5,CO6
Mode of examination	Theory	
Weightage	CA MTE ETE	
Distribution	25% 25% 50%	
Text book/s*	1. M. Morris Mano and Michael D. Ciletti, "Digital Design", 5 Pearson, 2014	oth Edition,
Other References	 Charles H.Roth. "Fundamentals of Logic Design", 6th Thomson Learning, 2013. Thomas L. Floyd, "Digital Fundamentals", 10th Editio Education Inc, 2011 S.Salivahanan and S.Arivazhagan"Digital Electronics" Vikas Publishing House pvt Ltd, 2012. Anil K.Maini "Digital Electronics", Wiley, 2014. A.Anand Kumar "Fundamentals of Digital Circuits", 4 Learning Private Limited, 2016. Soumitra Kumar Mandal "Digital Electronics", McGra Education Drivate Limited, 2016. 	Edition, n, Pearson , Ist Edition, th Edition, PHI aw Hill

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ECE093.1	2	3	2	3	1								3	3	3
ECE093.2	2	2	1	2	2								3	2	2
ECE093.3	3	2	2	2	1								3	1	2
ECE093.4	3	3	2	2	1								2	2	3
ECE2093.5	3	3	1	2	1								3	2	2
ECE093.6	3	2	2	2	2								2	2	3
ECE093	3	2	2	2	1	-	-	-	I	-	-	-	2	2	2

1-Slight (Low)

2-Moderate (Medium)

School: SSET		Batch : 2023-2027								
Programme:		Current Academic Year: 2023-2024								
B.	Tech									
Br	anch: ME	Semester: VI								
1	Course Code	MEC364								
2	Course Title	Sensors and Signal Processing								
3	Credits	3								
4	Contact Hours (L-T-P)	3-0-0								
	Course Status	Program Elective								
5	Course	1. To impart knowledge of units and standards of measuren	nent.							
	Objective	2. To understand the sensors and signal processing used me	chatronics.							
6	Course	After the successful completion of course, students will be a	able to:							
	Outcomes	CO1: Make use of the actuator and impart knowledge on open	loop and closed							
		loop system								
		CO2: Choose among the various units and standards used in meas	surement system							
		CO3: Examine various types of resistive, inductive and capacitiv	e transducers							
		CO4: Determine the behaviour of smart and intelligent actuators								
		CO5: Interpret amplification, filtering, signal conditioning and data logging of a								
		system								
		different industries								
7	Course	This is a course on sensors and signal processing used for mechatronics engineer								
/	Description	The focus is on building knowledge and skills in several sensor network								
	Description	applications.	sensor network							
8	Outline syllabus		CO Mapping							
	Unit 1	INTRODUCTION	CO1							
	A	Definitions: Mechatronics & actuator; current & voltage sources	CO1							
	В	Grounding: Solenoids, relays, electrical motors for actuators:	CO1							
	С	Basics of open loop and closed loop systems, block diagram of								
	-	mechatronics system	COI							
	Unit 2	SCIENCE OF MEASUREMENT	CO2,CO6							
	А	Units and Standards, Calibration techniques, Errors in								
		Measurements	02,000							
	В	Generalized Measurement System	CO2, CO6							
	С	Transducer, Response of transducers to different timevarying	CO2							
		inputs, Classification of transducers	02							
	Unit 3	ELECTRICAL MEASUREMENTS	CO3							
	А	Resistive transducers: Potentiometer, RTD, Thermistor,								
		Thermocouple, Strain gauges use in displacement, temperature,	CO3							
		torce measurement	~~~							
	В	Inductive transducer: LVDT ,RVDT use in displacement	CO3							
	С	Capacitive transducer: Piezo electric transducer, Digital								
		displacement	CO3							
	T T •4 4		001							
1	Unit 4	SMAKT AND INTELLIGENT SENSORS	CO4							

А	Definitions: Sm	CO4				
В	Architecture and	l operation of sr	nart sensor	CO4		
С	intelligent actua actuator with fee	CO4				
Unit 5	SIGNAL CON	SIGNAL CONDITIONING AND DATA ACQUISITION				
А	Amplification, H	CO5				
В	Sample and Hol multi-channel da	CO5				
С	Data logging	CO5				
Mode of examination	Theory					
Weightage	ghtage CA MTE ETE					
Distribution	25%	25%	50%			
Text book/s*	1. E. O. Doebeli Design ', Tata McGraw Hill, ed 2. A. K. Sawhne Measurement ar Instrumentation					
Other References	 Beckwith, M Measurements D. Roy Cho Circuits', New Patranabis. I PHI, New Dell 					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC364.1	3	2	1	1	2	-	-	-	-	1	-	-	3	3	3
MEC363.2	3	1	1	1	2	-	-	-	-	1	-	-	3	3	3
MEC364.3	3	1	2	2	3	-	-	-	-	1	-	-	3	2	2
MEC364.4	3	2	2	1	2	-	-	-	-	1	-	-	3	3	2
MEC364.5	3	2	2	3	3	-	-	-	-	1	-	-	3	3	2
MEC364.6	3	2	2	3	3	-	-	-	-	1	-	-	3	3	3
MEC364	3	2	2	2	2	-	-	-	-	1	-	-	3	3	3

1-Slight (Low)

2-Moderate (Medium)

School: SSET		Batch : 2023-2027								
Pr	ogramme:	Current Academic Year: 2023-2024								
B.	Tech									
Br	anch: ME	Semester: VII								
1	Course Code	MEC365								
2	Course Title	Robotics and Machine Vision System								
3	Credits	3								
4	Contact Hours (L-T-P)	3-0-0								
	Course Status	Program Elective								
5	Course Objective	1. To know about the principles and applications of vision modern manufacturing environment	system in							
		2. To learn about the algorithms in vision								
		3. To know about the recognition of object								
		 To be familiar about the applications regarding vision To know about the components used for vision 								
6	Course	After the successful completion of course, students will be	able to:							
	Outcomes	CO1: Explain the gadgets and vision systems								
		CO2: Select the image capturing and processing techniques								
		CO3: Develop the vision system in other machines								
		CO4: Knowledge for recognizing the objects based on sensors								
		CO5: Application of vision and image processing in robot operation								
	CO6: Apply the robotics and machine vision principles on re									
		industrial applications								
7	Course Description	The objective of this course is to provide engineering stude and practical experience with automation technologies that v importance over the next decade: data acquisition and in machine vision and motion control. Future manufacturing e to be aware of machine vision technology, so they ca opportunities to integrate this technology into other process not currently available. Describe the components of a mach Systems, their functions, and the various technological op for them. Be familiar with the most common image process used in industrial applications. Identify situations or system improved by the application of machine vision.	ents theoretical will be of prime astrumentation, engineers need an realize the ses where it is ine vision tions available ing algorithms s that could be							
8	Outline syllabus		CO Mapping							
	Unit 1	VISION SYSTEM	CO1,CO6							
	A	Basic Components — Elements of visual perception	CO1							
	В	Lenses: Pinhole cameras, Gaussian Optics	CO1,CO6							
	С	Cameras — Camera-Computer interfaces	CO1,CO6							
	Unit 2	VISION ALGORITHMS	CO1,CO2							

А	Fundamental I Precise Contor	CO1, CO2												
В	Image Enhanc smoothing, Fo Transformatio	CO2												
C	Image segmer circles and e Reconstruction	CO2												
Unit 3	OBJECT RE	COGNITION		CO3										
А	Object recogni	ition, Approacl	nes to Object Recognition	CO3										
В	Recognition by sharp edges, up	y combination sing two views	of views — objects with only	CO3										
С	Recognition by use of dept val	y combination	of views - using a single view,	CO3										
Unit 4	APPLICATIO	ONS		CO4										
А	Transforming Aligning laser	sensor reading scan measurer	, Mapping Sonar Data, nents	CO4										
В	Vision and Tra processing, M	acking: Follow ultiscale image	ing the road, Iconic image	CO4										
С	Video Trackir grams, K-mea	CO4												
Unit 5	ROBOT VIS	CO5,CO6												
А	Basic introduc Real and Simu	tion to Robotic	c operating System (ROS) -	CO6										
В	Introduction to	OpenCV. Op	en NI and PCL	CO6										
С	Installing and OpenCV - The	testing ROS ca	mera Drivers, ROS to ckage.	CO5, CO6										
 Mode of	Theory	_ 0	U											
examination	-													
Weightage	CA	MTE	ETE											
Distribution	25%	25%	50%											
Text book/s*	1. Carster Vision Weinho Damian m Lyo Vision", World	ann, "Machine WILEY-VCH, mputer												
Other	1. Rafael	Digital Image												
References	Processing", Addition - Wesley Publishing Company, New Delhi, 2007.													
	2. Shimon Ullman, "High-Level Vision: Object recognition and													
	Visual Cognition", A Bradford Book, USA, 2000.													
	R.Patrick Goe	bel, " ROS by 2	Example: A Do-It-Yourself Gu	ide to Robot										
	Operating System —Volume I", A Pi Robot Production, 2012.													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
----------	------------	-----	-----	-----	-----	-----	------------	------------	-----	------	------	------	------	------
MEC365.1	3	2	2	-	-	-	-	-	-	-	-	2	3	2
MEC365.2	2	2	2	-	-	-	-	-	-	-	-	2	2	3
MEC365.3	2	2	2	-	-	-	-	-	-	-	-	1	2	3
MEC365.4	3	2	2	-	-	-	-	-	-	-	-	2	2	3
MEC365.5	3	2	2	-	-	-	-	-	-	-	-	2	2	3
MEC365.6	3	2	2	-	-	-	-	-	-	-	-	3	2	3
MEC365	3	2	2									2	2	3
MEC365	3	2	2	-	-	-	-	-	-	-	-	2	2	3

1-Slight (Low)

2-Moderate (Medium)

School:	SSET	Batch : 2023-2027								
Program	nme:	Current Academic Year: 2023-2024								
B.Tech	ME									
Branch		Semester: VI								
1	Code	MEC435								
2	Course	I C Engines								
	Title									
3	Credits	3								
4	Contact	3-0-0								
	Hours (I_T_P)									
	Course	Program Elective								
	Status									
5	Course	The objective of this course is to make the students familiar with the various								
	Objectiv	internal combustion engines, thermodynamic analysis of S.I and C.I engines,								
	e	requirements and understanding of combustion related principles, lubrication								
		systems, ignition processes, measurement of important parameters for the								
6	Course	After the successful completion of course, students will be able to:								
0	Outcom									
	es	CO1: Demonstrate the ability to perform a thermodynamic analysis of Otto,								
		Diesel, and Dual cycle models.								
		CO2: Explain the characteristics of common liquid and gaseous fuels with the								
		ability to perform a combustion analysis of these fuels in the basic cycles.								
		CO3: Examine the characteristic of homogeneous combustion in SI-Engines								
		and spray combustion in CI-Engines.								
		CO4: Improve the performance parameters of CI-Engines								
		CO5: Analyze different ignition system, fuel injection systems, lubrication								
		systems, supercharging and its effect.								
		CO6: Measure and calculate the engine performance parameters and its								
		operating characteristics.								
7	Course	This course studies the fundamentals of how the design and operation of								
	Descript	internal combustion engines affect their performance, operation, fuel								
		requirements, and environmental impact. Topics include thermodynamics,								
		combustion, friction phenomena and fuel properties with reference to engine								
		power, efficiency, and emissions. Students examine the design features and								

		operating characteristics of different types of internal c spark-ignition, diesel, and stratified-charge.	ombustion engines:
8	Outline sy	yllabus	CO Mapping
	Unit 1	Introduction to I.C Engines	
	А	Engine classification, Air standard cycles, Otto, Diesel, Stirling, Ericsson cycles, Actual cycle analysis.	CO1
	В	Two and four stroke engines, SI and CI engines.	CO1
	С	Valve timing diagram, Scavenging in 2 Stroke engines, Rotary engines, stratified charge engine.	CO1
	Unit 2	Fuels	
	A	Fuels for SI and CI engine, important qualities SI engine fuels, Rating of SI engine fuels, Important qualities of CI engine fuels.	CO2
	В	Dopes, Additives, Gaseous fuels, LPG, CNG, Biofuels, Alternative fuels for IC engines.	CO2
	С	Thermo-chemical reactions.	CO2
	Unit 3	SI Engines	
	А	Principle of carburetion, Mixture requirements, Combustion in SI engine, Flame speed, Ignition delay	CO3
	В	Abnormal combustion and it's control, combustion chamber design for SI engines	CO3
	С	Magneto and battery ignition systems, ignition timing and spark plug, Electronic ignition, MPFI.	CO3
	Unit 4	CI Engine	
	A	Fuel injection in CI engines, Requirements, Types of injection systems, Fuel pumps, Fuel injectors, Injection timings	CO3
	В	Combustion in CI engines, Ignition delay, Knock and it's control, Combustion chamber design of CI Engines	CO3
	С	Exhaust emission and it's control of I.C Engine.	CO4
	Unit 5	Engine Cooling and recent development	
	A	Lubrication: Engine friction, Lubrication principal, Type of lubrication, Lubrication oils, Crankcase ventilation	CO5
	В	Supercharging and Turbocharging: Effect of altitude on power output, Types of supercharging	CO5
	С	Testing and Performance: Performance parameters, Basic measurements, Testing of SI and CI engines	CO6

Mode of	Theory												
examina													
tion													
Weighta	CA	MTE											
ge	25%												
Distribut													
ion													
Text	1. Ganes	1. Ganeshan V., I.C Engines, Tata Mc Graw Hill											
book/s*	Publisher	Publishers											
Other	1.Haywoo												
Referen	McGraw-	Hill Science/Engine	eering Engineering, 2010										
ces	2.Willard	W. Pulkrabek,	Fundamentals of the Internal										
	Combusti	on Engine, PHI Pul	plication, 2010										
	3.Richard	Stone, Introduction	n to Internal Combustion Engine,										
	Society of	Automotive											
	Engineers	Inc., 2011											
	4.Gill, Sn	nith,Ziurs, Fundam	nentals of Internal Combustion										
	Engine, O	xford & IBH Publi	shing, 2010										
	5.Rogows	ky ,COIC Engines,	International Book Co., 2010										
	6.Engine	CR software, down	load from										
	http://www	w.sharewareconnec	tion.com/enginecr.htm										

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO433.1	3	2	2	-	-	-	-	-	-	-	-	1	2	-
CO433.2	3	2	3	-	-	-	-	-	-	-	-	1	2	1
CO433.3	3	2	2	-	-	-	-	-	-	-	-	1	2	1
CO433.4	3	3	2	-	-	-	-	-	-	-	-	2	2	1
CO433.5	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO433.6	3	2	2	-	-	-	-	-	-	-	-	1	2	-
MEC433	3	2	2	-	-	-	-	-	-	-	-	2	2	1

1-Slight (Low)

2-Moderate (Medium)

School: S	SSET	Batch : 2023-2027
Program	nme: B.Tech	Current Academic Year: 2023-2024
Branch:	ME	Semester: VI
1	Course Code	MEC356
2	Course Title	Refrigeration & Air Conditioning
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	Due annuel Camp
5	Course Status	Program Core
5	Course	After the successful completion of course, students will be able to:
	Objective	1. To develop knowledge of Reversed Carnot cycle, Bell Coleman
		cycle
		2. To provide students an understanding of working of Vapour
		Compression System
		3. To provide students an understanding of working of Vapour
		Absorption system
		4. To develop knowledge of different Refrigerants
		5. To develop an understanding of working of Air Conditioning systems
		6. To teach students different refrigeration & air conditioning
		equipments
6	Course Outcomes	 On successful completion of this module students will be able to: CO1. Explain the working principle of reverse Carnot Cycle, Air refrigeration systems and classify various air refrigeration cycles. CO2. Identify the various factors affecting the working and COP of vapour compression system and explain the need of multistage vapour compression system. CO3. Distinguish between the vapour compression and vapour absorption system working and characterize different refrigerants CO4. Analyse psychometric processes and design air conditioning systems for various applications. CO5. Explain different refrigeration & air conditioning equipment CO6. Formulate and analyse the COP of refrigeration and air conditioning systems

7	Course Description	This course focus on the different methods of reconditioning, thermal comfort conditions, psychometry, conditioning and the understanding of heat transfer in designing.	frigeration and air its application in air buildings and duct
8	Outline syllabi	18	CO Mapping
	Unit 1	Refrigeration & Air Refrigeration cycle	11 0
	А	Introduction to refrigeration system, Methods of refrigeration, Carnot refrigeration cycle, Reversed Carnot cycle	CO1, CO6
	В	Bell Coleman or Reversed Joule air refrigeration cycle, Unit of refrigeration, Refrigeration effect & C.O.P, Open and closed air refrigeration cycles,	CO1, CO6
	С	Aircraft refrigeration system, Classification of aircraft refrigeration system, Simple, Boot strap refrigeration, Regenerative, Reduced ambient, Dry air rated temperature (DART)	CO1
	Unit 2	Vapour Compression System	
	А	Analysis of vapour compression cycle, Use of T-S and P-H charts	CO2
	В	Effect of change in suction and discharge pressures on C.O.P, Effect of sub cooling of condensate & superheating of refrigerant vapour on C.O.P of the cycle	CO2, CO6
	С	Actual vapour compression refrigeration cycle, vapour compression system requirement, Different configurations of multistage vapour compression system with removal of flash gas & Intercooling, Cascade system	CO2, CO6
	Unit 3	Vapour Absorption system	
	A	Working Principal of vapour absorption refrigeration system, Comparison between absorption & compression systems, Elementary idea of refrigerant absorbent mixtures	CO3, CO6
	В	Water vapour absorption system, Lithium- Bromide water vapour absorption system, Three fluid absorption system	CO3
	С	Classification of refrigerants, Nomenclature, Desirable properties of refrigerants, Common refrigerants, Secondary refrigerants and CFC free refrigerants	CO3
	Unit 4	Air Conditioning	
	A	Introduction to air conditioning, Psychometric properties and their definitions, Psychometric chart, Different Psychometric processes	CO4

В	Interr pass f Appa huma	hal heat gain, Sensi factor, Grand Sensi ratus dew point (Al n body,	ble heat factor (SHF), By ble heat factor (GSHF), DP), Thermal analysis of	CO4
С	Effec ventil indus	tive temperature an ation, Basic differe trial air conditionin	d comfort chart, Infiltration & ence between comfort and eg.	CO4
Unit 5	Refri	geration Equipme	ent & Application	
A	Eleme condi evapo	entary knowledge of tioning equipments prators & expansior	CO5	
В	Air w	ashers, Cooling to	wers, Ice plant, Water coolers	CO5
С	Elem distri	entary knowledge of bution of air throug	CO5	
Mode of examination	Theor	ry		
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1. C. TMH	P. Arora, Refrige	ration and Air Conditioning,	
Other References	1. 2. 3.	Prasad Manohar, F Conditioning, New Stoecker, W.F.; Jo conditioning, McO 1982. Dossat, Roy J., Pri Hall Publishing, 20		

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC356.1	2	-	-	-	-	-	-	-	-	2	-	-	-	-	1
MEC356.2	2	1	1	-	-	-	-	-	-	2	-	-	-	-	1
MEC356.3	2	1	-	-	2	-	-	-	-	2	-	-	-	-	1
MEC356.4	2	-	-	-	2	-	-	-	-	2	-	-	-	-	1
MEC356.5	2	1	-	-	2	-	-	-	-	2	-	-	-	-	1
MEC356.6	2	2	-	-	2	-	-	-	-	2	-	2	-	-	1
MEC356	2	1	1	-	2	-	-	-	-	2	-	2	-	-	1
MEC356	2	1	1	-	2	-	-	-	-	2	-	2	-	-	1

1-Slight (Low)

2-Moderate (Medium)

Scl	hool: SSET	Batch : 2023-2027
Pr	ogramme:	Current Academic Year: 2023-2024
B. '	Гесh	
Br	anch: ME	Semester: VII
1	Course	MEC 335
2	Code	Computer Integrated Manufacturing Systems
2	Title	Computer Integrated Manufacturing Systems
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course	Program Elective
	Status	
5	Course	After the successful completion of course, students will be able to:
	Objective	
		1. The students will acquire knowledge of different elements of automated
		processes in a modern manufacturing environment integrated with computer
		control.
		2. The students will have an understanding of using engineering design, and
		modelling techniques towards computer controlmanufacturing.
		3. The students will get knowledge about the integration robot in flexible
		manufacturing systems.
		4. The students will get some exposure to the Future of Automated Industry.
6	Course	After completion of the this course the students will be able to
	Outcomes	CO1: Identify the main elements in computer integrated manufacturing systems.
		CO2: Analyze the assembly line balancing and Familiarize about the Flexible
		manufacturing system.
		CO3: Select the CAD/CAM tools and CNC in manufacturing processes.
		CO4: Plan the use of robotics in modern manufacturing.
		CO5: Apply the modern trends in Manufacturing like Industry 4.0 and applications
		of Toyota system leading to Smart Manufacturing.
		CO6: Explain the applications of computer in planning, manufacturing and
		controlling.
7	Course	This course is designed to give you a thorough understanding of the technology
	Description	used in manufacturing systems. You will also be introduced to the concepts of computer integrated manufacturing and relevant standards, future of automationindustry, product life cycle management, computer aided manufacturing, and Flexible manufacturing.

8	Outline syllab	us			CO Mapping
	Unit 1	Introduction a	and Automa	ated Flow Line	
	А	Introduction,	Product I	Development through CIM, Product	CO1
		development	cycle, Type	es of production, Functions.	COI
	В	Transfer mec	hanism, Bu	ffer storage, Analysis of transfer lines,	CO1
		Line unbaland	cing concep	ot, Automated assembly systems	COI
	С	Line balancing Ranked Positic	methods of mal Weights	line balancing, Largest candidate rule and method of line balancing.	CO1
	Unit 2	Automated M	aterial Han	dling and FMS	
	А	The material Equipment, Co	handling for the second	function, Types of Material Handling ems, Automated Guided Vehicle Systems.	CO2
	В	Automated S Automated Sto	CO2		
	С	Flexible Manu	CO2		
	Unit 3	CAD and CA			
	А	Applications functions of g modeling.	CO3		
	В	Introduction, c programming,	CO3		
	С	Programming	CO3		
	Unit 4	Robotics			
	А	Robot anatomy	v, joints and	links, common robot configurations.	CO4
	В	Robot control	systems, End	d effectors, Sensors in robotics	CO4
	С	Industrial Rob	oots, Applic	cations of robots in material handling,	CO4
	T T 1 / M	processing and	assembly a	nd inspection.	
	Unit 5	Future of Aut	omated Ind	lustry	<u> </u>
	A	Focus on Wast	e, Relationsl	hip of Waste to Profit, Lean manufacturing	C05
	B	Toyota Produc	tion System		CO5, CO6
	C	Industry 4.0, 1 Industry 4.0	functions, a	pplications and benefits. Components of	CO5, CO6
	Mode of	Theory			
	examination				
	Weightage	CA	MTE	ETE	
	Distribution	25%	25%	50%	
	Text book/s*	1. Mikell Gro Computer-Inte 8, Pearson, Ne			
	Other	Reference Boo			
	References	1. M.P. Groc Computer Inter 2. T.C. Chang Manufacturing AutoCAD and			

POS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PS
														02	03
MEC335.1	1	1	-	-	1	-	-	-	-	-	-	-	2	3	2
MEC335.2	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC335.3	2	2	-	-	2	-	-	-	-	-	-	-	2	2	2
MEC335.4	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC335.5	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC335.6	2	2	-	-	2	-	-	-	-	-	-	-	2	2	2
EC 335	2	2	-	-	2	-	-	-	-	-	-	-	2	2	2
1-Sl	ight (L	LOW)	2.	Mode	rate (N	Mediu	m)	3-Su	bstant	tial (Hig	gh)				

Sc	hool: SSET	Batch : 2023-2027										
Pr	ogramme:	Current Academic Year: 2023-2024										
B. '	Гесh											
Br	anch: ME	Semester: VII										
1	Course Code	MEC357										
2	Course Title	Introduction to Six Sigma										
3	Credits	2										
4	Contact Hours	2-0-0										
	(I -T-P)	200										
	(L-1-1) Course Status	Program Elective										
5	Course Status	The objective of this course is to focus manage	arial stratagy of process									
5	Obiestive	The objective of this course is to focus manage	enal strategy of process									
	Objective	improvement and variation reduction and to pu	ut six sigma concepts into									
		perspective	1									
6	Course	After the successful completion of course, stud	dents will be able to:									
	Outcomes	CO1: Identify and know the aspects of quality	in an organization.									
		CO2: Explain the fundamentals and application	2: Explain the fundamentals and applications of statistics in an									
		organization. CO3: Describe the concepts of six sigma										
	CO4: Interpret how processes can be statistically controlled											
		CO5: Classify and describe various six sigma tools.										
		CO6: Define the process of implementing six	sigma.									
7	Course	To highlight its importance, as well as to p	present in-depth ideas on									
	Description	different methodologies, tools and techniques	followed in implementing									
	I I I	Six sigma in organization.	I B									
8	Outline syllabus		CO Mapping									
0	Unit 1	INTRODUCTION										
	A	Definition of six sigma. Dimensions of										
		Quality	CO1									
	В	Ouality Planning	CO1									
	С	Quality costs - Analysis Techniques for										
		Quality Costs Principles Teeninques Tor	CO1									
	II : A	Quality Costs, Quality Control										
		APPLICATION OF SIX SIXMA	603 604									
	A	of six sigma	02,008									
	В	Challenges in implementing Six Sigma	CO2. CO6									
	C	Mass production Vs lean production	CO2, CO6									
	Unit 3	PROCESS IMPROVEMENT USING SIX SIGMA										
	А	Continuous Process Improvement – PDSA &	602									
		PDCA Cycle	03									
	В	Application of Kaizen, benchmarking	CO3									
	С	voice of customer, basic matrices	CO3									
	Unit 4	TOOLS OF SIX SIGMA										
	A	Hoshin Kanri, DMAIC, Value Stream Mapping (VSM)	CO4, CO6									
	В	Application of Just in time, 5S, Kanban	CO4, CO6									
	С	The seven Muda, Pareto chart, control charts	CO4, CO6									
	Unit 5	IMPLEMENTATION OF SIX SIGMA										

А	Taguchi Quality of Function	curve and Taguchi	Quality Loss	CO5, CO6
В	Quality Function Quality, QFD Pro	Deployment (QFI cess	D) – House of	CO5, CO6
С	Various case stud	ies of Six sigma in	nplementation	CO5, CO6
Mode of	Theory			
examination				
Weightage	CA	MTE		
Distribution	25%	25%	50%	
Text book/s*	1. Six sigma	a handbook by pyzd	lek, McGraw Hill	
Other References	1. The Six	Sigma Black Belt	Handbook Third	
	Edition By Pears	son		
	2. Introduc	tion to Six Sigma	1st Edition 2016 by	
	Dr Niaz Ahmed	Siddiqui, New Ag	e International (P)	
	Ltd Publishers			

POS	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PS
cos														02	03
MEC357.1	1	1	-	-	-	-	-	-	-	-	-	-	2	3	2
MEC357.2	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC357.3	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC357.4	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC357.5	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC357.6	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC357	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2

1	-Sl	ligl	ht	(Lo	ow)
---	-----	------	----	-----	-----

2-Moderate (Medium)

School	I: SSET	Batch : 2023-2027								
Progra	amme:	Current Academic Year: 2023-2024								
B.Tech	1									
Branc	h: ME	Mechanical Engineering								
1	Course	MEC358								
	Code									
2	Course	Material Characterization Techniques								
	Title									
3	Credits	3								
4	Contact	3-0-0								
	Hours (L-T-									
	P)									
5	Course	Program Elective								
	Status									
6	Course	After the successful completion of course, students w	ill be able to:							
	Outcomes	CO1: Explain different terminologies associated	with optical image							
		formation; and describe sample preparation procedu	are and working of							
		optical microscopes	U							
		CO2: Summarise the properties, generation and detection of X-ravs and								
		its utilization in analysing a microstructure	utilization in analysing a microstructure							
		CO3: Describe principle, working and construction of	an SEM along with							
		sample preparation techniques required for capturing the microstructure								
		effectively								
		CO4: Describe principle, working and construction of a TEM along with								
		sample preparation techniques required for capturing the microstructu								
		effectively								
		CO5: Explain the instrumentation and working prind	ciple of TGA, DSC							
		and Raman spectroscopy								
		CO6: Conduct evaluate and analyse microstructural	characterization							
7	Course	The course covers the basic principles and techniques of X-ray diffraction								
,	Description	optical scapping electron and transmission electron microscopy along								
	Description	with the sample preparation technique required for the microstructural								
		analysis. The course also gives an overview of thermal and spectroscopic								
		techniques	a and speedoscopie							
8	Outline sylla	nis	CO Mapping							
0	Unit 1	Ontical Microscopy (OM)	comapping							
		Optical image formation Resolution Depth of Field	CO1							
	11	and Depth of Focus Light sources and condenser	001							
		systems Selection of objective lenses								
	B	Systems, Selection of objective tenses	CO1							
	D	Delishing and Etching methods Deflection and	COI							
		absorption of light								
	C	ausorption of fight								
		Bright field and dark field image contrast, Phase	CO1, CO6							
		contrast microscopy, working with digital images,								
		Image interpretation and Utilization of OM in latest								
		research papers								

Unit 2	X-ray diffraction (XRD) Analysis	
А	Properties of X-rays: Electromagnetic radiation,	CO2
	Continuous and characteristic spectrum, Absorption,	
	Filters, Production and Detection of X-rays and	
	Safety precautions	
В	Diffraction, Bragg's law, X-ray spectroscopy,	CO2
	Diffraction directions, Diffraction methods,	
	Diffraction under non ideal conditions	
С	Concept of allowed and forbidden reflection,	CO2, CO6
	indexing of cubic crystals, Use of XRD to analyse	
	structure of polycrystalline aggregates. grain size,	
	in latest research papers	
 Unit 3	Scanning Flactron Microscony (SFM)	
	Components of SEM Beam focusing conditions	CO3
11	Inelastic scattering and Energy losses	005
	Characteristics of X-ray images and Image contrast	
	in backscattered electron images	
В	Factors affecting secondary electron emission.	CO3, CO6
	Secondary electron image contrast, Sputter coating	,
	and contrast enhancement and Fractography	
С	Principles of operation and construction, Ion beam-	CO3, CO6
	specimen interactions and Utilization of SFM in	
	specificity interactions and outilization of SEW in	
	latest research papers	
Unit 4	Interactions and Cumzation of SLAT in latest research papers Transmission Electron Microscopy (TEM)	
Unit 4 A	Specificity interactions and outplation of SEW in latest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations,	CO4
 Unit 4 A	Specificities and comparison of SENT in latest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM	CO4
 Unit 4 A	Specificities and comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEM	CO4
Unit 4 A B	Specimen interactions and outplation of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning,	CO4
Unit 4 A B	Specificities and comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter	CO4 CO4
Unit 4 A B	Specifient interactions and outplation of SEM in latest research papers Transmission Electron Microscopy (TEM) Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEM Specimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methods	CO4 CO4
Unit 4 A B C	Specificities and constant of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Description in the second s	CO4 CO4 CO4, CO6
Unit 4 A B C	Specificities and comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Heilerties of SEM in latest performance	CO4 CO4 CO4, CO6
Unit 4 A B C	Specificities and constant of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paper	CO4 CO4 CO4, CO6
Unit 4 A B C Unit 5	Specificities and Comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic TechniquesThermal methods	CO4 CO4 CO4, CO6
Unit 4 A B C Unit 5 A	Specificities and constant of sEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic Techniques Thermo-gravimetric analysis (TGA): Introduction, Instrumentation Working principle and utilization in	CO4 CO4 CO4, CO6 CO5, CO6
Unit 4 A B C Unit 5 A	Specified interactions and comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic TechniquesThermo-gravimetric analysis (TGA): Introduction, Instrumentation, Working principle and utilization in latest research papers	CO4 CO4 CO4, CO6 CO5, CO6
Unit 4 A B C Unit 5 A B	Specified interactions and Comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic TechniquesThermo-gravimetric analysis (TGA): Introduction, Instrumentation, Working principle and utilization in latest research papersDifferentialScanningCalorimetryDifferentialScanningCalorimetry	CO4 CO4 CO4, CO6 CO5, CO6
Unit 4 A B C Unit 5 A B	Specified interactions and comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic TechniquesThermo-gravimetric analysis (TGA): Introduction, Instrumentation, Working principle and utilization in latest research papersDifferentialScanningCalorimetry(DSC): Introduction, Instrumentation, Working principle	CO4 CO4 CO4, CO6 CO5, CO6 CO5, CO6
Unit 4 A B C Unit 5 A B	Specified interactions and comparison of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic TechniquesThermo-gravimetric analysis (TGA): Introduction, Instrumentation, Working principle and utilization in latest research papersDifferential Scanning Calorimetry (DSC): Introduction, Instrumentation, Working principle and Utilization in latest research papers	CO4 CO4 CO4, CO6 CO5, CO6 CO5, CO6
Unit 4 A B C Unit 5 A B C	Specificities and confization of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic TechniquesThermo-gravimetric analysis (TGA): Introduction, Instrumentation, Working principle and utilization in latest research papersDifferential Scanning Calorimetry (DSC): Introduction, Instrumentation, Working principle and Utilization in latest research papersRaman Spectroscopy: Introduction, Instrumentation, Raman Spectroscopy: Introduction, Instrumentation,	CO4 CO4 CO4, CO6 CO5, CO6 CO5, CO6
Unit 4 A B C Unit 5 A B C	Specificient interactions and connection of SEM inlatest research papersTransmission Electron Microscopy (TEM)Wave properties of electrons, Resolution limitations, Lens aberrations, Comparative performance of SEM and TEMSpecimen preparation: Mechanical thinning, Electrochemical thinning, Ion milling, Sputter coating, Carbon coating and Replica methodsWorking principle and the origin of contrast in TEM, Principle of reciprocity in electron optics, Scanning TEM and Utilization of SEM in latest research paperThermal and Spectroscopic TechniquesThermo-gravimetric analysis (TGA): Introduction, Instrumentation, Working principle and utilization in latest research papersDifferential Scanning Calorimetry (DSC): Introduction, Instrumentation, Working principle and Utilization in latest research papersRaman Spectroscopy: Introduction, Instrumentation, Working principle and Utilization in latest research papers	CO4 CO4 CO4, CO6 CO5, CO6 CO5, CO6
Unit 4 A B C Unit 5 A B C	Specificity in the constant of the sector in the sector is and constant of the sector in the sector is and constant of the sector is and the sector is a sector in the sector is a sector is a sector is a sector is a sector in the sector is a sector is a sector is a sector in the sector is a sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector is sector is a sector is a s	CO4 CO4 CO4, CO6 CO5, CO6 CO5, CO6 CO5, CO6

Mode of	Theory									
examination										
Weightage	CA	MTE	ETE							
Distribution	25%	25%	50%							
Text	Microstructura	l Chara	acterization of Materials							
book/s*	by David Brando									
	• Elements of X-1									
Other	• Materials Char	Materials Characterization Techniques bySam								
References	Zhang, Lin Li ar	Zhang, Lin Li and Ashok Kumar								
	Scanning Electr	Scanning Electron Microscopy and X-Ray								
	Microanalysis t	y Josep	h I. Goldstein et al.							

POS COS	PO1	PO2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO 12	PS O1	PS O2	PS O3
MEC358.1	1	1	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC358.2	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC358.3	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC358.4	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC358.5	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC358.6	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC358	2	2	-	_	-	-	-	-	-	-	-	-	2	2	2

$1 - 0 \Pi \leq \Pi t (L 0 W)$

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027									
Pr	ogramme:	Current Academic Year: 2023-2024									
B.	Tech										
Bı	anch: ME	Mechanical Engineering									
1	Course	MEC359									
	Code										
2	Course	Heat Treatment of Metals and Alloys									
	Title										
3	Credits	3									
4	Contact	3-0-0									
	Hours										
	(L-T-P)										
5	Course	Program Elective									
	Status										
6	Course	After the successful completion of course, students will be able t	:0:								
	Outcomes	CO1: Explain the principle behind different heat treatment proc	esses and its								
		effect on the properties of the product									
		CO2: Describe the significance of hardenability and quenchant	s; and carry								
		out temperature measurement									
	CO3: Compare and contrast different chemical heat treatment proc										
		CO4: Make use of different TMT processes to obtain desired properties									
		CO5: Evaluate the quality of the heat treated product									
		CO6: Modify the properties of a component as per the requirement	ent								
7	Course	The course comprehensively covers almost every aspect of he	at treatment								
	Description	processes; right from principle, mechanism, inspection and quali	ty control to								
		the cause and remedy of defects that might occur during the tre	atment. It is								
		expected that the students will be able to tailor the mechanical procession of this sources	properties of								
0	Outling gullat	metals and alloys as per the need upon completion of this course									
8	Outline synat	bus	CO								
	Unit 1	Heat Treatment Dreasges for Steels and Aluminium	Mapping								
		Strass reliaving Anneoling and its types Spheroidizing	CO1 CO6								
	A	Normalizing Hardening methods and Eactors affecting	001,000								
		hardening process									
	B	Tempering: Structural changes Effect of alloving elements	CO1 CO6								
	Ъ	Temper hrittleness and colours Austempering Martempering	001,000								
		Sub-zero treatment and Patenting									
	С	Heat treatable and non-heat treatable aluminium alloys	CO1 CO6								
	C	Classification Heat treatment of cast and wrought aluminium	001,000								
		allovs									
	Unit 2	Hardenability, Ouenchants and Temperature Measurement									
	A	Significance of hardenability, relationship of hardenability with	CO2								
		transformation rates and Determination of hardenability.									
		Factors affecting hardenability: Austenitic grain size, Carbon									
		content and Alloying elements									

	В	Removal of he	at during	quenching, Quenching media and	CO2
	С	Thermocouples:	Thermo	couple material and its selection	CO2
		criteria, Temper	rature me	easurement and calibration, Indirect	
		methods of temp	perature m	easurement and Temperature control	
	Unit 3	Chemical Heat	Treatme	nt of Steels and Surface Hardening	
	А	Carburizing typ	bes: Pack	, Liquid, Gas and Vacuum; Post	CO3, CO6
		carburizing heat	treatment	ts, Cyaniding and Carbonitriding	
	В	Nitriding, Plas	ma nitri	ding, Salt bath nitrocarburizing,	CO3, CO6
	~	Boronizing, Chr	omizing a	nd Toyota Diffusion (TD) process	
	С	Surface hardenin	ng types:	Flame, Induction, Electron beam and	CO3, CO6
		Laser; Case dept	th measure	ement in steels	
	Unit 4	Thermomechan	nical Tr	eatment and Defects in Heat	
		Treatment			
	А	Classification,	Controll	ed rolling, Hot-cold working,	CO4, CO6
		Ausforming, and			
	В	Marstraining,	Cryof	orming, Preliminary TMT,	CO4, CO6
	~	Thermomechani			
	С	Low hardness	CO4		
		Oxidation, Deca			
		Distortion and			
	Ilmit 5	Quality Control	admining (Innension	
		Quality Contro	n and Ene	tives Manner Process Types and	CO5
	A	Stages: Factors	ontrolling	g quality Quality control	005
	В	Quality control	in heat	treatment: Product design Heat	CO5
	D	treatment spec	ifications.	Material selection. Dimensional	000
		considerations,	Selection	and working of equipment and	
		accessories; Insp			
	С	Energy econom	y through	h: Material change, Heat treatment	CO5
		practice and Pro			
Ν	Aode of	Theory			
e	xamination			[
V	Veightage	CA	MTE	ETE	
	Distribution	25%	25%	50%	
1	ext	Heat Treatmen	t Princip	les and Techniques by T.V. Rajan,	
b	00k/s*	C.P. Sharma and	1 Ashok S	harma	
()ther	Steel and Its Ho	eat Treat	ment by Karl-Erik Thelning	

POS COS	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	Р 08	P O 9	PO1 0	PO 11	PO 12	PS O1	PS O2	PS O3
MEC359.1	1	1	-	-	-	-	-	-	-	-	-	I	2	3	2
MEC359.2	2	2	_	-	-	-	-	-	-	-	-	-	2	2	2
MEC359.3	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC359.4	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC359.5	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC359.6															
MEC359	2	2	-	-	-	-	_	-	-	-	-	-	2	2	2

1-Slight (Low) 2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027								
Pr	ogramme:	Current Academic Year: 2023-2024								
B.	Tech.									
B	anch: ME	Mechanical Engineering								
	Course	MEC360								
	Code									
2	Course	Advanced Engineering Materials								
	Title									
3	Credits									
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
5	Course	Program Elective								
	Status									
6	Course	After the successful completion of course, students will be ab	le to:							
	Outcomes	CO1: Explain the structure, properties, fabrication routes and ceramics	applications of							
		CO2: Summarise the structure, properties, fabrication routes a	nd applications							
		CO3: Describe the constituents, properties, fabrication routes a	and applications							
		of composites								
		CO4: Explain the structure, properties, synthesis routes and	applications of							
		nanomaterials and the challenges associated with it								
		CO5: Describe the composition, properties, fabrication routes and								
		applications of other emerging materials such as funct	ionally graded							
		materials, high entropy alloys and super alloys	1 6 1.66 4							
		CO6: Analyse the problems and accordingly suggest materia	als for different							
		applications								
7	Course	This course will familiarize the students with the structure	re/composition							
'	Description	properties processing and applications of various classes	of engineering							
	Description	materials. The students will develop an understanding that	for a particular							
		application which kind of materials can be used and how its p	roperties can be							
		altered as per the requirement.	- F							
		1 1								
8	Outline syllab	DUS	CO Mapping							
	Unit 1	Ceramics								
	А	Crystal structure, Silicate ceramics, Imperfections in	CO1							
		ceramics, Diffusion in ionic materials, Ceramic phase								
		diagram								
	В	Fracture behaviour, Stress-strain curve, Mechanisms of								
		plastic deformation, Types and applications of ceramics:								
	~	Glasses, Refractories, Abrasives, cements etc.	~~ 1							
	C	Fabrication and processing of glasses, glass-ceramics and	CO1							
		clay product; Powder pressing and Tape casting								
1										

Unit 2	Polymers									
А	Polymer mo	olecule ch	nemistry, Molecular configuration,	CO2						
	Polymer type	es, Copoly	ymers, Crystallinity and crystals in							
	polymers, De	fects and	diffusion in polymeric materials							
В	Stress-strain	behaviou	r, Fracture behaviour, Mechanical	CO2, CO6						
	properties, D	Deformatio	on behaviour and Factors affecting							
9	mechanical p	roperties of	of polymers	CO2						
С	Crystallizatio	CO2								
	applications,	PolyIII	of electomers, fibres and films							
	techniques, I									
Unit 3	Composites									
А	Principle of c	CO3								
	Rule of mixt									
	strengthened	composite	S							
В	Influence of f	ibre lengtl	n, Elastic behavior and Tensile stress-	CO3						
	strain behavio	or of cont	inuous and aligned fibre composites,							
	discontinuous	s and	aligned fibre composites and							
~	discontinuous	s and rand	omly oriented fibre composites							
С	Fabrication/p	rocessing,	properties and applications of	CO3, CO6						
	different type	es of comp	osites							
Unit 4	Nanomateria									
А	History and	scope,	Classification, Microstructure and	CO4						
	Defects in N	anocrysta	lline Materials and Effect of Nano-							
D	dimensions of	n Material	s Behaviour	004						
В	Synthesis R	outes: Bo	ottom-Up Approaches, Iop-Down	CO4						
C	Approaches a	of nonor	ndation of Nanopowders	CO4 CO6						
C	Applications	of nanon	Nanostructured Materials with High	004,000						
	Application	Potential	Concerns and Challenges of							
	Nanotechnolo) ov	, concerns and chancinges of							
		- 01								
Unit 5	Emerging E	ngineering	g Materials							
А	Functionally	Graded N	laterials: Introduction, Composition,	CO5, CO6						
	Fabrication, F	Properties	and Applications							
В	High Entro	opy Alle	oys: Introduction, Composition,	CO5, CO6						
	Fabrication, F	Properties	and Applications							
С	Super Alloy	CO5, CO6								
	Properties and									
M.J.C										
Mode of	Theory									
Woightees	CA									
weightage Distribution	CA 25%	250/	50%							
JISUIUUUUU	2370	23%	JU70							

Text book/s*	 Materials Science and Engineering an Introduction by William D. Callister and David G. Rethwisch Textbook of Nanoscience and Nanotechnology by B.S. Murthy, P. Shankar, Baldev Raj, B.B. Rath and James Murday 	
Other References	Materials Science and Engineering: A First Course byV. Raghavan	

POS COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PS O3
MEC360.1	1	1	-	-	-	-	-	-	-	-	-	-	2	3	2
MEC360.2	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC360.3	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC360.4	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC360.5	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC360.6	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2
MEC360	2	2	-	-	-	-	-	-	-	-	-	-	2	2	2

1-Slight (Low)

2-Moderate (Medium)

School: SSET		Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B .	Tech								
Bı	anch: ME	Semester: VI							
1	Course	MEC318							
	Code								
2	Course	Supply Chain Management							
	Title								
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Program Elective								
	Status								
5	Course	1. To familiarize students with various drivers and metrics of supply chain manageme	nt system						
	2. To provide students an understanding of different types of supply chain networks								
		3. To teach the basics of economics in supply chain management system							
	4. To teach students the basics of cross functional supply chain metrics								
6	6 Course After the successful completion of course, students will be able to:								
	Outcomes CO1: explain basic terminology and supply chain operations in the context of today's b								
		environment.							
		CO2: design the supply chain networks.							
		CO3: manage inventory effectively and planning policy, demand variability, forecastir	ng and lead						
		time on inventory level and cost.							
		CO4: improve in transportation and logistics in supply chain operations.							
		CO5: perceive the importance of strategic supply chain alliances and the impact of in	nformation						
		Technology in SCM.							
		CO6: develop supply chain which is financially and environmentally sustainable							
7	Course	The objective of SCM is to introduce the major building blocks, major functions, major	or business						
	Description	processes, performance metrics, major decisions (strategic, tactical, and operational)	and role of						
		IT in supply chain Management.							
8	Outline svllah	DUS	CO						
1	j w		Mapping						
F	Unit 1	INTRODUCTION							
	А	Understanding the Supply Chain	CO1						
	В	Supply Chain Performance: Achieving Strategic Fit and Scope	CO1						
1	С	Supply Chain Drivers and Metrics	CO1						
	Unit 2	DESIGNING THE SUPPLY CHAIN NETWORK							
	A	Designing Distribution Networks	CO2,						
			CO6						
1	В	Network Design in the Supply Chain	CO2,						
			CO6						
1	С	Network Design in an Uncertain Environment	CO2,						
L			CO6						
	Unit 3	PLANNING AND MANAGING INVENTORIES IN A SUPPLY CHAIN							
	А	Managing Economies of Scale in a Supply Chain: Cycle Inventory	CO3						

	В		Manag	ing Un	certain	ity in a	Supply	y Chair	n: Safet	y Inve	ntory				CO	3	
	С		Determ	nining t	the Opt	timal L	level of	Produ	ict Ava	ilabilit	у				CO3	3	
	Unit 4		DESIG	INING	AND	PLAN	NING '	TRAN	SPOR	ΓΑΤΙΟ	N NET	WORKS	5				
	А		The Ro	ole of T	Transpo	ortation	n in a S	upply (Chain						CO ²	1,	
															CO	5	
	В		Modes	of Tra	nsporta	ation									CO ₄	1,	
	C		T 1.	06. :	T		D								CO6		
	C		I rade-	UTIS IN	Trans	portatio	on Desi	lgn							CO^2	+, 5	
	Unit 5		MANA	GING	CROS	S-FU	NCTIO	NALI	ORIVE	RS IN	A SUP	PLYCH	[AIN		COL)	
	A		Sourci	ng Dec	isions	in a Su	nnly C	hain			<u>M SOI I</u>				CO	5	
							pp-j c								CO	5	
	В		Inform	ation T	echnol	logy in	a Supp	oly Cha	ain						COS	5,	
								-							CO	5	
	С		Coordi	nation	in a St	ipply C	Chain, S	Sustain	ability	in SCN	Л				COS	5,	
											CO	5					
	Mode of Theory																
	examination																
	Weighta	ige	CA 25.0/				MIE				51E (0)/						
	Toyt	uon	23%	Chorn	ro Sun	il Moi	$\frac{23\%}{\text{ndl } \text{Dot}}$	m and	Kalra F	alra Dharam vir: Supply chain Management							
	hook/s*		۷.	Pearso	on Publ	cation			Nalla L	/1/1/1/11	vii, Sup	pry chai	II Ivialia	zement,			
	Other		1.	I cuist	5111 401	cution											
	Referen	ces	Schar	j,P.B.,I	Lasen,	Г.S.,М	anaging	gtheglo	balsup	plycha	in,Vival	books,N	ewDelh	i,2000.			
			2. Ay	ers,J.B	.,Hand	booko	fsupply	chainn	nanage	ment,T	TheSt.Le	nciepres	ss,2000.				
			3.		Ni	colas,J	.N.,Coi	mpetei	vemanı	ıfactur	ingmana	agement	-				
			continu	iousim	proven	nent,Le	eanproc	luction	,custor	ner							
			focusse	edquali	ty,Mc	GrawH	ill,NY,	1998.		• .1 •		T 1					
			4Ste	udel,H	J.andl	Jesrue	itor Vo	lanufa	cturing	intheni	netees-F	Howtobe	ecomean	nean,			
	COUR	SF A					PIV	innosu	anure	minoiu	,191,199	2.					
								DC-	DCC	DCC	Dette	Dett	DOIL	Daci	D~	Da	
	POS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PS	
C	os 📐														02	03	
Μ	IEC318.1	3	2	-	-	3	-	2	-	-	-	-	2	2	3	2	
Μ	MEC318.2		1	3	-	3	2	_	-	_	-	-		2	2	2	
Μ	IEC318.3	1	1	-	-	3	-	-	1	3	1	3	-	2	2	2	
М	IEC318.4	3	-		2	_	-	_	-	_	-	3	2	2	2	2	
Μ	IEC318.5								1		1		_		_	_	

1-Slight (Low)

MEC318.6

MEC318

_

-

2-Moderate (Medium)

-

-

_

-

_

-

_

3-Substantial (High)

-

Scl	nool: SSET	Batch: 2023-2027							
Pro	ogramme: B.Tech	Current Academic Year: 2023-2024							
Bra	anch: ME	Mechanical Engineering							
1	Course Code	MEC361							
2	Course Title	Hydraulic Machines							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Program Elective							
5	Course Objective	1)To teach design principles of turbines and pumps an	d to use them in						
	-	engineering							
		2)To introduce the theory of hydraulic machines and it	's applications.						
		3)The student will be aware of the importance	, function and						
		performance of hydro machinery.							
		4)The student will be in a position to evaluate t	he performance						
		characteristics of hydraulic turbines							
6	Course	After the successful completion of course, students w	ill be able						
	Outcomes	to:							
		CO1: Define the concepts of dynamics of fluid flow a	nd the forces						
		exerted by a jet of fluid on vanes.							
		CO2. Explain construction features and working i	CO2: Explain construction features and working principles of						
		different hydraulic turbines.							
		CO2. Develop the concept of Contrifued numera							
		COS: Develop the concept of Centrifugal pumps.							
		CO4: Design the reciprocating pump.							
		CO5: Elaborate the concepts of various hydraulic machines.							
		CO6: Build the concepts of various hydraulic turbines	s and pumps.						
7	Course	The objective of this course is to introduce to students	the principles of						
	Description	working, constructional details, design features an	nd performance						
		characteristics of various machines like turbines, p	umps and other						
		devices using incompressible fluids (liquids) and the ab	oility to visualize						
		and design some simple equipments used in practice							
8	Outline syllabus		CO Mapping						
	Unit 1	Principles of hydraulic Machinery							
	A	Newton's Second law of motion, linear momentum							
		Equation and angular momentum equations. Impact	CO1						
		of jet on fixed and moving plates.							
	В	Angular momentum equation and its applications.							
		Fundamental equation of fluid Machines (Euler's	COI						
	9	Equation).							
	C	Hydro Electric Power plant: Classifications, layout	CO1, CO6						
	11.4.0	and its components	, 						
	Unit 2	Hydraulic Turbines							
	А	Classification: Impulse and Reaction turbine, pelton	CO2, CO6						
1		wheel turbine and its components	,						

В	Reaction turbi ofreaction turb reaction, disch efficiencies, fr	on and classification the between impulse& roduced, work done, and Kaplan turbine	CO2					
С	CO2							
Unit 3	Centrifugal P	ump						
А	Centrifugal pu	mps: classification	ation, working principle	CO3				
В	Manometric h powerrequired	ead, efficienciel to drive centr	es, discharge, ifugal pump	CO3, CO6				
С	Specific speed specific speed	CO3						
Unit 4	Reciprocating	g Pump						
А	Reciprocating principle	Reciprocating pumps: classification, working principle						
В	single stage ar Selection crite	nd multi stage j prion	pumps, Air-vessel,	CO4				
С	Comparision of	of reciprocating	g and Centrifugal pumps	CO4				
Unit 5	Miscellaneou	s Hydraulic N	Iachines					
А	Jet pump, Air	lift pump, Hyd	Iraulic Ram	CO5				
В	Hydraulic pres	ss, Hydraulic I	ift, Pressure Intensifier	CO5				
С	Fluid Couplin	g & Torque Co	onverter	CO5				
Mode								
Weightage	CA	MTE	ETE					
Distribution	25%	25%	50%					
Text book/s*	Rajput R.K., Chand, 2010.	Hydraulic M	achines, 4th Edition, S.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC361.1	3	3	1	2	1	-	-	-	-	1	-	-	3	3	3
MEC361.2	3	3	1	1	1	-	-	-	-	-	-	-	3	3	3
MEC361.3	3	2	1	2	1	-	-	-	-	1	-	-	3	3	3
MEC361.4	3	2	1	3	2	-	-	-	-	1	-	-	3	3	3
MEC361.5	3	1	1	2	2	-	-	-	-	1	-	-	3	2	2
MEC361.6	3	2	1	3	3	-	-	-	-	1	-	-	3	3	3
MEC361	3	2	1	2	2	-	-	-	-	1	-	-	3	3	3

1-Slight (Low) 2-Moderate (Medium)

School: SSET		Batch : 2023-2027
Pı	rogramme:	Current Academic Year: 2023-2024
B.	Tech	
	ranch: ME	Mechanical Engineering
1	Course Code	MEC334
2	Course Title	Introduction to Robotics Engineering
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Program Elective
5	Course	1. To be familiar with the automation and brief history of robot and
	Objective	applications.
		2. To give the student familiarities with the kinematics of robots.
		3. To give knowledge about robot end effectors and their design.
		4. To learn about Robot Programming methods & Languages of robot
		5. To give knowledge about various Sensors and their applications in robots.
6	Course Outcomes	After the successful completion of course, students will be able to: CO1: Identify with the automation and brief history of robot and it's
		applications.
		CO2: Analyze the various types of kinematic motions of robot.
		CO3: Modify various robot end effectors and their design concepts.
		CO4: Classify the various robot Programming methods & various Languages
		associated with the robots.
		CO5: Distinguish between various Sensors and their applications in robots.
		CO6: Choose the various robot installation and planning process.
7	Course	This course covers all aspects of mobile robot systems design and
	Description	programming from both a theoretical and a practical perspective. The basic
		subsystems of control, localization, mapping, perception, and planning are
		presented. For each, the discussion will include relevant methods from applied
		mathematics. aspects of physics necessary in the construction of models of
		system and environmental behavior, and core algorithms which have proven

	to be valuable in a wide range of circumstances. This also includes applications of robotics engineering.										
8	Outline sylla	bus	CO Mapping								
	Unit 1	Robotics Introduction	CO1,CO2								
	А	Robot definition: Robotic systems	CO1								
	В	Role of robotics in automated manufacturing system, Robot anatomy	CO1,CO2								
	С	Robot classifications and specifications.	CO1								
	Unit 2	Robot Kinematics	CO1,CO2,CO 3								
	А	Robot kinematics, forward and reverse transformation, homogeneous transformations	CO2								
	В	Robot actuators and control; Pneumatic, hydraulic and electrical drives and controls used in robots.									
	С	Robot end-effectors, mechanical, magnetic and vacuum grippers, gripping forces RCC and design features of grippers.									
	Unit 3	Robotic vision systems	CO1,CO2,CO 4,CO5								
	A	Robot sensors, different types of contact and non-contact sensors.	CO2,CO5								
	В	Robot vision and their interfaces	CO2,CO5								
	С	Robot languages and programming techniques.	CO1, CO2.CO4								
	Unit 4	Applications of robots	CO1,CO2,CO 3,C04								
	A	Applications of robots in materials handling	CO1,CO2,CO 3,CO4								
	В	Machine loading/unloading, inspection	CO1,CO2,CO 3,CO4								
	C	Welding, spray painting and finish coating, and assembly, etc.	CO1,CO2,CO 3,CO4								
	Unit 5	Economy and safety related with robots	CO1,CO2,CO 3,CO4,CO5,C O6								
	Α	Economic performance and evaluation strategies.	CO4								
	В	Robot installation and planning.	CO1,CO2,CO 3,CO4, CO6								
	С	Robot safety features	CO1,CO2,CO 3,CO4								
	Mode of examinatio n	Theory									

Weightage	CA	MTE	ETE								
Distributio	25%	25%	50%								
n											
Text	1.Groov	Groover, M.P., "Industrial Robotic Technology -									
book/s*	Program	Programming and Application", McGrawhill									
Other	1. K	1. Koren, Y., "Robotics for Engineers", McGrawhill.									
References	2. I	2. Deb, S.R., "Robotics Technology and Flexible									
	A	Automation" Tata Mc Graw Hill									

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC334.1	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
MEC334.2	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
MEC334.3	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
MEC334.4	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
MEC334.5	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
MEC334.6	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
MEC334	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B .	Tech								
Br	anch: ME	Mechanical Engineering							
1	Course	AUT301							
	Code								
2	Course	Automotive Safety Systems							
	Title								
3	Credits	2							
4	Contact	2-0-0							
	Hours								
	(L-T-P)								
	Course	Program Elective							
	Status								
5	Course	1. To help the students to acquire in-depth knowledge of autom	otive safety						
	Objective	systems.							
		2. To make students to understand the underlying concepts and	methods of						
		automotive safety.	• • • •						
		3. To make students to differentiate the different active and pa	ssive safety						
		ysicills. 1. To make the students to be familiar with latest sofety systems							
		4. To make the students to be failled with fatest safety systems to douglon							
		5. To enable the students to apply the knowledge of safety system	s to develop						
6	Course	After the successful completion of course, students will be able to	~						
0	Outcomes	After the successful completion of course, students will be able to	J.						
	Outcomes	COI: Comprehend the steps involved in the automotive bod	y design to						
		improve safety							
		CO2: Differentiate the active and passive safety systems and the	ir impact on						
		passengers							
		CO3: Explain the construction and working principle of various safety							
		equipment employed in automobiles.							
		CO4: Evaluate the behaviour of various safety systems on improving safety.							
		comfort and convenience.							
		CO5:Assess the performance of different testing procedures	involved in						
		passenger and occupant safety							
		CO6: Evaluate the environmental impact cost and eco	onomics of						
		homologation and certification							
7	Course	This course propercy students to install remove maintain and	I ropair this						
/	Description	system in an automobile. This course introduces students to vahial	lo sofoty and						
	Description	collision warning. It also discusses aboutergonomics in vehicles	le safety allu						
8	Outline sulla	contision warning. It also discusses aboutergonomies in vehicles.	CO						
0		Jus	Manning						
<u> </u>	∐nit 1	INTRODUCTION	Triapping						
	A	Design of the body for safety energy equation engine location	CO1						
	п	Design of the body for safety, chergy equation, engine location,							

B		Deceleration of vehicle inside passenger compartment, deceleration on impact with stationary and movable obstacle.						
C		Concept of crumble	e zone, safety sandy	wich construction	CO1			
	nit 2	ERGONOMICS a	and HUMAN RES	PONSE to IMPACT	001			
A		Importance of Ergo	onomics in Automo	tive safety, Locations of	CO2, CO6			
В		Determination of Ir	niury thresholds. Se	verity Index. Study of	CO2. CO6			
		comparative tolerar	nce, Application of	Trauma for analysis of	,			
		crash injuries.						
C		Injury criteria's and	CO2, CO6					
		simulation studies	in dummy					
U	nit 3	ACTIVE and PAS	SSIVE SAFETY					
Α		Driving safety, con	ditional safety, pero	ceptibility safety.	CO3			
В		Operating safety, E	Exterior safety, Inter	ior safety,				
					CO3			
C		Deformation behav	viour of vehicle bod	y, speed and acceleration	CO3			
		characteristics of pa	assenger compartm	ent on impact.				
U	nit 4	ON WARNING and						
		AVOIDANCE.						
A		Seat belt, regulation	ns, automatic seat b	elt tightener system,	CO4			
		collapsible steering	column.	· · · · · · · · · · · · · · · · · · ·	004			
В		Tiltable steering wi	heel, air bags, Elect	ronic system for	CO4			
C		Steering wheel of	hass alastronia av	stom for activating air	<u>CO4</u>			
C		bage and humper d	bags, electronic sys	stem for activating air	C04			
I.I.	nit 5	COMFORT and (CONVENIENCE					
	IIIt 5	Steering and mirror	r adjustment Centr	al locking system	CO5			
R		Garage door opening	ng system. Tyre pre	sure control system	C05			
		Rain sensor system	Environment info	rmation system	C05			
	ada af	Theory		inition system	005			
IVI	ode of	Theory						
	Vaiabtaga	CA	МТЕ	ETE				
	eignage	250/	25%	50%				
	avt	2370 Raymond M. Bracl	2.370 h and R Matthew	JU% Brach "Vehicle Accident				
bo	ok/s*	Analysis and Recon	Analysis and Reconstruction Methods" SAE International 2011					
	ther	1 Ulrich Seif	fert and LotharWa	ech "Automotive Safety				
	eferences	Handhook"	SAE International	2007				
		Handbook, SAE International, 2007. 2 ISO Standards ICS: 43 020 43 040 43 100						
1 1		\angle INCOMPANIA						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
AUT301.1	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT301.2	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT301.3	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT301.4	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT301.5	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT301.6	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT301	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme:	Current Academic Year: 2023-2024							
B.	Tech								
Bı	anch: ME	Mechanical Engineering							
1	Course	AUT302							
	Code								
2	Course	Auto Certification and Homologation							
	Title								
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course	Program Elective							
5	Status	1 To belly students as in accordial and having hyperbolic and Auto Contification and							
3	Course	1. To help students gain essential and basic knowledge on Auto Certification and Homologetion for various types of vahiolog, so as to equip them with knowledge							
	Objective	required for getting certification and homologation for different classification of							
		vehicles							
		2. To train the students on vehicle classification with respect to certification and							
		homologation.							
		3. To impart knowledge on vehicle testing procedures and norms for steering							
		certification, engine certification, glasses and seat belts, brakes and wheels and							
		lighting and signalling devices.							
		4. To teach students about the importance of advances and trends in certification							
6	Carrier	and homologation.							
0	Course	After the successful completion of course, students will be able to:							
	Outcomes	COI: Describe the vehicle classification with respect to certification and							
		homologation							
		CO2: Identify the regulations governing for each vehicle type							
		CO3: Apply proficiency in testing methodologies for vehicle level testing							
		CO4: Perform and analyze system level testing for certification of the engine,							
		braking, steering and lighting systems							
		CO5:Obtain know-how in testing methodologies for certification of							
		components testing							
		CO6: Evaluate the environmental impact, cost and economics of							
		homologation and certification							
7	Course	This course prepares students to install, remove, maintain and repair this							
	Description	system in an automobile. This course introduces students to vehicle classification and engine and steering certification. It also discusses							
		aboutergonomics in vehicles.							

8	Outline syllab	bus			CO			
	Unit 1	VEHICI E CLAS	SIFICATION		Mapping			
		Specification & Cla	assification of Vehi	icles (including M. N. and				
	Α	O lavout)						
	D	Diayout).	ion (ECE EEC	EMANES AIS CMAND				
	D	ADD) Type opprov	lew (ECE, EEC,	FININDS, AIS, CININK,	CO1			
-	C	ADK), Type approv	var and Comonnity	Wheeler continue	CO1			
	U:4 2	VELLOL E TEST	e specifications, 1 w	o wheeler certification	01			
-		VEHICLE IESI						
	A	Vehicle Testing - Photographs, CMVR physical verification,						
-	D	Turning single diam	it, Coast down test,	blake test, ADS.	CO2			
	D	Turning circle dian	leter test, Steering (enon test, speedometer	02			
	C	Calibration, Pass by	noise test,		<u> </u>			
	C	External projection	test, Gradability te	est, Acceleration control	02			
	TT 14 0	system						
	Unit 3	ENGINE and STE	CERING CERTIF	ICATION				
	A	Engine power test	(petrol & diesel),	Indian driving cycle and	CO3, CO6			
	D	Vehicle mass emiss	<u>sion.</u>					
	В	Evaporative emissi	ion (petrol venicle	s), Broad band / Narrow				
		band EMI test. St	eering Impact test	(GVW < 1500 kg), Body	CO3, CO6			
	<u> </u>	block test, Head form test,						
	С	Fixtures charges, C	rash test with dumi	mies, OBD I, Bumper	CO3, CO6			
	-	testing, Documenta	testing, Documentation SHL, Certification charges					
	Unit 4	GLASSES and SE	AT BELTS					
	A	Safety Glasses: W1	ndscreen laminated	safety glass, Side	CO4			
	D	window / door glas	<u>S.</u>		GO 4			
	В	Back light / Rear to	bughened glass, Wi	nd screen wiping system,	CO4			
	9	Wiper Blade	GO 4					
	C	Safety belt assembl	lies, Safety belt and	horages, Seat anchorages	CO4			
		& head restraints, d	loor locks & door r	etention				
	Unit 5	LIGHTING and S	SIGNALISNG DE	VICES				
	А	Performance requir	ement for lighting	& signaling devices -	GO F			
		Vertical orientation	of dipped beam- h	ead lamp, driver's field	CO5			
	~	of vision, Head lam	p assembly (glass	lens & plastic lens).				
	В	Head lamp + Front	position lamp / Fro	ont indicator lamp / front	CO5			
		fog lamp, Rear com	ibinational lamp (e	each additional function),				
		Independent front p	position lamp / From	nt direction indicator				
		lamp / Front fog la	mp.					
	C	Rear combination I	Rear combination lamp (single function), Warning triangles,					
		Fuel tank: Metallic & Plastic (excluding fire resistance test).						
	Mode of	de of mination Theory ghtage CA MTE						
	examination							
	Weightage							
	Distribution	25%	25%	50%				
	Text	Raymond M. Brack	n and R. Matthew	Brach, "Vehicle Accident				
	book/s*	Analysis and Reconstruction Methods", SAE International, 2011						

Other	1. Ulrich Seiffert and LotharWech, "Automotive Safety	
References	Handbook", SAE International, 2007.	
	2. ISO Standards, ICS: 43.020, 43.040, 43.100	
	3. Automotive Industry Standards, AIS	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
AUT302.1	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT302.2	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT302.3	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT302.4	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT302.5	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT302.6	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT302	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027	Batch : 2023-2027							
Pr	ogramme: B.	Tech Current Academic Year: 2023-2024	Current Academic Year: 2023-2024							
B	anch: ME	ME with Automobile Engineering	ME with Automobile Engineering							
1	Course Code	AUT303								
2	Course	Automotive Suspension and Steering Systems								
	Title									
3	Credits	2	2							
4	Contact Hour	$\frac{-}{100}$								
	(L-T-P)		200							
	Course Status	Program Elective								
5	Course Object	tive To provide the students with sufficient background to i	inderstand the							
5		steering and suspension systems so as to enable them to de	sign a steering							
		and suspension system for better ride and comfort.	88							
6	Course Outco	omes After the successful completion of course, students will	be able to:							
		CO1: Demonstrate the construction and mechanism of st	eering system							
		components	seering system							
		CO ₂ . Identify various suspension systems used in	n automotive							
		vehicles								
		CO3: Summarize computer controlled suspension system	ms							
		CO4: Define the mechanisms involved in the stability of	f vehicle.							
		CO5:Explain various steering and suspension sys	tem used in							
		automotive vehicles	used in							
		CO6: Explain the recent development in the area of si	CO6: Explain the recent development in the area of suspension and							
		steering systems.	spension and							
7	Course Descr	iption This course prepares students to install, remove, maint	ain and repair							
		this system in an automobile. This course introduce	this system in an automobile. This course introduces students to							
		steering system, and suspension system. It also dis	steering system, and suspension system. It also discusses power							
		assisted steering theory as well as the computer controll	assisted steering theory as well as the computer controlled suspension							
		system of a latest vehicle.	-							
8	Outline syllal	bus	СО							
			Mapping							
	Unit 1	STEERING SYSTEM								
	A	Axle parts and materials, Loads and stresses, Front axle loads,	CO1 CO6							
		Steering heads.	001,000							
	В	Factors of wheel alignment, Wheel balancing, Centre point	CO1 CO6							
		steering, Correct steering angle, Steering mechanisms	001,000							
	С	Cornering force, Self-righting torque, Under steer and over	CO1 CO6							
		steer, Lift off over steer, Torque steer	001,000							
	Unit 2	MECHANISM and LINKAGES								
	А	Condition for perfect rolling - Ackermann mechanism -	CO2 CO6							
		Davis Mechanism.								
	В	Steering linkage for rigid axle suspension, Steering linkage	CO2, CO6							
		for independent suspension								
	С	Steering gears, Special steering columns	CO2, CO6							
1	Unit 3	POWER ASSISTED STEERING								
	А	Hydraulic power assisted steering, Integral piston linkage	CO3, CO6							

В	Rack and pinion, E	Rack and pinion, External cylinder power assisted													
	-			CO3, CO6											
С	Electric and electro	onic power assisted	steering	CO3, CO6											
Unit 4	INTRODUCTION														
А	Basic consideration springs and Plastic	CO4, CO6													
В	Pneumatic suspens	ion, Hydraulic susp	ension, Telescopic	CO4, CO6											
	shock absorbers, In	dependent suspensi	ion												
С	Front wheel indepersion, Stabilized	Front wheel independent suspension, Rear wheel independent suspension. Stabilizer Rod Types													
Unit 5	COMPUTER CO	NTROLLED SUS	PENSION SYSTEMS												
	and														
	STABILITY CON	NTROL													
А	Introduction - Prog	CO5, CO6													
В	Vehicle dynamic su	uspension system, H	Electronic suspension	CO5, CO6											
	control (ESC) syste	em, Integrated elect	ronic systems and	,											
	networks.	-													
С	Vehicle stability co	ontrol, Active roll co	ontrol systems, Active	CO5, CO6											
	cruise control, Lan	e departure warning	g systems, Collision												
	mitigation systems,	, Telematics													
Mode of	Theory														
examination		L													
Weightage	CA	MTE	ETE												
Distribution	25%	25%	50%												
Text	Automotive Engine	eering - Powertrain	n, Chassis System and												
book/s*	Vehicle Body - Day	vid A. Crolla, Butter	rworth-Heinemann, First												
Others	Edition, 2009	A	V 1' 1. E ' 1												
Other	1. A Practical	Approach to Motor	venicle Engineering and												
References	2 Derek New	e - Allall Dollinck. Ald Butterworth H	ainemann Third Edition												
	2. Detek Newt		anomann, rinnu Euruoll,												
	3. The Automo	otive Chassis: Engin	eering Principles - Prof.												
	Dipl. Ing. Jö	ornsen Reimpell.													
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
----------	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------
AUT303.1	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT303.2	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT303.3	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT303.4	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT303.5	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT303.6	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3
AUT303	3	-	-	2	2	3	3	-	-	1	3	2	3	2	3

1-Slight (Low)

2-Moderate (Medium)

School:	SSET	Batch : 2023-2027					
Program	nme: B. Tech	Current Academic Year: 2023-2024					
Branch	ME	Semester:					
1	Course Code	AUT304					
2	Course	Vehicle Inspection and Maintenance					
	Name						
3	Credits	3					
4	Contact Hours	3-0-0					
	<u>(L-T-P)</u>						
~	Course Status	Program Elective	• .				
5	Course	1. To gain fundamental knowledge about various vehicle m	aintenances				
	Objective	2. To gain basics knowledge about the various engine faults a	nd recovery				
		5. To acquire knowledge about the various engine faults and recovery methods					
		4 To impart the fundamental knowledge in fuel, cooling and	d lubrication				
		systems.					
		5. To make the students to understand the common probl	em arises in				
		transmission systems and rectification procedure.					
		5. To familiarize the students with the servicing procedures of braking.					
		electrical and modern vehicle systems					
6	Course	After the successful completion of course, students will be	able to:				
	Outcomes	CO1: Demonstrate the importance of vehicle insp	bection and				
		maintenance.					
		CO2: Diagnose the causes of Engine problem and provide	the remedial				
		action					
		CO3: Implement the knowledge to rectify the fuel, cooling and					
		lubrication systems defects.					
		CO4: Identify the causes, servicing the clutch, gear bo	x, universal				
		joints, propeller shaft, and differential.					
		COS:Apply the basic knowledge and rectify the transmiss	sion systems				
		problems					
		CO6: Possess the knowledge about the inspection and ma	intenance of				
		vehicle braking, electrical and modern vehicle systems.					
7	Course Description	This course prepares students to install, remove, maintain and repair this system in an automobile. This course introduces students to transmissions, transaxles and transmission services. It also discusses transmission theory as well as the maintenance of a latest vehicle's transmissions and transaxles					
8	Outline syllabus	S	CO				
			Mapping				

Unit 1	MAINTENANCI SCHEDULES	E BASICS and IN	SPECTION					
А	Need for mainter	nance, types of ma	aintenance: preventive and	CO1 CO6				
	breakdown mainte	enance.		001,000				
В	Requirements of r	maintenance, prepar	ration of check lists.	CO1 CO6				
	Inspection schedu	le, maintenance of	records	001,000				
C	Log sheets and ot	ther forms, safety p	precautions in maintenance:	CO1 CO6				
	General safety, to	ol safety.		001,000				
Unit 2	ENGINE SERVI	ICE						
A	Tools used for eng	gine disassembly, d	ismantling of engine	CO2. CO6				
	components: cylin							
В	Dismantling of er	CO2, CO6						
	rod, piston and cra	ankshaft assembly						
C	Cleaning and insp	ection of engine con	mponents, reconditioning of	CO2, CO6				
Unit 3	FUEL and LUBE	RICATION SYST	EMS					
A	Servicing and mai	intenance of fuel sy	stem, Engine tune-up,	CO3, CO6				
В	Cooling system: v	vater pump, radiato	r, thermostat.					
		CO3, CO6						
C	Lubrication syster	n maintenance, An	ticorrosion and anti-freeze	CO3, CO6				
	additives.	additives.						
Unit 4	TRANSMISSIO							
A	Servicing and mai	CO4. CO6						
	propeller shaft, di	fferential system.		201,200				
В	Service and maint	tenance of brake – c	lisc and drum brakes,	CO4, CO6				
~	steering wheel			<u> </u>				
C	Service and maint	enance of suspensi	on systems, wheel	CO4, CO6				
 TT 1 1	alignment and veh	nicle body maintena	ance.					
Unit 5	ELECTRICAL S	SYSTEMS						
A	Servicing and mai and generator.	intenance of battery	y, starter motor, alternator	CO5, CO6				
В	Servicing and mai	intenance of ignitio	n system, lighting system,	CO5, CO6				
	electric horn							
С	Servicing and mai	intenance of wiper	motor, Modern vehicle	CO5, CO6				
	systems.							
Mode								
of	Theory							
examin								
ation								
 		I	T					
Weight	CA	MTE	ETE					
age	25%	25%	50%					
Distrib								
ution								

Text	Knott and Phil Knott, "An Introductory Guide to Motor Vehicle	
book/s*	Maintenance: Light Vehicles", EMS publishing, 2010.	
Other	1. William H. Crouse and Donald L. Anglin, "Automotive	
Referen	Mechanics", 10th edition, 2007.	
ces	2. Tim Giles, "Automotive service: Inspection, maintenance	
	and repair", 3rd edition, 2007.	
	3. Jack Erjavec, "Automotive technology: A systems	
	approach", 5th edition, 2009.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
AUT304.1	3	3	-	1	2	-	-	-	-	1	-	-	2	3	3
AUT304.2	3	2	-	1	1	-	-	-	-	1	-	-	2	2	2
AUT304.3	3	2	-	1	1	-	-	-	-	1	-	-	2	2	2
AUT304.4	3	2	-	1	1	-	-	-	-	1	-	-	2	2	2
AUT304.5	3	3	-	1	1	-	-	-	-	1	-	-	2	3	2
AUT304.6	3	3	-	3	3	-	-	-	-	2	-	-	2	3	3
AUT304	3	3	-	1	2	-	-	-	-	1	-	-	2	3	3

1-Slight (Low)

2-Moderate (Medium)

Sc									
Pr	ogramme:	Current Academic Year: 2023-2024							
B.	Tech								
Bı	ranch: ME	Semester: VII							
1	Course Code	EEE332							
2	Course Title	Power Electronics							
3	Credits	3							
4	Contact Hours (L-T-P)	3-0-0							
	Course Status	Program Elective							
5	Course	1. To know the power electronics devices, basic structu	ure, symbol						
	Objective	 and characteristics. 2. To understand the topologies and analyze ac to dc, c to ac converters. 	lc to dc and dc						
6	Course	After the successful completion of course, students will be a	able to:						
	Outcomes	CO1: Compare the working mechanism of semi-conductor	devices						
		CO2: Analyse and design DC-DC converters							
		CO3: Predict the behaviour of phase-controlled converters							
		CO4: Evaluate the performance of AC-AC and AC-DC con	nverters						
		CO5: Improve the functioning of different voltage source for	or inverters						
		CO6: Choose the converters for real time applications							
7	Course Description	The field of power electronics encompasses the application of concepts in several disciplines: electronic devices and cirr speed drives and control systems. Variable speed drives automation in production processes. The use of electric cars and electric subway trains can substantially reduce un problems. Students learn power electronics devices li MOSFET, IGBT, GTO etc., various phase controlled sin three phase rectifiers with performance factors, dual conver of dc to dc conversion, class A,B,C,,D,E,F Choppers, techniques, comprehensive treatment of dc to ac inverte converters and cycloconverters.	of fundamental cuits, variable s has resulted , electric trains ban pollution like thyristors, gle phase and rters, principle commutation rs, ac voltage						
8	Outline syllabu	8	CO Mapping						
	Unit 1	Power semiconductor Devices	CO1						
	A	Power semiconductor devices their symbols and static characteristics: Characteristics and specifications of switches	CO1						
	В	Operation, steady state and switch characteristics, switching limits of Power Transistor Operation and steady state characteristics of Power MOSFET and IGBT	CO1						
	C	Snubber circuit, Series and parallel operation of thyristors, Commutation techniques of thyristor, methods of turn-on of thyristor, operation of GTO, MCT and TRIAC	CO1						

Unit 2	DC-DC Converters	CO2
A	Principles of step-down chopper, step down chopper with R-L	CO2
В	Load Principle of step-up chopper, and operation with RL load	CO2
С	Classification of choppers. Buck and boost converter.	CO2
Unit 3	Phase Controlled Converters	CO2,CO3
A	 Single phase line commutated converters: single phase half controlled converter with resistive and inductive loads, Single phase fully controlled converter, mid point and bridge connections with resistive and inductive loads, effect of freewheeling diode, performance parameters, effect of source inductance, single phase dual converter. 	CO2,CO3
В	Three phase line commutated converters: Three phase half wave converter, three phase fully controlled and half controlled converters with resistive and inductive loads, effect of freewheeling diode, performance parameters, effect of source inductance, three phase dual converter.	CO2,CO3
C	Single phase half wave controlled rectifier with resistive and inductive loads, effect of freewheeling diode.	CO2,CO3
Unit 4	AC Voltage Controllers	CO4
A	Principle of On-Off and phase control, Single phase two SCRs in anti parallel with R and RL load	CO4
В	Triac with R and RL load, Three phase ac voltage controllers (various configurations and comparison only)	CO4
С	Cyclo Converters: Basic principle of operation, single phase to single phase, three phase to single phase and three phase to three phase cyclo converters, output voltage equation.	CO4
Unit 5	Inverters	CO5,CO6
А	Single phase series resonant inverter, single phase bridge inverter	CO5, CO6
В	Three phase bridge inverters, Voltage control of inverters	CO5, CO6
С	Harmonics reduction techniques, Single phase and three phase current source inverters.	CO5, CO6
Mode or examina	Theory ion	
Weighta	e CA MTE ETE	
Distribu	ion 25% 25% 50%	
Text book/s*	 M.H. Rashid, "Power Electronics: Circuits, Devices & Applications", Prentice Hall of India, Ltd. 3rd Edition,2004 V.R. Moorthy, "Power Electronics : Devices, Circuits and Industrial Applications" Oxford, University Press,2007. 	

	3.	M.D.Singh & K.B.Khanchandani, "Power	
		Electronics", Tata McGraw Hill publishing company,	
		1989	
Other	1.	M.S. Jamil Asghar, "Power Electronics" Prentice Hall	of India Ltd.,
References		2004.	
	2.	Chakrabarti & Rai, "Fundamentals of Power Electronic	s & Drives"
		DhanpatRai& Sons.	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
EEE332.1	3	3	-	-	1	-	-	-	-		-	-	2	3	3
EEE332.2	3	2	-	-	1	-	-	-	-		-	-	2	2	2
EEE332.3	3	2	-	-	1	-	-	-	-		-	-	2	2	2
EEE332.4	3	2	-	-	1	-	-	-	-		-	-	2	2	2
EEE332.5	3	3	-	-	1	-	-	-	-		-	-	2	3	2
EEE332.6	3	3	-	-	2	-	-	-	-		-	-	2	3	3
EEE332	3	3	-	-	1	-	-	-	-	-	-	-	2	2	3

1-Slight (Low) 2-Moderate (Medium)

Sch	ool: SSET	Bath: 2023-2027							
Pro	gramme:	Current Academic Year: 2023-2024							
B.T	ech								
Bra	nch: ME	Semester: VIII							
1	Course Code	MIC008							
2	Course Title	Virtual Instrumentation							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-I-P)	Due a many Elia atima							
	Status	Program Elective							
5	Course	1 Introduction to the various models of Virtual Instruments, their							
5	Objective	comparison with traditional instruments and major application areas of VI.							
		2. Introduction to basics of Labview							
		and Strings and files.							
		4. Basics of signal conditioning techniques along with DAQ							
		hardware and software and various signal processing techniques available in LABVIEW.							
		5. Advanced concepts in Lab view with main concepts of real time							
		applications in Image acquisition and Motion control.Building of Virtual Instruments with various types of controls							
		and indicators.							
6	Course	After the successful completion of course, students will be able to:							
0	Outcomes	CO1:Understand various models and areas of application of Virtual							
	outcomes	COT. Onderstand various models and areas of application of virtual							
		Instrumentation.							
		CO2: Understand various components of Lab VIEW required for the							
		development of VI.							
		CO3: Understand and apply various programming functions of LabVIEW							
		like loops, arrays, clusters and file I/Os for building of simple Virtual							
		instruments.							
		CO4: Understand the concepts of Data acquisition hardware and							
		software and to apply basic signal processing techniques available in							
		LabVIEW.							
		CO5: Understand the real time applications of LabVIEW in motion							
		control and Image acquisition.							
		CO6:Able to build VI for simulated and real time applications.							

7	Course								
	Description	The course content of this subject is shaded on introduction	to enombiant						
	_	The course content of this subject includes an introduction	to graphical						
		system design. This course also focuses on introduction t	o LabVIEW						
		which extensively elaborate the Graphical programming	language .In						
		Unit 3, building of VI by using loops, arrays, clusters etc	c. have been						
		dealt with. Use of strings and I/O are also elaborated in this	course. Data						
		acquisition and various signal processing techniques are also	so covered in						
		this course. Two real time applications motion control and Image							
		acquisition by using LabVIEW have been elaborated in thi	s course.						
8	Outline syllabus								
			Mapping						
	Unit 1	Introduction	CO1						
	А	Graphical system design model - design model, prototype model, deployment model							
	В	Building blocks of VI; Virtual instrument versus traditional							
	9	instrument, Hardware and software in VI							
	C	Graphical system Design using LabVIEW; Graphical							
	T T 1 / A	programming and Textual programming	000 000						
	Unit 2	Graphical system Design using LabVIEW	02,006						
	А	Advantages of LabVIEW; Components of VI Software - Front							
		panel windows, Block diagram windows, Icon /connector							
	D	Creating and saving a VI: Teelbarg Deletter Front name							
	D	controls and indicators Block diagram – terminals nodes							
		functions							
	С	Sub VIs, Express VIs and VIs, wires: Data types, Data flow							
	-	program							
	Unit 3	Programming Techniques	CO3.CO6						
	А	Modular Programming in Lab View; Building VI front panel and block diagram							
	В	Loops – for and while loops, Local and Global variables in							
	D	LabVIEW, Arrays in LabVIEW,							
	С	Clusters in LabVIEW; Conversion between arrays and							
		clusters, Plotting data in LabVIEW, Strings and File I/O in							
		LabVIEW							
	Unit 4	Data Acquisition and Signal Processing in LabVIEW	CO4,CO6						
	А	Transducers and Signal conditioning ,sampling and aliasing							
	В	Basics of DAQ hardware and software, DAQ modules and							
		drivers for building virtual instruments							
	C	Fourier transforms; Power spectrum, Correlation methods;							
		Windowing & filtering							
	Unit 5	Advanced concepts in LabVIEW	CO5, CO6						
	А	Data Socket, TCP/IP VI's synchronization							

В	Serial interface	buses - RS 232,	RS485,USB						
С	Concepts of rea	l time systems;	Image acquisition; Motion						
	control								
Mode of	Theory/Jury/P	Theory/Jury/Practical/Viva							
examination									
Weightage	CA								
Distribution	25%	25%	50%						
Text book/s*	1. Jovitha Jerome, "Virtual Instrumentation and LABVIEW", PHI Learning								
Other References	1. C.L. Clarl Company.	k, "LabVIEW D	igital Signal Processing", TMH	Publishing					
	2. Technical Manuals for DAQ Modules, Advantech and National Instruments								
	3. <u>www.profhkverma.info:</u> Chapter 2: Technologies/ Protocols for Wired Sensor Network								
	4. NI USI <u>www.ni.com</u>	ER MANUAL <u>h</u>	ttp://www.ni.com/pdf/manuals/3	76445b.pdf					

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MIC008.1	1	2	2	2	2	1	1	2	1	2	-	2	2	2	1
MIC008.2	3	2	1	2	3	1	2	2	1	1	-	2	2	2	2
MIC008.3	3	2	3	2	3	2	2	2	1	2	-	2	2	2	2
MIC008.4	2	2	2	2	1	2	2	2	2	2	-	3	3	2	2
MIC008.5	2	3	3	2	2	2	2	2	2	2	-	3	3	2	2
MIC008.6	2	3	3	2	3	2	2	2	2	3	2	3	3	2	3
MIC008	2	2	3	2	3	2	2	2	2	3	2	3	3	3	3

1-Slight (Low)

2-Moderate (Medium)

School: SSET		Batch : 2023-2027							
Prog	ramme:	Current Academic Year: 2023-2024							
B.Te	ch								
Bran	ich: ME	Mechanical Engineering							
1	Course	ECE002							
	Code								
2	Course	Microcontrollers and Applications							
	Title								
3	Credits	2							
4	Contact	2-0-0							
	Hours								
	(L-T-P)								
	Course	Program Elective							
-	Status								
5	Course	• Embedded Systems and design issues							
	Objective	Advanced Computer Architecture							
		Embedded System Installation/ Configuration using AV	R						
		microcontroller							
		Development of Embedded Firmware using AVR micro	ocontroller						
		• Troubleshooting and Maintenance of embedded system							
6	Course	After the successful completion of course, students will be able	to:						
	Outcomes	CO1: Apply and illustrate advanced computer architecture							
		CO2: Embedded system installation/ configuration using AVR							
		microcontroller							
		CO3: Apply different modes, Input Capture and Compare Mat	tch.						
		in controller							
		CO4: Interpret the programmes by using interrupts and timer							
		CO5: Development of Embedded Firmware for peripheral func	tions						
7	Course								
	Description	In this course, the fundamentals of embedded system hardware	and						
	1	firmware design will be explored. Issues such as embedded pro	cessor						
		selection, hardware/firmware partitioning, glue logic, circuit de	sign, circuit						
		layout, circuit debugging, development tools, firmware architec	cture,						
		firmware design, and firmware debugging will be discussed. Th	ne AVR, a						
		very popular 8 microcontroller family, will be studied. The arch	nitecture and						
		instruction set of the microcontroller will be discussed, and a w	ire wrapped						
		microcontroller board will be built and debugged by each student. The							
		course will culminate with a significant final project which will extend the							
		concepts covered earlier in the course. Learning may be supplemented with							
		periodic guest lectures by embedded systems engineers from in	dustry						
8	Outline svllab	l DUS	СО						
	0 j mat		Mapping						
	Unit 1 AV	R RISC Microcontrollers							

	А	Introduction to AVR	RISC Microcor	ntrollers, Architecture overview, ter file memories	CO1, CO2		
	В	Instruction set, Data	Transfer Instruc	ctions, Arithmetic and Logic	CO1, CO2		
		Instructions, Branch	Instructions		,		
	С	Bit and Bit-test Instr	uctions, MCU C	Control Instructions. Simple	CO1, CO2		
		programs in Assemb	ly Language / C	Language			
	Unit 2	Interrupts and Tim	er				
	А	Introduction to Syste	m Clock, Reset	sources,	CO3, CO4		
		Introduction to interr	CO3, CO4				
	В	bit Timers,					
	С	Introduction to differ	ent modes, Inpu	It Capture and Compare Match.	CO3, CO4		
	Unit 3	Inbuilt Peripheral I	Functions				
	А	Analog Comparator,	gital Converter, Serial Peripheral	CO5			
	В	The Universal Synch	nchronous serial Receiver and	CO5,			
		Transmitter (USART					
	С	Two Wire Interface (CO5				
Mod	e of	Theory					
exan	nination						
Weig	ghtage	CA	MTE	ETE			
Dist	ribution	25%	25%	50%			
Text	book/s*	1.AVR Microcontrol	ler and Embedd	led Systems: Using Assembly and	C by		
		Muhammad Ali Maz	idi, Sarmad Nai	mi, Sepehr Naimi, PHI			
		2. Embedded system	Design - Frank	Vahid and Tony Givargis, John W	iley, 2002		
Othe	Other 1.Programming and Customizing the AVR Microcontroller by D V Gad						
Refe	rences	McGraw- Hill					
2. Atmel AVR Microcontroller Primer: Programming and Interfacing by							
	laypool Publishers						
	y David E Simon, Addison Wesley						
		4. AVR Microcontro	ller Datasheet, A	Atmel Corporation, <u>www.atmel.com</u>	<u>n</u>		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ECE002.1	3	3	-	-	-	-	-	-	-	-	-	2	1	-	2
ECE002.2	2	3	-	-	-	-	-	-	-	-	-	2	1	-	2
ECE002.3	3	3	-	-	-	-	-	-	-	-	-	2	1	-	2
ECE002.4	2	3	-	-	-	-	-	-	-	-	-	2	1	-	2
ECE002.5	2	3	-	-	-	-	-	-	-	-	-	2	1	-	2
ECE002.6	2	3	-	-	-	-	-	-	-	-	-	2	1	-	2
ECE002	2	3	-	-	-	-	-	-	-	-	-	2	1	-	2
1-Slight (Low) 2-Moderate (Medium)					3-S	ubstan	tial (Hi	gh)	•	•					

Sc	hool: SSET	Batch : 2023-2027								
Pr	ogramme:	Current Academic Year: 2023-2024								
В.	Tech									
Bı	anch: ME	Mechanical Engineering								
1	Course	MEC481								
	Code									
2	Course	Mechanical Behaviour of Nanomaterials								
	Title									
3	Credits	3								
4	Contact	3-0-0								
	Hours									
	(L-T-P)									
5	Course	Program Core								
	Status									
6	Course	After the successful completion of course, students will be able t	.0:							
	Outcomes	CO1: Explain the principle and influence of process variables o	f chemical							
		and inert gas condensation route adopted for synthesis of nanos	tructured							
		particles								
		CO2: Compare and contrast different processing routes commo	nly adopted							
		for fabrication of nanostructured components								
		CO3: Analyse and suggest ways to alter the mechanical propert	ies of a							
		metal/alloy								
		CO4: Select appropriate tools for nanomaterial characterization								
		CO5: Distinguish between the mechanical behaviour of nanostr	uctured							
		components and conventional components possessing large gra	in size							
		CO6: Develop nanostructured components as per the requireme	ents							
7	Carrier		-1 £							
/	Course	The course along with mechanical behaviour of nanomaterials,	also focuses							
0	Description	extensively on synthesis and characterization of nanomaterials.	<u> </u>							
ð	Outline synat	bus	CO							
	TT . •4 1		Mapping							
		Synthesis of Nanostructured Particles	CO1 CO(
	A	Chemical Synthesis of Nanostructured Particles: Nucleation	COI, CO6							
		and Growth, Dispersion and Aggiomeration, Metals, Ceramics								
	D	and Cytotoxicity of Nanoparticles	001 000							
	В	Synthesis of Nanostructured Materials by Inert-Gas	CO1, CO6							
		Condensation (IGC) Methods: Introduction, Principle,								
		Classification, Evaporation Techniques; and Classical								
	C	Inducted to the Interview of the Angel Ang	<u> </u>							
	C	Advantages Limitations and Recent Developments in ICC	COI							
<u> </u>	U	Advantages, Limitations and Recent Developments in IGC								
	Unit 2	Fabrication of Nanostructured Components	CO2 CO2							
	A	Phenomenology of Nanostructure Formation, High-Energy Ball	002, 006							
		Milling and Mechanical Attrition, Phase Stability at Elevated								
		Temperatures and Severe Plastic Deformation (SPD)								

В	Thermodynamics, Mechanisms and Kinetics of Nanocrystalline	CO2
	Powder Densification: Thermodynamic and Kinetic Effects,	
	Sintering Mechanisms, Role of Impurities, Green Density, Pore	
	Size Effect on Densifications and Grain Growth	
С	Methods for Full Densification of Nanopowders:	CO2
	Characterization of Nanomaterials Densification, Density and	
	Grain Size Measurements, Conventional and Non-	
	Conventional Sintering methods	
Unit 3	Strengthening in Polycrystalline Materials	
A	Yield Strength of a Perfect Crystal, Dislocations: Types,	CO3
	Properties and Mechanisms of dislocation motion	
В	Initiation of plastic flow in single crystals, Stress-Strain	CO3
	behavior of single crystals, Plastic flow in poly-crystals and	
~	Geometrically Necessary Dislocations	
C	General Description of Strengthening, Work Hardening,	CO3
	Boundary Strengthening, Solid-Solution Strengthening and	
 	Particle Hardening	
Unit 4	Tools to Characterize Nanomaterials	004
A	X-ray Diffraction (XRD), Small Angle X-ray Scattering	CO4
	(SAXS), Scanning Electron Microscopy (SEM) and	
D	I ransmission Electron Microscopy (TEM)	004
В	Atomic Force Microscopy (AFM) and Scanning Tunnelling	CO4
	dimensional Atom Probe (2DAD)	
C	dimensional Atom Probe (3DAP)	CO4 CO5
C	Nanoindentation: Principle, Working, Evaluation of Elastic	004,005
	modulus, Hardness, Wear properties etc.	
Unit 5	Mechanical Behaviour of Nanostructured Materials	
A	Models and Computer Simulations of Mechanical Behavior of	CO5, CO6
	Nanocrystalline Materials, Effect of Density, Pores and	
	Microcracks	<u> </u>
В	Elastic Properties, Strength, Hardness and Ductility of	CO5, CO6
 	Nanocrystalline Metals	
С	Mechanical Properties at Room and Elevated Temperatures: Al-	CO5, CO6
	Based I wo-Phase Nanostructured Alloys, Mg-Based	
	Amorphous and Nanostructured Alloys, Zr and 11 based Alloys	
Madaaf	Theory	
who work of	Theory	
 Woightaga		
Distribution	25% 25% 50%	
 Tovt	2570 2570 5070 Nanostructured Materials: _ Drocossing properties and	
hook/s*	annlications by Karl C Koch	
0000/2	apprecisions by Ran C. Roon	
Other	Textbook of Nanoscience and Nanotechnology by R.S.	
Defenences	Murthy P Shankar Baldey Rai B B Rath and James Murday	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MCH001.1	3	3	1		-	-	1	1	-	-	-	1	1		
MCH001.2	2	3	1		-	-	1	1	-	-	-	1	1		
MCH001.3	3	3	1		-	-	1	1	-	-	-	1	1		
MCH001.4	2	3	1		-	-	1	1	-	-	-	1	1		
MCH001.5	2	3	1		-	-	1	1	-	-	-	1	1		
MCH001.6	3	3	1		-	-	1	1	-	-	-	1	1	-	
MEC481	3	3	1	-	-	-	1	1	-	-	-	1	1	-	-

1-Slight (Low)

2-Moderate (Medium)

Scl	hool: SSET	Batch : 2023-2027									
Pre	ogramme: B.Tech	Current Academic Year: 2023-2024									
Br	anch: ME	Mechanical Engineering									
1	Course Code	MEC482									
2	Course Title	Material Behaviour and Failure Prediction									
3	Credits	2									
4	Contact Hours	3-0-0									
	(L-T-P)										
	Course Status	Program Core									
5	Course Objective	1. To develop knowledge of crystals and their imperfe	ections.								
		2. To understand different strengthening mechanisms of materials.									
		3. To understand behavior of materials under tension.									
		4. To understand mechanisms of brittle and ductile fract	ure.								
		5. To study the mechanisms of fatigue and creep.									
6	Course	After the successful completion of course, students wil	l be able to:								
	Outcomes	CO1: Define different crystal systems and Bravais lattice al	ong with defects								
		in crystals.									
		CO2: Classify different strengthening mechanisms.									
		CO3: Develop the knowledge of tensile test.									
		CO4: Analyse mechanisms of brittle and ductile fracture.									
		CO5: Explain the mechanisms of fatigue and creep in materials.									
		CO6: Build the knowledge of deformation of materials under tension, fatigue									
		and creep.									
7	Course	This course focuses on the deformation behavior of	materials under								
	Description	tension, fatigue, creep and fracture behavior of bri	ttle and ductile								
		materials.	1								
8	Outline syllabus		CO Mapping								
	Unit 1	Crystal Systems and Imperfections									
	A	Basic knowledge about various crystal systems, Bravais	CO1								
	B	Crystal Imperfections such as point defects line defects	~~ .								
	D	surface and interfacial defects	CO1								
	С	Types of dislocations, Bergers vector, dislocation loop,	CO1								
	Unit 2	Strengthening mechanism of crystalline materials									
		Grain boundary strengthening	CO1								
	R	Solid solution strengthening Strengthening due to second									
	U	phase particles	CO3								
	С	Strain hardening, Bauschinger effect	CO3								
	Unit 3	Tensile test									
	А	Engineering stress-strain curve, true stress-strain curve	CO2								

В	Instability in ter on tensile prope	nsion, effects of rties	strain rate and temperature	CO2
С	Notch tensile te	CO2		
Unit 4	Fracture			
А	Types of fractur	e in metals, theo	retical cohesive strength	CO4
В	Griffith theory Griffith theory	of brittle frac	ture, modifications of the	CO5
С	Fracture of sing fracture	gle crystals, duc	tile fracture, notch effect in	CO5
Unit 5	Fatigue and (Creep in mate	rials	
А	Fatigue, crack in	nitiation and pro	pagation, S-N Curve	CO6
В	Surface effects	and fatigue, corr	osion Fatigue	CO6
С	Creep, stages of	creep curve, stre	ss and temperature effects	CO6
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1. G. E. Diete BOOK COM			
Other References				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
MCH002.1	3	3	2	1	-	-	-	-	-	-	-	-	2	2
MCH002.2	2	3	2	1	-	-	-	-	-	-	-	-	3	3
MCH002.3	3	3	1	2	-	-	-	-	-	-	-	-	1	-
MCH002.4	2	3	1	3	-	-	-	-	-	-	-	-	3	2
MCH002.5	2	3	3	3	-	-	-	-	-	-	-	-	-	-
MCH002.6	3	3	3	3	-	-	-	-	-	-	-	-	-	-
MEC482	3	3	2	2	-	-	-	-	-	-	-	-	2	2

1-Slight (Low)

2-Moderate (Medium)

So	chool: SSET	Г	Batch : 2023-2027								
P	rogramme:	B.Tech	Current Academic Year: 2023-2024								
B	ranch: ME		Mechanical Engineering								
1	Course Co	de	MEC483								
2	Course Tit	tle	Intermediate Fluid Mechanics								
3	Credits		4								
4	Contact Ho	ours	3-0-0								
	(L-T-P)										
	Course Sta	tus	Program Elective								
5	Course Ob	jective	To use mathematics to make models of fluid flow and solve them for								
			some simple engineering applications								
6	Course Out	tcomes	After the successful completion of course, students will be able to:								
			CO1. Understand the concept of fields and local rates of change								
			CO2. Solve simple problems as analytical solution	s of NS							
			equation								
			CO3. Make approximations in fluid mechanics.								
			CO4. Use simple concepts of boundary layers								
			CO5. Understand simple models of turbulent flows								
			CO6. Make simple applications of unsteady flows								
7	Course Des	scription	The course teaches fluid mechanics and its application mathematics	with mo9re							
8	Outline syl	labus		СО							
	-			Mapping							
	Unit 1	Fluid Flov	v fields and rates of change with time								
	А	Introductio	n to Eulerian descriptions and time rates of change	CO1							
	В	Control vo	lume analysis and Reynolds transport theorem	CO1							
	С	Application	ns to mass. Momentum and energy balance for CVs	CO1							
	Unit 2	Navier-Sto	okes equation								
	А	Derivation	of NS equation	CO2							
	В	Application	ns to some fully-developed flows	CO2							
	С	Application	ns to Raleigh problems	CO2							
	Unit 3	Similitude	and Approximations								
	А	Normalizat	tion of equations and Pi numbers	CO3							
	В	Approxima	ations.	CO3							
	С	Low Re flo	DWS	CO3							
	Unit 4	Boundary	layer flows								
	А	Introductio	n to boundary layers	CO4							
	В	Blassius sc	lutions and Falkner Skan solutions	CO4							
	С	Boundary	layue separation CO5								
	Unit 5	Turbulenc	ce and Unsteady flows								
	А	Basic conc	epts of turbulence	CO5							
	В	Simple mo	dels of turbulence CC								

С	Unsteady flows			CO6							
Mode of examinati on	Theory	eory									
Weightag	CA	A MTE ETE									
e	25%	25%	50%								
Distributi											
on											
Text	Som and Biswas	s: Introduction to	Fluid Mechanics and Fluid								
book/s*	Machines,										
	Gupta and Gupta	Supta and Gupta: Fluid Mechanics and Its applications									
Other											
Referenc											
es											

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC483.1	3	3	1	1	1	1			2	1		1	2		
MEC483.2	3	3	1	1	2	1			2	1		2	2		
MEC483.3	3	3	1	1	1	1	2		2	1		2	2		
MEC483.4	3	3	1	1	1	1			2	1		1	2		
MEC483.5	3	3	1	1	2	1	2		2	1		1	2		
MEC483.6	3	3	1	1	1	1			2	1		1	2		
MEC483	3	3	1	1	1	1	2		2	1		1	2		

1-Slight (Low)

2-Moderate (Medium)

So	chool: SSET	Batch : 2023-2027						
Pı	rogramme:	Current Academic Year: 2023-2024						
B.	Tech							
B	ranch: ME	Mechanical Engineering						
1	Course Cod	e MEC484						
2	Course Titl	Design for Additive Manufacturing						
3	Credits	3						
4	Contact	3-0-0						
	Hours							
	(L-T-P)							
	Course	Program Elective						
	Status							
5	Course	Generating a good understanding of Additive Manufactur	ing, its					
	Objective	development and applications, To expose the students to different	types of					
		Additive Manufacturing Processes, Pre and post processing of	additive					
	0	anufacturing and mathematical modeling for additive manufacturing						
6	Course	After the successful completion of course, students will be able to:						
	Outcomes	1. Explain the working principle and its application.						
		2. Select the suitable material for fabricating a given product						
		3. Identify pre and post processing of additive manufacturing						
		4. Select an Additive manufacturing technology for a given con	nponent					
		5. Design and develop mathematical model for additive manufactorial	acturing					
		6. Explore the applications and limitations of AM processes in	various					
		fields						
7	Course	Additive Manufacturing (AM) is a process of joining materials	to make					
	Description	objects from 3D model data, usually layer up on layer, as opposed to						
		subtractive manufacturing methodologies, such as traditional machin	ing. The					
		basic principle of AM is that a model, initially generated using	a three					
		dimensional computer Aided Design system, can be fabricated direct	ctly. AM					
		technologies have significantly evolved over the last decade. Because	e of their					
		potential to extensively transform the nature of manufacturing proc	esses by					
		enabling "Freedom of Design " several industries have been attr	acted by					
		these technologies. Using AM, manufacturing of highly complex j	parts can					
		be an economically viable alternative to conventional manuf	acturing					
0	Quet1's a see11	technologies.	00					
ð	Outline sylla	ious	CU Morri					
			mappi					
	Unit 1		ng					
		ntroduction						
	Δ							
		atroduction to Additive Manufacturing and classification of Additive						
	ב ק	Janufacturing Processes: Additive Subtractive Formative Generic	CO1					
		Manufacturing 110005505. Adultive, Subtractive, Politiative, Gellenc						
	1	AM process						

В	Applications of additive manufacturinginrapidprototyping,rapidmanufacturing,rapidtooling,rep airingandcoating	CO1,C 06
С	Indirect Processes - Indirect Prototyping. Indirect Tooling, Indirect Manufacturing	CO1
Unit 2	Materials science for Additive Manufacturing	
А	Use of material for additive manufacturing. Liquid Based Materials : Photopolymers development , Photopolymer Chemistry	CO2
В	Solid Based Materials : Polymers, Metals, Composites, Ceramics	CO2
C	Use of multiple materials, multifunctional and graded materials in AM Role of solid if I cation rate ,Evolution of non-equilibrium structure property relationship, Grain structure and microstructure.	CO2
Unit 3	Pre and Post Processing of Additive Manufacturing Processes	
А	Pre-Processing in Additive Manufacturing :Preparation of 3D-CAD model, Reverse engineeringandReconstructionof3D- CADmodel,Partorientation and support generation,	CO3
В	STL Conversion,STLerrordiagnostics,SlicingandGenerationofcodesfortool path,Surfacepreparation of materials	CO3
C	Post-Processing in Additive Manufacturing: Support material removal ,improvement of surface texture ,accuracy and aesthetic; property enhancements.	CO3
Unit 4	Additive Manufacturing Technology	
А	3D-printing,Stereo lithography apparatus (SLA), Fused deposition modelling (FDM),Laminated Object Manufacturing(LOM)).	CO4
В	Selective deposition lamination(SDL),Ultra sonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam freeform fabrication(EBFFF),	CO4
С	Electron beam melting(EBM), Plasma transferred arc additive manufacturing(PTAAM), Tungsten inert gas additive manufacturing(TIGAM),Metal inert gas additive manufacturing (MIGAM).	CO4
Unit 5	Mathematical Models for Additive manufacturing	
A	Transport phenomena models: temperature, fluid flow and composition, buoyancy driven tension driven free surface flow pool	CO5
В	Case studies: Numerical Modeling of additive manufacturing process, Powder bed melting based process, droplet based printing process,	CO5
C	Residual stress, part fabrication time, cost, optimal orientation, defects in additive manufacturing and role of transport simulations(choice of parameter, model validation)	CO5

	Mode of	Theory								
	examina									
	tion									
	Weighta	CA	MTE	ETE						
	ge	25%	25%	50%						
	Distribut									
	ion									
	Text	Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies:								
	book/s*	Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010								
	Other									
	Referenc	1. Chua C K, Leo	ng K F, Chu S L, Raj	oid Prototyping: Principles and						
	es	Applications in M	lanufacturing, World	Scientific.						
		2. 3. Liou W L, L	iou F W, Rapid Proto	typing and Engineering application	ons: A					
		tool box for proto	type development, C	RC Press.						
		3. Kamrani A K, I	Nasr E A, Rapid Prot	otyping: Theory and practice, Spi	ringer,					
		4. Noorani R, Rapid Prototyping: Principles and Applications in Manufacturing,								
		John Wiley & Sons								
20	TID OF 1 D									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MCH004.1	3	3	1		-	-	-	-	-	-	-	1	1		
MCH004.2	2	3	1		-	-	-	-	-	-	-	1	1		
MCH004.3	3	3	1		-	-	-	-	-	-	-	1	1		
MCH004.4	2	3	1		-	-	-	-	-	-	-	1	1		
MCH004.5	2	3	1		-	-	-	-	-	-	-	1	1		
MCH004.6	3	3	1		-	-	-	-	-	-	-	1	1	-	
MEC484	2	3	1		-	-	-	-	-	-	-	1	1	-	-

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027						
Pr	ogramme: B.Tech	Current Academic Year: 2023-2024						
Br	anch: ME	Mechanical Engineering						
1	Course Code	MEC485						
2	Course Title	Finite Element Methods in Solid Mechanics						
3	Credits	3						
4	Contact Hours	3-0-0						
	(L-T-P)							
_	Course Status	Program Elective						
5	Course Objective	 To enable the students understand the mathematical principles underlying the Finite Element Method (FE to solid mechanics problems To teach the students the characteristics of various selection of suitable elements for the problems being To make the students derive finite element equatio and complex elements 	and physical (M) as applied elements and g solved ns for simple					
6	Course	After the successful completion of course, students will	be able to:					
	Outcomes	CO1. Distinguish different numerical methods involved	in Finite					
		Element Analysis	Element Analysis					
		CO2. Apply equations in finite element methods for 1D,	, 2D and 3D					
		problems.						
		CO3. Apply shape functions in finite element formulation	ons and use					
		linear, quadratic, and cubic shape functions for interpola	tion					
		CO4. Analyse beams and shafts using finite element ana	ılysis					
		CO5. Formulate and solve basic problems in solid mechanics						
		CO6. Apply commercial FEA packages like ANSYS and modern						
		CAD/CAE tools for solving real life problems.						
7	Course Description	This course introduces finite element methods for the an solid mechanics problems. Applications of finite element modelling and analysis of problems, and interpretation of results.	alysis of at methods, of numerical					
8	Outline syllabus		СО					
	-		Mapping					
	Unit 1	Introduction to Finite Element Method						
	А	General description of Finite Element Method – Historical development	CO1					
	В	Comparison with classical methods – Other numerical methods such as FDM, BEM, etc.	CO1					
	С	General procedure of FEM– Application software's in FEM.	CO1					

Unit 2		Approximate Sol	ing Problems						
A		General field prob	lems – formulation	of Governing	CO^2				
		Differential Equation	ions.		02				
В		Approximate solut	tion as a polynomial	, minimization of	CO^2				
		residue			002				
C		Method of least sq	uares and Galerkin	method,	CO^2				
		Variational formul	ation Ritz method		002				
Unit 3		Shape functions i	n Finite Element F	ormulations					
A		Formulation for th	e subdomain using	interpolation	CO3				
		polynomial - Noda	al approximation usi	ing shape function					
B		Selection of interp	olation polynomials	s (shape functions)	CO3				
		for 1 D and 2 D ele	ements						
C		Derivation of shap	Derivation of shape functions for various elements –						
		Isoparametric elen	nents. Numerical Int	tegration and its	CO3				
		advantages.							
Unit 4		Bar Problems							
A		II order problems -	- Bar Problem – For	mulation for the					
		whole domain – Fe	ormulation for the s	ubdomain (finite	CO4, CO6				
		element) using inte	erpolation polynomi	ial					
В		Nodal approximation	ion using shape fund	ctions of Bar					
		elements. Comput	elements. Computing stiffness, mass and force element						
		matrices							
C		Assembly of bar e	CO4 CO6						
		– solution	001,000						
Unit 5		Beam Problems							
A		IV order problems	- Beam Problem –	Formulation for					
		the whole domain	 Formulation for the 	ne subdomain	CO5, CO6				
		(finite element) us	ing interpolation po	lynomial					
B		Nodal approximation	ion using shape fund	ctions of Beam					
		elements. Comput	ing stiffness, mass a	and force element	CO5, CO6				
		matrices							
C		Assembly of beam	element matrices -	- Application of	CO5 CO6				
		B.Cs – solution			005,000				
Mode of	of	Theory							
examin	ation		1	1					
Weight	age	CA	MTE	ETE					
Distrib	ution	25%	25%	50%					
Text bo	ook/s*	Tirupathi R. Chan	drupatla and Ashok	D. Belugundu,					
		Introduction to Fir	ite Elements in Eng	gineering, 4th					
		Edition, Prentice H							
Other		1 Reddy, J.N., Fin	ite Element Method	in Engineering,					
Referen	nces	Tata McGraw Hill							
		2. Young W Kwor							
		element method us	sing MATLAB, 2ed	, CRC Press,					
		London. 2000.							

	3. Seshu P, Textbook of Finite Element Analysis, PHI.	
	2004	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MCH005.1	3	3	-	-	1	-	-	-	-	-	-	2	1	-	-
MCH005.2	2	3	-	-	1	-	-	-	-	-	-	2	1	-	-
MCH005.3	3	3	-	-	1	-	-	-	-	-	-	2	1	-	-
MCH005.4	2	3	-	-	1	-	-	-	-	-	-	2	1	-	-
MCH005.5	2	3	-	-	1	-	-	-	-	-	-	2	1	-	-
MCH005.6	3	3	-	-	1	-	-	-	-	-	-	2	1	-	-
MEC485	2	3	-	-	1	-	-	-	-	-	-	2	1	-	-

1-Slight (Low)

2-Moderate (Medium)

Sc	hool: SSET	Batch : 2023-2027				
Pr	ogramme: B.Tech	Current Academic Year: 2023-2024				
Br	anch: ME	Mechanical Engineering				
1	Course Code	MEC486				
2	Course Title	Design with Composite Materials				
3	Credits	3				
4	Contact Hours (L-T-P)	3-0-0	_			
	Course Status	Program Elective				
5	Course Objective	 Provide students with a basic understanding of and uses of composite materials, their structural properties. Develop the student's skills in understanding manufacturing methods available for composite m Illuminate the knowledge and analysis skil mechanics to the composite materials. 	the composition and mechanical g the different naterial ls in applying			
6	Course	After the successful completion of course, students w	ill be able to:			
	Outcomes	 CO1. Classify composite materials and their application CO2. Apply the principles of micro and macro mechan composite materials CO3. Analyze composite laminates using the fundamentation Classical Lamination Theory CO4. Apply failure criteria on composite structures survarious types of loading CO5. Design a composite structure for the specific mean applications. CO6. Demonstrate the design of composite laminates mechanical, thermal stresses for different environment 	ons nics in entals of ubjected to echanical subjected to ntal conditions.			
7	Course Description	This course provides students a background in modern lightweight composite materials which are being used in an ever-increasing range of applications and industries. Topics covered include: current and potential applications of composite materials, fibers, matrices, manufacturing methods for composites, review of elasticity of anisotropic solids, micromechanics of continuous and discontinuous fiber systems, laminated plate analysis, static analyses of laminated composites, edge effects in laminates and both macroscopic and microscopic failure analysis of composite materials and design of laminates				
8	Outline syllabus	1	CO Mapping			
	Unit 1	Introduction & Applications				

			1
	A	Composites, Multiscale Composites and	
		Nanocomposites, Reinforcements and	CO1
		Matrices,	
	В	Properties of the composites in comparison with	CO1
		standard materials	01
	С	Applications: Applications of metal, ceramic and	
		polymer matrix composites, Multiscale and nano	
		composites, Hybrid composites and Sandwich	CO1
		composites, self-reinforced composites	
		and carbon/carbon composites	
	Unit 2	Micro and Macro mechanical analysis of	
		composite materials	
	A	Micromechanical Analysis of a Lamina. Volume	
		and Mass Fractions, Density, and Void Content-	CO2
	В	Prediction of engineering properties	
		using micromechanics-Material properties of the	CO2
		fiber and matrix	
	С	Macro mechanical analysis of a lamina -linear	
		elastic stress-strain characteristics of Fiber	CO2
		Reinforced material	
	Unit 3	Classical Lamination Theory	
	A	Visite Contractor in the size of the second state of the second st	
	A	Kirchnoff Hypothesis- Laminate Nomenciature and	002
		Classification. Laminate strains and displacements -	003
-	D	Laminate stresses & strains	
	В	Stress distributions through the thickness- Force and	CO3
	0	moment resultants	
	L	Laminate stiffness matrix: ABD Matrix-	CO2
		Classification of faminates and their	005
	TT •4 A	The series of Failures of Leaving 442	
	Unit 4	Theories of Fanures of Laminates	
	A	Maximum stress and strain criterion	CO4 CO6
			004,000
	В	Tsai-Hill, Tsai-Wu criterion	CO4, CO6
	C	Inter lominor strasses, Impact resistance	,
	C	Inter-tammar stresses- Impact resistance	CO4, CO6
	Unit 5	Design of Composite Products	
	A	Smart composites, Joints and assembly of	
		composites, Design for assembly and	CO5, CO6
		environment	· ·
	В	Materials selection- design principles in composites	005 006
		for various load carrying applications	005,006

С	Case studies in de	esign and develop	ment of				
	composite parts,	boats, pressure ves	ssels, automotive	CO5 CO6			
	parts, aerospace p	parts, aerospace parts, electronics parts and					
	composites for sp						
Mode of	Theory						
examination							
Weightage	CA	MTE	ETE				
Distribution	25%	25%	50%				
	1. Autar, K. Kaw	, Mechanics of Co	mposite				
	Materials, Taylor	& Francis, 2006					
Other References	1. Robert Millard	Jones, Mechanics	s of composite				
	materials, Taylor						
	2. Laszlo, P. Koll						
	Mechanics of cor						
	University Press,	2003.	C				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MEC486.1	3	3	2	-	-	-	-	-	-	-	-	2	1	-	-
MEC486.2	2	3	2	-	-	-	-	-	-	-	-	2	1	-	-
MEC4863	3	3	2	-	-	-	-	-	-	-	-	2	1	-	-
MEC486.4	3	3	2	-	-	-	-	-	-	-	-	2	1	-	-
MEC486.5	3	3	2	-	-	-	-	-	-	-	-	2	1	-	-
MEC486.6	3	3	2	-	-	-	-	-	-	-	-	2	1	-	-
MEC486	3	3	2	-	-	-	-	-	-	-	-	2	1	-	-

1-Slight (Low)

2-Moderate (Medium)

Scho	ol: SSET	Batch : 2023-2027
Prog	ramme: B.Tech	Current Academic Year: 2023-2024
Bran	ch: ME	Mechanical Engineering
1	Course Code	MEP486
2	Course Title	Design with Composite Materials Lab
3	Credits	
4	Contact Hours (L-T-P)	0-0-2
	Course Status	Practical
5	Course Objective	 Provide students with a basic understanding of the composition and uses of composite materials, their structural and mechanical properties. Develop the student's skills in understanding the different manufacturing methods available for composite material Illuminate the knowledge and analysis skills in applying mechanics to the composite materials.
6	Course Outcomes	After the successful completion of course, students will be able to: CO1. Evaluate the fundamental elastics properties of UD
		glass/epoxy composite materials
		CO2. Test and Interpret static bending behaviour of glass/epoxy
		composite beams
		CO3. Analyse buckling behaviour of glass/epoxy composite
		beams
		CO4. Test and Interpret dynamic bending behaviour of UD
		glass/epoxy composite beams
		CO5. Design a glass/epoxy laminate with high stiffness through
		optimizing the volume fraction and ply orientations
		CO6. Formulate an optimization problems for designing a laminate
		and validate with experimentation
7	Course Description	This course provides students a background in modern lightweight composite materials which are being used in an ever-increasing range of applications and industries. Topics covered include: current and potential applications of composite materials, fibers, matrices, manufacturing methods for composites, review of elasticity of anisotropic solids, micromechanics of continuous and discontinuous fiber systems, laminated plate analysis, static analyses of laminated composites, edge effects in laminates and both macroscopic and microscopic failure analysis of composite materials and design of laminates.

8	Outline syllabus				CO Mapping					
	List of Experiments									
	Experiment 1	Evaluate the E transverse dire materials and	lastic moduli in ection of UD gla verify with micr	longitudinal and ss/epoxy composite omechanics	CO1, CO6					
	Experiment 2	Evaluate the S UD glass/epox micromechani	hear moduli in i xy composite ma cs	n-plane direction of aterials and verify with	CO1, CO6					
	Experiment 3	Test and Interget glass/epoxy consection and version a	Test and Interpret central deflection of UD glass/epoxy composite beams with uniform cross section and verify with numerical simulation							
	Experiment 4	Test and Int glass/epoxy c section and ve	CO2, CO6							
	Experiment 5	Evaluate the glass/epoxy of numerical sim	CO3, CO6							
	Experiment 6	Test and Interget glass/epoxy constraints and sime set of the set	pret dynamic res omposite beams ulation	sponse of UD and verify with	CO4, CO6					
	Experiment 7	Design a gla through optin orientations	ss/epoxy lamina nizing the volu	ate with high stiffness time fraction and ply	CO5, CO6					
	Experiment 8	Formulate an laminate and v	optimization pr alidate with exp	oblem for designing a perimentation	CO6					
	Mode of examination	Practical								
	Weightage	CA	MTE	ETE						
	Distribution	25%	50%							
	Text book/s*	1. Young W finite elen CRC Pres 2. A								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MCP006.1	3	3	-	-	-	-	-	-	-	-	-	2	1	-	-
MCP006.2	2	3	-	-	-	-	-	-	-	-	-	2	1	-	-
MCP006.3	3	3	-	-	-	-	-	-	-	-	-	2	1	-	-
MCP006.4	2	3	-	-	-	-	-	-	-	-	-	2	1	-	-
MCP006.5	2	3	-	-	-	-	-	-	-	-	-	2	1	-	-
MCP006.6	3	3	-	-	-	-	-	-	-	-	-	2	1	-	-
MEP486	3	3	-	-	-	-	-	-	-	-	-	2	1	-	-

1-Slight (Low)

2-Moderate (Medium)

Scl	hool: SSET	Batch : 2023-2027							
Pro	ogramme:	Current Academic Year: 2023-2024							
B. '	Гесh								
Br	anch: ME	Semester: IV							
1	Course Colle	MDM201							
1	Course Code	MDM201							
2	Course Thie								
3	Credits	3							
4	Contac	3-0-0							
	l Hours								
	(L-1- D)								
	Course Status	DSE							
5	Course	1 To familiarize students with concept of Industry 4 () and it's						
5	Objective	applications.							
		2. To provide students an understanding of lean manu	facturing process.						
		3. To teach the basics of Internet of things.							
		4. To teach students the basics of Industry IoT a modernmanufacturing industry.	pplications in						
6	Course	After the successful completion of course, students wil	ccessful completion of course, students will be able to:						
	Outcomes	CO1: Interpret the concept of Industry 4.0 and							
		its applications							
		CO2: Apply the concept of internet of things on real i	ndustrial						
		problems.							
		CO3: Identify Industry 4.O applications in a manufac	cturing						
		industry.							
		CO4: Apply the concept of IIOT and Lean manufactu	ring tools and						
		techniques in industrial problems.							
		CO5: Compare Industry Io1 applications in a manufa	cturing industry.						
7	Course	The chiestive of this course is to make the students re	.U.						
/	Description	1 in our of units course is to make the students is concept of Industry $A \cap$ Internet of Things HOT I	ean about the						
	Description	manufacturing and applications in the Industry A	fter learning this						
		course the student will be able to internet all these conce	epts and						
		techniques in an industry to help the industries growth	n in the market as						
		well as overall development of the country.							
8	Outline	CO Mapping							
	syllabus								
	Unit 1	Introduction To Industry 4.0							
	А	The Various Industrial Revolutions - Digitalisation	CO1						
		and the Networked Economy - Drivers, Enablers,	01						
		Compelling Forces and Challenges for Industry 4.0							

	The Journey so fa China and other of 4.0 Factory and T	ar: Developme countries - Co Today's Factor	ents in USA, Europe, mparison of Industry v	CO1
	Trends of Industr Analytics for Sm	ial Big Data a art Business T	nd Predictive Transformation.	CO1
2	Road To Industry	4.0		
	Internet of Things (IIoT) & Internet of	(IoT) & Industr of Services	rial Internet of Things	CO2
	Smart Manufacturi	ing - Smart Dev	vices and Products	CO2
	Smart Logistics - S	Smart Cities - P	redictive Analytics	CO2
3	Industry4.0 in M	anufacturing	Industry	
	Rise of Collaborat & IoT, Industrial Data Spa	BOT), Edge Computing	CO3, CO6	
	Logistics4.O, Indu	strial Iot gatew	ays	CO3, CO6
	lioT Cybersecurity communication and Maintenance and as lioT.	CO3, CO6		
4	Introduction to Ir			
	Fourth Revolution Manufacturing Ind	– Sustainability ustry.	y assessment of	CO4, CO6
	Lean Production sy business perspective	ystem – Smart a ve – smart facto	and connected ories	CO4, CO6
	cyber-physical syst PLM.	tems – collabor	ation platform and	CO4, CO6
5	Industrial IoT Ap	plications		
	Health Care Manag industry,	gement, Chemi	cal and Pharmaceutical	CO5, CO6
	Industrial IoT in Pe and InventoryMan	ower Plants ,Qu agement	ality Control	CO5, CO6
	Plant Safety and Se	ecurity, Facility	Management	CO5, CO6
	Theory			
shtage	CA 250/	MIE	EIE 500	
10ution	23%			
DOOK/S*	1. The Fourth Ir Klaus Schwal 2.Industrial Engin Management-Ma			
	2 3 3 4 4 5 5	The Journey so fa China and other of 4.0 Factory and T Trends of Industry Analytics for Sm2Road To Industry Internet of Things (IIoT) & Internet of Smart Manufacturi Smart Logistics - S3Industry4.0 in M Rise of Collaborat & IoT, Industrial Data Spa Logistics4.0, Indu IioT Cybersecurity communication and Maintenance and as IioT.4Introduction to In Manufacturing Ind Lean Production sy business perspectiv cyber-physical sys PLM.5Industrial IoT Ap4Health Care Managindustry, Industrial IoT in P and InventoryMan5Industrial IoT in P and InventoryMan9Plant Safety and Safety and Sa CO	The Journey so far: Developmed China and other countries - Co 4.0 Factory and Today's Factor Trends of Industrial Big Data a Analytics for Smart Business T Road To Industry 4.0 Internet of Things (IoT) & Industr (IIoT) & Internet of Services Smart Manufacturing - Smart Dev Smart Logistics - Smart Cities - P Industry4.0 in Manufacturing I Rise of Collaborative robot (COF & IoT, Industrial Data Space. Logistics4.0, Industrial Iot gatew lioT Cybersecurity Risks and evo communication and connectiv Maintenance and asset managemen lioT. 4 Introduction to Industrial IoT (Fourth Revolution – Sustainability Manufacturing Industry. Lean Production system – Smart a business perspective – smart facto cyber-physical systems – collabor PLM. 5 Industrial IoT Applications Health Care Management, Chemic industry, Plant Safety and Security, Facility Plant Safety and Security, Facility Theory Shtage CA MTE ibution 25% 25% Schwab, World Ecor 2.Industrial Engineering and Pr Management-Martand Telsang CO	The Journey so far: Developments in USA, Europe, China and other countries - Comparison of Industry 4.0 Factory and Today's Factory Trends of Industrial Big Data and Predictive Analytics for Smart Business Transformation. 2 Road To Industry 4.0 Internet of Things (IoT) & Industrial Internet of Things (IIoT) & Internet of Services Smart Manufacturing - Smart Devices and Products Smart Logistics - Smart Cities - Predictive Analytics 3 Industry4.0 in Manufacturing Industry Rise of Collaborative robot (COBOT), Edge Computing & IoT, Industrial Data Space. Logistics4.0, Industrial Iot gateways IioT Cybersecurity Risks and evolution, Iiot communication and connectivity technology, Maintenance and asset management with IioT. 4 Introduction to Industrial IoT (IIoT) Systems: Fourth Revolution – Sustainability assessment of Manufacturing Industry. Lean Production system – Smart and connected business perspective – smart factories cyber-physical systems – collaboration platform and PLM. 5 Industrial IoT Applications Health Care Management, Chemical and Pharmaceutical industry, Industrial IoT Applications thealth Care Management Plant Safety and Security, Facility Management Plant Safety and Security, Facility Management Theory what Sefwab, World Economic Forum 2. Industrial Engineering and Production Management-Martand Tel

Other	1.Internet of Things: A Hands-On Approach by	
References	Arsheep Bahga and Vijay Madisetti, University	
	Press	
	2.NOC: Introduction to Industry 4.0 and Industrial	
	Internet of Things Buffa, E.S., "Modern	
	Production/Operations Management", John Wiley	
	sons, 2003	
	3. Elsayed A Elsayed, Thomas O. Boucher,	
	"Analysis and control of Production System",	
	Prentice Hall, 2002.	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	PS
										0	1	2	O1	2	O3
CO201.1	3	2	-	-	-	2	-	-	-	-	-	2	1	1	1
CO201.2	3	2	-	-	-	2	-	-	-	-	-	2	1	1	1
CO201.3	3	2	-	-	-	2	-	-	-	-	-	2	1	1	1
CO201.4	3	2	-	-	-	2	-	-	-	-	-	2	1	1	1
CO201.5	3	2	-	-	-	2	-	-	-	-	-	2	1	1	1
CO201.6	3	2	-	-	-	2	-	-	-	-	-	2	1	1	1
MDM20	3	2	-	-	-	2	-	-	-	-	-	2	1	1	1
1															

1-Slight (Low)

2-Moderate (Medium)

Scl	nool: SSET	Batch: 2023-2027										
Pre	ogramme:	Current Academic Year: 2023-2024										
B. 7	ſech											
Bra	anch: ME	Semester: V										
1	Course Code	MDM 202										
2	Course Title	Big Data Analytics for Manufacturing										
3	Credits	3										
4	Contact Hours	3-0-0										
	(L-T-P)											
	Course Status	DSE										
5	Course Objective	 To understand the need of Big Data, challenges and different analytical architectu Installation and understanding of Hadoop Architecture and its ecosystems Processing of Big Data with Advanced architectures like Spark. Describe graphs and streaming data in Spark 	ures.									
6	Course	After the successful completion of course, students will be able to:										
	Outcomes	CO1: Discuss the challenges and their solutions in Big Data.										
		CO2: Summarize the data using basic statistics.										
		CO3: Interpret and work on Hadoop Framework and eco systems.										
		CO4: Familiarize and analyze the use of robotics in modern manufacturing.										
		CO5: Demonstrate spark programming with different programming languages and l	ive streaming									
		data in Spark										
7	0	CO6: Analyze and translate vast data in to abstract concepts necessary for engineerin	g practices.									
/	Course	This course is designed to give you a thorough understanding of data analysis which p	blays a crucial									
	Description	role in the increasingly digital world and cyber-physical systems. This course v	viii introduce									
		unstructured data with specific examples derived from the world of design manu	facturing and									
		management.										
8	Outline syllabus	Indiagonioni.	CO									
Ũ	e dallite syllae ds		Mapping									
	Unit 1	Introduction To Big Data	FF8									
	A	Data Storage and Analysis - Characteristics of Big Data —	CO1									
	В	Big Data Analytics - Typical Analytical Architecture	CO1									
			COI									
	С	Requirement for new analytical architecture – Challenges in Big Data Analytics –	CO1									
		Need of big data frameworks	001									
	Unit 2	Traditional Method and Statistical Techniques for data Analytics										
	А	Introduction to Missing data, Traditional methods for dealing with missing data,										
		Maximum Likelihood Estimation – Basics, Missing data handling, Improving the	CO2									
	2	accuracy of analysis										
	В	Statistical data elaboration, 1-D Statistical data analysis, 2-D Statistical data										
		Analysis, ND Statistical data analysis										
	C	Inferential statistics Regression and ANOVA	<u>CO2</u>									
	Unit 3	Rig Data Framework										
	A	Hadoon – Requirement of Hadoon Framework - Design principle of Hadoon –										
	4.3	Comparison with other system	CO3									
	В	Hadoop Components – Hadoop 1 vs Hadoop 2 – Hadoop Daemon's – HDFS										
1		Commands	CO3									

	С	Map Reduce Program sorting, Pipelining M	nming: I/O formats, IapReduce jobs	Map side join, Reduce Side Join, Secondary	CO3								
	Unit 4	Spark Framework	and Data Analysis	with it									
	А	Introduction to GPU Matrix, Multiplication	Computing, CUDA on in CUDA,	Programming Model, CUDA API, Simple	CO4								
	В	CUDA Memory Mo API Features.	del, Shared Memor	y Matrix Multiplication, Additional CUDA	CO4								
	С	Data Analysis with S in Scala, Python, R,	CO4										
	Unit 5	Streaming of Data (Streaming of Data through Spark										
	А	SQL Context – Impo	orting and Saving da	ta – Data frames – using SQL	CO5								
	В	Graph X overview –	Creating Graph – C	Braph Algorithms.	CO5, CO6								
	С	Overview – Errors a spark	Overview – Errors and Recovery – Streaming Source – Streaming live data with spark										
	Mode of examination	Theory											
	Weightage	CA	MTE	ETE									
	Distribution	25%	25%	50%									
	Text book/s*	 Text Book 1. Mike Frampton, "Mastering Apache Spark", Packt Publishing, 2015. 2. TomWhite, "Hadoop: TheDefinitiveGuide", O'Reilly, 4thEdition, 2015. 3. NickPentreath, Machine Learning with Spark, Packt Publishing, 2015. 											
	Other	References											
1	References	1. NPTEL Onl	line course	on Data Analytics by IITM									
1		(http://nptel.ac.i	n/courses/11010606	<u>54/</u>)									
1		2. Mohammed Gu	ller, Big Data Analy	tics with Spark, Apress,2015									
		3. Donald Miner, A	Adam Shook, "Map	Reduce Design Pattern", O'Reilly, 2012									

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	PS
										0	1	2	O1	2	O3
CO202.1	3	3	2	-	-	-	-	-	-	-	-	2	-	1	1
CO202.2	3	3	2	-	-	-	-	-	-	-	-	2	-	1	1
CO202.3	3	3	2	-	-	-	-	-	I	-	-	2	I	1	1
CO202.4	3	3	2	-	-	-	-	-	-	-	-	2	-	1	1
CO202.5	3	3	2	-	-	-	-	-	-	-	-	2	-	1	1
CO202.6	3	3	2	-	-	-	-	-	-	-	-	2	-	1	1
MDM	3	3	2	-	-	-	-	-	-	-	-	2	-	1	1
202															

1-Slight (Low)

2-Moderate (Medium)
Sc	hool: SSET	Batch : 2023-2027							
Pr	ogramme: B.Tech	Current Academic Year: 2023-2024							
Br	anch: ME	Semester: VI							
1	Course Code	MDM301							
2	Course Title	Additive Manufacturing							
3	Credits	2							
4	Contact Hours	2-0-0							
	(L-T-P)								
	Course Status	DSE							
5	Course Objective	Generating a good understanding of Additive Manufacturing, its	development						
		and applications, To expose the students to different types	of Additive						
		Manufacturing Processes, materials used in AM systems and reverse engineering.							
6	Course Outcomes	After the successful completion of course, students will be able to:							
		CO1: Interpret the scope and necessity of additive manufacturing process	es in the						
		industry.							
		CO2: Create and modify various required file formats and path programm	ning for the						
		additive creation process	CASS						
		CO4: Distinguish among various types of additive manufacturing machin	es						
		CO5: Apply additive manufacturing techniques to reverse engineering							
		CO6: Construct any complex geometry model that has market appeal.							
7	Course	Additive Manufacturing (AM) is a process of joining materials to	make objects						
	Description	from 3D model data, usually layer up on layer, as opposed t	o subtractive						
		manufacturing methodologies, such as traditional machining. The b	asic principle						
		of AM is that a model, initially generated using a three dimensio	nal computer						
		Aided Design system, can be fabricated directly. AM techn	ologies have						
		significantly evolved over the last decade. Because of their	potential to						
		extensively transform the nature of manufacturing processes b	y enabling "						
		Freedom of Design "several industries have been attracted by these	technologies.						
		Using AM, manufacturing of highly complex parts can be an econor	nically viable						
	0 11 11 1	alternative to conventional manufacturing technologies	~~						
8	Outline syllabus		CO						
	TT •4 1		Mapping						
	Unit I								
	A	Introduction							
	А	Would of AM What is AM Dasis Drasses Industries Using AM							
		World of AM, what is AM, Basic Process, industries Using AM, Crowth of AM. Installations by Countries. Technology	CO1						
		Development							
	B	History of AM: Early history Early solid Freeform Eabrication							
	D	Commercial Development Chronology of AM Development	CO1						
	C	Traditional Prototyping Vs Rapid Prototyping Classification of							
		Additive Manufacturing Processes Applications in Education and	CO1						
		Industry.							
	Unit 2								
		Principles of Additive Manufacturing Processes							

A	Principles of Aut of solid Models, Making or Grow	tomated Processe Conversion to S' ring the Prototype	es, AM Fundamentals: Creation TL File, Slicing the File, e, Post processing	CO2					
В	Data interfacing: f CT, STEP), conve	ormats (STL, SLC ersation, validity cl	C, CLI, AMI, LEAF, IGES, HP/GL, hecks, repair procedures	CO2					
C	Part orientation an Slicing algorithms slicing, Tool path	d support generati s and contour dat generation.	on, Support structure design, Model a organization, direct and adaptive	CO2					
Unit 3	Materials for A	dditive Manufa	cturing Processes						
А	Introduction ; Na Structure Types of Materia	ature of Materials als: Polymers, M	s , Chemical bonding and etals, Ceramics , Composites	CO3					
В	Liquid Based Ma Photopolymer Cl	aterials : Photopo hemistry	olymers development,	CO3					
С	Solid Based Mat	erials : Polymers	, Metals, Composites, Ceramics	CO3					
Unit 4	Liquid and Soli	Liquid and Solid based AM Systems							
A	Classification: Li SLA, details of S Disadvantages, I	Classification: Liquid based system-Stereo lithography Apparatus SLA, details of SL process, products, Advantages and Disadvantages, Limitations, Applications and Uses.							
В	Soild based Sy Process, product and Uses, Lamin	CO4							
С	Case Study: Fab AM systems, Pos	ricating a Protot st processing ope	ype using liquid and solid based erations.	CO4, CO5					
Unit 5	Powder based A	M Systems							
A	Selective Laser S sinter bonding advantages and development.	Sintering-Princip process, laser disadvantages	bles of SLS process, principle of sintering materials , products, s applications, research and	CO5, CO6					
В	Three Dimension production castin case studies	nal printing proce ng –key strength	ess and applications, Direct shell , process, applications and uses,	CO5,CO6					
С	Laser Sintering S processing, post	System, Errors in processing errors	AM processes: Pre processes, s, Parts building errors.	CO5,CO6					
Mode of examination	Theory								
Weightage	CA	MTE	ETE						
Distribution	25%								
Text book/s*	Noorani R, Rap Manufacturing, Jo								
Other References	1. Chua C K, Leor Applications in M	Chua C K, Leong K F, Chu S L, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific.							

	2. Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.	
	Springer.	
	3. Liou W L, Liou F W, Rapid Prototyping and Engineering applications: A tool box for prototype development, CRC Press.	
	4. Kamrani A K, Nasr E A, Rapid Prototyping: Theory and practice,	
	Springer,	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO301.1	3	2	2	-	-	-	-	-	-	-	-	-	2	3
CO301.2	3	3	3	-	-	-	-	-	-	-	-	-	3	3
CO301.3	2	3	3	-	-	-	-	-	-	-	-	-	3	3
CO301.4	3	3	3	-	-	-	-	-	-	-	-	-	3	3
CO301.5	3	3	3	-	-	-	-	-	-	-	-	-	3	3
CO301.6	2	2	2	-	-	-	-		-	-	-	-	2	3
MDM301	2	3	2	-	-	-	-	-	-	_	-	-	3	3

1-Slight (Low) 2-Moderate (Medium)

3-Substantial (High)

Sc	hool: SSET	Batch : 2023-	2027								
Pr	ogramme: B.Tech	Current Acad	lemic Year: 2	023-2024							
Br	anch: ME	Semester: VI									
1	Course Code	MDM301									
2	Course Title	Additive Man	ufacturing Lab								
3	Credits	1									
4	Contact Hours	0-0-2									
	(L-T-P)										
	Course Status	DSE	DSE								
5	Course Objective	Generating a	enerating a good understanding of Additive manufacturing,								
		development a	and application	ns, To expose the students	about Additive						
		Manufacturing	g Processes, m	aterials used in AM syste	ems and reverse						
		engineering co	oncept.								
6	Course Outcomes	After the succe	essful complet	ion of course, students will	l be able to:						
		CO1. Explain th	ne scope and nee	cessity of additive manufactu	ring processes in						
		the industry.									
		CO2. Create an	d modify variou	is required file formats and p	ath programming						
		for the additive $CO3$ Select sui	table materials/	8 tooling for the additive manu	facturing process						
		CO3. Select sul	sh among vario	is types of additive manufact	uring machines						
		CO5. Apply add	ditive manufact	aring techniques to reverse er	ngineering						
		CO6. Construct	any complex g	eometry model that has mark	et appeal.						
7	Course	Additive Man	ufacturing (AN	I) is a process of joining m	aterials to make						
	Description	objects from 3	D model data	, usually layer up on layer	, as opposed to						
	-	subtractive r	nanufacturing	methodologies, such	as traditional						
		machining. T	he basic prin	ciple of AM is that a	model, initially						
		generated usir	ng a three dim	ensional computer Aided	Design system,						
		can be fabricat	ted directly. Al	M technologies have signif	ficantly evolved						
		over the last de	ecade. Because	e of their potential to extens	sively transform						
		the nature of m	nanufacturing p	processes by enabling "Fre	edom of Design						
		" several indu	stries have be	en attracted by these tech	nologies. Using						
		AM, manufac	turing of high	ly complex parts can be a	in economically						
0		viable alternat	ive to convent	ional manufacturing techn	ologies						
8	Outline syllabus	.			CO Mapping						
	Experiments	Introduction	to additive ma	anufacturing	COL						
	Experiment 2	Design and pr	inting of spur g	sear, Helical Gear							
	Experiment 3	Design and Pr	inting gear tra	1n	CO2,CO6						
	Experiment 4	Design and pr	inting of Knuc	kle joint	CO2,CO6						
	Experiment 5	Design and Pr	C06								
	Experiment 6	Design and Pr	inting of cams	nart							
	Experiment 7	Design and Pr	inting of Beari	ng	C02,C06						
	Experiment 8	Design and Pr	inting of castin	ig pattern	002,006						
	NIODE OF	Practical									
	examination DTE										
	weight- age			EIE							
	Distribution	25%	25%	50%							

Text book/s*	Noorani R, Rapid Prototyping: Principles and Applications in Manufacturing,
	John Wiley & Sons
	 Chua C K, Leong K F, Chu S L, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific. Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer. Liou W L, Liou F W, Rapid Prototyping and Engineering applications: A tool box for prototype development, CRC Press. Kamrani A K, Nasr E A, Rapid Prototyping: Theory and practice, Springer,

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	PS
										0	1	2	O1	2	03
CO301.1	-	-	-	-	-	2	-	2	-	-	-	2	-	-	-
CO301.2	1	-	-	-	1	2	-	-	-	-	-	1	1	1	-
CO301.3	2	-	-	-	1	2	-	-	-	-	-	2	1	1	-
CO301.4	2	-	1	-	2	2	-	-	-	-	-	2	-1	1	-
CO301.5	2	-	1	-	2	2	-	-	-	-	-	2	2	1	-
MDM30	2	-	1	-	2	2	-	-	-	-	-	2	2	1	-
1															

Scl	hool: SSET	Batch : 2023-2027					
Pro	ogramme: B. Tech	Current Academic Year: 2023-2024					
Bra	anch: ME	Semester: VI					
1	Course Code	MDM 302					
2	Course Title	Robotics and Automation					
3	Credits	3					
4	Contact Hours (L-T-P)	3-0-0					
5	Course Outcomes	After the successful completion of course, students will be able to:CO1: Interpret the various applications of RobotsCO2: Select suitable gripper and sensor for robotCO3: Apply the principles of industrial automation in the industrial applicationsCO4: Classify manufacturing automation					
		CO6: Recommend automation and robot for industria	l application				
6	Outline syllabus		CO Mapping				
	Unit 1	Robotics Introduction					
	А	Evolution of Robot and Robotics, Laws of Robotics, Progressive advancement in robotics,	CO1				
	В	classification with respect to geometrical configuration (Anatomy),Wrist configuration	CO1				
	С	End effector, Manipulation and control, Designation of configurations of robot.	CO1				
	Unit 2	Robot Grippers & Sensors					
	А	Mechanical Gripper-Grasping force, mechanisms for actuation, Magnetic gripper	CO2				

В	vacuum cup gripper-considerations in gripper selection & design, Sensors used in robots- Contact and noncontact sensors	CO2
C	Proximity sensor: Inductive proximity sensor, capacitive proximity sensor, Comparison of inductive proximity and capacitive proximity and their relative merits and demerits.	CO2
Unit 3	Automation Introduction	
A	Definition, Advantages, goals, types, need, laws and principles of Automation. Elements of Automation	CO3
В	Fluid power and its elements, application of fluid power, Pneumatics vs. Hydraulics,	CO3
С	benefit and limitations of pneumatics and hydraulics systems, Role of Robotics in Industrial Automation.	CO3
Unit 4	Manufacturing Automation	
A	Manufacturing Automation: Classification and type of automatic transfer machines; Automation in part handling and feeding, Analysis of automated flow lines	CO4
В	design of single model, multi-model and mixed model production lines.	CO4
С	Programmable Manufacturing Automation CNC machine tools, Machining centers, Programmable robots, Robot time estimation in manufacturing operations.	CO4, CO6
Unit 5	Type Automation	
A	Type Automation: Automated Flow lines, Methods of Work part Transport,	CO5
В	Transfer Mechanism, Buffer Storage, Control Functions	CO5
С	Automation for Machining Operations, Design and Fabrication Considerations.	CO5,CO6

Mode of examination	Theor	у		
Weightage Distribution	CA	MTE	ETE	
Distribution	25%	25%	50%	
Text book/s*	1.Gro Progra 2. Aut Integra Pearso	over, M.P., "In amming and Aj omation, Produc ated Manufactur nEducation	dustrial Robotic Technology – oplication", McGrawhill ation Systems and Computer ing"- M.P.Grover,	
Other References	1. 2. 3.	Koren, Y., "F McGrawhill. Deb, S.R., "F Flexible Auto Anatomy of A Amber, Prentic	Robotics for Engineers", Robotics Technology and Iomation" Tata Mc Graw Hill Iutomation – Amber G.H & P.S. IceHall	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	PS
										0	1	2	01	2	O3
CO302.1	2	1	-	-	1	-	-	-	-	-	-	2	1	1	-
CO302.2	2	1	-	-	1	-	-	-	-	-	-	2	1	1	-
CO302.3	2	1	-	-	1	-	-	-	-	-	-	2	1	1	-
CO302.4	2	1	-	-	1	-	-	-	-	-	-	2	1	1	-
CO302.5	2	1	-	-	1	-	-	-	-	-	-	2	1	1	-
CO302.6	2	1	-	-	1	-	-	-	-	-	-	2	1	1	-
MDM	2	1	-	-	1	-	-	-	-	-	-	2	1	1	-
302															

1-Slight (Low) 2-Moderate (Medium)

3-Substantial (High)

Sch	nool: SSET	Batch : 2023-2027							
Pro	gramme: B.Tech	Current Academic Year: 2023-2024							
Bra	anch: ME	Semester: VII							
1	Course Code	MDM 401							
2	Course Title	Reverse Engineering							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	DSE							
5	Course Objective	To introduces the concept of reverse engineering along	with techniques						
C		associated with this process for scanning and converting r	physical parts into						
		solid models or 3-D surfaces through automatic reverse	e engineering. In						
		addition to this objective is to develop a knowledge of rate	pid prototyping to						
		develop tangible prototyping of designs layer by layer t	hrough computer						
		aided design data.	an ough composed						
6	Course Outcomes	After the successful completion of course, students wi	Il be able to:						
		CO1: Interpret the necessary of reverse engineering along	CO1: Interpret the necessary of reverse engineering along with						
		methodologies and techniques used for the same.							
		CO2: Build the knowledge of RE data acquisition and appl	ication of RE						
		software to convert RE produced data into 3-D model.							
		CO3: Choose appropriate reverse engineering system for o	bject as per their						
		application							
		CO4: Develop tangible prototyping of designs layer by lay	er through						
		computer aided design data.							
		CO5: Develop relationship between Reverse Engineering a	and Rapid						
		Prototyping							
		CO6: Acquire knowledge of reverse engineering & rapid p	rototyping to						
		design and develop a 3-D product.							
7	Course Description	This course enables the students to explore the nece	essary of reverse						
		engineering and rapid prototyping in industrial sectors, e	ducational sector,						
		medical sector etc. Through this course students will c	come across with						
		methodologies, techniques, hardware and software used for the same.							
-	0 11 11 1								
8	Outline syllabus		CO Mapping						
	Unit 1	Introduction to Reverse Engineering							
	A	Necessary of reverse engineering, Reverse Engineering–	001 007						
		The Generic Process, Contact Scanners, Noncontact	CO1, CO6						
	D	Scanners							
	В	–Point Processing, Application Geometric Model	CO1, CO6						
		Development, Computer-aided (Forward) Engineering							
		Computer-aided Reverse Engineering, Computer Vision	CO1						
		Imaging Scapper Pipeline							
	I	Demorge Engineering: Henderser, and Safety and							
		Introduction Deverse Engineering Hardware and Soltware							
	A	Methods	CO2						
	D	Methods, Contact Methods, Destructive Method							
1	D	Contact Methods, Destructive Method	102,000						

	С	Reverse Engine						
		Software Class	CO2, CO6					
		Reverse Engine						
	Unit 3	Reverse Engin						
	А	The Selection F	CO3, CO6					
		Triangulation A						
	В	Time-of-flight"	CO2					
		Stereoscopic In	naging Systems,	Destructive Systems	005			
	С	Barriers to Ado	CO3					
		Model, Researc	005					
	Unit 4	4 Introduction to Rapid Prototyping						
	А	Introduction to						
		and Material: C						
		Laser Sintering	CO4					
		dimensional Pr						
		Multijet Model						
	В	Rapid Prototyp	CO4					
	С	Legal Aspects of Reverse Engineering						
	Unit 5	Relationship B						
		Prototyping						
	А	Modeling Clou						
		Processing for 2	Rapid Prototypir	CO5				
		RP for Layer-b						
	В	The Adaptive S						
		Modeling, Plan	CO5					
		Layer						
	С	Determination						
		Engineering in the Automotive Industry, Reverse						
		ndustry						
	Mode of	Theory						
	examination							
	Weightage	СА	MTE	ETE				
	Distribution	25%	25%	50%				
	Text book/s*							
		1. Revers						
		Vinesh Raja an						
	Other References	1. Re						
		Str						
		W.						

	-	-			-	-	-		-			-	-	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO2
										0	1	2	1	
CO401.1	3	2	2	-	-	-	-	-	-	-	-	1	1	1
CO401.2	3	2	3	-	-	-	-	-	-	-	-	1	1	1
CO401.3	3	2	2	-	-	-	-	-	-	-	-	1	1	1
CO401.4	3	3	2	-	-	-	-	-	-	-	-	1	1	1
CO401.5	2	2	2	-	-	-	-	-	-	-	-	1	1	1
CO401.6	3	2	2	-	-	-	-	-	-	-	-	1	1	1
MDM 401	3	2	2	-	-	-	-	-	-	-	-	1	1	1

1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)